
Under review as a conference paper at ICLR 2024

NEAREST NEIGHBOR-BASED OUT-OF-DISTRIBUTION
DETECTION VIA LABEL SMOOTHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Detecting out-of-distribution (OOD) examples is critical in many applications. We
propose an unsupervised method to detect OOD samples using a k-NN density
estimate with respect to a classification model’s intermediate activations on in-
distribution samples. We leverage a recent insight about label smoothing, which
we call the Label Smoothed Embedding Hypothesis, and show that one of the
implications is that the k-NN density estimator performs better as an OOD detection
method both theoretically and empirically when the model is trained with label
smoothing. Finally, we show that our proposal outperforms many OOD baselines
and we also provide new finite-sample high-probability statistical results for k-NN
density estimation’s ability to detect OOD examples.

1 INTRODUCTION

Identifying out-of-distribution examples has a wide range of applications in machine learning includ-
ing fraud detection in credit cards (Awoyemi et al., 2017) and insurance claims (Bhowmik, 2011),
fault detection and diagnosis in critical systems (Zhao et al., 2013), segmentations in medical imaging
to find abnormalities (Prastawa et al., 2004), network intrusion detection (Zhang & Zulkernine, 2006),
patient monitoring and alerting Hauskrecht et al. (2013), counter-terrorism (Skillicorn, 2008) and
anti-money laundering (Labib et al., 2020).

Out-of-distribution detection is highly related to the classical line of work in anomaly and outlier
detection. Such methods include density-based (Ester et al., 1996), one-class SVM (Schölkopf
et al., 2001), and isolation forest (Liu et al., 2008). However, these classical methods often aren’t
immediately practical on large and possibly high-dimensional modern datasets.

More recently, Hendrycks & Gimpel (2016) proposed a simple baseline for detecting out-of-
distribution examples by using a neural network’s softmax predictions, which has motivated many
works since then that leverage deep learning (Lakshminarayanan et al., 2016; Liang et al., 2017; Lee
et al., 2017). However, the majority of the works still ultimately use the neural network’s softmax
predictions which suffers from the following weakness. The uncertainty in the softmax function
cannot distinguish between the following situations: (1) the example is actually in-distribution but
there is high uncertainty in its predictions and (2) the example is actually out of distribution. This
is largely because the softmax probabilities sum to 1 and thus must assign the probability weights
accordingly. This has motivated recent explorations in estimating conformal sets for neural networks
(Park et al., 2019; Angelopoulos et al., 2020) which can distinguish between the two cases.

In this work, we circumvent the above-mentioned weakness by avoiding using the softmax prob-
abilities altogether. To this end, we approach OOD detection with an alternative paradigm – we
leverage the intermediate embeddings of the neural network and nearest neighbors. Our intuition is
backed by recent work in which the effectiveness of using nearest-neighbor based methods on these
embeddings have been demonstrated on a range of problems such as uncertainty estimation (Jiang
et al., 2018), adversarial robustness (Papernot & McDaniel, 2018), and noisy labels (Bahri et al.,
2020). We explore using k-NN density estimation to detect OOD examples by computing its density
on the embedding layers. It is worth noting that k-NN density estimation is a unsupervised technique,
which makes it very different from the aforementioned deep k-NN work (Bahri et al., 2020) which
leverages the label information of the nearest neighbors. One key intuition here is that low k-NN
density examples might be OOD candidates as it implies that these examples are far from the training
examples in the embedding space.
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In order for density estimation to be effective on the intermediate embeddings, the data must have
good clusterability (Ackerman & Ben-David, 2009), meaning that examples in the same class should
be close together in distance in the embeddings, while examples not in the same class should be
far apart. While much work has been done for the specific problem of clustering deep learning
embeddings (Xie et al., 2016a; Hershey et al., 2016) many of these ideas are not applicable to density
estimation.

In our work, we use a much simpler but effective approach of label smoothing, which involves
training the neural network on a soft label obtained by taking a weighted average between the original
one-hot encoded label and the uniform distribution over labels. We leverage a key insight about the
effect of label smoothing on the embeddings (Müller et al., 2019): training with label smoothing
has the effect of contracting the intermediate activations of the examples within the same class to be
closer together at a faster rate relative to examples in different classes. This results in embeddings
that have better clusterability. We call this the Label Smoothed Embedding Hypothesis, which we
define below.
Hypothesis 1 (Label Smoothed Embedding Hypothesis (Müller et al., 2019)). Training with label
smoothing contracts the intermediate embeddings of the examples in a neural network, where
examples within the same class move closer towards each other in distance at a faster rate than
examples in different classes.

We refer interested readers to Müller et al. (2019) for 2D visualizations of this effect on the model’s
penultimate layer. We will later portray the same phenomenon using k-NN density estimation.

We summarize our contributions as follows:

• We propose a new procedure that uses label smoothing along with aggregating the k-NN
density estimator across various intermediate representations to obtain an OOD score.
• We show a number of new theoretical results for the k-NN density estimator in the context

of OOD detection, including guarantees on the recall and precision of identifying OOD
examples, the preservation of the ranking w.r.t. the true density, and a result that provides
intuition for why the Label Smoothed Embedding Hypothesis improves the k-NN based
OOD score.
• We experimentally validate the effectiveness of our method and the benefits of label smooth-

ing on benchmark image classification datasets, comparing against recent baselines, includ-
ing one that uses k-NN in a different way, as well as classical alternatives to the k-NN
but applied in the same way. The comparison against these ablative models highlight the
discriminative power of the k-NN density estimator for OOD detection.
• We conduct ablations to study the performance impact of the three hyper-parameters of our

method - (1) the amount of label smoothing, (2) which intermediate layers to use, and (3)
number of neighbors k.

2 ALGORITHM

We start by defining the foundational quantity in our method.
Definition 1. Define the k-NN radius of x ∈ RD as

rk(x;X) := inf{r > 0 : |X ∩B(x, r)| ≥ k}.
When X is implicit, we drop it from the notation for brevity.

Our method goes as follows: upon training a classification neural network on a sample Xin from some
distribution fin, the intermediate representations of Xin should be close together (in the Euclidean
sense), possibly clustered by class label. Meanwhile, out-of-distribution points should be further away
from the training manifold - that is, rk(gi(xout);Xin) > rk(gi(xin);Xin) for xin ∼ fin, xout ∼ fout,
where gi maps the input space to the output of the i-th layer of the trained model. Thus, for fixed
layer i, we propose the following statistic:

Ti(x) :=
rk (gi(x); gi(Xin))

Q(Xin, gi)
, Q(Xin, gi) := Ez∼finrk (gi(z); gi(Xin)) .
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Figure 1: Distributions of the 1-NN radius distance for each of three layers as well as our test statistic,
which aggregates over all layers. “Depth” refers to the layer index with respect to the logits layer.
Thus, 0 means logits, -1 means the layer right before logits, so on and so forth. Here we show the
dataset pairing Fashion MNIST→ KMNIST with and without label smoothing. SVHN→ CelebA
is shown in the Appendix. Blue represents samples from the test split of the dataset used to train
the model and are therefore inliers. Red represents the out-of-distribution samples. Consider the
cases of no label smoothing. We see that there is separability between in and out points at each layer,
generally more so at deeper (earlier) layers of the network. This motivates our use of k-NN distance
for OOD detection. There is, however, non-trivial overlap. Now observe the cases with α = 0.1
smoothing. The 1-NN radii shrink, indicating a “contraction” towards the training manifold for both
in and out-of-distribution points. The contraction is, however, higher for ID points than for OOD
points. This motivates the use of label smoothing in our method.

Since Q depends on unknown fin, we estimate it using cross-validation:

Q̂(Xin, gi) =
1

|Xin|
∑
x∈Xin

rk(gi(x); gi(Xin \ {x})) =
1

|Xin|
∑
x∈Xin

rk+1(gi(x); gi(Xin)).

Letting T̂i be our statistic using Q̂, we now aggregate across M layers to form our final statistic:

T̂ (x) =
1

M

M∑
i=1

T̂i(x).

We use a one-sided threshold rule on T̂ - namely, if T̂ > t we predict out-of-distribution, otherwise
we do not. With key quantities now defined, we use the k-NN radius to substantiate (1) the claim
that in and out-of-distribution points are different distances away from the training points and (2)
Hypothesis 1, that label smoothing causes in-distribution points to contract to the training points faster
than OOD ones. This provides the grounding for why a statistic based on the k-NN radius using a
label smoothed model is a powerful discriminator. Figure 2 shows the distribution of 1-NN distances
for three layers as well as our proposed aggregate statistic on two dataset pairs. Across layers and
datasets, we see some separability between in and out-of-distributions points. Label smoothing has
the effect of shrinking these distances for both in/out classes but the effect is larger for in points,
making the distributions even more separable and thereby improving the performance of our method.

3 THEORETICAL RESULTS

In this section, we provide statistical guarantees for using the k-NN radius as a method for out of
distribution detection. To do this, we assume that the features of the data lie on compact support
X ⊂ Rd and that examples are drawn i.i.d. from this. We assume that there exists a density function
f : Rd → R corresponding to the distribution of the feature space. This density function can serve as
a proxy for how much an example is out of distribution. The difficulty is that this underlying density
function is unknown in practice. Fortunately, we can show that the k-NN radius method approximates
the information conveyed by f based on a finite sample drawn from f . For the theory, we define an
out of distribution example as an example where x 6∈ X . Thus, f(x) = 0 for such examples.
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3.1 OUT OF DISTRIBUTION DETECTION HIGH-RECALL RESULT

In this section, we give a result about identifying out of distribution examples based on the k-NN
radius with perfect recall if we were to use a particular threshold. That is, any example that is indeed
out of distribution (i.e. has 0 density) will have k-NN radius above that threshold. We also give a
guarantee that the false-positives (i.e. those examples with k-NN radius higher than that quantity
which were not out-of-distribution examples) were of low-density to begin with. Our results hold
with high-probability uniformly across all of Rd. As we will see, as n grows and k/n→ 0, we find
that the k-NN radius method using the specified threshold is able to identify which examples are
in-distribution vs out-of-distribution.

Our result requires a smoothness assumption on the density function shown below. This smoothness
assumption ensures a relationship between the density of a point and the probability mass of balls
around that point which is used in the proofs.
Assumption 1 (Smoothness). f is β-Holder continuous for some 0 < β ≤ 1. i.e. |f(x)− f(x′)| ≤
Cβ |x− x′|β .

We now give our result below.
Theorem 1. Suppose that Assumption 1 holds and that 0 < δ < 1 and k ≥ 28 · log(2/δ)2 · d log n.
If we choose

r :=

(
k

2Cβ · n · vd

)1/(β+d)

, λ := 5 · Cd/(β+d)β ·
(

k

n · vd

)β/(β+d)
,

then the following holds uniformly for all x ∈ Rd with probability at least 1 − δ: (1) If f(x) = 0,
then rk(x) ≥ r. (2) If rk(x) ≥ r, then f(x) ≤ λ.

In words, it says that the set of points x ∈ Rd satisfying rk(x) & (k/n)1/(β+d), is guaranteed
to contain all of the outliers and does not contain any points whose density exceeds a cutoff (i.e.
f(x) & (k/n)β/(β+d)). These quantities all go to 0 as k/n → 0 and thus with enough samples,
asymptotically are able to distinguish between out-of-distribution and in-distribution examples.

We can assume the following condition on the boundary smoothness of the density as is done in a
recent analysis of k-NN density estimation (Zhao & Lai, 2020).
Assumption 2 (Boundary smoothness). There exists 0 < η ≤ 1 such that for any t > 0, f
satisfies: P(f(x) ≤ t) ≤ Cηtη , where P represents the distribution of in-distribution examples during
evaluation.

Then, Theorem 1 has the following consequence on the precision and recall of the k-NN density
based out of distribution detection method.
Corollary 1. Suppose that Assumptions 1 and 2 hold and that 0 < δ < 1 and k ≥ 28 · log(2/δ)2 ·

d log n. If we choose r :=
(

k
2Cβ ·n·vd

)1/(β+d)
, then the following holds with probability at least

1 − δ. Let us classify an example x ∈ Rd as out of distribution if rk(x) ≥ r and in-distribution
otherwise. Then, this classifier will identify all of the out-of-distribution examples (perfect recall) and
falsely identify in-distribution examples as out-of-distribution with probability (error in precision)

5 · Cη · Cd/(β+d)β ·
(

k

n · vd

)β/(β+d)
.

3.2 RANKING PRESERVATION RESULT

We next give the following result saying that if the gap in density between two points is large enough,
then their rankings will be preserved w.r.t. the k-NN radius.
Theorem 2. Suppose that Assumption 1 holds and that 0 < δ < 1 and k ≥ 28 · log(2/δ)2 · d log n.
Define Cδ,n := 16 log(2/δ)

√
d log n. Then there exists a constant C depending on f such that the

following holds with probability at least 1 − δ uniformly for all pairs of points x1, x2 ∈ Rd. If
f(x1) > f(x2) + εk,n, where εk,n := C

(
Cδ,n√
k

+ (k/n)1/d
)

then, we have rk(x1) < rk(x2).
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We note that as n, k → ∞, k/n → 0, and log n/
√
k → 0, we have that εk,n → 0 and thus

asymptotically, the k-NN radius preserves the ranking by density in the case of non-ties.

3.3 PERFORMANCE UNDER LABEL SMOOTHING EMBEDDING HYPOTHESIS

In this section, we provide some theoretical intuition behind why the observed label smoothing
embedding hypothesis can lead to better performance for the k-NN density-based approach on
embeddings learned with label smoothing. We make an assumption that our in-distribution has a
convex set X ⊆ Rd as its support with uniformly lower bounded density and that applying label
smoothing has the effect of contracting the space Rd in the following way: for points in X the
contraction is with respect to a point of origin x0 in the interior of X so that points in X move closer
to the origin and for outlier points, they move closer to the boundary of X . We ensure that the former
happens at a faster rate than the latter and show the following guarantee, which says that under certain
regularity conditions on the density and X , we have that the ratio of the k-NN distance between an
out-of-distribution point and an in-distribution point increases after this mapping. This suggest that
under such transformations such as ones induced by what’s implied by the label smoothed embedding
hypothesis, the k-NN distance becomes a better score at separating the in-distribution examples from
the out-of-distribution examples.

Proposition 1 (Improvement of k-NN OOD with Label Smoothed Embedding Hypothesis). Let f
have convex and bounded support X ⊆ Rd and let x0 be an interior point of X and additionally
assume that there exists r0, c0 > 0 such that for all 0 < r < r0 and x ∈ X , we have Vol(B(x, r) ∩
X ) ≤ c0 ·Vol(B(x, r)) holds (to ensure that X ’s boundaries have regularity and are full dimensional)
and that f(x) ≥ λ0 for all x ∈ X for some λ0 > 0. Define mapping φ : Rd → Rd such that
φ(x) = γin · (x − x0) − x0 if x ∈ X and otherwise, φ(x) = γout · (x − ProjX (x)) − ProjX (x)
otherwise, for some 0 < γin < γout < 1. (ProjX (x) denotes the projection of x onto the boundary
of convex set X ). We see that φ contracts the points where points in X contract at a faster rate than
those outside of X . Suppose our training set consists of n examples X[n] drawn from f , and denote
by φ(X[n]) the image of those examples w.r.t. φ.

Let 0 < δ < 1 and rmin > 0 and k satisfies

28 · log(2/δ)2 · d log n ≤ k ≤ 1

2
c0 · vd ·

(
γout − γin

γin
· rmin

)d
· n,

and n is sufficiently large depending on f . Then with probability at least 1− δ, the following holds
uniformly among all rmin > 0, choices of xin ∈ X (in-distribution example) and xout such that
d(x,X ) ≥ rmin (out-of-distribution example with margin).

rk(φ(xout);φ(X[n]))

rk(φ(xin);φ(X[n]))
>
rk(xout;X[n])

rk(xin;X[n])
,

where rk(x,A) denotes the k-NN distance of x w.r.t. dataset A.

4 EXPERIMENTS

4.1 SETUP

We validate our method on MNIST (LeCun et al., 1998), Fashion MNIST (Xiao et al., 2017), SVHN
(cropped to 32x32x3) (Netzer et al., 2011), CIFAR10 (32x32x3) (Krizhevsky et al., 2009), and
CelebA (32x32x3) (Liu et al., 2015). In CelebA, we train against the binary label “smiling”. We
train models on the train split of each of these datasets, and then test OOD binary classification
performance for a variety of OOD datasets, while always keeping the in-distribution to be the test split
of the dataset used for training. Thus, a dataset pairing denoted “A→ B” means that the classification
model is trained on A’s train and is evaluated for OOD detection using A’s test as in-distribution
points and B’s test as out-of-distribution points. In addition to the aforementioned, we form OOD
datasets by corrupting the in-distribution test sets - by flipping images left and right (HFlip) as well as
up and down (VFlip) - and we also use the validation split of ImageNet (32x32x3), the test splits of
KMNIST (28x28x1), EMNIST digits (28x28x1), and Omniglot (32x32x3). All datasets are available
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Dataset Control POEM k-NN (0.1) k-NN (0) DeConf Rob. k-NN SVM I. Forest

Train/In: MNIST

EMNIST 0.835 0.876 0.950 0.966 0.693 0.875 0.794 0.346
F. MNIST 0.838 0.961 0.968 0.954 0.747 0.904 0.569 0.655
KMNIST 0.882 0.917 0.984 0.985 0.746 0.923 0.756 0.358

HFlip 0.852 0.881 0.914 0.871 0.706 0.847 0.568 0.559
VFlip 0.833 0.854 0.883 0.840 0.684 0.812 0.537 0.599

Train/In: Fashion MNIST

EMNIST 0.551 0.671 0.993 0.983 0.670 0.756 0.881 0.170
HFlip 0.557 0.589 0.730 0.698 0.581 0.608 0.616 0.443
VFlip 0.642 0.702 0.915 0.875 0.704 0.774 0.700 0.442

KMNIST 0.673 0.677 0.989 0.962 0.759 0.814 0.818 0.268
MNIST 0.697 0.885 0.997 0.969 0.837 0.854 0.782 0.338

Train/In: SVHN

CelebA 0.785 0.738 0.906 0.857 0.682 0.887 0.702 0.261
CIFAR10 0.821 0.856 0.855 0.722 0.693 0.873 0.564 0.423

CIFAR100 0.820 0.828 0.876 0.755 0.682 0.878 0.585 0.385
ImageNet 0.825 0.808 0.852 0.723 0.693 0.876 0.560 0.416
Omniglot 0.685 0.434 0.977 0.958 0.521 0.861 0.884 0.093

HFlip 0.737 0.708 0.683 0.580 0.667 0.746 0.504 0.554
VFlip 0.674 0.644 0.648 0.573 0.604 0.686 0.515 0.533

Train/In: CIFAR10

CelebA 0.570 0.457 0.780 0.764 0.521 0.637 0.657 0.387
CIFAR100 0.633 0.582 0.598 0.573 0.584 0.615 0.485 0.514

HFlip 0.503 0.501 0.512 0.513 0.502 0.512 0.500 0.502
VFlip 0.645 0.589 0.594 0.580 0.583 0.616 0.471 0.531

ImageNet 0.639 0.602 0.588 0.562 0.583 0.620 0.448 0.562
Omniglot 0.356 0.133 0.960 0.980 0.462 0.587 0.954 0.064

SVHN 0.725 0.696 0.381 0.384 0.584 0.635 0.323 0.677

Train/In: CelebA

HFlip 0.501 0.500 0.504 0.503 0.500 0.501 0.501 0.498
VFlip 0.459 0.458 0.738 0.696 0.354 0.481 0.610 0.277

CIFAR100 0.639 0.672 0.689 0.607 0.535 0.652 0.418 0.426
CIFAR10 0.638 0.705 0.692 0.605 0.529 0.642 0.422 0.431
ImageNet 0.647 0.688 0.684 0.598 0.535 0.648 0.412 0.436
Omniglot 0.586 0.290 0.910 0.899 0.480 0.654 0.573 0.079

SVHN 0.612 0.737 0.520 0.441 0.539 0.586 0.411 0.546

Table 1: ROC-AUC for different methods and dataset pairings. k-NN (α) denotes our method
with label smoothing factor α. The datasets enclosed by double lines represent the training and
in-distribution test set, while the datasets listed beneath them are used as OOD. Each entry was run 5
times. The standard errors are quite small, with a mean, median, and max of 0.0119, 0.00815, and
0.0727 respectively. Entries within two standard errors of the max are bolded. We see that label
smoothing almost always improves the performance of our method and that the method is competitive
across a variety of datasets.

as Tensorflow Datasets 1. We measure the OOD detectors’ ROC-AUC, sample-weighting to ensure
balance between in and out-of-distribution samples (since they can have different sizes). For MNIST
and Fashion MNIST, we train a 3-layer ReLU-activated DNN, with 256 units per layer, for 20 epochs.
For SVHN, CIFAR10, and CelebA, we train the convolutional LeNet5 (LeCun et al., 2015) for 10
epochs. We use 128 batch size and Adam optimizer with default learning rate 0.001 throughout. All
methods were implemented in TensorFlow and trained on a cloud environment. We estimate we used

1https://www.tensorflow.org/datasets
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a total of 10k CPU hours for all of our experiments. For embedding-based methods, we aggregate
over 3 layers for the DNN and 4 dense layers for LeNet5, including the logits. For our method, we
always use Euclidean distance between embeddings, k = 1 and label smoothing α = 0.1. These
could likely be tuned for better performance in the presence of a validation OOD dataset sufficiently
similar to the unknown test set. We do not do this since we assume the absence of such dataset.

4.2 BASELINES

We validate our method against the following recent baselines.

Control. We use the model’s maximum softmax confidence, as suggested by Hendrycks & Gimpel
(2016). The lower the confidence, the more likely the example is to be OOD.

Robust Deep k-NN. This method, proposed in Papernot & McDaniel (2018) leverages k-NN for a
query input as follows: it computes the label distribution of the query point’s nearest training points
for each layer and then computes a layer-aggregated p-value-based non-conformity score against a
held-out calibration set. Queries that have high disagreement, or impurity, in their nearest neighbor
label set are suspected to be OOD. We use 10% of the training set for calibration, k = 50, and cosine
similarity, as described in the paper.

DeConf. Hsu et al. (2020) improves over the popular method ODIN (Liang et al., 2017) by freeing
it from the needs of tuning on OOD data. It consists of two components - a learned “confidence
decomposition” derived from the model’s penultimate layer, and a modified method for perturbing
inputs optimally for OOD detection using a Fast-Sign-Gradient-esque strategy. We use the “h” branch
of the cosine similarity variant described in the paper. We searched the perturbation hyperparameter ε
over the range listed in the paper, but found that it never helped OOD in our setting. We thus reports
numbers for ε = 0.

SVM. We learn a one-class SVM (Schölkopf et al., 1999) on the intermediate embedding layers and
then aggregate the outlier scores across layers in the same way we propose in our method. We use an
RBF kernel.

Isolation Forest. This is similar to SVM, but uses an isolation forest (Liu et al., 2008) with 100
estimators at each layer.

POEM. Out-of-Distribution Detection with Posterior Sampling (Ming et al., 2022) or POEM claims
state-of-the-art on OOD detection. Given a large pool of outliers, it uses a Bayesian method atop
the representations of a backbone neural network model to select outliers closest to the training
data. The method trains the backbone model on a loss consisting of the the usual supervised cross-
entropy loss as well an "energy" hinge loss (where energy is given by the -logsum of the logit
activations) that encourages the energy for in-distribution points to be low and those of out-of-
distribution points selected by the Bayesian method to be high. The method alternates between
training the network with this loss for one epoch, and sampling new outliers using the model’s
representations. After training, a query point is deemed OOD if its energy (per the model) is
larger than some threshold. We use the hyper-parameters suggested in the paper and the codebase
(https://github.com/deeplearning-wisc/poem); specifically, conf = 3, M_in = −7,
M_out = 25, beta = 0.1, sigma =

√
20, sigma_n =

√
0.5 (here, sigma is the standard deviation,

whereas in the code it is the variance). We set the large pool of outliers it can sample from to be the
concatenation of all test sets that are not being currently evaluated on (from Table 1 in our paper).
For example, when the ID / Train is MNIST and the OOD test is EMNIST, the outlier pool is Fashion
MNIST + KMNIST + HFlip + VFlip and when the test is Fashion MNIST, the outlier pool is EMNIST
+ KMNIST + HFlip + VFlip; so on, so forth. If N is the size of the in-distribution training set, every
round, POEM selects the top-N outliers from the pool. Note that POEM is given an unfair advantage
over all other methods considered in our work, including our own, since it has access to an outlier
pool, and furthermore the points in the outlier pool are similar in nature to the test points (e.g. POEM
gets to train on horizontal flip outliers when the test set is vertical flip outliers).

4.3 RESULTS

Our main results are shown in Table 1. We observe that label smoothing nearly always improved our
method, denoted k-NN, and that the method is competitive, outperforming the rest on the most number
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Figure 2: Left: Impact of k on ROC-AUC. We observe that performance is mostly stable across a
range of k. We do see slight degradation with larger k, and so we recommend users a default of k = 1.
Right: Impact of α on ROC-AUC for four dataset pairings. Note that the x-axis is log-scale and the
y-axis is zoomed in. We generally see that performance improves with larger α until it reaches a
critical point, after which it declines. While this critical point is model and data dependent, we see
that blithely selecting a fixed value like 0.1 results in reasonable performance.

Depth (from logits)
OOD LS 0 -1 -2 OOD LS 0 -1 -2 -3

Train/In: Fashion MNIST Train/In: CelebA
EMNIST 0 0.970 0.984 0.976 CIFAR100 0 0.472 0.722 0.638 0.583

0.1 0.973 0.993 0.994 0.1 0.565 0.755 0.692 0.560
KMNIST 0 0.927 0.963 0.970 CIFAR10 0 0.474 0.717 0.641 0.606

0.1 0.973 0.986 0.988 0.1 0.566 0.760 0.699 0.583
MNIST 0 0.958 0.966 0.957 ImageNet 0 0.475 0.709 0.622 0.583

0.1 0.992 0.996 0.992 0.1 0.566 0.750 0.682 0.566
Omniglot 0 0.586 0.959 0.964 0.993

0.1 0.658 0.956 0.959 0.990

Table 2: We observe the ROC-AUC of our method using only a single layer at a time, for Fashion
MNIST and CelebA, with and without label smoothing. We find that label smoothing usually helps
every layer on its own, and that the penultimate layer (depth = -1) often outperforms the rest on these
datasets.

of dataset pairs. SVM, Isolation Forest serve as key ablative models, since they leverage the same
intermediate layer representations as our method and their layer-level scores are combined in the same
way. Interestingly, we see that the k-NN consistently outperforms them, revealing the discriminative
power of the k-NN radius distance. Robust k-NN also uses the same layer embeddings and k-NN,
but in a different manner. Crucially, it performs OOD detection by means of the nearest training
example neighbors’ class label distribution. Given that we outperform Robust k-NN more often than
not, we might conjecture that the distance has more discriminative power for OOD detection than
class label distribution. We were surprised that DeConf routinely did worse than the simple control,
despite having implementing the method following the paper closely. Furthermore, POEM claims
state of the art but our method outperforms it on most of the datasets, usually by a large margin.

4.4 ABLATIONS

In this section, we study the impact of three factors on our method’s performance: (1) the number of
neighbors, k, (2) the amount of label smoothing α, and (3) the intermediate layers used.

Impact of k. In Figure 2 we plot the impact of k on OOD detection for two dataset pairings: MNIST
→ Fashion MNIST and SVHN→ CIFAR10 with and without label smoothing. We see that larger k
degrades ROC-AUC monotonically, but the effect is rather small. We thus recommend a default of
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k = 1. k = 1 has the added benefit of being more efficient in most implementations of index-based
large-scale nearest-neighbor lookup systems.

Impact of Label Smoothing α. We now consider the effect of label smoothing amount α on ROC-
AUC in Figure 2. We see, interestingly, that performance mostly increases monotonically with larger
α until it reaches a critical point, after which it declines monotonically. While this optimal point may
be data and model dependent and thus hard to estimate, we’ve found that selecting a fixed value like
0.1 works well in most cases.

Impact of Intermediate Layer. Our method aggregates k-NN distance scores across intermediate
layers. We depict the effect of different choices of a single layer on Fashion MNIST and CelebA in
Table 2. We find that label smoothing generally boosts performance for each layer individually and
that while no single layer is always optimal, the penultimate layer performs fairly well across the
datasets.

5 RELATED WORK

Out-of-Distribution Detection. OOD detection has classically been studied under names such as
outlier, anomaly, or novelty detection. One line of work are density-based methods: Ester et al.
(1996) presents a density-based clustering algorithm which is also an outlier detection algorithm by
identifying noise points which are points whose ε-neighborhood has fewer than a certain number
of points. Breunig et al. (2000); Kriegel et al. (2009) propose local outlier scores based on the
degree to which how isolated the datapoint is with respect to its neighborhood via density estimation.
Another line of work uses k-NN density estimates (Ramaswamy et al., 2000; Angiulli & Pizzuti,
2002; Hautamaki et al., 2004; Dang et al., 2015). We use the k-NN density estimator, but use it in
conjunction with the embeddings of a neural network trained with label smoothing. Other classical
approaches include the one-class SVM (Schölkopf et al., 2001; Chen et al., 2001), isolation forest
(Liu et al., 2008). A slew of recent methods have been proposed for OOD. We refer interested readers
to a survey.

Label Smoothing. Label smoothing has received much attention lately; we give a brief review here. It
has been shown to improve model calibration (and therefore the generation quality of auto-regressive
sequence models like machine translation) but has been seen to hurt teacher-to-student knowledge
distillation (Pereyra et al., 2017; Xie et al., 2016b; Chorowski & Jaitly, 2016; Gao et al., 2020;
Lukasik et al., 2020b; Müller et al., 2019). Müller et al. (2019) show visually that label smoothing
encourages the penultimate layer representations of the training examples from the same class to
group in tight clusters. Lukasik et al. (2020a) shows that label smoothing makes models more robust
to label noise in the training data (to a level competitive with noisy label correction methods), and,
furthermore, smoothing the teacher is beneficial when distilling from noisy data. Chen et al. (2020)
corroborates the benefits of smoothing for noisy labels and provides a theoretical framework wherein
the optimal smoothing parameter α can be identified.

k-NN Density Estimation Theory. Statistical guarantees for k-NN density estimation has had a long
history (Fukunaga & Hostetler, 1973; Devroye & Wagner, 1977; Mack, 1983; Buturović, 1993; Biau
et al., 2011; Kung et al., 2012). Most works focus on showing convergence guarantees under metrics
like L2 risk or are asymptotic. Dasgupta & Kpotufe (2014) provided the first finite-sample uniform
rates, which to our knowledge is the strongest result so far. Our analysis uses similar techniques, which
they also borrow from Chaudhuri & Dasgupta (2010); however our results are for the application of
OOD detection whereas Dasgupta & Kpotufe (2014)’s goal was mode estimation. As a result, our
results hold with high probability uniformly in the input space, while having finite-sample guarantees
and provide new theoretical insights into the use of k-NN for OOD detection.

6 CONCLUSION

In this work we put forth the Label Smoothing Embedding Hypothesis and proposed a deep k-NN
density-based method for out-of-distribution detection that leverages the separability of intermediate
layer embeddings and we showed how label smoothing the model improves our method.
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Appendix

A MORE DENSITY PLOTS

We present the density plots omitted from the main text.

Figure 3: Density plots for the dataset pairing SVHN→ CelebA.

B PROOFS

We need the following result giving guarantees between the probability measure on the true balls and
the empirical balls.

Lemma 1 (Uniform convergence of balls (Chaudhuri & Dasgupta, 2010)). Let F be the distribution
corresponding to f and Fn be the empirical distribution corresponding to the sample X . Pick
0 < δ < 1. Assume that k ≥ d log n. Then with probability at least 1− δ, for every ball B ⊂ RD we
have

F(B) ≥ Cδ,n
√
d log n

n
⇒ Fn(B) > 0

F(B) ≥ k

n
+ Cδ,n

√
k

n
⇒ Fn(B) ≥ k

n

F(B) ≤ k

n
− Cδ,n

√
k

n
⇒ Fn(B) <

k

n
,

where Cδ,n = 16 log(2/δ)
√
d log n

Remark. For the rest of the paper, many results are qualified to hold with probability at least 1− δ.
This is precisely the event in which Lemma 1 holds.
Remark. If δ = 1/n, then Cδ,n = O((log n)3/2).

Proof of Theorem 1. Suppose that x satisfies f(x) = 0. Then we have

F(B(x, r)) =

∫
f(x′) · 1[x′ ∈ B(x, r)]dx′

=

∫
|f(x′)− f(x)| · 1[x′ ∈ B(x, r)]dx′

≤ Cβ
∫
|x′ − x|β · 1[x′ ∈ B(x, r)]dx′

≤ Cβrβ+dvd =
k

2n
≤ k

n
− Cδ,n

√
k

n
.
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Therefore, by Lemma 1, we have that rk(x) ≤ r. Now for the second part, we prove the contrapositive.
Suppose that f(x) > λ. Then we have

F(B(x, r)) ≥ (λ− Cβrβ) · vd · rd ≥
2k

n

≥ k

n
+ Cδ,n

√
k

n
.

Therefore, by Lemma 1, we have that f(x) ≥ λ, as desired.

Proof of Theorem 2. We borrow some proof techniques used in Dasgupta & Kpotufe (2014) to give
uniform bounds on |f(x)− fk(x)| where fk is the k-NN density estimator defined as

fk(x) :=
k

n · vd · rk(x)d
.

It is also clear that r ≤ C ′ · (k/n)1/d for some C ′ depending on f . If we choose r such that

F(B(x, r)) ≤ vdrd(f(x) + Cβr
β) =

k

n
− Cδ,n

√
k

n
.

Then, we have by Lemma 1 that rk(x) > r. Thus, we have

fk(x) <
k

n · vd · rd
=
f(x) + Cβr

β

1− Cδ,n/
√
k

≤ f(x) + C1 ·
(
Cδ,n√
k

+ (k/n)1/d
)

for some C1 > 0 depending on f . The argument for the other direction is similar: we instead choose
r such that

F(B(x, r)) ≥ vdrd(f(x)− Cβrβ) =
k

n
+ Cδ,n

√
k

n
.

Again it’s clear that r ≤ C ′′ · (k/n)1/d for some C ′′ depending on f . Next, we have by Lemma 1
that rk(x) ≤ r. Thus, we have

fk(x) ≥
k

n · vd · rd
=
f(x)− Cβrβ

1 + Cδ,n/
√
k

≥ f(x)− C2 ·
(
Cδ,n√
k

+ (k/n)1/d
)

for some C2 depending on f . Therefore, there exists C0 depending on f such that

sup
x∈Rd

|f(x)− fk(x)| ≤ C0

(
Cδ,n√
k

+ (k/n)1/d
)
.

Finally, we have that setting C = 2 · C0, we have

fk(x1) ≥ f(x1)− C0 ·
(
Cδ,n√
k

+ (k/n)1/d
)

> f(x2) + C0 ·
(
Cδ,n√
k

+ (k/n)1/d
)
≥ fk(x2),

then it immediately follows that rk(x1) < rk(x2), as desired.

Proof of Proposition 1. Define ru := maxx∈X rk(x). We have

rk(φ(xout);φ(X[n]))

rk((xout;X[n])
≥ d(φ(xout), φ(X))

d(xout, X) + ru

=
γout · d(xout, X)

d(xout, X) + ru
.
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Next, we have

rk(φ(xin);φ(X[n]))

rk(xin;X[n])
= γin,

since all pairwise distances within X are scaled by γin through our mapping φ.

Thus, it suffices to have

γin ≤
γoutd(xout, X)

d(xout, X) + ru
,

which is equivalent to having

ru ≤
γout − γin

γin
d(x,X ),

which holds when

ru ≤
γout − γin

γin
· rmin.

This holds because we have ru ≤
(

2k
c0nvd

)1/d
by Lemma 1, and the result follows by the condition

on k.
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