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ABSTRACT

Existing Video Temporal Grounding (VTG) models perform well in accuracy but
often fail to address open-world challenges posed by open-vocabulary queries and
out-of-distribution (OOD) videos, which can lead to unreliable predictions. To
address uncertainty, particularly with OOD data, we build a VTG baseline using
Deep Evidential Regression (DER), which excels in capturing both aleatoric and
epistemic uncertainty. Despite promising results, our baseline faces two key biases
in multimodal tasks: (1) Modality imbalance, where uncertainty estimation is
more sensitive to the visual modality than the text modality; (2) Counterintuitive
uncertainty, resulting from excessive evidence suppression in regularization and
uneven sample error distribution in conventional DER. To address these, we propose
an RFF block for progressive modality alignment and a query reconstruction task to
enhance sensitivity to text queries. Additionally, we introduce a Geom-regularizer
to debias and calibrate uncertainty estimation. This marks the first extension of
DER in VTG tasks. Extensive experiments demonstrate the effectiveness and

robustness of our approach. Our code will be released soon.

1 INTRODUCTION

Video is emerging as the primary information
carrier in the streaming media era. With the in-
flux of video data, the need for efficiently and
precisely extracting desired video content is in-
creasingly critical, leading to Video Temporal
Grounding (VTG) emerging as a core research
area in the field of computer vision |Dosovitskiy|
et al. (2020); L1 et al.| (2023)); |Chen et al.| (2024)).
While extensive research aimed at enhancing
cross-modal reasoning to facilitate fine-grained
and precise multi-modal alignment leads to sig-
nificant advances in VTG |Lin et al.| (2023)), few
studies focus on the widespread uncertainties
present in open-world scenarios |Amini et al.
(2020), which can be classified into epistemic
uncertainty and aleatoric uncertainty. Epistemic
uncertainty is mainly attributed to the Knowl-
edge Gap as shown in Figure[2](a). Specifically,
user queries and video inputs often come from
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Figure 1: Conceptual illustration: Conventional
models give random responses to OOD queries,
unfit for critical decisions. In contrast, our model
reliably delivers sensible, informed answers.

out-of-distribution (OOD) sources, diverging significantly from the in-distribution (ID) data used in
training. This natural discrepancy creates a Knowledge Gap, making it challenging for models to
accurately understand and respond to user needs. Moreover, semantic ambiguities can also hinder ac-
curate contextual understanding and cause epistemic uncertainty, as shown in Figure 2] (b). Aleatoric
uncertainty typically arises from inherent variability in training data, such as subjective annotation and
variations in low-level features as shown in Figure 2] (c) and (d) respectively. Subjective annotations
occur when different annotators provide varying queries and labels for the same sample, influenced
by their personal views and habits. Variations in low-level features such as texture, edges, resolution,



Under review as a conference paper at ICLR 2025

Knowledge Gap Visual Semantic Ambiguity

User Queries . V
® ID Corpora Plane
-

OOD Corpora

Texual Semantic Ambiguity
OOD Videos (i) "Find the funniest and the most romantic segment
in the video."

(i) "Locate the segment that most resembles a Trump

\ : R speech in the video."
@ — ®)
Subjective Annotations Low-Level Features Variation

High Light Low Light

(i) A woman holding a small cat outside. %
[.]
(ii) A lady embracing a tiny cat outdoors.
()
(iii) A lady cuddling a little cat in outdoors.  pja

(c)

Figure 2: Motivation illustration.Epistemic uncertainty stems from knowledge gaps and semantic
ambiguity in (a) and (b), while aleatoric uncertainty arises from subjective annotations and low-level
feature variations in (c) and (d). In (a), the knowledge gap highlights the model’s limitations due to
insufficient real-world coverage, and (b) shows challenges from semantic ambiguity in visual and
textual inputs. (c) emphasizes the subjectivity in annotations, while (d) illustrates uncertainty from
lighting, resolution, jitter, and other low-level factors.

lighting, camera jittering, and scene transitions can contaminate the trainging video. Both of them
can lead to aleatoric uncertainty in prediction for certain samples.

Unfortunately, when confronted with anomalies, such as the abnormal queries shown in Figure [T}
conventional VTG models often respond with nearly random and indiscreet answers. These models
fail to handle potential uncertainties in an open world appropriately. This inadequacy is detrimental
in scenarios that require cautious decision-making, such as security and confidential environments.
To address the limitations of VTG methods in open-world scenarios, we integrate Deep Evidential
Regression (DERJAmini et al | into an uncertainty-aware baseline. Based on Evidential Deep
Learning (EDL)Sensoy et al.| (2018)), DER excels at capturing uncertainty, particularly with OOD
data. This makes DER a natural fit for VTG tasks, where open-vocabulary queries and OOD videos
present significant challenges.

However, due to the complexity of the VTG task and limitations of the vanilla DER method, the
baseline exposes two critical biases: (1) Modality imbalance: Uncertainty estimation disproportion-
ately favors the visual modality over text. This stems from the nature of VTG, where visual input
dominates tasks like keyframe identification. DER’s loss function, optimized for continuous visual
signals, further emphasizes this imbalance. Moreover, simple modality concatenation or unimodal
self-attention |Lei et al.| (20214); [Lin et al.| (2023)) fails to foster sufficient interaction between text and
visual features, leading to over-reliance on visual input. (2) Counterintuitive uncertainty: Higher-
error predictions sometimes receive lower uncertainty due to DER’s regularizer limitations. Unlike
classification-based EDL methods, DER lacks a standard KL-divergence term, relying instead on a
heuristic regularizer that overly suppresses evidence, especially in low-error samples. This misaligns
uncertainty estimates, with low-error samples showing higher uncertainty and vice versa.

To address modality imbalance, we propose a Debiased DER Model for Video Temporal Grounding
(DDM-VTG). Specifically, it corporates with a Reflective Flipped Fusion (RFF) block with dual
branches for progressive cross-modal alignment, along with a query reconstruction (QR) task to
strengthen the text branch. This enhances the model’s sensitivity to text and mitigates bias in un-
certainty estimation. To resolve counterintuitive uncertainty, we introduce a simple yet effective
Geom-regularizer that adjusts uncertainty estimation based on prediction accuracy, adaptively sup-
pressing overconfidence and debiasing the system. Our contributions are three-fold: (1) This is
the first extension of DER to the VTG task, establishing an uncertainty-aware baseline. Leverag-
ing DER’s uncertainty estimation, we effectively address open-world challenges in VTG. (2) We
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identi ed and addressed two critical biases in the baseline—modality imbalance and counterintu-
itive uncertainty—through the RFF block, an auxiliary QR task, and the Geom-regularizer, which
together calibrate uncertainty estimati@f) Extensive experiments show our method's effectiveness,
robustness, and interpretability across multiple benchmarks.

2 RELATED WORK

2.1 VIDEO TEMPORAL GROUNDING

Video Temporal Grounding (VTG) identi es correlated shots in videos based on natural language
queries, which broadly supports various downstream video comprehension tasks, such as video
moment retrievel Anne Hendricks et|al. (2017); Chen éf al. (018); Zhang et al| (2020); Moon et al.
(2023){ Li et al.|(2024), highlight detection Rui et al. (2000); Sun et al. (2014); Moon et al. (2023b),
and video summarization Gygli etlal. (2014); Jiang & Mu (2022); Mahasseni et al. (2017); Nalla

et al. (2020); Sharghi et al. (2017); Wu et al. (2022). These tasks generally involve formulating
the boundaries of signi cant semantic segments Jiang & Mu (2022); Moon et al. (2023b); Lin

et al. (2023). Numerous innovative and effective methods are developed to address the challenges
in VTG. For instance, CTRL Anne Hendricks et al. (2017) and MCN Gao et al. (2017) initially
generate proposals using sliding windows, which they rank in terms of a cross-modal matching
score. MomentDETR Lei et al. (2021b) applies a transformer to predict potential moments through
learnable queries. Furthermore, QD-DETR Moon et al. (2023b) employs a cross-attention module
and a negative pair training scheme to enhance multi-modal alignment. MomentDiff Li et al. (2024)
initially sets random boundaries for temporal segments and iteratively re nes them to better match the
intended semantics. However, existing approaches typically yield deterministic predictions, operating
under the assumption that semantic segments are demarcated by clear and precise boundaries. This
presumption neglects the inherent ambiguity and uncertainty associated with determining the true
extents of these segments. To address this gap, we explicitly models and quantify the semantic
uncertainty of video segment boundaries.

2.2 UNCERTAINTY LEARNING

Recent studies have highlighted inherent ambiguities and biases in VTG datasets, which signi cantly
impact the integrity and performance of models Zhou et al. (2021); Zhang et al. (2023). These
uncertainties are categorized into annotation and query uncertainties. Annotation uncertainty stems
from varying temporal boundaries assigned by different annotators to the same query, while query
uncertainty arises from the use of differing descriptions for the same video moment, underscoring
the subjective nature of video interpretation Zhou et al. (2021); Zhang et al. (2023). Furthermore,
these datasets exhibit pronounced biases, with common events being overly represented and a small
subset of queries accounting for most actions, leading to a skewed distribution that creates a long
tail in ground-truth timestamps Zhang et al. (2023); Otani et al. (2020). These ndings underscore
the need for meticulous curation of datasets and the adoption of uncertainty-aware modeling ap-
proaches Arnab et al. (2020); Malinin & Gales (2018); Zhou & Levine (2021); Gawlikowski et al.
(2023). Among the technigues for modeling uncertainty, Evidential Deep Learning (EDL) has shown
promise. Originating from the principles of Dempster-Shafer Theory Shafer (1992) and Subjective
Logic Sensoy et al. (2018); Jgsang (2016), EDL models uncertainty explicitly through the distribution
of "second-order probabilities" over network outputs, nding applications across various classi cation
tasks including action recognition Bao et al. (2021), multi-view clustering Han et al. (2020; 2022),
and semantic segmentation Holmquist et al. (2@28)Leveraging DER Amini et al. (2020) for its
extension, EDL has effectively been applied to regression tasks such as stereo matching Wang et al.
(2022) and emotion attributes estimation Wu et al. (2023). Nevertheless, DER faces challenges like
evidence contraction due to the non-negativity of prior parameters in the Normal Inverse-Gamma
(NIG distribution. New regularizers have been developed to address these issues, enhancing reliability
and performance Wu et al. (2024). However, DER often encounters gradient disappearance in high
uncertainty areas, necessitating ongoing re nement of its regularization methods Ye et al. (2024);
Meinert et al. (2023). In this study, We introduce DER into the VTG task to manage uncertainties in
open-world inputs, while further addressing the modality imbalance it presents and improving the
structural aws of the vanilla DER regularizer. To the best of our knowledge, this marks the rst
successful attempt to extend DER in VTG task.
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3 PRELIMINARIES

DER Amini et al. (2020) places evidential priors over the original Gaussian likelihood function and
trains the model to infer the hyperparameters of the evidential distribution. This approach enables the
model to learn both aleatoric and epistemic uncertainty. In our context, adjacent video frames often
exhibit similar semantics, which introduces uncertainty in precisely locating temporal boundaries.
The start or end temporal boundary of a video is represented by distinct Gaussian distributions:
b N (; ?),whereb2 R'" represents the start or end of moments obsekdiines. We
assume that observations of the same type (either all starts or all endgflar&he corresponding
expectation and variance 2 of the Gaussian distribution subjectNdG prior:

PG PI g PENCE 2D T ()

where' =(;;; ) arethe prioNIGdistribution parameters derived from the video content and
user queries, serve as conditionals for the Gaussian estimdtewith 2 R; > 0; > 1; > 0.
The gamma function is denoted ky ). We use a linear evidential predictor to estimateraining it

to maximize the likelihood. Since the likelihood function has a form of Student-t distribusin (
we minimize the negative logarithmic likelihood (NLL) as follows:

LML = logp(ai' )= log St b;; -~

Models optimized only on observed samples with the NLL lags Eq. 2) tend to over t and exhibit
overcon dence. To counter this, DER introduced a regularizer for 4eprediction as follows:

L (#) = : (3)
where = jh j represents the error=2 + denotes the evidence, a#dare the model

parameters, withy as the ground truth. Detailed formulation can be found in Appendix A. Using the
NIGdistribution, prediction, aleatoric and epistemic uncertainties are calculated as follows:

[]=, E[%=— Va[]= —; 4
Lt A N G

aleatoric epistemic

E[ 2] refers to the inherent noise in the data, which cannot be reduced or elimiNatgd] re ects
the model's lack of con dence in its own predictions due to limited knowledge.

;2 ; )

prediction I

4 METHODOLOGY

4.1 PROBLEM DEFINITION

Given avideoV = fvig, andaquen® = fg giL:”'1 , each represented as vector®i whereL ,,

andL 4 denote the counts of clips and tokens respectively, the task of VTG is to assign each clip
a labelbbased on its relevance @. b can be of multiple types, i.e., a time spam = [m?; mf]

for Moment Retrieval, a saliency scorg; 2 [0;1] for Highlight Detection, or a binary value

fi 2 f 0; 1gfor Video Summarization. The choice of label type depends on the speci ¢ VTG subtask
being addressed, allowing for exible application across various video understanding scenarios.

4.2 BUILDING BASELINE WITH VANILLA DERFORVTG

As illustrated in Figure 3 (a), we rst build an uncertainty-aware baseline by integrating DER into the
VTG task. The motivation for this is to address the inherent challenges of open-world scenarios, such
as handling OOD data and open-vocabulary queries. Overall, the loss function of the model can be
formulated as follows:

LPW) = nL™t + Red F(w); )

1 X\I B .
Lpase = LG + derﬁ L (w); (6)
i=1
whereN symbolizes the number of clips in a training set argldenotes VTG loss. While DER
effectively estimates uncertainty, its vanilla form presents limitations like modality imbalance and
awed uncertainty estimation, which our baseline exposes and sets the foundation for improvement.
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Figure 3: Comparison of the baseline (a) and our improved model (b) for the VTG task. In (a), the
baseline model demonstrates a lack of sensitivity to textual information due to the overlap between
the VTG task's nature and the DER objective function design, leading to a heavy reliance on visual
features. Furthermore, structural aws in the vanilla DER's regularizor contribute to unreliable
uncertainty estimates. In (b), the RFF block and Query Reconstruction (QR) head enhance text
sensitivity through deeper cross-modality interaction, while the Geom-regularizer addresses vanilla
DER's structural aws and achieves more trustworthy uncertainty estimation.

4.3 DeBIASED DER MODEL FORVTG

To address the biased uncertainty estimation in the baseline in section 4.2, caused by modality
imbalance and counterintuitive uncertainty, we propose DDM-VTG. Our model introduces a RFF
block for progressive cross-modal alignment, reducing over-reliance on visual features, and a QR
task to enhance text sensitivity. As shown in Figure 3 (b), DDM-VTG rst encodes an untrimmed
video and masked query, reconstructs the masked tokens via the RFF block, and performs VTG. The
debiased DER head assesses both aleatoric and epistemic uncertainties, while the VTG and QR heads
manage task stages. Further details are provided in subsequent sections.

RFF block. The RFF block processes inputs from the video and text branches, alternating the roles
of video and text as queries and keys/values using shared parameters. Through the cross-attention
module, initial feature¥ (¥ andQ® of video and text branches are respectively updated, re ecting
each other's information. Following cross-attention, each branch re nes its features through self-
attention to enhance internal feature representation. The outputs of self-attention serve as inputs to
the next iteration of the RFF block, progressively enhancing modal alignment. This process is applied
sequentially from block 1 to block in terms of Eq. (7). After completing the-th layer, the re ned

video and query features are output. The speci ¢ work ow process is detailed in Appendix E.

v+ = SA\(,i)(CAg!) ) Q(i+1) — SAS)(CA\()!) q); i=1;2::;n 1 )]

VTG head. The VTG head features three distinct modules for tasks outlined in section 4.1. For
Video Summarization, the output from the frozen video encoder undergoes three 1x3 Conv layers,
each with a ReLU activation. The Moment Retrieval head is similar but outputs two channels for
offsets. Highlight Detection uses attentive pooling to form a sentence representation from query
tokens, then computes the saliency score between video tokens and query as their cosine similarity.
Details for each module and corresponding loss are available in the Appendix F.

Query reconstruction task. To ensure robust cross-modal alignment capabilities, during the initial
phase of alignment, entities within the query are masked at a speci ed ratio. This approach com-
pels the model to leverage contextual information available from the corresponding video and the
remaining unmasked tokens in the query. Through the QR head, the model infers and reconstructs
the masked tokens. The loss function associated with this process, aimed at optimizing the model's
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cross-modal inference capabilities, is outlined below:

X #

Loy = E logP(w; jU;V) ; (8)

i=1
wherel represents the number of masked tokemsthe i-th masked tokeny the unmasked
tokens providing linguistic context, and the video features that enhance cross-modal contextual
understanding for accurate token prediction. After the warm-up in the rst phase, in the next phase,
the QR head is frozen and,, is not computed.

Geom-regularization. The heuristic regularizoi.€. Eq.(3)) in conventional DER aims to mitigate
overcon dence by suppressing evidence, particularly for samples with high error. However, excessive
suppression can lead to undercon dence due to non-adaptive suppression and sample imbalance. To
be clear, we rst consider the minus gradient.dt for  as follows:

roLf= 9)

To explore the penalties bias in the vanilla

regularizer, we visualized its optimization

direction by examining the gradient eld

derived from the Eq.(9). As shown in Fig 4

(a), the gradient is solely linked to the error

and not to the evidence, indicating that the

model cannot ascertain when the evidence

has been adequately suppressed. This ap-

proach often results in insuf cient gradi-

ents for batches dominated by small er-

rors, potentially leading to biased penaFigure 4. Gradient eld comparison. (a) Vanilla regu-
ties on evidence. As the model convergdgrizer applies penalties based solely on error, with a
the dominance of low error samples wittiendency to decrease evidence as error increases. (b)
small gradients skews the batch's averag@ur Geom-regularizer modulates penalties dynamically
gradient. Consequently, their evidence #8ased on both error magnitude and current evidence
over-suppressed, while high error sampldevels. Our approach re ects the principle that accurate
see their evidence neglected or ad verseiyedictions should have higher evidence, while evidence
adjusted, as shown in Appendix C.4. should be suppressed for less accurate predictions.

To overcome these limitations, we intro-

duce Geom-regularization, inspired by Amini et al. (2020), promoting the principledbatifate
predictions should have high evidence, while inaccurate ones should have low evidefbés
approach provides more rational constraints rather than merely suppressing evidence. Initially, we
normalize to and to (i.e. Appendix B.2), which ensures that the model assignd to
samples with =0 ,and =0 to samples with =1 . We then ensure that the poirts; )

closely follow the line + =1 using a line regularizer as below:

Lhw)= k+ 1K (10)
we can follow the analysis fdrR. The minus gradient df - with respect to as below:
ro—Lr= 20+ 1 (11)
which indicates this simple regularizer offers a gradient that relates to both error and evidence,
enabling adaptive evidence suppression, as illustrated in Figure 4 (b).
Our training objective for the evidential head is the combination of NLL and Geom-regularization:

Lew) = n LM+ geonkF(W); (12)

To this end, our total loss can be formulated by a combination of common grounding doss
(discussed in Appendix F) and our evidential loss:

2 X
L=Lg+ derﬁ Li(w) + Lgr; (13)
i=1

whereN symbolizes the number of clips in a training set.
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Table 1: Performance on QVHighlights, TACoS, and Charades-STA dat8s#tsnumbers indicate
the best performance, andderlinednumbers indicate the second best performance. MR denotes
Moment Retrieval, and HD denotes Highlight Detection.

QVH-MR QVH-HD TACoS Charades-STA
R@0.5 R@0.7 Avg.M MAP HIT@1 | R@0.5 R@0.7 mloy R@0.5 R@0.7 mioU
M-DETR Lei et al. (2021a) 53.9 34.8 322 | 357 55.6 28.0 12.9 27.2| 46.0 275 41.3
UMT Liu et al. (2022a) 60.3 44.3 38.6| 399 642 23.5 13.2 25.0| 427 24.1 41.6
QD-DETR Moon et al. (2023a) 62.7 46.7 41.2 | 39.1 63.0 24.7 12.0 25,5 521 30.6 45.5

Method

UniVTG Lin et al. (2023) 59.7 - 36.1 | 388 618 | 350 174 33.6 | 580 357 50.1
EaTR Jangetal. (2023) | 614 458  41.7| 372 587 - - - - - -
MomentDiff Li etal. (2024) | 57.4 397  360| - - 337 - - 556 324
DDM-VTG (Ours) 650 494 430 | 401 634 | 373 194 339 | 602 380 516

5 EXPERIMENT

We focus on the following key considerations to conduct convincing experimeyidespite focusing

on robustness and interpretability, does our proposed DDM-VTG model demonstrate competitive
performance relative to current state-of-the-art VTG modelsRoes the proposed QR task and
RFF blocks enhance performance in VTG tasRy®oes DDM-VTG give low uncertainty when
performing high localization accuracy statistically, and vice verdd2s our proposed Geom-
regularizer more robust than the vanilla regularizer,(Eq. (3))?5) Can the model output a high
uncertainty score in various OOD scenarios to inform abnormality?

5.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets We conducted experiments on several widely used public datasets from diverse scenes:
Charades-STA Gao et al. (2017) (in-door activities), QVHighlights Lei et al. (2021b) (untrimmed
daily vlogs & news), TACoS Regneri et al. (2013) (cooking scenes), and TVSum (YouTube videos).
The detailed information including speci c task domains and sizes for different datasets is reported
in Appendix B.1 Table 4 with their different hyperparameters.

Metrics. For moment retrieval, we use recall@1 with loU thresholds of 0.5 and 0.7, mean average
precision (MAP) with loU thresholds of 0.5 and 0.75, and MAP avg, which is the average MAP across
loU thresholds from 0.5 to 0.95 in 0.05 increments. For Highlight detection and Video summarization,
we use MAP. Following Lei et al. (2021a), an additional metric HIT@1 is utilized for the Highlight
detection task in the QVHighlights dataset, representing the hit ratio of the highest-scored clip.

Experimental Settings Following previous works Lin et al. (2023); Li et al. (2024), we utilize
CLIP Radford et al. (2021) (ViT-B/32) and SlowFast Feichtenhofer et al. (2019) (ResNet-50) as a
frozen backbone. Unless otherwise speci ed, the numibgof RFF blocks is set to 4. The training
process is divided into two stages. In the rst stage, QR masks and reconstructs noun entities in the
query. Each sentence has 1 noun masked by default. The default epoch for QR is set to 30, with
a learning rate of 1e-5. We utilize spaCy's transformer-based parser- Honnibal & Montani (2017)
to extract noun entities from the query text, and the masking is accomplished by zeroing out the
noun entities at the embedding level. In the second stage, DDM-VTG predicts bounding boxed on
the visual branch at each video clip. Since our purpose of using DER is to optimize uncertainty
without affecting the model's grounding capability, the gradient of delta in Eq. (10) is set to zero.
To avoid similar predictions, we utilize NMS with a threshold of 0.7 at evaluation to achieve better
performance. If not stated otherwise, we used the line regularizer on the evidential head. All training
for the moment retrieval tasks are conducted on four Tesla V100 GPUs. For the video summarization
task, due to the smaller scale of the TVSum dataset, we used only a single V100 GPU.

5.2 QUANTITATIVE RESULTS

Comparison with the state-of-the-art. To demonstrate the fundamental capabilities of DDM-VTG,

we compared it with several state-of-the-art methods across multiple benchmarks. As reported
in Table 1, DDM-VTG outperforms existing methods on various metrics. On the QVHighlights
val split, for the Moment Retrieval task, DDM-VTG obtains 65.0% for R1@0.5 and 49.4% for
R1@0.7. For the Highlight Detection task, DDM-VTG reaches 63.4% for HIT@1. In the Moment
Retrieval task, DDM-VTG outperforms MomentDiff Li et al. (2024) by 8.0% on R1@0.5, and in
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Table 2: Video summarization results on TVsundenotes methods with audio modality.

Method VI VU GA MS PK PR FM  BK BT DS | Avg.

LIM-S Xiong etal. (2019) | 559 429 612 540 603 475 432 66.3 691 6J.656.3
Trailer Wang etal. (2020) | 61.3 546 657 608 591 701 582 647 656 641628
SL-Module Xuetal. (2021) | 86.5 687 749 862 79.0 632 589 726 789 640 733
MINI-Net Hong et al. (2020) | 80.6 68.3 782 818 781 658 578 750 802 655 73.2

UMT Liu et al. (2022by 875 815 882 788 814 870 760 869 844 796 | 83.1
UniVTG Lin et al. (2023) 839 851 890 801 846 814 709 917 735 693 | 810
DDM-VTG (Ours) 854 930 925 814 872 796 720 922 871 753 | 846

Table 3: Ablation studies on the QVHighlights validation split. V@).is andVarx represent
uncertainty variance across noise levels, with noise gradually added to the respective modality inputs.
The variance indicates the sensitivity of the DDM-VTG model to different modal inputs. (b) compares
the effectiveness of model estimation uncertainty using different regularBels denotes the best
performance, and underliriedicates the second best.

(a) Component ablation. (b) Uncertainty effectiveness metrics
Method R@0.5 Varys Vartex var # Method EUCM# Entropy"
Baseline 61.1 9.17 0.85 8.32 Baseline 0.32 0.09
+ RFF block | 62.4 8.63 1.60 7.03 .
+0OR 63.8 4.89 3.91 098 Vanilla-Reg. 0.31 0.35
Full Model 65.0 4.85 5.54 0.69 Geom-Reg. 0.29 0.31

the Highlight Detection task, it surpasses EaTR Jang et al. (2023) by 4.7% on HIT@1. We also
conduct performance comparison on the TACoS and Charades-STA datasets. On TACoS, DDM-VTG
outperforms the nearest competitor UniVTG by 2.3% and 2.0% on R1@0.5 and R1@0.7, respectively.
For Charades-STA, DDM-VTG surpasses UniVTG by 2.2%, 2.3%, and 1.5% across three metrics.

We also validate DDM-VTG's performance in video summarization. We present a comparison on
the TVSum dataset in Table 2. For each domain in TVSum, DDM-VTG has generally demonstrated
strong performance. Speci cally, in the VU domain, DDM-VTG outperforms UniVTG by 8%.
Additionally, on the overall average metrics, DDM-VTG exceeds UniVTG by 3.6% and surpasses
the UMT model, which utilizes audio modality, by 1.5%.

Ablation study. To demonstrate the effectiveness of our proposed debiasing method, we design
targeted metrics to quantify the degree of debiasing in the model, and conduct extensive ablation on
the validation set of QVHighlights Lei et al. (2021b). For modality imbalance, we de Viaras,

Varext and vy to measure the sensitivity of uncertainty under varying levels of noise interference.
To be detailed, we add different level of Gaussian noise to video embeddings, and replace a varying
proportion of text tokens with irrelevant text, where the noise schedule is the same as in Figure 6.
We evaluate the variance of the uncertainty for a video query pair under different noise levels and
then take the average across all samples. We use valdes @f andVary; calculated in this way

to quantify the uncertainty sensitivity for vision and text modality respectively, and the difference
between them y o, to describe the modality balance under different model settings. As reported in
Table 3 (a) , our results strongly demonstrate the effectiveness of both RFF block and QR task.

For counterintuitive uncertainty, we de ne a new metric Error-Uncertainty Consistency Measure
(EUCM), with more details can be found in Appendix D. Moreover, we also compute the information
entropy of different uncertainty distributions, which is used to evaluate the expressive ability of the
evidential predictor, as reported in Table 3 (b) . The entropy of predictions with the vanilla regularizer
is greater than that with the Geom-regularizer. However, as demonstrated in section 5.3 predictions
made with the vanilla regularizer are prone to be misleading. Consequently, even though it exhibits
higher information entropy, this entropy may encompass substantial "biased information”. In contrast,
the Geom-regularizer not only achieves higher information entropy but also results in a lower EUCM
score, indicating its superior performance.

Parameter analysis.As shown in Figure 5(a), we examine the change in MAP@snand ger
gradually increased. We observe that the MAP reaches its optimal value whgiis set tol0 2,

which we therefore setyeomto 10 2. Also, when g is small, the model's performance remains
unaffected. However, agierincreasestd 10 2, MAP begins to decline, reaching its lowest at

1 10 1. This can be explained by the fact that an excessively high uncertainty constraint weight
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forces the model's optimization direction to over t the evidential head rather than maintaining its
basic grounding ability. Therefore, we sgt,to1 10 3. Figure 5 (b) shows the model performance
differences under different settings of query reconstruction task’'s epochs and learning rate. Notably,
when the number of QR epochs increased from 0 to 50, there was a signi cant improvement in MAP
(+1.5%). Besides, we observe the best QR learning rate (Ir) ol0 . Appendix B provided more
details on parameters setting across multiple benchmarks.

(a) Performance on differengeomand ger. (b) Performance on different QR epochs and Ir.

Figure 5: Parameters Analysis on QVHighlights val split. We examined the change of MAP. (a)
Evaluate the effectiveness of our proposed Geom-regularizer (left) and der loss (right) under different
weights. (b) Demonstrates the impact of the query reconstruction task at different epochs (left) and
learning rates (right).

5.3 QUALITIVE RESLUTS

Uncertainty sensitivity to modali-

ties. To more clearly demonstrate the

role of the proposed RFF block and

QR task in promoting modality bal-

ance, we conduct fair adversarial ex-

periments on the QVHighlights val-

idation set to compare the modality

sensitivity of the baseline model and

DDM-VTG. We apply the noise addi-

tion method mentioned in ablation and

used the noise intensity format shown

in Figure 6. Also as illustrated in Fig-

ure 6, when progressively increasing

noise levels for two different modali-

ties, the output uncertainty of the basd=igure 6:Uncertainty KDE over differect noise level Us-
line model (Top row) shows high sening Gaussian kernel density estimation (KDE), We plotted
sitivity to the visual modality and low the uncertainty distribution for the QVHighlighte val set.
sensitivity to the textual modality. In

contrast, the DDM-VTG model (Bottom row) achieves balanced uncertainty across both modalities.
Regardless of which modality the noise is added to, the uncertainty distribution of the model shifts
from left-skewed to right-skewed at the same rate.

Uncertainty calibration. Since we propose geom-regularizor to calibrate of counterintuitive un-
certainty prediction, we aim to assess the ef cacy of our approach by contrasting the performance
of aleatoric and epistemic uncertainty estimation with and without our regularization technique,
as well as against using vanilla regularization in Amini et al. (2020). Ideally, optimal uncertainty
measures should effectively identify deviations in predictioms ¢ake high uncertainty when the
model is making errors). Figure 7 illustrates our comparison of different regularization methods on
the QVHighlights validation set. The horizontal axis of each scatter plot represdnts normalized

error), while the vertical axis represents one of the two types of uncertainty. More discussion is
provided in the Appendix C.2 and C.4.

Temporal bias sensitivity. As previously reported in studies, most Moment Retrieval datasets exhibit
signi cant imbalances in the duration and position of moments. As shown in Figure 8 (a), using the
QVHighlights dataset as an example, we visualize the joint distribution of the normalized start times
and end times of all ground truth moments. The light-colored areas in the gure indicate regions
with almost no moment distribution, leading Temporal OOD Higher epistemic uncertainty is
demanded when samples belong to the Temporal OOD region. We analyzed the uncertainty predicted
by the model in different time regions under various experimental settings in the QVHighlights
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Figure 7: Effects of Various Regularization Techniques on Uncertainty Distribution. (a)-(d) illustrate
the impact of different regularization methods on the relationship between aleatoric uncertainty (top
row) and epistemic uncertainty (bottom row) with respect to prediction error. The models include: (a)
without DER, (b) only NLL, (c) with Vanilla Regularizer, and (d) with Geom-Regularizer.

dataset. Figure 8 (b) shows that without DER constraints, the evidential head's predicted aleatoric
and epistemic uncertainty tends to simply t the biased temporal distribution. Figure 8 (c) shows that
using only the NLL constraint.g., Eg. 2), most regions exhibit extremely low epistemic uncertainty,
indicating the model is overly con dent in its predictions. Figure 8 (d) illustrates that with Vanilla
regularization, although this approach does suppress the concentration of uncertainty in a speci c
region, it does not show sensitivity to OOD data. Figure 8 (e) demonstrates that with our proposed
Geom-regularizor, the temporal OOD regions exhibit signi cantly higher epistemic uncertainty.

Figure 8:Dataset bias sensitivity.(a) Joint distributions of the start and end timestamps of the ground-
truth moments in the QVHighlights dataset. (b), (c), (d), and (e) show the predicted uncertainty's
sensitivity to temporal biases in the dataset under different conditions.

Cases studyWe have meticulously selected several examples of model inference under the typical
scenarios described in Figure 2 to further validate the effectiveness of the DDM-VTG model. The
relevant details are provided in Appendix C.3 and C.5.

6 CONCLUSION

As the development of Arti cial General Intelligence (AGI) progresses, increasingly sophisticated
VTG models are emerging. However, these models often falter when confronted with open-ended user
inputs. Addressing this challenge, this paper introduces a robust VTG model, namely DDM-VTG,
that not only possesses VTG capabilities but also overcomes two types of bias present in proposed
baseline methods and enables useful and meaningful quanti cation of potential uncertainties. This
allows the model to provide credible responses to queries that exceed its operational scope. Limited
by data quality and scale, the model's capabilities are not particularly notable. Nevertheless, it offers
strategies for enhancing the trustworthiness of Al decisions. Future research will focus on further
expanding the decision-making reliability and interpretability of multimodal large language models

in video-related downstream tasks.

10
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REPRODUCIBILITY STATEMENT

In adherence to ICLR's principles, the authors have made signi cant efforts to ensure the repro-
ducibility of our research ndings. The primary focus has been on providing a clear and detailed
description of our methodology, which includes the novel Debiased Deep Evidential Regression for
Video Temporal Grounding (DDM-VTG) model, the Re ective Flipped Fusion (RFF) block, and the
Geom-regularizer. These are elaborated in Sections 4 and 5 of the main text. Furthermore, we have
meticulously documented our data processing steps and experimental setup in Appendix B, which
details the parameters of the datasets used and the con gurations for model training. Also, we are
committed to open-sourcing our code upon publication. This will allow fellow researchers to directly
access the implementation details and reproduce the results as presented in our paper. We believe that
these measures will substantially contribute to the reproducibility of our work and encourage further
scienti ¢ inquiry in this domain.

11



Under review as a conference paper at ICLR 2025

REFERENCES

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression.
Advances in neural information processing syste38s14927-14937, 2020.

Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
Localizing moments in video with natural language.Piroceedings of the IEEE international
conference on computer visiopp. 5803-5812, 2017.

Anurag Arnab, Chen Sun, Arsha Nagrani, and Cordelia Schmid. Uncertainty-aware weakly supervised
action detection from untrimmed videos. @omputer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, August 23—-28, 2020, Proceedings, Partpp1851—-768. Springer,
2020.

Wentao Bao, Qi Yu, and Yu Kong. Evidential deep learning for open set action recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vigpri3349-13358,
2021.

Haodong Chen, Yongle Huang, Haojian Huang, Xiangsheng Ge, and Dian Shao. Gaussianvton: 3d
human virtual try-on via multi-stage gaussian splatting editing with image prompting, 2024.

Jingyuan Chen, Xinpeng Chen, Lin Ma, Zequn Jie, and Tat-Seng Chua. Temporally grounding
natural sentence in video. Proceedings of the 2018 conference on empirical methods in natural
language processingp. 162-171, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scatXiv preprint
arXiv:2010.119292020.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. InProceedings of the IEEE/CVF international conference on computer vigfn
6202—-6211, 2019.

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
language query. IProceedings of the IEEE international conference on computer vigipn
5267-5275, 2017.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networl&tti cial Intelligence Review56(Suppl 1):1513-1589, 2023.

Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries
from user videos. lComputer Vision—ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part V]Ig8 505-520. Springer, 2014.

Zongbo Han, Changging Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classi cation.
In International Conference on Learning Representatj@@0.

Zongbo Han, Changging Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classi cation
with dynamic evidential fusionlEEE transactions on pattern analysis and machine intelligence
45(2):2551-2566, 2022.

Karl Holmquist, Lena Klasén, and Michael Felsberg. Evidential deep learning for class-incremental
semantic segmentation. Bcandinavian Conference on Image Analypis. 32—48. Springer,
2023.

Fa-Ting Hong, Xuanteng Huang, Wei-Hong Li, and Wei-Shi Zheng. Mini-net: Multiple instance
ranking network for video highlight detection. @omputer Vision—ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIpgpl&45-360. Springer,
2020.

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. To appear, 2017.

12



Under review as a conference paper at ICLR 2025

Jinhyun Jang, Jungin Park, Jin Kim, Hyeongjun Kwon, and Kwanghoon Sohn. Knowing where to
focus: Event-aware transformer for video grounding?faceedings of the IEEE/CVF International
Conference on Computer Vision (ICCYp. 13846—13856, October 2023.

Hao Jiang and Yadong Mu. Joint video summarization and moment localization by cross-task sample
transfer. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
pp. 16388-16398, 2022.

Audun JgsangSubjective logicvolume 3. Springer, 2016.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
language queries. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.),Advances in Neural Information Processing Systerokime 34, pp. 11846-11858. Curran
Associates, Inc., 2021a.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
language queriesAdvances in Neural Information Processing Syste3s11846-11858, 2021b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchanzik.
preprint arXiv:2311.170052023.

Pandeng Li, Chen-Wei Xie, Hongtao Xie, Liming Zhao, Lei Zhang, Yun Zheng, Deli Zhao, and
Yongdong Zhang. Momentdiff: Generative video moment retrieval from random toAdahnces
in neural information processing syster3§, 2024.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao, Alex Jinpeng
Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards uni ed video-language temporal
grounding. InProceedings of the IEEE/CVF International Conference on Computer Vigmn
2794-2804, 2023.

Ye Liu, Siyuan Li, Yang Wu, Chang-Wen Chen, Ying Shan, and Xiaohu Qie. Umt: Uni ed multi-
modal transformers for joint video moment retrieval and highlight detectioRrdneedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (C¥PR3042-3051,
June 2022a.

Ye Liu, Siyuan Li, Yang Wu, Chang-Wen Chen, Ying Shan, and Xiaohu Qie. Umt: Uni ed multi-
modal transformers for joint video moment retrieval and highlight detectioRréneedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognipipn3042—3051, 2022b.

Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video summarization with
adversarial Istm networks. Rroceedings of the IEEE conference on Computer Vision and Pattern
Recognitionpp. 202-211, 2017.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior netwdtétgances in
neural information processing syster4, 2018.

Nis Meinert, Jakob Gawlikowski, and Alexander Lavin. The unreasonable effectiveness of deep
evidential regression. IRroceedings of the AAAI Conference on Arti cial Intelligengelume 37,
pp. 9134-9142, 2023.

WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo. Query-dependent
video representation for moment retrieval and highlight detectioRrdseedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CYiR23023—-23033, June 2023a.

WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo. Query-dependent
video representation for moment retrieval and highlight detectioRrdoeedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognifipn 23023—23033, 2023b.

Saiteja Nalla, Mohit Agrawal, Vishal Kaushal, Ganesh Ramakrishnan, and Rishabh lyer. Watch hours
in minutes: Summarizing videos with user intent.domputer Vision—-ECCV 2020 Workshops:
Glasgow, UK, August 23-28, 2020, Proceedings, Part Mop6714—-730. Springer, 2020.

13



Under review as a conference paper at ICLR 2025

Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkila. Uncovering hidden challenges in
guery-based video moment retrievalXiv preprint arXiv:2009.003252020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervisionlrternational conference on machine learnjiugp.
8748-8763. PMLR, 2021.

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele, and Manfred
Pinkal. Grounding action descriptions in videdsansactions of the Association for Computational
Linguistics 1:25-36, 2013.

Yong Rui, Anoop Gupta, and Alex Acero. Automatically extracting highlights for tv baseball
programs. IrProceedings of the eighth ACM international conference on Multimexiial 05-115,
2000.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classi cation
uncertainty. Advances in neural information processing syste3is2018.

Glenn Shafer. Dempster-shafer thedeycyclopedia of arti cial intelligencel:330-331, 1992.

Aidean Sharghi, Jacob S Laurel, and Boging Gong. Query-focused video summarization: Dataset,
evaluation, and a memory network based approactPrdeeedings of the IEEE conference on
computer vision and pattern recognitiopp. 4788—4797, 2017.

Min Sun, Ali Farhadi, and Steve Seitz. Ranking domain-speci ¢ highlights by analyzing edited videos.
In Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part | 18p. 787—802. Springer, 2014.

Chen Wang, Xiang Wang, Jiawei Zhang, Liang Zhang, Xiao Bai, Xin Ning, Jun Zhou, and Edwin
Hancock. Uncertainty estimation for stereo matching based on evidential deep |le&atitegn
Recognition124:108498, 2022.

Lezi Wang, Dong Liu, Rohit Puri, and Dimitris N Metaxas. Learning trailer moments in full-length
movies with co-contrastive attention. Gomputer Vision—ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XVIJIg6 300-316. Springer, 2020.

Guande Wu, Jianzhe Lin, and Claudio T Silva. Intentvizor: Towards generic query guided interactive
video summarization. IfProceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognitionpp. 10503-10512, 2022.

Wen Wu, Chao Zhang, and Philip C Woodland. Estimating the uncertainty in emotion attributes
using deep evidential regressiarXiv preprint arXiv:2306.06762023.

Yuefei Wu, Bin Shi, Bo Dong, Qinghua Zheng, and Hua Wei. The evidence contraction issue in
deep evidential regression: Discussion and solutioferiteedings of the AAAI Conference on
Arti cial Intelligence, volume 38, pp. 21726-21734, 2024.

Bo Xiong, Yannis Kalantidis, Deepti Ghadiyaram, and Kristen Grauman. Less is more: Learning
highlight detection from video duration. Proceedings of the IEEE/CVF conference on computer
vision and pattern recognitiqrpp. 1258-1267, 2019.

Minghao Xu, Hang Wang, Bingbing Ni, Riheng Zhu, Zhenbang Sun, and Changhu Wang. Cross-
category video highlight detection via set-based learning Prsceedings of the IEEE/CVF
International Conference on Computer Visj@p. 7970-7979, 2021.

Kai Ye, Tiejin Chen, Hua Wei, and Liang Zhan. Uncertainty regularized evidential regressXi.
preprint arXiv:2401.014842024.

Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. Temporal sentence grounding in videos: A

survey and future directionsEEE Transactions on Pattern Analysis and Machine Intelligence
2023.

14



Under review as a conference paper at ICLR 2025

Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. Learning 2d temporal adjacent networks
for moment localization with natural language.Rroceedings of the AAAI Conference on Arti cial
Intelligence volume 34, pp. 12870-12877, 2020.

Aurick Zhou and Sergey Levine. Amortized conditional normalized maximum likelihood: Reliable
out of distribution uncertainty estimation. International Conference on Machine Learnjmp.
12803-12812. PMLR, 2021.

Hao Zhou, Chongyang Zhang, Yan Luo, Yanjun Chen, and Chuanping Hu. Embracing uncertainty:
Decoupling and de-bias for robust temporal grounding, 2021.

15



Under review as a conference paper at ICLR 2025

A DERIVATIONS

A.1 NORMAL INVERSEEGAMMA MOMENTS

We assume our data was drawn from a Gaussian with unknown mean and varianég, We
probabilistically model these parametersaccording to:

N (2 b (14)
2 o) (15)
Therefore, the prior joint distribution can be written as:
. 25 ... — 2
=NG 2 Y G 17)
I SN S G 5
Tz 22 1)

The rst-order moments of this distribution represent the maximum likelihood prediction as well as
uncertainty (both aleatoric and epistemic).

Z,
E[ 1= ] p()d = (19)
Z,
SE ?p( A)d ? (20)
z ™
i ’p( A2 )d (21)
= 1; 8 > 1 (22)
Z,
varl 1= . Zp( )d  (E[ ])? (23)
2
= 2 — (E[)? (24)
= 2 _1 2 (25)
In summary,
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prediction aleatoric epistemic

A.2 MODEL EVIDENCE& TYPE Il M AXIMUM LIKELIHOOD LOSS

In this subsection, we derive the posterior predictive or model evidereeEq. 28) of aNIG
distribution. Marginalizing out and gives our desired result:

@+,

p(bj' )= St b;; (28)
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St b; g gt; st Is the Student-t distribution evaluatedkawith location parameters;, scale
parameter 3, and s degrees of freedom. Using this result we can compute the negative log-
likelihood loss L Nt for samplei as:

LML= logp(hj' ) 38)
= log St h;; w;Z (39)
LMt =3log - log()+  + 3 log((h )* +)+log (40)

where =2 1+ ).

B DATASETSAND IMPLEMENTATION DETAILS.

B.1 PARAMETERS OF DATASETS

In Table 4, we list the datasets used in this study, including dataset size, task category, video clip
length, and detailed hyperparameters used for model training.

Table 4: VTG dtasets listMR denotes Moment RetrievaiD denotes Highlight Detection, and
VS denotes Video SummarizatioB.means secondgR denotes learning rat&po denotes total
training epochsyWarm-up means number of warm-up iterations, driRl Drop means the epoch that
drops learning rate b$=10.

Dataset MR HD VS | #Samples| S BS LR Epo Warm-up LRDrop QRLR OQREpo
QVHighlights | X X 10.3K 2 32 1le ¥ 200 10 180 le * 30
Charades-STA| X 16.1K 1 32 1le * 100 10 50 le ° 10
TAC0S X 18.2K 2 32 1le 4 150 10 80 le S 30
TVSum X 50 2 4 1e ® 400 50 N/A le 10
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B.2 IMPLEMENTATIONS FOR NORMALIZATIONS

Normalization: We have tried two normalization operationg,min-max normalization and using
activation function to normalize.

* Min-Max normalization: Assume we have evaluated an increasing sequence of errors, that

IS:
f 1, 20 ng (41)

wheren represents batch size. Min-Max Normalization mapgo ; by:

T — (42)
n 1

We recommend using this normalization method in training and batch testing.
» Normalization using activation functions: Use activation functionsanh (') so that we
canmap ; to ;,which is between 0 and 1:
;= tanh( ;) (43)

And is normalized in the same way ta We recommend this normalization for single-
point or small-batch testing.

Histogram equalization: Although we normalize the uncertainty, we still nd that the distribution of
uncertainty is extremely biased to 0. We consider that this is still due to the overcon dence effect that
NLL brings to the model. In order to obtain a more expressive uncertainty estimation in the inference
process, sometimes we use histogram equalization to post-process the normalized uncertainty.

Algorithm 1 Histogram Equalization

Input: Sequence of valueX =f 1; 2;:::; ng
Output: Equalized sequenc&®=f 1; ,;:::; ng
1: hist  calculate_histogra(ixX )

2: cdf  calculate_cdhist)

3: X% apply_cdf_mappingK; cd )
4: return X°©

C QUALITATIVE ANALYSIS

C.1 VISULIZATION OF ATTENTION MAP

The visualizations provided in Figure 9 and Figure 10 demonstrate the effectiveness of our DDM-
VTG in achieving ne-grained cross-modal alignment in VTG. Figure 9 effectively maps the attention

to the visual cues of a woman speaking, aligning precisely with the textual description, thereby
enhancing video-to-text translation accuracy. Similarly, Figure 10 shows that DDM-VTG is capable
of focusing on a group of friends interacting around a table, accurately re ecting the descriptive text,
which is essential for generating contextually accurate video summaries. These examples underscore
the potential of DDM-VTG not only to improve downstream task performance by ensuring temporal
and contextual relevance but also to serve as a basis for investigating the model's uncertainty. By
analyzing where the model allocates attention, researchers can identify areas of high con dence
and potential uncertainty, aiding in the re nement of VTG models for more reliable and transparent
Al-driven applications.
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Figure 9:Case | of attention map visualization.

Figure 10:Case Il of attention map visualization.

C.2 VISUALIZATION OF UNCERTAINTY CALIBRATION

Figure 7 demonstrates the in uence of different regularization strategies on model uncertainty in
relation to prediction error. The top row focuses on aleatoric uncertainty, which is inherent data
uncertainty, whereas the bottom row examines epistemic uncertainty, which stems from model
ignorance. And we can discern the following key information:

* (a) Without DER: This model lacks any form of uncertainty management in the absence of
DER, leading to inference results that are dif cult to trust due to the complete absence of
handling latent uncertainties.

* (b) Only NLL : In this con guration, the model exhibits extremely low uncertainty across
all levels of error rates, indicating overcon dence due to over tting. This overcon dence
suggests a model that is not realistically cautious about its predictions.

 (c) With Vanilla Regularizer: Although the vanilla regularizer in DER measures and
manages uncertainty, it paradoxically induces the model to express higher uncertainty
at lower error rates and very low uncertainty at higher error rates. This counterintuitive
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behavior is clearly problematic, as it does not align with rational expectations of uncertainty
behavior.

* (d) With Geom-Regularizer: Compared to (a), our proposed Geom-regularizer effectively
measures and manages uncertainty, enabling the model to indicate higher uncertainty at
higher error rates and vice versa. Relative to (b), it successfully mitigates the model's
overcon dence, which is bene cial for making prudent decisions. Against (c), it accurately
calibrates the measurement of uncertainty, achieving a more sensible and intuitive assessment
of uncertainty levels.

C.3 CASES STUDY

In gure 11, we select some cases from the validation set of QVHighlights that support the effec-
tiveness of our model. For example, we can easily observe that highly accurate predictions are often
accompanied with very low uncertainty, while highly inaccurate predictions are accompanied with
very high uncertainty, as shown by the rst case and the last two cases. Additionally, when there exist
scene changes (case 2, case 3) or changes in lighting conditions (case 5) in the video, the model is
also prone to output higher uncertainty, especially aleatoric uncertainty.

C.4 VISULIZATION OF ERROREVIDENCE EVOLUTION

As illustrated in Figure 12, it is obvious thaa¢curate predictions with high evidence while
inaccurate predictions with low evidentéas been re ected in the knowledge of model with only
NLL. Unfortunately, the vanilla regularizer excessively suppress the evidence of low error predictions,
but ignores and even enlarges the evidence of high error predictions. Geom-regularizer turn the
situation around, retain the main knowledge learned by NLL, and provides calibration for more
reasonable uncertainty estimation.

C.5 ADVERSARIAL EXPERIMENTS

We conduct adversarial experiments on DDM-VTG at the statistical level and case level, in order to
demonstrate that DDM-VTG really capture increased predictive uncertainty on samples that have
been adversarily perturbed.

For the case level, we design four experiments to show DDM-VTG is able to capture a high degree of
uncertainty in some speci c situations that is very likely to exist in reality, which has been discussed in
Figure 2. In Figure 13, DDM-VTG demonstrate effective perception of ambiguous visual semantics,
providing predictions while also outputting higher uncertainty. In Figure 14, DDM-VTG assign
higher uncertainty to the OOD video (which is a cartoon) , even though both videos contain the
semantic "a wolf is running". In Figure 15, DDM-VTG also assign higher uncertainty to the OOD
video, which is infrared thermal imaging video. In Figure 16, the word "funny" in query is abstract
and confuses the model, but DDM-VTG successfully provides high uncertainty to compensated for
the failure in prediction.
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Figure 11:Cases Study
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Figure 12:Evolution of the predicted ( ; )s' distribution over training epochs with different
regularization techniques on QVHighlights Lei et al. (2021b).This gure showcases how the
evidencq ) anderroi() distributions evolve across training epochs (0, 5, 20, 100, and convergence)
under three regularization strategies: (a) only NLL, (b) added vanilla regularizer, and (c) our Geom-
regularizer.

Figure 13: Adversarial Case |. We select a semantically ambiguous video, where the plane is
extremely small, making it dif cult for even humans to discern whether it is an airplane or a bird. We
provide both the correct query (query with "plane”) and an incorrect query (replacing "plane™ with
"bird") to DDM-VTG, compare the uncertainty of their highest con dence predictions, and nd that
the model assign higher uncertainty to the incorrect query.

D QUANTITATIVE ANALYSIS OF GEOM-REGULARIZER

To evaluate how well the predicted uncertainty under different regularization settings aligns with
the principle thatlarger errors should correspond to greater uncertainty" , we introduce the
Error-Uncertainty Consistency Measure (EUCM). EUCM is calculated as:

EUCM =k + UI; (44)

whereU represents uncertainty. Moreover, we also compute the information entropy of different
uncertainty distributions, which is used to evaluate the expressive ability of the evidential predictor.
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