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ABSTRACT

Existing Video Temporal Grounding (VTG) models perform well in accuracy but
often fail to address open-world challenges posed by open-vocabulary queries and
out-of-distribution (OOD) videos, which can lead to unreliable predictions. To
address uncertainty, particularly with OOD data, we build a VTG baseline using
Deep Evidential Regression (DER), which excels in capturing both aleatoric and
epistemic uncertainty. Despite promising results, our baseline faces two key biases
in multimodal tasks: (1) Modality imbalance, where uncertainty estimation is
more sensitive to the visual modality than the text modality; (2) Counterintuitive
uncertainty, resulting from excessive evidence suppression in regularization and
uneven sample error distribution in conventional DER. To address these, we propose
an RFF block for progressive modality alignment and a query reconstruction task to
enhance sensitivity to text queries. Additionally, we introduce a Geom-regularizer
to debias and calibrate uncertainty estimation. This marks the first extension of
DER in VTG tasks. Extensive experiments demonstrate the effectiveness and
robustness of our approach. Our code will be released soon.

1 INTRODUCTION

…

At what time intervals does a dog appear in the video?

What are the time intervals for the black and white cat 
appearing in the video?

Conventional VTG Models

Standard User Query

Abnormal User Query

Our VTG Model

1.39s – 20.13s I don’t know1.39s – 20.13s 4.41s – 10.13s

Confidence:0.99 Confidence:0.99
Confidence:0.99
Uncertainty:0.06

Confidence:0.21
Uncertainty:0.96

Figure 1: Conceptual illustration: Conventional
models give random responses to OOD queries,
unfit for critical decisions. In contrast, our model
reliably delivers sensible, informed answers.

Video is emerging as the primary information
carrier in the streaming media era. With the in-
flux of video data, the need for efficiently and
precisely extracting desired video content is in-
creasingly critical, leading to Video Temporal
Grounding (VTG) emerging as a core research
area in the field of computer vision Dosovitskiy
et al. (2020); Li et al. (2023); Chen et al. (2024).
While extensive research aimed at enhancing
cross-modal reasoning to facilitate fine-grained
and precise multi-modal alignment leads to sig-
nificant advances in VTG Lin et al. (2023), few
studies focus on the widespread uncertainties
present in open-world scenarios Amini et al.
(2020), which can be classified into epistemic
uncertainty and aleatoric uncertainty. Epistemic
uncertainty is mainly attributed to the Knowl-
edge Gap as shown in Figure 2 (a). Specifically,
user queries and video inputs often come from
out-of-distribution (OOD) sources, diverging significantly from the in-distribution (ID) data used in
training. This natural discrepancy creates a Knowledge Gap, making it challenging for models to
accurately understand and respond to user needs. Moreover, semantic ambiguities can also hinder ac-
curate contextual understanding and cause epistemic uncertainty, as shown in Figure 2 (b). Aleatoric
uncertainty typically arises from inherent variability in training data, such as subjective annotation and
variations in low-level features as shown in Figure 2 (c) and (d) respectively. Subjective annotations
occur when different annotators provide varying queries and labels for the same sample, influenced
by their personal views and habits. Variations in low-level features such as texture, edges, resolution,
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‘‘Locate the segment that most resembles a Trump 
speech in the video.’’

Low-Level Features Variation

ID Corpora

OOD Corpora

ID Videos OOD Videos

User Queries

(a) (b)

(c)

Plane

Visual Semantic Ambiguity

Texual Semantic Ambiguity

‘‘Find the funniest and the most romantic segment 
in the video.’’

(i)

(ii)

Knowledge Gap

Subjective Annotations

(d)

A woman holding a small cat outside.(i)

(ii) A lady embracing a tiny cat outdoors.

A lady cuddling a little cat in outdoors.(iii)

(i)

(ii)

(iii)

… …

Annotations

𝑡

High Light Low Light

jitter

Figure 2: Motivation illustration.Epistemic uncertainty stems from knowledge gaps and semantic
ambiguity in (a) and (b), while aleatoric uncertainty arises from subjective annotations and low-level
feature variations in (c) and (d). In (a), the knowledge gap highlights the model’s limitations due to
insufficient real-world coverage, and (b) shows challenges from semantic ambiguity in visual and
textual inputs. (c) emphasizes the subjectivity in annotations, while (d) illustrates uncertainty from
lighting, resolution, jitter, and other low-level factors.

lighting, camera jittering, and scene transitions can contaminate the trainging video. Both of them
can lead to aleatoric uncertainty in prediction for certain samples.

Unfortunately, when confronted with anomalies, such as the abnormal queries shown in Figure 1,
conventional VTG models often respond with nearly random and indiscreet answers. These models
fail to handle potential uncertainties in an open world appropriately. This inadequacy is detrimental
in scenarios that require cautious decision-making, such as security and confidential environments.
To address the limitations of VTG methods in open-world scenarios, we integrate Deep Evidential
Regression (DER)Amini et al. (2020) into an uncertainty-aware baseline. Based on Evidential Deep
Learning (EDL)Sensoy et al. (2018), DER excels at capturing uncertainty, particularly with OOD
data. This makes DER a natural fit for VTG tasks, where open-vocabulary queries and OOD videos
present significant challenges.

However, due to the complexity of the VTG task and limitations of the vanilla DER method, the
baseline exposes two critical biases: (1) Modality imbalance: Uncertainty estimation disproportion-
ately favors the visual modality over text. This stems from the nature of VTG, where visual input
dominates tasks like keyframe identification. DER’s loss function, optimized for continuous visual
signals, further emphasizes this imbalance. Moreover, simple modality concatenation or unimodal
self-attention Lei et al. (2021a); Lin et al. (2023) fails to foster sufficient interaction between text and
visual features, leading to over-reliance on visual input. (2) Counterintuitive uncertainty: Higher-
error predictions sometimes receive lower uncertainty due to DER’s regularizer limitations. Unlike
classification-based EDL methods, DER lacks a standard KL-divergence term, relying instead on a
heuristic regularizer that overly suppresses evidence, especially in low-error samples. This misaligns
uncertainty estimates, with low-error samples showing higher uncertainty and vice versa.

To address modality imbalance, we propose a Debiased DER Model for Video Temporal Grounding
(DDM-VTG). Specifically, it corporates with a Reflective Flipped Fusion (RFF) block with dual
branches for progressive cross-modal alignment, along with a query reconstruction (QR) task to
strengthen the text branch. This enhances the model’s sensitivity to text and mitigates bias in un-
certainty estimation. To resolve counterintuitive uncertainty, we introduce a simple yet effective
Geom-regularizer that adjusts uncertainty estimation based on prediction accuracy, adaptively sup-
pressing overconfidence and debiasing the system. Our contributions are three-fold: (1) This is
the first extension of DER to the VTG task, establishing an uncertainty-aware baseline. Leverag-
ing DER’s uncertainty estimation, we effectively address open-world challenges in VTG. (2) We
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identified and addressed two critical biases in the baseline—modality imbalance and counterintu-
itive uncertainty—through the RFF block, an auxiliary QR task, and the Geom-regularizer, which
together calibrate uncertainty estimation. (3) Extensive experiments show our method’s effectiveness,
robustness, and interpretability across multiple benchmarks.

2 RELATED WORK

2.1 VIDEO TEMPORAL GROUNDING

Video Temporal Grounding (VTG) identifies correlated shots in videos based on natural language
queries, which broadly supports various downstream video comprehension tasks, such as video
moment retrieval Anne Hendricks et al. (2017); Chen et al. (2018); Zhang et al. (2020); Moon et al.
(2023b); Li et al. (2024), highlight detection Rui et al. (2000); Sun et al. (2014); Moon et al. (2023b),
and video summarization Gygli et al. (2014); Jiang & Mu (2022); Mahasseni et al. (2017); Nalla
et al. (2020); Sharghi et al. (2017); Wu et al. (2022). These tasks generally involve formulating
the boundaries of significant semantic segments Jiang & Mu (2022); Moon et al. (2023b); Lin
et al. (2023). Numerous innovative and effective methods are developed to address the challenges
in VTG. For instance, CTRL Anne Hendricks et al. (2017) and MCN Gao et al. (2017) initially
generate proposals using sliding windows, which they rank in terms of a cross-modal matching
score. MomentDETR Lei et al. (2021b) applies a transformer to predict potential moments through
learnable queries. Furthermore, QD-DETR Moon et al. (2023b) employs a cross-attention module
and a negative pair training scheme to enhance multi-modal alignment. MomentDiff Li et al. (2024)
initially sets random boundaries for temporal segments and iteratively refines them to better match the
intended semantics. However, existing approaches typically yield deterministic predictions, operating
under the assumption that semantic segments are demarcated by clear and precise boundaries. This
presumption neglects the inherent ambiguity and uncertainty associated with determining the true
extents of these segments. To address this gap, we explicitly models and quantify the semantic
uncertainty of video segment boundaries.

2.2 UNCERTAINTY LEARNING

Recent studies have highlighted inherent ambiguities and biases in VTG datasets, which significantly
impact the integrity and performance of models Zhou et al. (2021); Zhang et al. (2023). These
uncertainties are categorized into annotation and query uncertainties. Annotation uncertainty stems
from varying temporal boundaries assigned by different annotators to the same query, while query
uncertainty arises from the use of differing descriptions for the same video moment, underscoring
the subjective nature of video interpretation Zhou et al. (2021); Zhang et al. (2023). Furthermore,
these datasets exhibit pronounced biases, with common events being overly represented and a small
subset of queries accounting for most actions, leading to a skewed distribution that creates a long
tail in ground-truth timestamps Zhang et al. (2023); Otani et al. (2020). These findings underscore
the need for meticulous curation of datasets and the adoption of uncertainty-aware modeling ap-
proaches Arnab et al. (2020); Malinin & Gales (2018); Zhou & Levine (2021); Gawlikowski et al.
(2023). Among the techniques for modeling uncertainty, Evidential Deep Learning (EDL) has shown
promise. Originating from the principles of Dempster-Shafer Theory Shafer (1992) and Subjective
Logic Sensoy et al. (2018); Jøsang (2016), EDL models uncertainty explicitly through the distribution
of "second-order probabilities" over network outputs, finding applications across various classification
tasks including action recognition Bao et al. (2021), multi-view clustering Han et al. (2020; 2022),
and semantic segmentation Holmquist et al. (2023) etc. Leveraging DER Amini et al. (2020) for its
extension, EDL has effectively been applied to regression tasks such as stereo matching Wang et al.
(2022) and emotion attributes estimation Wu et al. (2023). Nevertheless, DER faces challenges like
evidence contraction due to the non-negativity of prior parameters in the Normal Inverse-Gamma
(NIG) distribution. New regularizers have been developed to address these issues, enhancing reliability
and performance Wu et al. (2024). However, DER often encounters gradient disappearance in high
uncertainty areas, necessitating ongoing refinement of its regularization methods Ye et al. (2024);
Meinert et al. (2023). In this study, We introduce DER into the VTG task to manage uncertainties in
open-world inputs, while further addressing the modality imbalance it presents and improving the
structural flaws of the vanilla DER regularizer. To the best of our knowledge, this marks the first
successful attempt to extend DER in VTG task.
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3 PRELIMINARIES

DER Amini et al. (2020) places evidential priors over the original Gaussian likelihood function and
trains the model to infer the hyperparameters of the evidential distribution. This approach enables the
model to learn both aleatoric and epistemic uncertainty. In our context, adjacent video frames often
exhibit similar semantics, which introduces uncertainty in precisely locating temporal boundaries.
The start or end temporal boundary of a video is represented by distinct Gaussian distributions:
b ∼ N (µ, σ2), where b ∈ R1×H represents the start or end of moments observed H times. We
assume that observations of the same type (either all starts or all ends) are i.i.d.. The corresponding
expectation µ and variance σ2 of the Gaussian distribution subject to NIG prior:

p(µ, σ2 | γ, υ, α, β︸ ︷︷ ︸
φ

) = N (µ|γ, σ2υ−1)Γ−1(σ2|α, β), (1)

where φ = (γ, υ, α, β) are the prior NIG distribution parameters derived from the video content and
user queries, serve as conditionals for the Gaussian estimates of bi with γ ∈ R, υ > 0, α > 1, β > 0.
The gamma function is denoted by Γ(·). We use a linear evidential predictor to estimate φ, training it
to maximize the likelihood. Since the likelihood function has a form of Student-t distribution (St),
we minimize the negative logarithmic likelihood (NLL) as follows:

LNLL
i = − log p(bi|φ) = − log

(
St

(
bi; γ,

β(1 + υ)

υα
, 2α

))
, (2)

Models optimized only on observed samples with the NLL loss (i.e. Eq. 2) tend to overfit and exhibit
overconfidence. To counter this, DER introduced a regularizer for the i-th prediction as follows:

LR
i (ϑ) = ∆ · Φ, (3)

where ∆ = |bi − γ| represents the error, Φ = 2υ + α denotes the evidence, and ϑ are the model
parameters, with bi as the ground truth. Detailed formulation can be found in Appendix A. Using the
NIG distribution, prediction, aleatoric and epistemic uncertainties are calculated as follows:

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] =
β

α− 1︸ ︷︷ ︸
aleatoric

, Var[µ] =
β

υ(α− 1)︸ ︷︷ ︸
epistemic

, (4)

E[σ2] refers to the inherent noise in the data, which cannot be reduced or eliminated. Var[µ] reflects
the model’s lack of confidence in its own predictions due to limited knowledge.

4 METHODOLOGY

4.1 PROBLEM DEFINITION

Given a video V = {vi}Lv
i=1 and a query Q = {qi}

Lq

i=1, each represented as vectors in RD where Lv

and Lq denote the counts of clips and tokens respectively, the task of VTG is to assign each clip
a label b based on its relevance to Q. b can be of multiple types, i.e., a time span mi = [ms

i ,m
e
i ]

for Moment Retrieval, a saliency score si ∈ [0, 1] for Highlight Detection, or a binary value
fi ∈ {0, 1} for Video Summarization. The choice of label type depends on the specific VTG subtask
being addressed, allowing for flexible application across various video understanding scenarios.

4.2 BUILDING BASELINE WITH VANILLA DER FOR VTG

As illustrated in Figure 3 (a), we first build an uncertainty-aware baseline by integrating DER into the
VTG task. The motivation for this is to address the inherent challenges of open-world scenarios, such
as handling OOD data and open-vocabulary queries. Overall, the loss function of the model can be
formulated as follows:

LB
i (w) = λNLLLNLL

i + λRegLR
i (w), (5)

Lbase = LG + λder
1

N

N∑
i=1

LB
i (w), (6)

where N symbolizes the number of clips in a training set and LG denotes VTG loss. While DER
effectively estimates uncertainty, its vanilla form presents limitations like modality imbalance and
flawed uncertainty estimation, which our baseline exposes and sets the foundation for improvement.

4
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(a) Baseline Model

(b) Ours
A small white cat stands in the frame and 
seeks attention

With geom-regularizer

With vanilla regularizer

After
training

Evidence

Error Error

Evidence

After

training

Evidence

Error Error

Evidence

Figure 3: Comparison of the baseline (a) and our improved model (b) for the VTG task. In (a), the
baseline model demonstrates a lack of sensitivity to textual information due to the overlap between
the VTG task’s nature and the DER objective function design, leading to a heavy reliance on visual
features. Furthermore, structural flaws in the vanilla DER’s regularizor contribute to unreliable
uncertainty estimates. In (b), the RFF block and Query Reconstruction (QR) head enhance text
sensitivity through deeper cross-modality interaction, while the Geom-regularizer addresses vanilla
DER’s structural flaws and achieves more trustworthy uncertainty estimation.

4.3 DEBIASED DER MODEL FOR VTG

To address the biased uncertainty estimation in the baseline in section 4.2, caused by modality
imbalance and counterintuitive uncertainty, we propose DDM-VTG. Our model introduces a RFF
block for progressive cross-modal alignment, reducing over-reliance on visual features, and a QR
task to enhance text sensitivity. As shown in Figure 3 (b), DDM-VTG first encodes an untrimmed
video and masked query, reconstructs the masked tokens via the RFF block, and performs VTG. The
debiased DER head assesses both aleatoric and epistemic uncertainties, while the VTG and QR heads
manage task stages. Further details are provided in subsequent sections.

RFF block. The RFF block processes inputs from the video and text branches, alternating the roles
of video and text as queries and keys/values using shared parameters. Through the cross-attention
module, initial features V (1) and Q(1) of video and text branches are respectively updated, reflecting
each other’s information. Following cross-attention, each branch refines its features through self-
attention to enhance internal feature representation. The outputs of self-attention serve as inputs to
the next iteration of the RFF block, progressively enhancing modal alignment. This process is applied
sequentially from block 1 to block n in terms of Eq. (7). After completing the n-th layer, the refined
video and query features are output. The specific workflow process is detailed in Appendix E.

V (i+1) = SA(i)
v (CA(i)

q→v), Q(i+1) = SA(i)
q (CA(i)

v→q), i = 1, 2, . . . , n− 1 (7)

VTG head. The VTG head features three distinct modules for tasks outlined in section 4.1. For
Video Summarization, the output from the frozen video encoder undergoes three 1x3 Conv layers,
each with a ReLU activation. The Moment Retrieval head is similar but outputs two channels for
offsets. Highlight Detection uses attentive pooling to form a sentence representation from query
tokens, then computes the saliency score between video tokens and query as their cosine similarity.
Details for each module and corresponding loss are available in the Appendix F.

Query reconstruction task. To ensure robust cross-modal alignment capabilities, during the initial
phase of alignment, entities within the query are masked at a specified ratio. This approach com-
pels the model to leverage contextual information available from the corresponding video and the
remaining unmasked tokens in the query. Through the QR head, the model infers and reconstructs
the masked tokens. The loss function associated with this process, aimed at optimizing the model’s

5
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cross-modal inference capabilities, is outlined below:

Lqr = E

[
−

l∑
i=1

logP (wi | U, V )

]
, (8)

where l represents the number of masked tokens, wi the i-th masked token, U the unmasked
tokens providing linguistic context, and V the video features that enhance cross-modal contextual
understanding for accurate token prediction. After the warm-up in the first phase, in the next phase,
the QR head is frozen and Lqr is not computed.

Geom-regularization. The heuristic regularizor (i.e. Eq.(3)) in conventional DER aims to mitigate
overconfidence by suppressing evidence, particularly for samples with high error. However, excessive
suppression can lead to underconfidence due to non-adaptive suppression and sample imbalance. To
be clear, we first consider the minus gradient of LR

i for Φ as follows:

−∇ΦLR
i = −∆, (9)

（b）Geom-regularizer（Ours）（a）Vanilla regularizer








Figure 4: Gradient field comparison. (a) Vanilla regu-
larizer applies penalties based solely on error, with a
tendency to decrease evidence as error increases. (b)
Our Geom-regularizer modulates penalties dynamically
based on both error magnitude and current evidence
levels. Our approach reflects the principle that accurate
predictions should have higher evidence, while evidence
should be suppressed for less accurate predictions.

To explore the penalties bias in the vanilla
regularizer, we visualized its optimization
direction by examining the gradient field
derived from the Eq.(9). As shown in Fig 4
(a), the gradient is solely linked to the error
and not to the evidence, indicating that the
model cannot ascertain when the evidence
has been adequately suppressed. This ap-
proach often results in insufficient gradi-
ents for batches dominated by small er-
rors, potentially leading to biased penal-
ties on evidence. As the model converges,
the dominance of low error samples with
small gradients skews the batch’s average
gradient. Consequently, their evidence is
over-suppressed, while high error samples
see their evidence neglected or ad versely
adjusted, as shown in Appendix C.4.

To overcome these limitations, we intro-
duce Geom-regularization, inspired by Amini et al. (2020), promoting the principle that "accurate
predictions should have high evidence, while inaccurate ones should have low evidence". This
approach provides more rational constraints rather than merely suppressing evidence. Initially, we
normalize ∆ to ∆ and Φ to Φ (i.e. Appendix B.2), which ensures that the model assigns Φ = 1 to
samples with ∆ = 0, and Φ = 0 to samples with ∆ = 1. We then ensure that the points (∆,Φ)
closely follow the line Φ+∆ = 1 using a line regularizer as below:

LL
i (w) = ∥Φ+∆− 1∥22, (10)

we can follow the analysis for LR
i . The minus gradient of LL

i with respect to Φ as below:

−∇ΦL
L
i = −2(∆ + Φ− 1), (11)

which indicates this simple regularizer offers a gradient that relates to both error and evidence,
enabling adaptive evidence suppression, as illustrated in Figure 4 (b).

Our training objective for the evidential head is the combination of NLL and Geom-regularization:

Le
i(w) = λNLLLNLL

i + λgeomLL
i (w), (12)

To this end, our total loss can be formulated by a combination of common grounding loss LG

(discussed in Appendix F ) and our evidential loss:

L = LG + λder
2

N

N∑
i=1

Le
i(w) + Lqr, (13)

where N symbolizes the number of clips in a training set.

6
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Table 1: Performance on QVHighlights, TACoS, and Charades-STA datasets. Bold numbers indicate
the best performance, and underlined numbers indicate the second best performance. MR denotes
Moment Retrieval, and HD denotes Highlight Detection.

Method
QVH-MR QVH-HD TACoS Charades-STA

R@0.5 R@0.7 Avg.M MAP HIT@1 R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

M-DETR Lei et al. (2021a) 53.9 34.8 32.2 35.7 55.6 28.0 12.9 27.2 46.0 27.5 41.3
UMT Liu et al. (2022a) 60.3 44.3 38.6 39.9 64.2 23.5 13.2 25.0 42.7 24.1 41.6

QD-DETR Moon et al. (2023a) 62.7 46.7 41.2 39.1 63.0 24.7 12.0 25.5 52.1 30.6 45.5
UniVTG Lin et al. (2023) 59.7 - 36.1 38.8 61.8 35.0 17.4 33.6 58.0 35.7 50.1
EaTR Jang et al. (2023) 61.4 45.8 41.7 37.2 58.7 - - - - - -

MomentDiff Li et al. (2024) 57.4 39.7 36.0 - - 33.7 - - 55.6 32.4 -
DDM-VTG (Ours) 65.0 49.4 43.0 40.1 63.4 37.3 19.4 33.9 60.2 38.0 51.6

5 EXPERIMENT

We focus on the following key considerations to conduct convincing experiments: 1) Despite focusing
on robustness and interpretability, does our proposed DDM-VTG model demonstrate competitive
performance relative to current state-of-the-art VTG models? 2) Does the proposed QR task and
RFF blocks enhance performance in VTG tasks? 3) Does DDM-VTG give low uncertainty when
performing high localization accuracy statistically, and vice versa? 4) Is our proposed Geom-
regularizer more robust than the vanilla regularizer (i.e., Eq. (3))? 5) Can the model output a high
uncertainty score in various OOD scenarios to inform abnormality?

5.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We conducted experiments on several widely used public datasets from diverse scenes:
Charades-STA Gao et al. (2017) (in-door activities), QVHighlights Lei et al. (2021b) (untrimmed
daily vlogs & news), TACoS Regneri et al. (2013) (cooking scenes), and TVSum (YouTube videos).
The detailed information including specific task domains and sizes for different datasets is reported
in Appendix B.1 Table 4 with their different hyperparameters.

Metrics. For moment retrieval, we use recall@1 with IoU thresholds of 0.5 and 0.7, mean average
precision (MAP) with IoU thresholds of 0.5 and 0.75, and MAP avg, which is the average MAP across
IoU thresholds from 0.5 to 0.95 in 0.05 increments. For Highlight detection and Video summarization,
we use MAP. Following Lei et al. (2021a), an additional metric HIT@1 is utilized for the Highlight
detection task in the QVHighlights dataset, representing the hit ratio of the highest-scored clip.

Experimental Settings. Following previous works Lin et al. (2023); Li et al. (2024), we utilize
CLIP Radford et al. (2021) (ViT-B/32) and SlowFast Feichtenhofer et al. (2019) (ResNet-50) as a
frozen backbone. Unless otherwise specified, the number (n) of RFF blocks is set to 4. The training
process is divided into two stages. In the first stage, QR masks and reconstructs noun entities in the
query. Each sentence has 1 noun masked by default. The default epoch for QR is set to 30, with
a learning rate of 1e-5. We utilize spaCy’s transformer-based parser- Honnibal & Montani (2017)
to extract noun entities from the query text, and the masking is accomplished by zeroing out the
noun entities at the embedding level. In the second stage, DDM-VTG predicts bounding boxed on
the visual branch at each video clip. Since our purpose of using DER is to optimize uncertainty
without affecting the model’s grounding capability, the gradient of delta in Eq. (10) is set to zero.
To avoid similar predictions, we utilize NMS with a threshold of 0.7 at evaluation to achieve better
performance. If not stated otherwise, we used the line regularizer on the evidential head. All training
for the moment retrieval tasks are conducted on four Tesla V100 GPUs. For the video summarization
task, due to the smaller scale of the TVSum dataset, we used only a single V100 GPU.

5.2 QUANTITATIVE RESULTS

Comparison with the state-of-the-art. To demonstrate the fundamental capabilities of DDM-VTG,
we compared it with several state-of-the-art methods across multiple benchmarks. As reported
in Table 1, DDM-VTG outperforms existing methods on various metrics. On the QVHighlights
val split, for the Moment Retrieval task, DDM-VTG obtains 65.0% for R1@0.5 and 49.4% for
R1@0.7. For the Highlight Detection task, DDM-VTG reaches 63.4% for HIT@1. In the Moment
Retrieval task, DDM-VTG outperforms MomentDiff Li et al. (2024) by 8.0% on R1@0.5, and in
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Table 2: Video summarization results on TVsum. † denotes methods with audio modality.

Method VT VU GA MS PK PR FM BK BT DS Avg.

LIM-S Xiong et al. (2019) 55.9 42.9 61.2 54.0 60.3 47.5 43.2 66.3 69.1 62.6 56.3
Trailer Wang et al. (2020) 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8

SL-Module Xu et al. (2021) 86.5 68.7 74.9 86.2 79.0 63.2 58.9 72.6 78.9 64.0 73.3
MINI-Net Hong et al. (2020)† 80.6 68.3 78.2 81.8 78.1 65.8 57.8 75.0 80.2 65.5 73.2

UMT Liu et al. (2022b)† 87.5 81.5 88.2 78.8 81.4 87.0 76.0 86.9 84.4 79.6 83.1
UniVTG Lin et al. (2023) 83.9 85.1 89.0 80.1 84.6 81.4 70.9 91.7 73.5 69.3 81.0

DDM-VTG (Ours) 85.4 93.0 92.5 81.4 87.2 79.6 72.0 92.2 87.1 75.3 84.6

Table 3: Ablation studies on the QVHighlights validation split. (a) Varvis and Vartext represent
uncertainty variance across noise levels, with noise gradually added to the respective modality inputs.
The variance indicates the sensitivity of the DDM-VTG model to different modal inputs. (b) compares
the effectiveness of model estimation uncertainty using different regularizers. Bold denotes the best
performance, and underline indicates the second best.

(a) Component ablation.

Method R@0.5 Varvis Vartext ∆Var ↓
Baseline 61.1 9.17 0.85 8.32
+ RFF block 62.4 8.63 1.60 7.03
+ QR 63.8 4.89 3.91 0.98
Full Model 65.0 4.85 5.54 0.69

(b) Uncertainty effectiveness metrics

Method EUCM ↓ Entropy ↑

Baseline 0.32 0.09

Vanilla-Reg. 0.31 0.35

Geom-Reg. 0.29 0.31

the Highlight Detection task, it surpasses EaTR Jang et al. (2023) by 4.7% on HIT@1. We also
conduct performance comparison on the TACoS and Charades-STA datasets. On TACoS, DDM-VTG
outperforms the nearest competitor UniVTG by 2.3% and 2.0% on R1@0.5 and R1@0.7, respectively.
For Charades-STA, DDM-VTG surpasses UniVTG by 2.2%, 2.3%, and 1.5% across three metrics.

We also validate DDM-VTG’s performance in video summarization. We present a comparison on
the TVSum dataset in Table 2. For each domain in TVSum, DDM-VTG has generally demonstrated
strong performance. Specifically, in the VU domain, DDM-VTG outperforms UniVTG by 8%.
Additionally, on the overall average metrics, DDM-VTG exceeds UniVTG by 3.6% and surpasses
the UMT model, which utilizes audio modality, by 1.5%.

Ablation study. To demonstrate the effectiveness of our proposed debiasing method, we design
targeted metrics to quantify the degree of debiasing in the model, and conduct extensive ablation on
the validation set of QVHighlights Lei et al. (2021b). For modality imbalance, we define a Varvis,
Vartext and ∆Var to measure the sensitivity of uncertainty under varying levels of noise interference.
To be detailed, we add different level of Gaussian noise to video embeddings, and replace a varying
proportion of text tokens with irrelevant text, where the noise schedule is the same as in Figure 6.
We evaluate the variance of the uncertainty for a video query pair under different noise levels and
then take the average across all samples. We use values of Varvis and Vartext calculated in this way
to quantify the uncertainty sensitivity for vision and text modality respectively, and the difference
between them ∆V ar to describe the modality balance under different model settings. As reported in
Table 3 (a) , our results strongly demonstrate the effectiveness of both RFF block and QR task.

For counterintuitive uncertainty, we define a new metric Error-Uncertainty Consistency Measure
(EUCM), with more details can be found in Appendix D. Moreover, we also compute the information
entropy of different uncertainty distributions, which is used to evaluate the expressive ability of the
evidential predictor, as reported in Table 3 (b) . The entropy of predictions with the vanilla regularizer
is greater than that with the Geom-regularizer. However, as demonstrated in section 5.3 predictions
made with the vanilla regularizer are prone to be misleading. Consequently, even though it exhibits
higher information entropy, this entropy may encompass substantial "biased information". In contrast,
the Geom-regularizer not only achieves higher information entropy but also results in a lower EUCM
score, indicating its superior performance.

Parameter analysis. As shown in Figure 5(a), we examine the change in MAP as λgeom and λder

gradually increased. We observe that the MAP reaches its optimal value when λgeom is set to 10−2,
which we therefore set λgeom to 10−2. Also, when λder is small, the model’s performance remains
unaffected. However, as λder increases to 1× 10−2, MAP begins to decline, reaching its lowest at
1× 10−1. This can be explained by the fact that an excessively high uncertainty constraint weight
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forces the model’s optimization direction to overfit the evidential head rather than maintaining its
basic grounding ability. Therefore, we set λder to 1×10−3. Figure 5 (b) shows the model performance
differences under different settings of query reconstruction task’s epochs and learning rate. Notably,
when the number of QR epochs increased from 0 to 50, there was a significant improvement in MAP
(+1.5%). Besides, we observe the best QR learning rate (lr) of 1× 10−4. Appendix B provided more
details on parameters setting across multiple benchmarks.

M
A

P

M
A

P

Geom-Regularizer Coefficient DER Coefficient

(a) Performance on different λgeom and λder.

M
A

P

M
A

P

QR Epoch QR lr

(b) Performance on different QR epochs and lr.

Figure 5: Parameters Analysis on QVHighlights val split. We examined the change of MAP. (a)
Evaluate the effectiveness of our proposed Geom-regularizer (left) and der loss (right) under different
weights. (b) Demonstrates the impact of the query reconstruction task at different epochs (left) and
learning rates (right).

5.3 QUALITIVE RESLUTS

Vision Text
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M
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TG

D
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Uncertainty

Figure 6: Uncertainty KDE over differect noise level. Us-
ing Gaussian kernel density estimation (KDE), We plotted
the uncertainty distribution for the QVHighlighte val set.

Uncertainty sensitivity to modali-
ties. To more clearly demonstrate the
role of the proposed RFF block and
QR task in promoting modality bal-
ance, we conduct fair adversarial ex-
periments on the QVHighlights val-
idation set to compare the modality
sensitivity of the baseline model and
DDM-VTG. We apply the noise addi-
tion method mentioned in ablation and
used the noise intensity format shown
in Figure 6. Also as illustrated in Fig-
ure 6, when progressively increasing
noise levels for two different modali-
ties, the output uncertainty of the base-
line model (Top row) shows high sen-
sitivity to the visual modality and low
sensitivity to the textual modality. In
contrast, the DDM-VTG model (Bottom row) achieves balanced uncertainty across both modalities.
Regardless of which modality the noise is added to, the uncertainty distribution of the model shifts
from left-skewed to right-skewed at the same rate.

Uncertainty calibration. Since we propose geom-regularizor to calibrate of counterintuitive un-
certainty prediction, we aim to assess the efficacy of our approach by contrasting the performance
of aleatoric and epistemic uncertainty estimation with and without our regularization technique,
as well as against using vanilla regularization in Amini et al. (2020). Ideally, optimal uncertainty
measures should effectively identify deviations in predictions (i.e., take high uncertainty when the
model is making errors). Figure 7 illustrates our comparison of different regularization methods on
the QVHighlights validation set. The horizontal axis of each scatter plot represents ∆ (i.e. normalized
error), while the vertical axis represents one of the two types of uncertainty. More discussion is
provided in the Appendix C.2 and C.4.

Temporal bias sensitivity. As previously reported in studies, most Moment Retrieval datasets exhibit
significant imbalances in the duration and position of moments. As shown in Figure 8 (a), using the
QVHighlights dataset as an example, we visualize the joint distribution of the normalized start times
and end times of all ground truth moments. The light-colored areas in the figure indicate regions
with almost no moment distribution, leading to Temporal OOD. Higher epistemic uncertainty is
demanded when samples belong to the Temporal OOD region. We analyzed the uncertainty predicted
by the model in different time regions under various experimental settings in the QVHighlights
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(d) w/ Geom-Regularizer(a) w/o DER (b) Only NLL

E
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(c) w/ Vanilla Regularizer

(d) w/ Geom-Regularizer(a) w/o DER (b) Only NLL

A
le
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Error

(c) w/ Vanilla Regularizer

Figure 7: Effects of Various Regularization Techniques on Uncertainty Distribution. (a)-(d) illustrate
the impact of different regularization methods on the relationship between aleatoric uncertainty (top
row) and epistemic uncertainty (bottom row) with respect to prediction error. The models include: (a)
without DER, (b) only NLL, (c) with Vanilla Regularizer, and (d) with Geom-Regularizer.

dataset. Figure 8 (b) shows that without DER constraints, the evidential head’s predicted aleatoric
and epistemic uncertainty tends to simply fit the biased temporal distribution. Figure 8 (c) shows that
using only the NLL constraint (i.e., Eq. 2), most regions exhibit extremely low epistemic uncertainty,
indicating the model is overly confident in its predictions. Figure 8 (d) illustrates that with Vanilla
regularization, although this approach does suppress the concentration of uncertainty in a specific
region, it does not show sensitivity to OOD data. Figure 8 (e) demonstrates that with our proposed
Geom-regularizor, the temporal OOD regions exhibit significantly higher epistemic uncertainty.

(b)    w/o DER

Aleatoric EpistemicTrain Set

Val Set

Start time (Normalized)

En
d 

 t
im

e 
(N

or
m

al
iz

ed
)

(a)   Dataset Bias (c)    Only NLL

Aleatoric Epistemic

(d)    w/ Vanilla Regularizer

Aleatoric Epistemic

(e)    w/ Geom-Regularizer

Aleatoric Epistemic

Figure 8: Dataset bias sensitivity. (a) Joint distributions of the start and end timestamps of the ground-
truth moments in the QVHighlights dataset. (b), (c), (d), and (e) show the predicted uncertainty’s
sensitivity to temporal biases in the dataset under different conditions.

Cases study. We have meticulously selected several examples of model inference under the typical
scenarios described in Figure 2 to further validate the effectiveness of the DDM-VTG model. The
relevant details are provided in Appendix C.3 and C.5.

6 CONCLUSION

As the development of Artificial General Intelligence (AGI) progresses, increasingly sophisticated
VTG models are emerging. However, these models often falter when confronted with open-ended user
inputs. Addressing this challenge, this paper introduces a robust VTG model, namely DDM-VTG,
that not only possesses VTG capabilities but also overcomes two types of bias present in proposed
baseline methods and enables useful and meaningful quantification of potential uncertainties. This
allows the model to provide credible responses to queries that exceed its operational scope. Limited
by data quality and scale, the model’s capabilities are not particularly notable. Nevertheless, it offers
strategies for enhancing the trustworthiness of AI decisions. Future research will focus on further
expanding the decision-making reliability and interpretability of multimodal large language models
in video-related downstream tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In adherence to ICLR’s principles, the authors have made significant efforts to ensure the repro-
ducibility of our research findings. The primary focus has been on providing a clear and detailed
description of our methodology, which includes the novel Debiased Deep Evidential Regression for
Video Temporal Grounding (DDM-VTG) model, the Reflective Flipped Fusion (RFF) block, and the
Geom-regularizer. These are elaborated in Sections 4 and 5 of the main text. Furthermore, we have
meticulously documented our data processing steps and experimental setup in Appendix B, which
details the parameters of the datasets used and the configurations for model training. Also, we are
committed to open-sourcing our code upon publication. This will allow fellow researchers to directly
access the implementation details and reproduce the results as presented in our paper. We believe that
these measures will substantially contribute to the reproducibility of our work and encourage further
scientific inquiry in this domain.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression.
Advances in neural information processing systems, 33:14927–14937, 2020.

Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
Localizing moments in video with natural language. In Proceedings of the IEEE international
conference on computer vision, pp. 5803–5812, 2017.

Anurag Arnab, Chen Sun, Arsha Nagrani, and Cordelia Schmid. Uncertainty-aware weakly supervised
action detection from untrimmed videos. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16, pp. 751–768. Springer,
2020.

Wentao Bao, Qi Yu, and Yu Kong. Evidential deep learning for open set action recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13349–13358,
2021.

Haodong Chen, Yongle Huang, Haojian Huang, Xiangsheng Ge, and Dian Shao. Gaussianvton: 3d
human virtual try-on via multi-stage gaussian splatting editing with image prompting, 2024.

Jingyuan Chen, Xinpeng Chen, Lin Ma, Zequn Jie, and Tat-Seng Chua. Temporally grounding
natural sentence in video. In Proceedings of the 2018 conference on empirical methods in natural
language processing, pp. 162–171, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
6202–6211, 2019.

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
language query. In Proceedings of the IEEE international conference on computer vision, pp.
5267–5275, 2017.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1):1513–1589, 2023.

Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries
from user videos. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part VII 13, pp. 505–520. Springer, 2014.

Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classification.
In International Conference on Learning Representations, 2020.

Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classification
with dynamic evidential fusion. IEEE transactions on pattern analysis and machine intelligence,
45(2):2551–2566, 2022.

Karl Holmquist, Lena Klasén, and Michael Felsberg. Evidential deep learning for class-incremental
semantic segmentation. In Scandinavian Conference on Image Analysis, pp. 32–48. Springer,
2023.

Fa-Ting Hong, Xuanteng Huang, Wei-Hong Li, and Wei-Shi Zheng. Mini-net: Multiple instance
ranking network for video highlight detection. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16, pp. 345–360. Springer,
2020.

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. To appear, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jinhyun Jang, Jungin Park, Jin Kim, Hyeongjun Kwon, and Kwanghoon Sohn. Knowing where to
focus: Event-aware transformer for video grounding. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 13846–13856, October 2023.

Hao Jiang and Yadong Mu. Joint video summarization and moment localization by cross-task sample
transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16388–16398, 2022.

Audun Jøsang. Subjective logic, volume 3. Springer, 2016.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
language queries. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 11846–11858. Curran
Associates, Inc., 2021a.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
language queries. Advances in Neural Information Processing Systems, 34:11846–11858, 2021b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. arXiv
preprint arXiv:2311.17005, 2023.

Pandeng Li, Chen-Wei Xie, Hongtao Xie, Liming Zhao, Lei Zhang, Yun Zheng, Deli Zhao, and
Yongdong Zhang. Momentdiff: Generative video moment retrieval from random to real. Advances
in neural information processing systems, 36, 2024.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao, Alex Jinpeng
Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards unified video-language temporal
grounding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2794–2804, 2023.

Ye Liu, Siyuan Li, Yang Wu, Chang-Wen Chen, Ying Shan, and Xiaohu Qie. Umt: Unified multi-
modal transformers for joint video moment retrieval and highlight detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3042–3051,
June 2022a.

Ye Liu, Siyuan Li, Yang Wu, Chang-Wen Chen, Ying Shan, and Xiaohu Qie. Umt: Unified multi-
modal transformers for joint video moment retrieval and highlight detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3042–3051, 2022b.

Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video summarization with
adversarial lstm networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 202–211, 2017.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances in
neural information processing systems, 31, 2018.

Nis Meinert, Jakob Gawlikowski, and Alexander Lavin. The unreasonable effectiveness of deep
evidential regression. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 9134–9142, 2023.

WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo. Query-dependent
video representation for moment retrieval and highlight detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23023–23033, June 2023a.

WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo. Query-dependent
video representation for moment retrieval and highlight detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23023–23033, 2023b.

Saiteja Nalla, Mohit Agrawal, Vishal Kaushal, Ganesh Ramakrishnan, and Rishabh Iyer. Watch hours
in minutes: Summarizing videos with user intent. In Computer Vision–ECCV 2020 Workshops:
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp. 714–730. Springer, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkilä. Uncovering hidden challenges in
query-based video moment retrieval. arXiv preprint arXiv:2009.00325, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele, and Manfred
Pinkal. Grounding action descriptions in videos. Transactions of the Association for Computational
Linguistics, 1:25–36, 2013.

Yong Rui, Anoop Gupta, and Alex Acero. Automatically extracting highlights for tv baseball
programs. In Proceedings of the eighth ACM international conference on Multimedia, pp. 105–115,
2000.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
uncertainty. Advances in neural information processing systems, 31, 2018.

Glenn Shafer. Dempster-shafer theory. Encyclopedia of artificial intelligence, 1:330–331, 1992.

Aidean Sharghi, Jacob S Laurel, and Boqing Gong. Query-focused video summarization: Dataset,
evaluation, and a memory network based approach. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4788–4797, 2017.

Min Sun, Ali Farhadi, and Steve Seitz. Ranking domain-specific highlights by analyzing edited videos.
In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13, pp. 787–802. Springer, 2014.

Chen Wang, Xiang Wang, Jiawei Zhang, Liang Zhang, Xiao Bai, Xin Ning, Jun Zhou, and Edwin
Hancock. Uncertainty estimation for stereo matching based on evidential deep learning. Pattern
Recognition, 124:108498, 2022.

Lezi Wang, Dong Liu, Rohit Puri, and Dimitris N Metaxas. Learning trailer moments in full-length
movies with co-contrastive attention. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pp. 300–316. Springer, 2020.

Guande Wu, Jianzhe Lin, and Claudio T Silva. Intentvizor: Towards generic query guided interactive
video summarization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10503–10512, 2022.

Wen Wu, Chao Zhang, and Philip C Woodland. Estimating the uncertainty in emotion attributes
using deep evidential regression. arXiv preprint arXiv:2306.06760, 2023.

Yuefei Wu, Bin Shi, Bo Dong, Qinghua Zheng, and Hua Wei. The evidence contraction issue in
deep evidential regression: Discussion and solution. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 21726–21734, 2024.

Bo Xiong, Yannis Kalantidis, Deepti Ghadiyaram, and Kristen Grauman. Less is more: Learning
highlight detection from video duration. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1258–1267, 2019.

Minghao Xu, Hang Wang, Bingbing Ni, Riheng Zhu, Zhenbang Sun, and Changhu Wang. Cross-
category video highlight detection via set-based learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7970–7979, 2021.

Kai Ye, Tiejin Chen, Hua Wei, and Liang Zhan. Uncertainty regularized evidential regression. arXiv
preprint arXiv:2401.01484, 2024.

Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. Temporal sentence grounding in videos: A
survey and future directions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. Learning 2d temporal adjacent networks
for moment localization with natural language. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 12870–12877, 2020.

Aurick Zhou and Sergey Levine. Amortized conditional normalized maximum likelihood: Reliable
out of distribution uncertainty estimation. In International Conference on Machine Learning, pp.
12803–12812. PMLR, 2021.

Hao Zhou, Chongyang Zhang, Yan Luo, Yanjun Chen, and Chuanping Hu. Embracing uncertainty:
Decoupling and de-bias for robust temporal grounding, 2021.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DERIVATIONS

A.1 NORMAL INVERSE-GAMMA MOMENTS

We assume our data was drawn from a Gaussian with unknown mean and variance, (µ, σ2). We
probabilistically model these parameters, θ, according to:

µ ∼ N (γ, σ2υ−1) (14)

σ2 ∼ Γ−1(α, β). (15)

Therefore, the prior joint distribution can be written as:

p(µ, σ2︸ ︷︷ ︸
θ

| γ, υ, α, β︸ ︷︷ ︸
φ

) = p(µ) p(σ2) (16)

= N (γ, σ2υ−1) Γ−1(α, β) (17)

=
βα
√
υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + υ(γ − µ)2

2σ2

}
. (18)

The first-order moments of this distribution represent the maximum likelihood prediction as well as
uncertainty (both aleatoric and epistemic).

E[µ] =
∫ ∞

µ=−∞
µ p(µ) dµ = γ (19)

E[σ2] =

∫ ∞

σ2=0

σ2 p(σ2) dσ2 (20)

=

∫ ∞

σ=0

σ2 p(σ2) (2σ) dσ (21)

=
β

α− 1
, ∀α > 1 (22)

Var[µ] =

∫ ∞

µ=−∞
µ2 p(µ) dµ− (E[µ])2 (23)

= γ2 − σ2

υ
− (E[µ])2 (24)

= γ2 −
β

α−1

υ
− γ2 (25)

=
β

υ(α− 1)
, ∀α > 1 (26)

In summary,

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric

, Var[µ] = β
υ(α−1)︸ ︷︷ ︸

epistemic

. (27)

A.2 MODEL EVIDENCE & TYPE II MAXIMUM LIKELIHOOD LOSS

In this subsection, we derive the posterior predictive or model evidence (i.e. Eq. 28) of a NIG
distribution. Marginalizing out µ and σ gives our desired result:

p(bi|φ) = St
(
bi; γ,

β(1 + υ)

υ α
, 2α

)
. (28)
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p(bi|φ) =
∫
θ

p(bi|θ)p(θ|φ) dθ (29)

=

∫ ∞

σ2=0

∫ ∞

µ=−∞
p(bi|µ, σ2)p(µ, σ2|φ) dµdσ2 (30)

=

∫ ∞

σ2=0

∫ ∞

µ=−∞
p(bi|µ, σ2)p(µ, σ2|γ, υ, α, β) dµdσ2 (31)

=

∫ ∞

σ2=0

∫ ∞

µ=−∞

[√
1

2πσ2
exp

{
− (bi − µ)2

2σ2

}]
(32)[

βα
√
υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + υ(γ − µ)2

2σ2

}]
dµdσ2 (33)

=

∫ ∞

σ2=0

βασ−3−2α

√
2π
√
1 + 1/υΓ(α)

exp

−2β + υ(bi−γ)2

1+υ

2σ2

dσ2 (34)

=

∫ ∞

σ=0

βασ−3−2α

√
2π
√
1 + 1/υΓ(α)

exp

−2β + υ(bi−γ)2

1+υ

2σ2

 2σ dσ (35)

=
Γ(1/2 + α)

Γ(α)

√
υ

π
(2β(1 + υ))

α (
υ(bi − γ)2 + 2β(1 + υ)

)−( 1
2+α)

(36)

p(bi|φ) = St
(
bi; γ,

β(1 + υ)

υ α
, 2α

)
. (37)

St
(
b;µSt, σ

2
St, υSt

)
is the Student-t distribution evaluated at b with location parameter µSt, scale

parameter σ2
St, and υSt degrees of freedom. Using this result we can compute the negative log-

likelihood loss, LNLL
i , for sample i as:

LNLL
i = − log p(bi|φ) (38)

= − log

(
St
(
bi; γ,

β(1 + υ)

υ α
, 2α

))
(39)

LNLL
i = 1

2 log
(
π
υ

)
− α log(Ω) +

(
α+ 1

2

)
log((bi − γ)2υ +Ω) + log

(
Γ(α)

Γ(α+ 1
2 )

)
(40)

where Ω = 2β(1 + υ).

B DATASETS AND IMPLEMENTATION DETAILS.

B.1 PARAMETERS OF DATASETS

In Table 4, we list the datasets used in this study, including dataset size, task category, video clip
length, and detailed hyperparameters used for model training.

Table 4: VTG dtasets list. MR denotes Moment Retrieval, HD denotes Highlight Detection, and
VS denotes Video Summarization. S means seconds, LR denotes learning rate, Epo denotes total
training epochs, Warm-up means number of warm-up iterations, and LR Drop means the epoch that
drops learning rate by 1/10.

Dataset MR HD VS # Samples S BS LR Epo Warm-up LR Drop QR LR QR Epo
QVHighlights ✓ ✓ 10.3K 2 32 1e−4 200 10 180 1e−4 30

Charades-STA ✓ 16.1K 1 32 1e−4 100 10 50 1e−5 10

TACoS ✓ 18.2K 2 32 1e−4 150 10 80 1e−5 30

TVSum ✓ 50 2 4 1e−3 400 50 N/A 1e−5 10
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B.2 IMPLEMENTATIONS FOR NORMALIZATIONS

Normalization: We have tried two normalization operations, i.e.min-max normalization and using
activation function to normalize.

• Min-Max normalization: Assume we have evaluated an increasing sequence of errors, that
is:

{∆1,∆2, · · · ,∆n} (41)

where n represents batch size. Min-Max Normalization maps ∆i to ∆i by:

∆i =
∆i

∆n −∆1
(42)

We recommend using this normalization method in training and batch testing.
• Normalization using activation functions: Use activation functions tanh(·) so that we

can map ∆i to ∆i, which is between 0 and 1:

∆i = tanh(∆i) (43)

And Φ is normalized in the same way to Φ. We recommend this normalization for single-
point or small-batch testing.

Histogram equalization: Although we normalize the uncertainty, we still find that the distribution of
uncertainty is extremely biased to 0. We consider that this is still due to the overconfidence effect that
NLL brings to the model. In order to obtain a more expressive uncertainty estimation in the inference
process, sometimes we use histogram equalization to post-process the normalized uncertainty.

Algorithm 1 Histogram Equalization

Input: Sequence of values: X = {∆1,∆2, . . . ,∆n}
Output: Equalized sequence: X ′ = {∆1,∆2, . . . ,∆n}

1: hist← calculate_histogram(X)
2: cdf ← calculate_cdf(hist)
3: X ′ ← apply_cdf_mapping(X, cdf)
4: return X ′

C QUALITATIVE ANALYSIS

C.1 VISULIZATION OF ATTENTION MAP

The visualizations provided in Figure 9 and Figure 10 demonstrate the effectiveness of our DDM-
VTG in achieving fine-grained cross-modal alignment in VTG. Figure 9 effectively maps the attention
to the visual cues of a woman speaking, aligning precisely with the textual description, thereby
enhancing video-to-text translation accuracy. Similarly, Figure 10 shows that DDM-VTG is capable
of focusing on a group of friends interacting around a table, accurately reflecting the descriptive text,
which is essential for generating contextually accurate video summaries. These examples underscore
the potential of DDM-VTG not only to improve downstream task performance by ensuring temporal
and contextual relevance but also to serve as a basis for investigating the model’s uncertainty. By
analyzing where the model allocates attention, researchers can identify areas of high confidence
and potential uncertainty, aiding in the refinement of VTG models for more reliable and transparent
AI-driven applications.
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Figure 9: Case I of attention map visualization.
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A group of friends

Figure 10: Case II of attention map visualization.

C.2 VISUALIZATION OF UNCERTAINTY CALIBRATION

Figure 7 demonstrates the influence of different regularization strategies on model uncertainty in
relation to prediction error. The top row focuses on aleatoric uncertainty, which is inherent data
uncertainty, whereas the bottom row examines epistemic uncertainty, which stems from model
ignorance. And we can discern the following key information:

• (a) Without DER: This model lacks any form of uncertainty management in the absence of
DER, leading to inference results that are difficult to trust due to the complete absence of
handling latent uncertainties.

• (b) Only NLL: In this configuration, the model exhibits extremely low uncertainty across
all levels of error rates, indicating overconfidence due to overfitting. This overconfidence
suggests a model that is not realistically cautious about its predictions.

• (c) With Vanilla Regularizer: Although the vanilla regularizer in DER measures and
manages uncertainty, it paradoxically induces the model to express higher uncertainty
at lower error rates and very low uncertainty at higher error rates. This counterintuitive
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behavior is clearly problematic, as it does not align with rational expectations of uncertainty
behavior.

• (d) With Geom-Regularizer: Compared to (a), our proposed Geom-regularizer effectively
measures and manages uncertainty, enabling the model to indicate higher uncertainty at
higher error rates and vice versa. Relative to (b), it successfully mitigates the model’s
overconfidence, which is beneficial for making prudent decisions. Against (c), it accurately
calibrates the measurement of uncertainty, achieving a more sensible and intuitive assessment
of uncertainty levels.

C.3 CASES STUDY

In figure 11, we select some cases from the validation set of QVHighlights that support the effec-
tiveness of our model. For example, we can easily observe that highly accurate predictions are often
accompanied with very low uncertainty, while highly inaccurate predictions are accompanied with
very high uncertainty, as shown by the first case and the last two cases. Additionally, when there exist
scene changes (case 2, case 3) or changes in lighting conditions (case 5) in the video, the model is
also prone to output higher uncertainty, especially aleatoric uncertainty.

C.4 VISULIZATION OF ERROR-EVIDENCE EVOLUTION

As illustrated in Figure 12, it is obvious that "accurate predictions with high evidence while
inaccurate predictions with low evidence" has been reflected in the knowledge of model with only
NLL. Unfortunately, the vanilla regularizer excessively suppress the evidence of low error predictions,
but ignores and even enlarges the evidence of high error predictions. Geom-regularizer turn the
situation around, retain the main knowledge learned by NLL, and provides calibration for more
reasonable uncertainty estimation.

C.5 ADVERSARIAL EXPERIMENTS

We conduct adversarial experiments on DDM-VTG at the statistical level and case level, in order to
demonstrate that DDM-VTG really capture increased predictive uncertainty on samples that have
been adversarily perturbed.

For the case level, we design four experiments to show DDM-VTG is able to capture a high degree of
uncertainty in some specific situations that is very likely to exist in reality, which has been discussed in
Figure 2. In Figure 13, DDM-VTG demonstrate effective perception of ambiguous visual semantics,
providing predictions while also outputting higher uncertainty. In Figure 14, DDM-VTG assign
higher uncertainty to the OOD video (which is a cartoon) , even though both videos contain the
semantic "a wolf is running". In Figure 15, DDM-VTG also assign higher uncertainty to the OOD
video, which is infrared thermal imaging video. In Figure 16, the word "funny" in query is abstract
and confuses the model, but DDM-VTG successfully provides high uncertainty to compensated for
the failure in prediction.
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Query: A woman wearing glasses eating something at a street market.

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.02, 0.03]     Epistemic: [0.02, 0.02] 

Query: An Asian woman wearing a Boston t-shirth is in her home talking.

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.36, 0.37]，[0.02, 0.02]     Epistemic: [0.005, 0.006]，[0.0003, 0.0004] 

Query: Man talks to the camera while fidding with his mask.

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.29, 0.30]     Epistemic: [0.15, 0.16] 

Query: A soldier in uniform is talking in wood building.

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.38, 0.38]     Epistemic: [0.22, 0.22] 

Query: Girl commenting on other v loggers

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.52, 0.55]     Epistemic: [0.34, 0.37] 

Query: A woman is looking through a clear plastic container ...

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.73, 0.77]     Epistemic: [0.73, 0.78] 

Query: A guy doing a suite’s room door.

Moments

Highlights

Ground truth
Ours

Uncertainty Aleatoric: [0.89, 0.90]     Epistemic: [0.89, 0.89] 

Figure 11: Cases Study
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(a) Only NLL

(b) w/ Vallina Regularizer

(c) w/ Geom-Regularizer 

Figure 12: Evolution of the predicted (∆,Φ)s’ distribution over training epochs with different
regularization techniques on QVHighlights Lei et al. (2021b). This figure showcases how the
evidence (Φ) and error (∆) distributions evolve across training epochs (0, 5, 20, 100, and convergence)
under three regularization strategies: (a) only NLL, (b) added vanilla regularizer, and (c) our Geom-
regularizer.

Moments Ground truth
Query (+)

Uncertainty (+) Aleatoric: [0.03, 0.23]     Epistemic: [0.05, 0.21] 

Query (+) 

Uncertainty (-) 

Query (-) 

Aleatoric: [0.58, 0.86]     Epistemic: [0.66, 0.84] 

Query (-)

A bird is flying in the sky.

A plane is flying in the sky.

Video 

Figure 13: Adversarial Case I. We select a semantically ambiguous video, where the plane is
extremely small, making it difficult for even humans to discern whether it is an airplane or a bird. We
provide both the correct query (query with "plane") and an incorrect query (replacing "plane" with
"bird") to DDM-VTG, compare the uncertainty of their highest confidence predictions, and find that
the model assign higher uncertainty to the incorrect query.

D QUANTITATIVE ANALYSIS OF GEOM-REGULARIZER

To evaluate how well the predicted uncertainty under different regularization settings aligns with
the principle that "larger errors should correspond to greater uncertainty", we introduce the
Error-Uncertainty Consistency Measure (EUCM). EUCM is calculated as:

EUCM = ∥∆+ U∥22, (44)

where U represents uncertainty. Moreover, we also compute the information entropy of different
uncertainty distributions, which is used to evaluate the expressive ability of the evidential predictor.
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Moments Ground truth

Ours

Uncertainty (+) Aleatoric: [0.18, 0.38]     Epistemic: [0.24, 0.18] 

Query: A wolf is running.

Video (+) 

Moments Ground truth

Ours

Uncertainty (-) Aleatoric: [1.00, 1.00]     Epistemic: [1.00, 1.00] 

Video (-) 

Figure 14: Adversarial Case II. We select a real video and an animated video of "a running wolf"
and provide the model with the same query "a wolf is running". It can be observed that DDM-VTG
outputs higher certainty for the animated video.

Moments Ground truth

Ours

Uncertainty Aleatoric: [1.00, 1.00]     Epistemic: [1.00, 1.00] 

Query A woman is eating some food.

Video 

Figure 15: Adversarial Case III. We select an infrared thermal imaging video, a type that the
model has rarely encountered in the training set. As an OOD video, DDM-VTG assign it very high
uncertainty.

Moments

Ground truth (+)
Query (+)

Uncertainty (+) Aleatoric: [0.09, 0.11]     Epistemic: [0.10, 0.03] 

Query (+) 

Uncertainty (-) 

Query (-) 

Aleatoric: [0.99, 1.00]     Epistemic: [0.99, 1.00] 

What is the most funny moment is the video?

Motorcycle.

Video 

Query (-)

Ground truth (-)

Figure 16: Adversarial Case IV. We select an advertisement video containing humor. We provide
DDM-VTG with both simple query and abstract query for prediction. Our results showed that DDM-
VTG struggle to provide accurate localization for the abstract queries but exhibit high uncertainty.
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E DETAILED WORKFLOW OF THE RFF BLOCK

The RFF block processes inputs from the video and text branches, with initial features denoted as
V (1) and Q(1) respectively. The cross-attention module, which shares parameters, alternates the roles
of the video and text branches as queries and keys/values:

CA(1)
v→q = Softmax

(
V (1)Q(1)T

√
dk

)
Q(1) (45)

CA(1)
q→v = Softmax

(
Q(1)V (1)T

√
dk

)
V (1) (46)

Following cross-attention, each branch refines its features through self-attention:

SA(1)
v = Softmax

(
CA

(1)
v→qCA

(1)T
v→q√

dk

)
CA(1)

v→q (47)

SA(1)
q = Softmax

(
CA

(1)
q→vCA

(1)T
q→v√

dk

)
CA(1)

q→v (48)

The outputs of the self-attention stages serve as inputs to the next iteration of the block, thus promoting
progressive enhancement of modality alignment. This process continues until the n-th layer, after
which the refined features of the video and query are output. Therefore, when 1 ≤ i ≤ n− 1, the
iterative expression is given as follows.

V (i+1) = SA(i)
v (49)

Q(i+1) = SA(i)
q (50)

F DETAILS OF THE VTG HEAD

F.1 MOMENT RETRIEVAL HEAD

The design of this head is similar to the foreground head, except it features a last layer with two
output channels for the left and right offsets. Given Ṽk ∈ RLv×D, this head generates a series of
offsets {m̃i}Lv

i=1 for each unit. We then define the predicted boundary m̃i and the corresponding
interval di (i.e., di = ms

i −me
i ). For training objectives, we use a combination of smooth L1 loss

and generalized IoU loss to optimize the model’s performance.

Lb = 1fi=1

[
λL1LSmoothL1

(
d̃i, di

)
+ λiouLiou (m̃i,mi)

]
. (51)

Notably, this regression objective is only devised for foreground clips i.e., fi = 1.

F.2 VIDEO SUMMARIZATION HEAD

From the frozen video encoder, the output Ṽk ∈ RLv×D passes through a series of three 1 × 3
convolutional layers, each layer having D filters and equipped with ReLU activation functions.
Following these layers, sigmoid activations are used to generate the prediction f̃i for each unit. Focal
loss serves as the training objective, with γ = 2.0 and α = 0.9.

Lf = −λfα(1− f̃i)
γ log(f̃i) (52)

F.3 HIGHLIGHT DETECTION HEAD

Given that saliency is defined as the relevance between visual context and a text query, it is appropriate
to assess this relationship through a similarity measure between video and text modalities. Let the
video tokens be denoted as {vi}Lv

i=1 ∈ RLv×D and the sentence representation as S ∈ R1×D. We

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

then calculate the predicted saliency score s̃i for each video token vi in relation to the text query Q,
using their cosine similarities.

s̃i = cos(vi,S) :=
vT
i S

∥vi∥2∥S∥2
, (53)

where ∥ · ∥2 represents the L2-norm of a vector.

For each video V, we randomly sample a foreground clip vp with fp = 1 and sp > 0 as a positive
sample; we treat other clips in the same video vj with saliency sj less than sp as negative samples,
i.e., Ω = {j|sj < sp, 1 ≤ j ≤ Lv}, and perform intra-video contrastive learning:

Lintra
s = − log

exp (s̃p/τ)

exp (s̃p/τ) +
∑

j∈Ω exp (s̃j/τ)
, (54)

where τ is a temperature parameter and set as 0.07. And we further propose query-driven clip-by-clip
contrastive learning where clips within the target moment are treated as positive samples and clips
outside as negative samples. Specifically, samples are selected based on the salience scores, with
positive samples ranked in descending order and negative samples in ascending order. The top K
samples from each are chosen for similarity computation. Given two sets of samples, Pos (positive)
and Neg (negative), each containing K elements, the similarity is computed using the dot product,
resulting in a similarity matrix S. The similarity matrix S is derived from the dot product between
vectors v+

i from the positive set Pos and v−
j from the negative set Neg. Each vector represents a

moment in the video, with v+
i ∈ Pos and v−

j ∈ Neg. The similarity Sij between any two moments
is computed as follows:

Sij = (v+
i ) · (v

−
j )

T , (55)

The loss function is defined as the negative mean of the trace of S, formally given by:

Lintra
v = − 1

N

N∑
i=1

Sii. (56)

where N is the clip number of the training set. In datasets other than QVHighlight Lei et al. (2021b),
where ground truth salience scores are not provided, the foreground flag f is used to dichotomize
the samples into positive and negative sets. K samples are then randomly selected from each set for
computing the similarity and loss in terms of Eq. 55 and 56.

Besides, we regard sentences from other samples within batches k ∈ B as negative samples, and
develop the inter-video contrastive learning for cross-sample supervision:

Linter
s = − log

exp (s̃p/τ)∑
k∈B exp

(
s̃kp/τ

) , (57)

where B is the training batch size and s̃kp = cos(vi,Sk).

Our saliency score head training loss is the combination of inter- and intra-video contrastive learning:

Ls = λinterLinter
s + λintra(Lintra

s + Lintra
v ). (58)

To this end, our grounding objective is the combination of each head loss overall clips in the training
set.

LG =
1

N

N∑
i=1

(Lf + Lb + Ls) , (59)

where N is the clip number of the training set.
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