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Abstract
Physics-informed machine learning (PIML) has
established itself as a new scientific paradigm
which enables the seamless integration of obser-
vational data with partial differential equation
(PDE) based physics models. A powerful tool
for the analysis, reduction and solution of PDEs
is the Lie symmetry method. Nevertheless, only
recently has the integration of such symmetries
into PIML frameworks begun to be explored. The
present work adds to this growing literature by
introducing an approach for incorporating a Lie
symmetry into a physics-informed Gaussian pro-
cess (GP) model. The symmetry is introduced as
a constraint on the GP; either in a soft manner via
virtual observations of an induced PDE called the
invariant surface condition, or explicitly through
the design of the kernel. Experimental results
demonstrate that the use of symmetry constraints
improves the performance of the GP for both for-
ward and inverse problems, and that our approach
offers competitive performance with neural net-
works in the low-data environment.

1. Introduction
Partial differential equations (PDEs) have become ubiq-
uitous across science and engineering for describing the
dynamics of a wide variety of physical, chemical and bi-
ological processes. Simulation of PDE based models has
traditionally been the domain of numerical solvers such
as the finite difference method or finite element method
(Li et al., 2017). Such methods can have drawbacks, how-
ever, including for instance excessive computational costs
and difficulty in incorporating experimental data. For this
reason, there has been an explosion of interest in the past
half decade in an alternative paradigm for modelling PDE
systems called physics-informed machine learning (PIML).
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PIML refers to a set of methods which embed physical laws
and constraints into machine learning algorithms, through
the use of inductive, learning or observational biases (Karni-
adakis et al., 2021). PIML approaches can alleviate some of
the problems of traditional solvers, and have been deployed
in the context of forward, inverse, design and optimisation
problems (Hao et al., 2022).

Physics-informed neural networks (PINNs) (Raissi et al.,
2019) constitute the most widely used class of PIML model,
where the idea is to represent the unknown PDE solution
as a neural network. In the original formulation, training
is performed in a multitask manner against a loss function
which includes both PDE and data fit terms, where automatic
differentiation is used to apply the PDE operator to the
neural network. The range of applications for which PINNs
have been deployed is vast (Pateras et al., 2023), while
numerous extensions of the original PINN framework have
been proposed, for example (Nguyen-Thanh et al., 2020;
Meng et al., 2020; Kharazmi et al., 2021).

PIML models for PDE and ordinary differential equation
(ODE) systems based on Gaussian processes (GPs) have
also been proposed, which leverage the closure of GPs under
linear operators (Adler, 2010). For instance, the gradient
matching technique fits a GP to (noisy) observational data,
and then estimates the unknown parameters of the differ-
ential operator by minimising the mismatch between the
ODEs and the derivative process induced by the fitted GP
(Calderhead et al., 2008; Dondelinger et al., 2013). How-
ever, this approach does not define a proper probabilistic
generative model (Barber & Wang, 2014), and performance
is critically dependent on the way in which the tradeoff
between the GP fit and ODE mismatch terms is managed
(Macdonald et al., 2015). Latent force models are a related
approach to inference in PDE systems (Alvarez et al., 2013).
This approach does define a generative model, however it
is limited to the case of linear PDEs for which the Green’s
function is available. For these reasons, in the present work
we adopt the philosophy of physics-informed GPs for linear
PDE modelling (Raissi et al., 2017). Here, the idea is to
represent the unknown solution function with a Gaussian
process (GP). This implies that the linear PDE itself also
follows a GP, allowing for joint inference to be performed
using data from both solution space and PDE space. PIGPs
have been deployed in a range of application contexts (Tar-
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takovsky et al., 2023; Pan et al., 2023; Nevin et al., 2021),
and several extensions of the original approach have been
proposed to handle nonlinear PDEs, for instance (Raissi
et al., 2018; Chen et al., 2020; Long et al., 2022).

When modelling physical systems, it is common that cer-
tain symmetries of the underlying process may be known,
which can in turn be encoded in the PIML model for im-
proved performance. For example, there has recently been
significant interest in the design of NN architectures which
satisfy equivariance under symmetry groups relating to ac-
tions such as translation, rotation and scaling (Fuchs et al.,
2020; Thomas et al., 2018; Satorras et al., 2021). In the con-
text of PDEs, a symmetry maps a solution of the equation
to another solution, i.e. it leaves the PDE invariant. PDE
symmetry analysis constitutes a powerful tool for finding
explicit solutions, conservation laws, and simplifications of
PDE systems (Bluman & Anco, 2002). In this work, we
will focus on the classical symmetry method due to Lie, the
use of which remains an active research topic (Champala
et al., 2023; Bakhshandeh-Chamazkoti & Alipour, 2022;
Al-Nassar & Nadjafikhah, 2023), including extensions to
symmetries admitted by initial and boundary conditions
(Zhang & Chen, 2010; Goard, 2008; Cherniha & Kovalenko,
2012). Nevertheless, only very recently has this approach
been made use of in the context of PIML. This includes the
work of Wang et al. (2021), which developed equivariant
NN architectures for the heat and Navier-Stokes equations,
Bransetter et al. (2022), which leveraged Lie symmetries
to improve efficiency through data augmentation, and Mi-
alon et al. (2023), which performed self-supervised learning
in PINNs. Finally, several methods have been proposed
for embedding symmetry information into the loss function
used for PINN training, by including an additional term to
penalise deviation from the symmetry (Akhound-Sadegh
et al., 2023; Zhang et al., 2023a;b;c).

In this work, we introduce the physics and Lie symmetry
informed Gaussian process (PSGP), which incorporates a
given Lie symmetry into the inference framework using an
induced PDE called the invariant surface condition (ISC). In
the general case, this requires a likelihood which assimilates
data from the solution, PDE and ISC spaces respectively,
and a prior which defines a consistent distribution over the
process and its derivative values, before inference is per-
formed by maximisation of a variational lower bound. Vari-
ous simplifications are possible depending on the specific
PDE and symmetry of interest, including exact marginalisa-
tion of the latent variables and explicit enforcement of the
ISC. Through numerical experiments involving three PDEs,
we show that the incorporation of symmetry information
enables highly sample efficient performance in both forward
and inverse problems.

2. Background
2.1. Gaussian Process Regression

Gaussian processes (GPs) allow for a distribution to be
specified directly on a function space, and can be used to
perform Bayesian non-parametric regression (Rasmussen &
Williams, 2006). Specifically, consider the task of learning
an unknown function u : RD+1 → R, given a finite set
of Nu (noisy) observations yu = [y

(1)
u , y

(2)
u , . . . , y

(Nu)
u ]⊤

at input locations Xu = [x
(1)
u ,x

(2)
u , . . . ,x

(Nu)
u ]⊤. We as-

sume any observation noise is iid Gaussian with variance
σ2
u. Performing GP regression first involves assuming that

u is drawn from a Gaussian process with mean function mu

and covariance or kernel function kuu, which is denoted

u ∼ GP(mu(·), kuu(·, ·)). (1)

Popular choices of kernel include the squared-exponential,
Mateŕn and rational-quadratic, respectively (Duvenaud,
2014). By definition, the GP prior on u means the projection
of the process at the Nu input locations is a multivariate
Gaussian. Coupled with the Gaussian noise model, this
implies p(yu) = N (mu,Kuu + σ2

uIu), where [mu]
(i) =

mu(x
(i)
u ) = E[u(x(i)

u )], [Kuu]
(i,j) = kuu(x

(i)
u ,x

(j)
u ) =

Cov
(
u(x

(i)
u ), u(x

(j)
u )

)
and Iu is the identity matrix. When

viewed as a function of any mean, kernel and noise parame-
ters, p(yu) is called the marginal likelihood of yu and can
be used to perform model inference.

Given any Ns input points of interest Xs, the posterior
distribution p(us | yu) over the unknown function values
us = [u

(1)
s , u

(2)
s , . . . , u

(Ns)
s ]⊤ at these points can be shown

to be a Gaussian N (µs,Σs), where

µs = ms +K⊤
us

(
Kuu + σ2

uINu

)−1
(yu −mu) ,

Σs = Kss −K⊤
us

(
Kuu + σ2

uINu

)−1
Kus.

(2)

The mean vector ms and covariance matrix Kss above
are found by applying the mean and covariance functions
respectively to Xs, while [Kus]

(i,j) = kuu(x
(i)
u ,x

(j)
s ).

2.2. Partial Differential Equations

Partial differential equations (PDEs) are mathematical mod-
els used to describe the dynamics of systems which evolve
over space and time. In this work we consider scalar PDEs
of the form

F θ
x,t[u] = f, t ∈ [tmin, tmax] = T, x ∈ Ω ⊂ RD, (3)

where F θ
x,t is a differential operator, u is the solution func-

tion, t is time1, x is the spatial coordinate and Ω is the

1For notational simplicity sometimes we do not make the tem-
poral component explicit.
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domain, while θ denotes any parameters of the PDE. A
PDE can equivalently be represented using an algebraic
equation Fθ which satisfies

Fθ ([x, t], u(x, t), d1(x, t), . . . , dm(x, t)) = f, (4)

where we use the functions d1, . . . , dm to represent all m
possible partial derivative operators up to the highest or-
der of the PDE (Bluman & Anco, 2002, Eq. (4.1)). For
a second order PDE over one spatial dimension, for in-
stance, we have m = 5 and the individual operators are
d1 = ux, d2 = ut, d3 = uxt, d4 = utt and d5 = uxx

2. In
this representation, the PDE defines a hypersurface on the
prolonged input space, which is referred to as the jet-space.
Typically, a PDE will only incorporate a small subset of
these m operators - see the below for an example.
Example 2.1. The following equation of Fisher’s type

F θ
x,t[u] = ut − uxx − θu2(1− u) = f = 0, (5)

is an example of a non-linear PDE over one spatial dimen-
sion, where θ is a parameter. This equation can be alterna-
tively represented in algebraic form as

Fθ(u, d2, d5) = d2 − d5 − θu2(1− u) = f = 0, (6)

where d2 = ut and d5 = uxx, as in the preceding paragraph.

Solutions to PDEs are not uniquely defined. To make a prob-
lem well posed, an initial boundary value problem (IBVP)
can be specified, which imposes constraints on the behaviour
of the solution function at the initial time tmin and domain
boundary ∂Ω respectively. For instance, Dirichlet condi-
tions specify the exact value of the solution,

u(x, tmin) = I(x) ∀ x ∈ Ω, (7)
u(x, t) = B(x, t) ∀ x ∈ ∂Ω, t ∈ T, (8)

where I : Ω → R is the initial condition while B : ∂Ω ×
T → R is the boundary function.

2.3. Physics-Informed Gaussian Processes

A key property of GPs is that they are closed under lin-
ear operators (Pförtner et al., 2024). Specifically, if we
have f = Lθ

x[u] with Lθ
x a linear PDE operator3, then

our GP prior assumption for u (see Eq. (1)) implies that
f ∼ GP (mf (· ;θ), kff (·, · ;θ)), where

mf (x;θ) = Lθ
xmu(x), (9)

kff (x,x
′;θ) = Lθ

xLθ
x′kuu (x,x

′) . (10)

2Here and throughout the text we use the shorthand notation
ut =

∂u
∂t

, ux = ∂u
∂x

, utt =
∂2u
∂t2

, uxt =
∂2u
∂x∂t

, etc.
3i.e. Lθ

x[αu1 + βu2] = αLθ
x[u1] + βLθ

x[u2], with α, β ∈ R.

In addition, the cross covariance between observations in u
and f space respectively can be found as

kuf (x,x
′;θ) = Lθ

x′kuu (x,x
′) , (11)

kfu (x,x
′;θ) = Lθ

xkuu (x,x
′) . (12)

This property of GPs was made use of by Raissi et al.
(2017) with the introduction of physics-informed Gaussian
processes (PIGPs). PIGPs provide an elegant framework
for solving both forward and inverse problems for systems
where linear PDE information is available. Because joint
Gaussianity is maintained by linear PDEs, exact inference
is possible, with the marginal likelihood and posterior pre-
dictive distribution taking the same multivariate Gaussian
forms as in usual GP regression.

2.4. Lie Symmetry Method

Remark 2.2. This section gives a brief overview of the
classical approach to Lie symmetry analysis, material which
is covered comprehensively in (Bluman & Anco, 2002). For
an illustrative example of this method in the particular case
of rotational symmetry, see Appendix A.

Intuitively, a symmetry of a geometric object is a transforma-
tion which leaves its relevant properties unchanged. The col-
lection of all symmetries of an object form a group, which
is a set equipped with a binary operator that composes any
two symmetry transformations, such that associativity and
closure are satisfied; there exists an identity transformation;
and there exists an inverse transformation for each sym-
metry. Continuous symmetries can be naturally described
by a group which is also a differentiable manifold, which
is called a Lie group, in which case the binary operator is
smooth, as is the inverse transformation.

A Lie group of transformations associated to a PDE corre-
sponds to a mapping of each solution of the PDE to another
solution. The classical approach due to Lie is to find the
one-parameter (ε ∈ R) Lie group of point transformations

x∗ = x+ εξ(x, t, u) +O
(
ε2
)
,

t∗ = t+ ετ(x, t, u) +O
(
ε2
)
,

u∗ = u+ εη(x, t, u) +O
(
ε2
)
,

(13)

which leaves the PDE invariant, where we consider only one
spatial dimension to simplify notation. Here ξ = ξ(x, t, u),
τ = τ(x, t, u) and η = η(x, t, u) are called the infinitesi-
mals of the Lie group.
Definition 2.3. The infinitesimal generator of a one-
parameter Lie group of transformations is the operator

X = ξ∂x + τ∂t + η∂u. (14)

A corollary of Lie’s First Fundamental Theorem (Bluman
& Anco, 2002, Thm. 2.3.1-1) is that the one-parameter Lie

3



Physics and Lie symmetry informed Gaussian processes

group (Eq. (13) is determined by its infinitesimal generator
(Bluman & Anco, 2002, page 43). For this reason, we refer
to the Lie group and its infinitesimal generator together as
a Lie symmetry. To determine if a Lie symmetry admits a
given PDE, Lie’s infinitesimal criterion (Bluman & Anco,
2002, Thm. 4.1.1-1) can be applied, however this is beyond
the scope of the present work.

A function which is invariant under the Lie symmetry and
which solves the underlying PDE is called an invariant
solution. Such solutions must also satisfy an additional PDE
called the invariant surface condition (ISC).

Definition 2.4. The invariant surface condition (ISC) is a
PDE of the form

η − τut − ξux = g = 0. (15)

The ISC induced by a Lie symmetry can allow the underly-
ing PDE itself to be analysed, reduced and in some cases
solved analytically - see (Bluman & Anco, 2002, Section
4.2.3) for some examples.

3. Methods
3.1. Physics and Lie Symmetry Informed GPs

We introduce physics and Lie symmetry informed Gaussian
processes (PSGPs), a framework for incorporating observa-
tional data together with PDE and symmetry information
into a joint, GP-based inference framework. PIGPs are re-
stricted to linear PDEs and are therefore not appropriate
for general differential operators. Several methods have
been proposed to overcome this restriction (Raissi et al.,
2018; Chen et al., 2020; Long et al., 2022). - here we
adapt the approach of (Long et al., 2022). As in Section
2.1, we assume data (Xu,yu) is available in u-space. The
underlying PDE (Eq. (3)) is incorporated using a vector
yf of virtual observations of f at Nf collocation points

Xf = [x
(1)
f ,x

(2)
f , . . . ,x

(Nf )
f ]⊤ in the spatio-temporal do-

main. Similarly, symmetry information is incorporated via
the ISC (Eq. (15)) at Ng collocation points Xg , using virtual
observations 0g of g = 0.

Prior. As in general GP regression, we assign a GP prior
to the function u (see Eq. (1)). We now introduce some
notation. Let u be the vector corresponding to the values
of u evaluated at input locations Xu, i.e. [u](i) = u(x

(i)
u ),

for i = 1, 2, . . . , Nu. Similarly, let d0 give the values of
u at Xf . For j = 1, 2, . . . ,m, we let dj be the vector of
evaluations of dj (see Eq. (4)) at Xf , i.e [dj ]

(i) = dj(x
(i)
f ),

for i = 1, 2, . . . , Nf . Finally, we denote the vector of evalu-
ations of the ISC at each point in Xg as g. For notational
simplicity, we will assume here that the ISC is linear in u.
Consider then the vector h = [u;d0;d1; . . . ;dm; g]. Each
element of h corresponds to an evaluation of either u, or a

process which is found by applying a linear operator to u.
Since u follows a GP, this implies

p(h) = N (h | mh,Khh), (16)

where the individual terms of mh and Khh are found by ap-
plying the rules given in Eqs. (9-12) for each linear operator
used in the specification of h.

Likelihood. The PSGP must incorporate data from three
different function spaces - in each case, we assume an iid
Gaussian noise model. For the data in solution (u) space,
this assumption yields a likelihood

p(yu | u) = N (yu | u, σ2
uIu). (17)

For virtual data in PDE (f) space, a virtual likelihood can
be defined in terms of the algebraic representation of the
PDE

p(yf | d0, . . . ,dm) = N (yf | Fθ(Xf ,d0, . . . ,dm), σ2
fIf )
(18)

where Fθ (see Eq. (4)) is applied element-wise. Here, σ2
f is

a nugget term which can be trained to control the degree to
which the model conforms to the PDE. Finally, for virtual
data in ISC (g) space, the corresponding virtual-likelihood
takes the below form, given nugget term σ2

g

p(0g | g) = N (0g | g, σ2
gIg). (19)

Joint distribution. The joint probability distribution over
all random variables is then given by the product of the
likelihood terms and the prior:

p(h,yu,yf ,0g) =N (yu | u, σ2
uIu) · N (0g | g, σ2

gIg)

· N (yf | Fθ(Xf ,d0, . . . ,dn), σ
2
fIf )

· N (h | mh,Khh) (20)

This model specifies a consistent prior over the function,
its derivative values and the ISC, with likelihood terms that
incorporate observations from the different function spaces.
This allows for joint inference to be performed of the kernel
hyperparameters, noise levels, and any PDE parameters θ
which are unknown.

Inference. For general nonlinear PDEs, exact inference of
Eq. (20) is not possible and therefore the posterior p(h |
yu,yf ,0g) cannot be computed. As in Long et al. (2022),
we proceed by using variational inference and introduce
an approximate posterior q(h) = N (h | a,AA⊤) with
A a lower-triangular matrix, which ensures the variational
posterior covariance is positive-definite. The variational
parameters a and A together with any kernel/noise/PDE
parameters are then jointly inferred by maximisation of the
evidence lower bound (ELBO):

L =−KL(q(h)∥p(h)) + Eq[log p(yf | d0, . . . ,dn))]

+ Eq[log p(0g | g)] + Eq[log p(yu | u)], (21)
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where KL(·∥·) indicates the Kullback-Leibler divergence.
For exact details on computing the ELBO, see Appendix
D.1. In brief, the second term involving the pseudo PDE
observations yf is evaluated using Monte-Carlo sampling,
while the other three terms are available in closed form.

Prediction. Once inference has been performed, an approx-
imate posterior p̂ over the function values us at any input
locations of interest Xs can be found as

p̂(us) =

∫
p(us | h)q(h)dh

= N (us | µ̂s, Σ̂s). (22)

Appendix D.2 presents the derivation of the above posterior
mean and covariance, yielding µ̂s = ms +KshK

−1
hh (a−

mh) and Σ̂s = Kss−Ksh

[
K−1

hh −K−1
hhAA⊤K−1

hh

]
Khs,

where [Ksh]
(i,j) = Cov

(
u
(i)
s , h(j)

)
is found by applying

kuu and the differential operators used to define the latent
vector h.

3.1.1. SIMPLIFICATIONS OF GENERAL APPROACH

In the general case detailed above, the dimensionality of
the latent vector h will be high, imposing a computational
bottleneck in the evaluation of the ELBO and the approx-
imate posterior. Depending on the specific PDE and Lie
symmetry of interest, however, simplifications are typically
possible which improve computational efficiency. Firstly, it
is unlikely that a PDE will make use of all possible partial
derivative operators from the full jet-space (see Eq. (4)), and
any operators which are not used can be discarded from
h. In addition, it may be possible to identify in the PDE
certain sublinear differential operators to incorporate into
h, rather than considering each derivative operator individ-
ually, allowing for the dimensionality of h to be reduced.
In Eq. (6) for instance, the single linear operator d2 − d5
can be considered, rather than considering each operator
separately.

If the PDE itself is linear, a further simplification arises as
exact inference is possible in this case, which allows h to be
marginalised out and obviating the need for the approximate
posterior q (Raissi et al., 2017). This is the case for example
in the heat equation considered in Section 4.3. Finally, it
may be possible to define the kernel kuu on a system of
canonical coordinates such that the ISC and possibly the
PDE itself are explicitly satisfied by the PSGP. In this case,
one or both of the virtual likelihoods from the joint model
(Eq. (20)) are not required. An example of this is provided
in Section 4.4.

3.1.2. ENFORCEMENT OF BOUNDARY CONDITIONS

There has recently been an interest in the development of
methods for explicitly enforcing known initial/boundary

conditions, both for GPs (Tan, 2016; Li & Tan, 2022) and
neural networks (NNs) (Nguyen-Thanh et al., 2020; Sheng
& Yang, 2021). Dirichlet conditions can be enforced by us-
ing a mean function which interpolates between the known
boundary values, and a distance function which collapses
the GP/NN to zero at the boundary 4. With Thm. 3.2 be-
low, we prove (see Appendix C.1) that the same technique
can be used to enforce such constraints in the approximate
PSGP posterior (Eq. (22)). Given this result, we use explicit
enforcement in the numerical experiments for all known
initial/boundary conditions in the PSGP model (and all
benchmark PIML models considered), precluding the re-
quirement for penalty enforcement via virtual observations
on the boundary.

Definition 3.1. L-smoothness. We say a continuous kernel
kuu is L-smooth with respect to the differential operator
L if Lx[kuu](·, ·),Lx′ [kuu](·, ·),LxLx′ [kuu](·, ·) all exist
and are continuous functions.

Theorem 3.2. Let u : Ω → R be subject to Dirichlet
boundary conditions, i.e. u(x) = B(x)∀x ∈ ∂Ω. Assign

a prior u(·) ∼ GP
(
m̃u(·), k̃uu(·, ·)

)
with m̃u a contin-

uous function which equals B on ∂Ω, and k̃uu(x,x
′) =

ϕ(x)ϕ(x′)kuu(x,x
′) where kuu is a kernel and ϕ is a con-

tinuous distance function which equals zero on ∂Ω and is
otherwise positive. We assume data yu and virtual obser-
vations yf (0g) are available for a given PDE (ISC). Now,
consider any sequence of points in the interior of the domain
x
(1)
s ,x

(2)
s , . . . such that liml→∞ x

(l)
s = xb ∈ ∂Ω. Then,

assuming that kuu is L-smooth with respect to every dif-
ferential operator used in the specification of h, the PSGP
posterior (Eq. (22)) satisfies p̂

(
u(x

(l)
s )

)
p→ B(xb) for ar-

bitrary form of the variational posterior q(h), where
p→

indicates convergence in probability.

4. Numerical Experiments
We evaluated the performance of PSGPs on three tasks com-
monly encountered in PIML; solving IBVPs (Section 4.2),
the inverse problem of learning unknown PDE parameters
(Section 4.3), and the forward problem of learning the PDE
solution from noisy observations (Section 4.4). For bench-
marking, we used three existing PIML models. Firstly, we
compared with a GP which incorporates observational data
and the underlying PDE, but ignores symmetry information.
For notational simplicity, we will refer to this approach as
a PIGP irrespective of whether the underlying PDE is lin-
ear or nonlinear (in which case the model is identical to

4For grid-like domains, the construction of these mean and
distance functions is straightforward (see Appendix C.1.1 for an
example). For Neumann/Cauchy/Robbins conditions and domains
of more complex shape, an extension of this approach can be used
(Liu et al., 2022).
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that described in Section 3.1, without the virtual ISC obser-
vations). Secondly, we compared with a PINN. A PINN
is trained on an objective function comprised of one loss
term for observation data yu and one loss term for virtual
PDE data yf , but ignores symmetry information. Finally,
we compared with a PINN which also accounts for a given
Lie symmetry, which we call a physics and Lie symmetry
informed neural network (PSNN) for notational consistency.
The symmetry is incorporated either through the addition of
a third term to the objective function to account for the loss
against virtual ISC observations 0g (in which case the PSNN
is equivalent to the symmetry enhanced PINN (Zhang et al.,
2023c)), or through explicit enforcement via a coordinate
transformation.

4.1. Implementation Details

For the GP models, kuu was specified to be the ratio-
nal quadratic kernel. We experimented with different
neural network architectures (using tanh activation func-
tion), and found that four hidden layers each of width
20 yielded the best accuracy. Each model was trained
using the Adam optimiser with exponentially decaying
learning rate (Kingma & Ba, 2017). As suggested in
(Long et al., 2022), we use the whitening trick (Murray
& Adams, 2010) when evaluating the ELBO (Eq. (21)), to
improve training efficiency. Experiments were performed
in Python using JAX (Bradbury et al., 2018). All differ-
ential operators were implemented using the automatic
differentiation system provided by JAX, meaning that no
hand derivations of mean/kernel functions were required.
Code and data are available at github.com/dodaltuin/jax-
pigp/tree/main/examples/PSGPs.

4.2. Fisher-like Equation

We first considered the non-linear diffusion equation of
Fisher’s type from Eq. (5) with θ = 1, which was analysed
in (Verma et al., 2014). This PDE admits the following
spatio-temporal translation symmetry

Xfish =
1√
2
∂x + ∂t, (23)

which implies that the below ISC holds (see Eq. (15)).

ut +
1√
2
ux = g = 0. (24)

In this instance, the ISC can be used to solve for u exactly
(Verma et al., 2014, Eq. (35)), which is displayed in Figure
1 (a) for t ∈ [0, 10] and x ∈ [−5, 5].

We considered an adjustment of the IBVP from (Verma
et al., 2014, Ex. 2), where the objective was to learn the
PDE solution using Nf virtual observations yf in f -space
for the PIGP and PINN models, and additionally Ng = Nf

virtual observations 0g in g-space for the PSGP and PSNN
approaches, given known initial and boundary conditions.
To examine the impact of data set size on results, we per-
formed the experiment for Nf/Ng = 16, 32, 64 and 128
virtual observations, where the input locations Xf = Xg

were chosen using a Sobol sequence. Once trained, the per-
formance of each model was evaluated using mean absolute
error (MAE) against the true function value on a grid of
independent test points in the domain.

Table 1 displays the test set results. First comparing the
PIGP and PSGP results, the inclusion of symmetry informa-
tion clearly yields a gain in predictive performance, how-
ever the difference narrows as more collocation points are
included. Comparing the GP and NN results, we see that
the NN models are clearly outperformed for lower number
of collocation points. Again, as more points are included,
the performance of the PSNN begins to converge to that
of the GP models, which aligns with the results reported
in (Long et al., 2022). Figure 1 displays prediction errors
for the PIGP, PSGP and PSNN models when 32 collocation
locations are considered. The PSGP obtains lower errors
than the other two models across the entire spatio-temporal
domain.

Table 1. Test-set MAE (×105) for Fisher-like equation with dif-
ferent numbers Nf = Ng virtual observations.

MODEL 16 32 64 128

PINN 37600 16000 6000 510
PSNN 25000 530 130 7.1
PIGP 1120 230 25.6 5.1
PSGP 360 44.9 10.3 3.3

4.3. Heat Equation

We next considered the heat equation over one spatial di-
mension, which takes the form

ut − θuxx = f = 0. (25)

In this case, the equation models the process of thermal
conduction in a one dimensional rod, with thermal conduc-
tivity level θ. Eq. (25) admits a Lie symmetry (Zhang et al.,
2023c)

Xheat = xt∂x + t2∂t −
(
x2

4θ
+

t

2

)
u∂u, (26)

with corresponding ISC (see Eq. (15)) of the form(
x2

4θ
+

t

2

)
u+ xtux + t2ut = g = 0. (27)

Xheat generates an exact solution of u(x, t) = xt−3/2e−
x2

4t

with θ = 1.
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Figure 1. Results for the Fisher-like equation with Nf/Ng = 32 collocation points. Panel (a) shows the true solution where the points
show the location of the virtual observations, and panels (b)-(d) show error density plots for three different PIML models, with predictions
denoted û.

Here we examined the inverse problem of learning the pa-
rameter θ from data, over the domain x ∈ [0, 1], t ∈ [0.5, 1].
We assumed the initial temperature distribution u(x, 0.5)
and lower boundary value of u(0, t) = 0 were observed,
while the solution value at the upper boundary of x = 1 was
unobserved. To examine the effect of data size on the results,
we performed the inverse problem for Nu = 10, 25, 50, 100
function space observations using both PIGPs and PSGPs.
For the PIGPs, we introduced Nf = Nu virtual observation
of the PDE at the same input locations, i.e. Xf = Xu. For
the PSGPs, we additionally incorporated Ng = Nu virtual
observations, again at the same locations. For each data set
size, we performed the inverse problem under 20 randomly
generated datasets, where both the input locations of the
data and observation noise were resampled in each case.
Noise levels were set to 1% in each case - see Appendix B
for results under different levels of noise.

PIGP (blue) and PSGP (green) results are displayed in the
top row of Figure 2, using density plots to capture the vari-
ation under dataset resampling. The plots show that the
PSGP clearly outperforms the PIGP in terms of parameter
inference accuracy (|θ − θ̂|), prediction accuracy (MAE)
and calibration of posterior predictive intervals, as measured
by the continuous rank probability score (CRPS) (Gneiting
& Raftery, 2007). The PSGP is able to obtain impressive
accuracy even for very small datasets. For example, with
only Nu = 25 data points, the worst parameter estimate is
with two decimal places of the true value. Similarly, the
PSGP can recover the true solution almost perfectly with
Nu = 10 data points in contrast to the PIGP, which is clear
from panels (e) and (f) of Figure 2. Also of note is the
efficiency with which the PSGP can process the noisy data,
allowing for monotonically increasing performance with
more data points. By contrast, the PIGP results oscillate in
this noisy, low data regime.

4.4. Wave Equation

Our final set of numerical experiments involved the wave
equation

utt − uxx = f = 0. (28)

Eq. (28) admits a Lie symmetry (Márquez & Bruzón, 2021)

Xwave = ∂x + ∂t, (29)

with associated ISC (see Eq. (15)) of the form

ut + ux = g = 0. (30)

Here we considered the forward problem of learning the
form of the underlying solution from datasets of Nu ∈
{16, 32, 64, 128, 256} noise-corrupted observations. We
used the particular solution u(x, t) = sn(x− t | 0.5) with
sn the Jacobi elliptic sine function for x ∈ [0, 10] and
t ∈ [0, 10] (see Figure 3 (a)). Predictive performance was
evaluated against an independent grid of test points over the
same input ranges.

The PIGP and PINN models incorporated the PDE by us-
ing Nf = 512 virtual observations of Eq. (28) from across
the spatio-temporal domain. For the PSGP, PDE and ISC
information could have been incorporated in the same man-
ner. However, in this instance, it is possible to deduce from
the ISC that u(x, t) = w(z) for some function w, with
z = x− t known as the canonical coordinate (Márquez &
Bruzón, 2021, Reduction 1.). We leveraged this reduction
by defining the PSGP’s kernel directly on the canonical co-
ordinate system. In Appendix C.2, we prove that doing so
ensured that both the ISC and the PDE were explicitly sat-
isfied with probability one. Therefore, virtual observations
yf and 0g were not required in this case, and the PSGP
reduced to a standard GP in which only the noisy u-space
observations considered. In exactly the same manner, we
defined a PSNN on the canonical coordinates to also explic-
itly enforce the PDE and ISC. We remark that applying the
method introduced by Härkönen et al. (2023) for kernel
design under linear PDE constraints to the Wave PDE and
ISC considered here yields the exact same form of kernel on
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Figure 2. Results for the heat equation. The top row shows density plots for the PIGP (blue) and PSGP (green) models under three
evaluation metrics, which were obtained from the variation observed under dataset resampling. The bottom row shows the true solution
and error density plots for the PIGP and PSGP models when Nu = 10. The points in panel (d) show the locations of the observed data.

the canonical coordinates - for further details, see Example
4.3 of their paper.

Table 2 reports test set MAE for each model against the
size of the training data. Once again, the sample efficiency
of the PSGP is clear, as it obtained the lowest errors with
Nu ≤ 128. For Nu = 128, the errors of the PSNN were
lowest, while for Nu = 256 observations, the results of all
four models began to converge. Note that for Nu ≤ 128,
the PIGP learned the trivial solution of û ≈ 0. This is
a well-known problem in PIML in the case of sparse ob-
servational data (Leiteritz & Pflüger, 2021; Krishnapriyan
et al., 2021). Counterintuitively, using more collocation
points here actually yields worse accuracy for the PIGP, as
it makes the attractor domain of the trivial solution cover
the entire parameter space. Only once Nu exceeds approx-
imately 25-30% of Nf is the influence of the observation
data strong enough to recover the true solution accurately.

Table 2. Test-set MAE (×102) for Wave Equation, for different
number Nu of noisy function observations.

MODEL 16 32 64 128 256

PINN 24.5 11.2 7.1 3.5 3.1
PSNN 20.1 10.3 4.3 2.1 2.8
PIGP 66.7 66.9 66.9 51.3 3.1
PSGP 14.9 4.4 4.0 3.2 1.5

Density plots of prediction errors with Nu = 32 observa-
tions are displayed in Figure 3. For the PINN, PSNN and
PSGP models, the highest errors are incurred at the upper

left and bottom right of the spatio-temporal domain, which
correspond to the lower and upper regions of the canonical
coordinate space respectively. In order for better accuracy
to be obtained in these regions, additional prior information
can be used. For instance, the use of a periodic kernel in the
specification of the PSGP allows for the solution to be re-
covered almost perfectly across the domain, as is illustrated
in panel (f) of the figure.

5. Conclusion
We have introduced PSGPs, which leverage the ISC induced
by a Lie symmetry to improve GP-based modelling of phys-
ical systems governed by PDEs. Using numerical experi-
ments involving three different PDEs, we have shown that
incorporating a known Lie symmetry improves accuracy
both in the context of forward and inverse problems. Fur-
thermore, comparisons with neural networks demonstrate
the superior performance of PSGPs in the presence of sparse
data.

The clear limitation of our approach is its restriction to
low to medium-sized datasets, due to the cubic complexity
of GP inference with respect to the size of the training
data. However, several well established methods exist for
overcoming this computational bottleneck, e.g. (Hensman
et al., 2013), which could be made use of in this context. It
would also be of interest to evaluate the performance of deep
GPs (Damianou & Lawrence, 2013) for problems involving
physics and symmetry information.

We have additionally assumed that the Lie symmetry is
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0 2 4 6 8 10
t

0

2

4

6

8

10

x

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10
t

0

2

4

6

8

10

x

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10
t

0

2

4

6

8

10

x

0.0

0.2

0.4

0.6

0.8
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Figure 3. Results for the wave equation with Nu = 32 training observations. Panel (a) shows the true solution and panels (b)-(f) show
error density plots for the different PIML models considered, where û denotes the predicted value. The points in panel (a) indicate the
locations of the observed data.

known a-priori. This assumption could be relaxed however
to allow the symmetry to be learned, as in (Dehmamy et al.,
2021; Moskalev et al., 2022; Gabel et al., 2023). Finally,
we have restricted our analysis to classical Lie symmetries,
however the ISCs generated by non-classical symmetries
(see Gandarias Bruzon (2009), for instance) could also be
considered in our framework.
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A. Illustrative example of the Lie symmetry method
Given a physical system represented by some function u(x, y), we consider the Poisson equation on the unit disc Ω ={
(x, y) : x2 + y2 < 1

}
with homogeneous Dirichlet boundary conditions, i.e.

uxx − uyy = −4 in Ω, (31)
u = 0 on ∂Ω. (32)

This BVP is rotationally invariant, or equivalently, it satisfies rotational symmetry. To see this, recall that the Laplacian
operator (equal to uxx − uyy in this case) is rotationally invariant, and note that the circular domain Ω and homogeneous
boundary conditions are also left invariant under rotation. In more general applications, invariant solutions describe the
behaviour of the system “far away” from boundary conditions (Hydon, 2000, Chapter 9), however it is possible in some
cases to construct a solution to a BVP by a composition of invariant solutions (Bluman & Kumei, 2013).

Given the existence of rotational symmetry, we present below the two different derivations of the induced invariant surface
condition (ISC) (see Eq. (15). The first derivation makes use of a constraint which the specific assumption of rotational
invariance places on the directional derivative of u. The second derivation simply follows step by step the Lie symmetry
method from Section 2.4. As is clear below, both derivations yield the same result. The beauty and power of the Lie
symmetry method, however, is its generality to other symmetry transformations beyond rotation.

A.1. Derivation of ISC given rotational invariance

If u is rotationally invariant, then this means that, for each point (x, y) ∈ Ω, the rate of change of u is equal to zero,
with respect to changes in any direction orthogonal to (x, y). We can formulate this mathematically using the directional
derivative as

v · [ux(x, y) uy(x, y)]
⊤
= 0, (33)

for any v ∈ R2 orthogonal to (x, y). Note that (−y, x) is orthogonal to (x, y). Plugging v = (−y, x) into Eq. (33) and
expanding out yields the following PDE

−yux(x, y) + xuy(x, y) = 0 ∀ (x, y) ∈ Ω, (34)

or in shorthand notation,
−yux + xuy = 0. (35)

This PDE mathematically encodes the assumption of rotational invariance.

A.2. Derivation of ISC following Section 2.4

The assumption that u(x, y) is rotationally invariant means that u(x, y) satisfies symmetry under rotation of the 2D plane.
When equipped with a binary operator defined to be the sequential application of two rotations, the set of all such 2D
rotations forms what is called the special orthogonal group, or SO(2), or the equivalently (two-dimensional) rotation group.
Note that each 2D rotation of the plane can be parametrised by a single number ε ∈ [0, 2π), namely the angle of rotation.
This allows us to express the group as

x∗ = x cos ε+ y sin ε,

y∗ = −x sin ε+ y cos ε.
(36)

For details on this equation, we refer the reader to (Bluman & Anco, 2002, page 45). Furthermore, the rotation group is in
fact a Lie group, i.e. a group which is also a smooth manifold. To see this, note that due to the periodicity of rotations, the
space of all possible rotation parameters ε can be represented as a circle, which is a (1D) manifold in embedded R2.

As discussed in Section 2.4, in order to find the infinitesimal generator associated with a Lie group, only the first order
Taylor expansion of x∗ and y∗ around ε = 0 is required. Applying this expansion to Eq. (36) and neglecting terms above
order ε2 yields the following representation of the rotation group

x∗ = x+ εy +O
(
ε2
)
,

y∗ = y − εx+O
(
ε2
)
,

(37)
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where again further details can be found in (Bluman & Anco, 2002, page 45). Recall that we are assuming u is invariant
under the rotation group. This means that the PDE itself will continue to be satisfied after a rotation is applied - therefore,
we have that the following Lie group of transformations leaves the PDE invariant:

x∗ = x+ εy +O
(
ε2
)
,

y∗ = y − εx+O
(
ε2
)
,

u∗ = u.

(38)

This is the form of Eq. (13) in the particular case of rotational symmetry. From the Lie group in Eq. (38), we can apply
Definition 2.3 to derive the infinitesimal generator of the group as

X = y∂x − x∂y, (39)

where we have replaced t in with y in the notation from Section 2.4. Finally, Definition 2.4 can be used to derive the form of
the induced ISC for this example:

−yux + xuy = 0, (40)

which is the same as Eq. (35) above.

A.3. Exact solution

The Poisson BVP stated in Eq. (31) can be solved to yield

u(x, y) = 1− x2 − y2. (41)

The form of the ISC derived above can be validated by plugging in this form of u and showing that it equals zero.

B. Additional Experimental Results
The experiments involving the heat equation in Section 4.3 assumed fixed observation noise levels of 1%, measured with
respect to signal variance. Figure 4 below displays results for two additional levels of noise: noise-free (i.e. 0%) and 2.5%.
In all cases, we see that the PSGP outperforms the PIGP. Furthermore, it is clear that the results obtained using a PSGP are
significantly more robust to increasing noise than those obtained with a PIGP.

C. Proofs
C.1. Proof of Dirichlet boundary condition enforcement

Proof. From Eq. (22), we know that for each x
(l)
s , the PSGP posterior p̂ over the associated function value u(x

(l)
s ) has the

form

p̂(u(x(l)
s )) = N (u(x(l)

s ) | µ̂(l)
s , Σ̂(l)

s ), with (42)

µ̂(l)
s = m̃u(x

(l)
s ) + k

(l)
shb (43)

Σ̂(l)
s = k̃uu(x

(l)
s ,x(l)

s ) + k
(l)
shBk

(l)
hs , (44)

where [k
(l)
sh ]

(1,j) = Cov
(
u(x

(l)
s ), h(j)

)
, b = K−1

hh (a−mh) and B = K−1
hh −K−1

hhAA⊤K−1
hh .

We first remark that, since the mean function is both continuous and satisfies the boundary conditions by assumption, we
have

lim
l→∞

m̃u(x
(l)
s ) = m̃u

(
lim
l→∞

x(l)
s

)
= m̃u(xb) = B(xb). (45)

Similarly, the continuity of the distance function ϕ means

lim
l→∞

ϕ(x(l)
s ) = ϕ

(
lim
l→∞

x(l)
s

)
= ϕ(xb) = 0, (46)
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Figure 4. Additional results for the heat equation displayed as density plots, which were obtained from the variation observed under
dataset resampling. Blue represents the PIGP results, and green the PSGP results. Each row corresponds to a different observation noise
level. The left column shows parameter estimation error (|θ − θ̂|), the centre prediction error (MAE), and the right column measures
calibration of the prediction uncertainty intervals (CRPS).

which in turn implies

lim
l→∞

k̃uu(x
(l)
s ,x(l)

s ) = lim
l→∞

ϕ(x(l)
s )2kuu(x

(l)
s ,x(l)

s ) = 0, (47)

since kuu is continuous and hence bounded on Ω.

By Eq. (11), Cov
(
u(x

(l)
s ), h(j)

)
takes the form

Cov
(
u(x(l)

s ), h(j)
)
= L(j)

x′ k̃uu

(
x(l)
s ,x

(j)
h

)
(48)

= L(j)
x′ ϕ(x

(l)
s )ϕ(x

(j)
h )kuu

(
x(l)
s ,x

(j)
h

)
(49)

= ϕ(x(l)
s )L(j)

x′ ϕ(x
(j)
h )kuu

(
x(l)
s ,x

(j)
h

)
, (50)

where L(j)
x′ is the linear operator associated with the jth element of h (this is equal to the identity mapping for observations

in u-space), and x
(j)
h is the location in input space which corresponds to the jth element. Recall that we assume kuu is

sufficiently smooth that the result of applying L(j)
x′ yields a function which is continuous. Since the domain Ω is both

bounded and closed, this implies that this function is bounded. Coupled with the limiting form of ϕ (see Eq. (46)) this means

lim
l→∞

[k
(l)
sh ]

(1,j) = 0 (51)
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We now consider the form of the approximate posterior mean as l → ∞:

lim
l→∞

µ̂(l)
s = lim

l→∞

[
m̃u(x

(l)
s ) + k

(l)
shb

]
(52)

= lim
l→∞

m̃u(x
(l)
s ) +

H∑
j=1

[k
(l)
sh ]

(1,j)[b](j)

 (53)

= lim
l→∞

m̃u(x
(l)
s ) + lim

l→∞

H∑
j=1

[k
(l)
sh ]

(1,j)[b](j) (54)

= lim
l→∞

m̃u(x
(l)
s ) +

H∑
j=1

[b](j) lim
l→∞

[k
(l)
sh ]

(1,j) (55)

= B(xb) +

H∑
j=1

[b](j) · 0 (56)

= B(xb). (57)

Similarly, the limiting form of the approximate posterior variance is

lim
l→∞

Σ̂(l)
s = lim

l→∞

[
k̃uu(x

(l)
s ,x(l)

s ) + k
(l)
shBk

(l)
hs

]
(58)

= lim
l→∞

k̃uu(x(l)
s ,x(l)

s ) +

H∑
i=1

H∑
j=1

[k
(l)
sh ]

(1,j)[B](i,j)[k
(l)
hs ]

(1,i)

 (59)

= lim
l→∞

k̃uu(x
(l)
s ,x(l)

s ) +

H∑
i=1

H∑
j=1

[B](i,j) lim
l→∞

[k
(l)
sh ]

(1,j) lim
l→∞

[k
(l)
hs ]

(i,1) (60)

= 0. (61)

Let ϵ > 0 and ∆ > 0 be arbitrary. To show convergence in probability, we need to show there exists a number L such that

P
(∣∣∣u(x(l)

s )− B(xb)
∣∣∣ > ϵ

)
< ∆, (62)

for all l > L (Najim et al., 2004, Definition 16). Since liml→∞ µ̂
(l)
s = B(xb), there exists L1 such that for all l > L1, we

have

∣∣∣µ̂(l)
s − B(xb)

∣∣∣ < ϵ

2
. (63)

Similarly, since liml→∞ Σ̂
(l)
s = 0, there exists L2 such that

∣∣∣Σ̂(l)
s

∣∣∣ < ϵ2

4
∆, (64)
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for all l > L2. Let L = max(L1, L2). Then, for all l > L, we have

P
(∣∣∣u(x(l)

s ) + B(xb)
∣∣∣ > ϵ

)
= P

(∣∣∣u(x(l)
s )− µ̂(l)

s + µ̂(l)
s − B(xb)

∣∣∣ > ϵ
)

(65)

≤ P
(∣∣∣u(x(l)

s )− µ̂(l)
s

∣∣∣+ ∣∣∣µ̂(l)
s − B(xb)

∣∣∣ > ϵ
)

(66)

< P
(∣∣∣u(x(l)

s )− µ̂(l)
s

∣∣∣+ ϵ

2
> ϵ

)
(67)

= P
(∣∣∣u(x(l)

s )− µ̂(l)
s

∣∣∣ > ϵ

2

)
(68)

<
Σ̂

(l)
s

(ε/2)2
(69)

<
(ε/2)2∆

(ε/2)2
(70)

= ∆. (71)

where the second last inequality holds by Chebyshev’s inequality:

P
(∣∣∣u(x(l)

s )− µ̂(l)
s

∣∣∣ > λ
)
<

Σ̂
(l)
s

λ2
for any λ > 0 (72)

by setting λ = ε/2.

C.1.1. ONE DIMENSIONAL EXAMPLE

If we consider the one dimensional case where u : [0, 1] → R with Dirichlet boundary conditions u(0) = 0 and
u(1) = 1, constructing the mean function m̃u and distance function ϕ is straightforward - we simply set m̃u(x) = x and
ϕ(x) = 4x(1− x). These functions are plotted in Figure 5 (a). Panel (b) shows 10 samples from a GP with mean function
m̃u(x) and kernel ϕ(x)ϕ(x′)kuu(x, x

′) with kuu the rational-quadratic kernel. All samples satisfy the Dirichlet conditions.
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Figure 5. Panel (a) shows mean function m̃u(x) = x and distance function ϕ(x) = 4x(1 − x) discussed in Section C.1.1. Panel (b)
shows 10 samples from a GP with mean function m̃u(x) and kernel ϕ(x)ϕ(x′)kuu(x, x

′) with kuu the rational-quadratic kernel.

C.2. Proof of exact enforcement of Wave PDE and ISC

Theorem C.1. Let u : R2 → R follow a Gaussian process of the form

u ∼ GP (mu(x− t), kuu(x− t, x′ − t′)) , (73)

Consider the linear differential operators LISC
x,t and LPDE

x,t corresponding to the Wave ISC (Eq. (30)) and Wave PDE
(Eq. (28)) respectively, which take the form

LISC
x,t [·] = ∂t[·] + ∂x[·], (74)

LPDE
x,t [·] = ∂tt[·]− ∂xx[·]. (75)
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Then we have

LISC
x,t [u] = g = 0, (76)

LPDE
x,t [u] = f = 0 (77)

where the final equalities hold with probability one.

Proof. Note that we assume u, mf and kuu are all sufficiently smooth for both differential operators LISC
x,t and LISC

x,t to be
applied.

LISC
x,t is a linear differential operator. Therefore, as discussed in Section 2.3 (see Eqs. (9) and (10)), we have

g ∼ GP(mg(x, t), kgg([x, t], [x
′, t′]), (78)

with

mg(x, t) = LISC
x,t mu(x− t), (79)

kgg([x, t], [x
′, t′]) = LISC

x,t LISC
x′,t′kuu(x− t, x′ − t′). (80)

Firstly evaluating the mean function, we have

mg(x, t) = LISC
x,t mu(x− t) (81)

=
∂

∂t
mu(x− t) +

∂

∂x
mu(x− t) (82)

Using the canonical coordinates z = x− t, this can be re-written by the chain rule as

mg(x, t) =
∂z

∂t

d

dz
mu(z) +

∂z

∂x

d

dz
mu(z) (83)

= − d

dz
mu(z) +

d

dz
mu(z) (84)

= 0, (85)

since ∂z
∂t = −1 and ∂z

∂x = 1.

To find kgg , we first evaluate

LISC
x′,t′kuu(x− t, x′ − t′) =

∂

∂t′
kuu(x− t, x′ − t′) +

∂

∂x′ kuu(x− t, x′ − t′) (86)

=
∂z′

∂t′
∂

∂z′
kuu(z, z

′) +
∂z′

∂x′
∂

∂z′
kuu(z, z

′) (87)

= − ∂

∂z′
kuu(z, z

′) +
∂

∂z′
kuu(z, z

′) (88)

= 0, (89)

from which it follows that kgg([x, t], [x′, t′]) = 0.

Now let (x, t) ∈ R2 be arbitrary. By the definition of a GP, this implies that g(x, t) ∼ N (0, 0), i.e. a zero variance normal
distribution. Recall that in the limit of infinite precision, a Gaussian distribution becomes a Dirac delta function δ centred
with respect to its mean (Berman, 2017, Section 2.6), which is also zero in this case. This means that

P(|g(x, t)| > ϵ) =

∫ −ϵ

−∞
δ(g − 0)dg +

∫ ∞

ϵ

δ(g − 0)dg (90)

= 0 + 0 = 0 (91)

for all ϵ > 0, and therefore g(x, t) = 0 with probability one.
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LPDE
x,t is also a linear differential operator. Therefore, we have

f ∼ GP(mf (x, t), kf ([x, t], [x
′, t′]), (92)

with

mf (x, t) = LPDE
x,t mu(x− t), (93)

kff ([x, t], [x
′, t′]) = LPDE

x,t LPDE
x′,t′ kuu(x− t, x′ − t′). (94)

The mean function can once again be found using the canonical coordinates to be

mf (x, t) = LPDE
x,t mu(x− t) (95)

=
∂2

∂t2
mu(x− t)− ∂2

∂x2
mu(x− t) (96)

=
∂

∂t

[
∂z

∂t

d

dz
mu(z)

]
+

∂

∂x

[
∂z

∂x

d

dz
mu(z)

]
(97)

= − ∂

∂t

[
d

dz
mu(z)

]
− ∂

∂x

[
d

dz
mu(z)

]
(98)

= −∂z

∂t

d2

dz2
mu(z)−

∂z

∂x

d2

dz2
mu(z) (99)

=
d2

dz2
mu(z)−

d2

dz2
mu(z) (100)

= 0. (101)

To find kff , we first evaluate

LPDE
x′,t′ kuu(x− t, x′ − t′) =

∂2

(∂t′)2
kuu(x− t, x′ − t′)− ∂2

(∂x′)2
kuu(x− t, x′ − t′) (102)

=
∂

∂t′

[
∂z′

∂t′
∂

∂z′
kuu(z, z

′)

]
− ∂

∂x′

[
∂z′

∂x′
∂

∂z′
kuu(z, z

′)

]
(103)

= − ∂

∂t′
∂

∂z′
kuu(z, z

′)− ∂

∂x′
∂

∂z′
kuu(z, z

′) (104)

= −∂z′

∂t′
∂

(∂z′)2
kuu(z, z

′)− ∂z′

∂x′
∂

(∂z′)2
kuu(z, z

′) (105)

=
∂

(∂z′)2
kuu(z, z

′)− ∂

(∂z′)2
kuu(z, z

′) (106)

= 0, (107)

where once again we have made use of the fact that ∂z
∂t = −1 and ∂z

∂x = 1. The above result implies that implies
kff ([x, t], [x

′, t′]) = 0 in turn, as in the case of kgg .

This means that f(x, t) ∈ R ∼ N (0, 0) for arbitrary (x, t) ∈ R2, and therefore, as with g above, f = 0 with probability
one.

D. Exact form of ELBO (Eq. (21)) and posterior predictive distribution (Eq. (22))
D.1. ELBO

This section presents the steps required to compute each individual term in the ELBO from Eq.(21). Using the shorthand
notation d0:m = [d0;d1; . . . ;dm], we denote the vector of latent variables h as

h = [u;d0:m; g]. (108)
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For more details on h, see the “Prior” subsection of Section 3.1 above. Denoting S = AA⊤, the variational posterior q(h)
takes the form

q(h) = N (h | a,S). (109)

For more details on q and the variational parameters a and A, see the “Inference” subsection of Section 3.1. In practice, we
use the whitening trick (Murray & Adams, 2010) when evaluating the ELBO. For clarity of exposition here, however, we
present the computations in un-whitened form.

In evaluating the terms of the ELBO relating to the respective log likelihoods of the real observations yu and virtual
observations yf and 0g , it is useful to split the mean and covariance of q into the block form given in Eq. (117), where the
blocks correspond to the observations from each of the three different function spaces we consider (i.e. u, f and g space
respectively).

q(h) = q

 u
d0:m

g

 = N

 au

af

ag

 ,

 Suu Suf Sug

Sfu Sff Sfg

Sgu Sgf Sgg

 . (110)

D.1.1. KL DIVERGENCE TERM

The first term in the ELBO is the KL divergence between the variational distribution over the latent vector q(h) and the
prior distribution p(h). Recall that both q and p are Gaussian - the form of q is given in Eq. (109), while the form of p is
given in Eq. (16). The KL divergence between two Gaussians can be evaluated to yield the below closed form expression
(Zhang et al., 2024, Eq. (1))

KL(q(h)∥p(h)) = 1

2

(
log

|Khh|
|S| +Tr

(
K−1

hhS
)
+ (mh − a)

⊤
K−1

hh (mh − a)− n

)
, (111)

where n is the dimensionality of the latent vector h.

D.1.2. EXPECTED LOG PROBABILITY OF yf TERM

The second term in the ELBO is the expected log likelihood of the virtual PDE observations yf under the variational
distribution q. From the form of p(yf | d0:m) given in Eq. (18), this term can be expressed as:

Eq[log p(yf | d0:m)] =

∫
q(h) log p(yf | d0:m)dh

=

∫
N (h | a,S) logN (yf | Fθ(d0:m), σ2

fIf )dh

=

∫
N (d0:m | af ,Sff ) logN (yf | Fθ(d0:m), σ2

fIf )dd0:m

=

∫
N (d0:m | af ,Sff ) log

Nf∏
i=1

N (y
(i)
f | Fθ([d0:m](i)), σ2

f )dd0:m

=

∫
N (d0:m | af ,Sff )

Nf∑
i=1

logN (y
(i)
f | Fθ([d0:m](i)), σ2

f )dd0:m

=

Nf∑
i=1

∫
N (d0:m | af ,Sff ) logN (y

(i)
f | Fθ([d0:m](i)), σ2

f )dd0:m (112)

Due to the assumed non-linearity of Fθ , each of the Nf integrals above are analytically intractable, and we therefore instead
use a Monte-Carlo sample to evaluate them.
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D.1.3. EXPECTED LOG PROBABILITY OF 0g TERM

The third term in the ELBO is the expected log likelihood of the virtual ISC observations 0g under the variational distribution
q. From the form of p(0g | g) given in Eq. (19), this term can be expressed as:

Eq[log p(0g | g)] =
∫

q(h) log p(0g | g)dh

=

∫
N (h | a,S) logN (0g | g, σ2

gIg)dh

=

∫
N (g | ag,Sgg) logN (0g | g, σ2

gIg)dg, (113)

where ag and Sgg come from the block-decomposition of q(h) given in Eq. (117). The final integral above can be evaluated
according to the result of Lemma D.2 to give:

Eq[log p(0g | g)] = logN (0g | ag, σ
2
gIg)−

1

2σ2
g

Tr [Sgg]

= log

Ng∏
i=1

N (0 | a(i)g , σ2
g)−

1

2σ2
g

Ng∑
i=1

S(i,i)
gg

=

Ng∑
i=1

logN (0 | a(i)g , σ2
g)−

1

2σ2
g

Ng∑
i=1

S(i,i)
gg

=

Ng∑
i=1

[
logN (0 | a(i)g , σ2

g)−
S
(i,i)
gg

2σ2
g

]
. (114)

D.1.4. EXPECTED LOG PROBABILITY OF yu TERM

The fourth term of the ELBO is the expected log likelihood of solution-space observations yu under the variational
distribution q. Given the form of p(yu | u) stated in Eq. (17), this term can be evaluated in exactly the same manner as the
term in the ELBO involving the ISC observations, yielding:

Eq[log p(yu | u)] =
Nu∑
i=1

[
logN (y(i)u | a(i)u , σ2

u)−
S
(i,i)
uu

2σ2
u

]
. (115)

D.2. Posterior predictive distribution

From Eq. (22), the (approximate) posterior predictive distribution over a vector of test inputs us is found as

p̂(us) =

∫
p(us | h)q(h)dh. (116)

Since, by construction, the latent vector h is jointly Gaussian with solution space (i.e. u-space) observations, we have

p

([
us

h

])
= N

([
ms

mh

]
,

[
Kss Ksh

Khs Khh

])
. (117)

The well-known formula for the form of a conditional multivariate Gaussian distribution (see for example Section 2.3.2 of
Bishop (2006)) can then be applied to show that p(us | h) is a Gaussian of the form

p(us|h) = N (us|ms +KshK
−1
hh (a−mh),Kss −KshK

−1
hhKhs). (118)

Recall that q(h) is also Gaussian (see Eq. (109) above). Therefore, if we let

W = KshK
−1
hh (119)

b = ms −Wmh, (120)
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then Lemma D.1 can be applied to solve the integral in Eq. (116), yielding

p̂(us) = N (us | µ̂s, Σ̂s), (121)

where

µ̂s = Wa+ b

= Wa+ms −Wmh

= ms +W(a−mh) (122)

and

Σ̂s = Kss −KshK
−1
hhKhs +WSW⊤

= Kss −W
(
Khs − SW⊤) (123)

(124)

D.3. Useful Gaussian integration results

Lemma D.1. Let x1 and x2 be random vectors, where

p(x1) = N (x1 | µ1,K1)

p(x2 | x1) = N (x2 | Wx1 + b,K2) .

Then

p(x2) =

∫
p(x2 | x1)p(x1)dx1 = N

(
x2 | Wµ1 + b,K2 +WK1W

⊤)

Proof. See Section 2.3.3 of Bishop (2006).

Lemma D.2. Let x1 and x2 be random vectors where

p(x1) = N (x1 | µ1,K1)

p(x2 | x1) = N (x2 | Wx1 + b,K2) .

Then

Ep(x1) [log p(x2 | x1)] = logN (x2 | Wµ1 + b,K2)−
1

2
Tr

[
W⊤K−1

2 WK1

]
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Proof.

Ep(x1) [log p(x2 | x1)] = Ep(x1)

[
log

(
det(2πK2)

− 1
2 exp

(
−1

2
(x2 − (Wx1 + b))⊤K−1

2 (x2 − (Wx1 + b))

))]
= −1

2
Ep(x1) [log det(2πK2)]−

1

2
Ep(x1)

[
((x2 − b)−Wx1)

⊤K−1
2 ((x2 − b)−Wx1)

]
= −1

2
log det(2πK2)−

1

2
Ep(x1)

[
(x2 − b)⊤K−1

2 (x2 − b)
]

− 1

2
Ep(x1)

[
−2(x2 − b)⊤K−1

2 Wx1

]
− 1

2
Ep(x1)

[
x⊤
1 W

⊤K−1
2 Wx1

]
= −1

2
log det(2πK2)−

1

2
(x2 − b)⊤K−1

2 (x2 − b)

− 1

2

[
−2(x2 − b)⊤K−1

2 Wµ1

]
− 1

2
µ⊤

1 W
⊤K−1

2 Wµ1 −
1

2
Tr

[
W⊤K−1

2 WK1

]
= −1

2
log det(2πK2)

− 1

2

[
(x2 − b)⊤K−1

2 (x2 − b)− 2(x2 − b)⊤K−1
2 Wµ1 + µ⊤

1 W
⊤K−1

2 Wµ1

]
− 1

2
Tr

[
W⊤K−1

2 WK1

]
= logN (x2 | Wµ1 + b,K2)−

1

2
Tr

[
W⊤K−1

2 WK1

]
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