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Abstract001

Teaching new information to pre-trained large002
language models (PLM) is a crucial but chal-003
lenging task. Model adaptation techniques,004
such as fine-tuning and parameter-efficient005
training have been shown to store new facts at006
a slow rate; continual learning is an option but007
is costly and prone to catastrophic forgetting.008
This work studies and quantifies how PLM may009
learn and remember new world knowledge facts010
that do not occur in their pre-training corpus,011
which only contains world knowledge up to a012
certain date. To that purpose, we first propose013
NOVEL-WD, a new dataset consisting of sen-014
tences containing novel facts extracted from015
recent Wikidata updates, along with two evalu-016
ation tasks in the form of causal language mod-017
eling and multiple choice questions (MCQ).018
We make this dataset freely available to the019
community, and release a procedure to later020
build new versions of similar datasets with up-021
to-date information. We also explore the use022
of prefix-tuning for novel information learn-023
ing, and analyze how much information can be024
stored within a given prefix. We show that a025
single fact can reliably be encoded within a sin-026
gle prefix, and that the prefix capacity increases027
with its length and with the base model size.028

1 Introduction029

Pre-trained language models (PLM or LLM) (Chi-030

ang et al., 2022) are typically trained on raw texts031

with a self-supervised loss and further adapted to032

downstream tasks with, e.g., finetuning (Dai and033

Le, 2015; Howard and Ruder, 2018; Radford et al.,034

2019). Hence, the world knowledge that PLM have035

acquired is prior to the cut-off date of their pre-036

training corpus (Alivanistos et al., 2022; Kuchar-037

avy et al., 2023). A major challenge is then how038

to reliably teach PLMs novel factual knowledge.039

Fine-tuning has been one of the main proposed ap-040

proaches to adapt pre-trained models to new tasks041

and domains. However, full model fine-tuning042

can lead to catastrophic forgetting (French, 1999; 043

Kirkpatrick et al., 2017), and can be costly when 044

performed on large models (Strubell et al., 2020). 045

Furthermore, Wei et al. (2023) showed that when 046

fine-tuning a model on a small corpus with new 047

information, the model may instead learn to hallu- 048

cinate unseen facts. Parameter-efficient fine-tuning 049

(PEFT) methods have emerged as an lightweight al- 050

ternative to full model fine-tuning, in which only a 051

fraction of the parameters of the original model are 052

modified. PEFT allows for efficiently modifying a 053

small fraction of model parameters using methods 054

such as prefix-tuning (Li and Liang, 2021), adapter- 055

tuning (He et al., 2021) or LoRA (Hu et al., 2021). 056

In-context learning (Logan IV et al., 2022), prompt- 057

ing (Liu et al., 2023b) and prompt-tuning (Lester 058

et al., 2021) are currently amongst the most reliable 059

ways to inject new knowledge in PLM. 060

In this study, we focus on prefix-tuning (Li and 061

Liang, 2021), a fine-tuning method in which the 062

pre-trained model parameters are kept frozen, but 063

a few small continuous vectors called the prefix 064

are optimized. Based on the idea that context can 065

steer a language model without changing its param- 066

eters, prefix-tuning optimizes the model’s context 067

as one or several continuous vectors corresponding 068

to either embeddings or to key-query pairs in atten- 069

tion layers, whose effects will be propagated to all 070

activation layers and subsequent tokens. 071

Wang et al. (2022) and Liu et al. (2022a) showed 072

that novel knowledge can efficiently be contextu- 073

ally fed into large language models through prompt- 074

ing. However, the size of a prompt in a given model 075

is limited by the context size of that model. In this 076

paper, we view prefix-tuning as a generalized form 077

of prompting taking continuous values, and having 078

controllable depth and length, and as such, we hy- 079

pothesize that this method can reliably store signifi- 080

cant amounts of factual information. This is backed 081

by the findings of Kossen et al. (2023), which ar- 082

gue that in-context learning enables a model to 083
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learn information. Our goal is therefore to inves-084

tigate this question in the case of prefix-tuning,085

and more specifically how much knowledge can086

be compressed into the prefix. In addition, by us-087

ing prefix-tuning rather than LoRA, fine-tuning or088

adapters, we hope to avoid the hallucination prob-089

lem mentioned in (Wei et al., 2023) by working090

with (generalized) prompts without modifying the091

existing model weights.092

Figure 1 summarizes our proposed approach,093

which exploits recent Wikidata updates to auto-094

matically generate a corpus of new facts: NOVEL-095

WD. We then propose a nearly automatic procedure096

to create a dynamic benchmark from this corpus097

of facts that evaluates updated LLMs in terms of098

perplexity, new facts generation and accuracy on099

multiple-choice question-answering. We then eval-100

uate and show that prefix-tuning performs better101

than LoRA for new facts learning on this dataset.102

2 Related work103

Adapting models to new tasks is a relatively old104

problem. Yoon et al. (2018) showed that dynami-105

cally expandable networks can obtain good perfor-106

mance in this setting by slowly increasing model107

capacity. Lin et al. (2022a) explored the task of108

improving accuracy of Transformer models on out-109

of-data streams using continual model refinement110

(CMR) to maximize the diversity of training sam-111

ples in a non-stationary distribution. Razdaibiedina112

et al. (2023) showed that using a collection of pro-113

gressively growing prompts alleviates catastrophic114

forgetting and increases model generalization ca-115

pacities across tasks.116

Many studies have explored how information117

storage functions within the Transformer architec-118

ture. Elhage et al. (2022) gave a comprehensive119

overview of the Transformers architecture under120

the lens of mechanistic intepretability. Geva et al.121

(2021) showed that the feedforward layers of Trans-122

formers models act similarly to key-value memo-123

ries in information retrieval systems. Based on that124

work, Mitchell et al. (2021) introduced MEND,125

a framework that leverages a group of small net-126

works to successfully perform local factual edits127

within the feedforward layers of a large Transform-128

ers model. Meng et al. (2022b,a) expanded on this129

idea by using causal inference to locate the atten-130

tion feedforward layer containing a given fact and131

editing the corresponding matrix as a constrained132

optimization problem.133

In contrast, several approaches for storing new 134

information within a language model have been 135

proposed. One such approach is the use of flexible 136

external memories, as exemplified in (Wu et al., 137

2021, 2022). Another, dynamic method is that 138

of retrieval systems, which can leverage external 139

knowledge bases, including the Web, to that pur- 140

pose. Examples of such works include (Guu et al., 141

2020), (Lewis et al., 2020), (Borgeaud et al., 2021) 142

and (Liu et al., 2023a). Finally, new information 143

can be stored in the short-term through methods 144

such as prompt-tuning (Liu et al., 2021, 2022b). 145

In terms of evaluation, (Petroni et al., 2019) is 146

an early attempt at measuring relational and fac- 147

tual knowledge within PLMs. Zhu et al. (2020) 148

proposed new, information-theory based evalua- 149

tion metrics for factual knowledge. Kadavath et al. 150

(2022) and Lin et al. (2022b) focused on mea- 151

suring model uncertainty as a way to distinguish 152

known facts from hallucinated ones. Jang et al. 153

(2021, 2022) introduced the framework TEMPO- 154

RALWIKI, which like us, includes a process to gen- 155

erate datasets and benchmarks from information 156

extracted from Wikipedia. However, their frame- 157

work targets large scale continual learning while we 158

focus on the factual knowledge acquisition point of 159

view (detailed next). This difference in perspective 160

leads to important differences in terms of types of 161

inputs (facts vs texts), number of inputs, type and 162

learning efficiency of the tested adaptation meth- 163

ods with respect to the number of parameters, and 164

evaluation metrics (perplexity vs. factual MCQs 165

accuracy). Yu et al. (2023) detailed the creation of 166

a large and refined benchmark, specifically tailored 167

to measure world knowledge within PLMs. Kasai 168

et al. (2022) proposed a continual MCQ benchmark 169

for world knowledge, updated every week with new 170

questions about recent events extracted from news 171

websites. Yang and Liu (2021) successfully used 172

prefix-tuning to adapt a PLM for text classifica- 173

tion, while Ma et al. (2022) used the same method 174

for speech-to-text translation. Prefix-tuning was 175

also shown to obtain good performance in natu- 176

ral language understanding (Lester et al., 2021), 177

summarization (Chen et al., 2023) and sentiment 178

analysis (Balakrishnan et al., 2022) inter alia. Zhao 179

et al. (2022) showed that prefix-tuning may also be 180

used for efficient domain adaptation. 181

Parameter-efficient training methods, such as 182

LoRa and prefix-tuning, are often used both to con- 183

tinue pretrain an LLM and to adapt it to a domain. 184

However, recent works suggest that, with LoRa and 185
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Figure 1: Proposed approach: new facts are extracted from Wikidata, transformed into sentences with Vicuna-13b
and trained into prefixes. We claim and show that this architecture is better than LoRA to capture novel knowledge.

full finetuning, very few new factual knowledge are186

actually learned (Liu et al., 2024). We propose in187

this work to investigate this question with prefix-188

tuning, which is based on similar principles than189

in-context learning, a method that is known to be190

able to inject new knowledge. Compared to the191

past litterature on prefix tuning, we focus on its192

properties with regard to factual knowledge learn-193

ing, and give concrete answers to the questions of194

whether and when does prefix tuning learn new195

factual knowledge.196

3 Methodology197

3.1 Research questions198

As shown in the related works Section, there is still199

not a clear understanding about what is really learnt200

by finetuning methods like LoRa. In this study, we201

argue that prefix tuning is a better solution to inject202

a small number of new facts into the LLM, which203

may potentially be extended (in a future work) to204

support many facts either by retrieving the best205

prefix from a prefix-store (à la RAG), or by select-206

ing prefixes with gating networks (à la mixture-of-207

experts) or by generating prefixes with a dedicated208

model. Concretely, the target research questions209

of this work are: (i) Can a single prefix vector on210

the first layer learn a single fact? Does this learn-211

ing generalize to reformulations of this fact? (ii)212

Can a longer prefix (n > 1) learn multiple facts?213

What effect does prefix size have on learning and214

generalization? In-context learning suggests that215

the answer to this question and the previous one216

are positive. (iii) In the existing literature, the pre- 217

fix is usually spread across all layers of the model. 218

However, Simoulin and Crabbé (2021) suggest that 219

the deeper layers in Transformer models are as- 220

sociated with abstract and high-level capabilities, 221

while factual information is stored in the lower lay- 222

ers. Does restricting the prefix depth d therefore 223

affect the learning and generalization capacities of 224

the model? (iv) Do the answers to the previous 225

questions remain true with bigger models? 226

3.2 Facts learning 227

We model a fact as a semantic triple of the form 228

(subject, predicate, object), in which the subject 229

and object are typically noun phrases, and the pred- 230

icate a verb phrase. We consider the following 231

important properties, largely adapted from (Meng 232

et al., 2022a): 233

Learning: The updated LLM has learnt the fact 234

when it can predict the object from a sentence con- 235

taining the subject and predicate after being up- 236

dated, while it could not predict the object before; 237

Generalization: The LLM is able to generalize the 238

learned fact when it can predict the object from a 239

paraphrase of the subject and predicate. 240

Specificity: The updated LLM is specific when it 241

correctly generates another expected object that is 242

different from the learned triplet from a slightly 243

different subject and predicate input. 244

Non-forgetting: The updated LLM generates the 245

correct objects that were already known by the 246

baseline LLM. 247
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3.3 Evaluation248

Let L be a baseline LLM and T = T1, ..., Tp a list249

of recent facts (triples). We first build a training250

set containing a list of simple sentences generated251

from the triples in T (see Figure 1). We then update252

the model on this training set, either with prefix-253

tuning (our proposal) or LoRA (the baseline). The254

perplexity of the updated LLMs are computed on255

the same training set and compared: although it is256

largely debated in the community, we nevertheless257

consider that this perplexity is a relevant indicator258

of whether the LLM has learnt this training set or259

not. We then evaluate generalization by measur-260

ing the perplexity of the updated LLMs on com-261

plex, creative sentences created by reformulating262

the training sentences. We finally measure speci-263

ficity and non-forgetting by evaluating the LLMs264

on existing MCQ benchmarks.265

4 Dataset266

In this section, we describe the steps used to create267

NOVEL-WD and give an overview of the resulting268

dataset. A sample output of each step of the full269

process is given in Table 1.270

Element Value
Triple (Frances Allen, spouse, Jacob Schwartz)

Training sentence Frances Allen is married to Jacob Schwartz.
Test sentence 1 Frances Allen’s spouse is
Test sentence 2 The spouse of Frances Allen was
Test sentence 3 Frances Allen was married to
Test sentence 4 Frances Allen has been married to
Test sentence 5 The name of Frances Allen’s spouse is

Question Who was Frances Allen’s spouse?
Distractor 1 Charles Householder
Distractor 2 David Padua
Distractor 3 John Cocke

Table 1: A sample of the dataset for a single triple.

Triple extraction We begin by extracting RDF271

triples that were newly added to Wikidata. To do272

so, we retrieve new triples from a daily incremental273

database dump. We restrict ourselves to items and274

exclude lexemes, which represent lexicographical275

data. We also do not take into account complex276

triples, in which the subject or object is a Wikime-277

dia template, as well as triples in which the subject278

is a numerical identifier, a filename or a URI. We279

then resolve eventual internal Wikidata links in the280

subject, predicate or object by replacing them with281

the English name of the associated item. Finally,282

when multiple triples share the same subject and283

predicate, we randomly select one such triple and284

discard the other ones, so as to limit the risk of285

models trying to learn multiple conflicting facts.286

Training set To generate a training set, we con- 287

vert each triple into a simple sentence, by querying 288

a 8-bit quantized version of VICUNA-13B (Chiang 289

et al., 2023) with a two-shots prompt (see code 290

on github). For each triple, we generate one such 291

sentence. 292

Two evaluation tasks The first evaluation is a 293

causal language modeling task (perplexity): for 294

each triple, we ask 8-bit VICUNA-13B in a two- 295

shots setting to generate 5 sentences in which the 296

object of the triple is missing. In order to test for 297

generalization capabilities and to avoid repeating 298

the training sentence, we specifically prompt Vi- 299

cuna for "creative sentences". Manual editing may 300

then be applied to the output sentences in the in- 301

frequent situation (occurring for less than 10 facts) 302

where full sentences are generated rather than in- 303

complete one. 304

The second task is a multiple choice question 305

answering task (MCQ). For each triple, a two-shots 306

8-bit VICUNA-13B prompt is first applied to gen- 307

erate a question asking for the object of the triple. 308

Then, a similar prompt is applied to generate 4 309

"likely answers" to the question. Among the 4 gen- 310

erated answers, we remove the ground-truth one if 311

it is present, and select the 3 first remaining ones 312

as distractors. After manually checking and editing 313

the generated answers in rare cases (3 occurrences) 314

where they semantically overlap, we then add in 315

the correct answer. We therefore obtain a question 316

with 4 possible choices, exactly one of which being 317

correct. 318

After all the steps above have been applied, 319

NOVEL-WD consists of 338 distinct triples, and 320

each triple contains one associated training sen- 321

tence, five incomplete validation sentences, one 322

question and three distractors. 323

5 Experimental setup 324

The baseline model chosen for our experiments is 325

BLOOMZ-7.1B (Muennighoff et al., 2023). The 326

training was ran for up to 450 epochs using the 327

AdamW optimizer with a weight decay of 0.1 and 328

an initial learning rate of 3 ∗ 10−2, decreasing by 329

a factor of 10 after 10 epochs of non-decreasing 330

training loss. We did not project the prefix through 331

an intermediate MLP as mentioned in (Li and 332

Liang, 2021), as we found that it did not increase 333

training stability and generally resulted in lower 334

performance. For all of our models, prefix-tuning 335

was implemented by learning the value of the 336
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previous key and value vectors in attention layers,337

resulting in two vectors per layer and per virtual338

token being learned, for a total of 2 ∗ d ∗ n vectors.339

340

For each macro-experiment and number of facts341

k, we divided the D=338 facts of NOVEL-WD342

into non-fully overlapping subsets of length k,343

and trained one copy of the baseline model on344

each subset. For a given k, the number of345

subsets was computed as max(5, ⌊D/k⌋). For346

example, for k = 3, we sampled 112 sub-347

sets of 3 facts, and trained a separate copy of348

BLOOMZ-7B1 on each of those 112 subsets.349

Training subsets were generated for values of k350

in {1, 2, 3, 4, 5, 8, 10, 20, 50, 100, 200}.351

5.1 Evaluation352

To evaluate our models in the text prediction set-353

ting, we prompt them with each of the five incom-354

plete sentences associated with each fact from the355

training set, and generate the following ten tokens356

without sampling and with a temperature of 1. We357

only count an answer as correct if the model’s out-358

put contains the exact answer’s text, capitalization359

excepted, and we report the accuracy over every360

sentence of the test set for a given model. We also361

measure the proportion of learning models for362

a given k, by selecting only facts of the test set363

for which the baseline model does not output any364

correct prediction, and counting the proportions365

of the prefix-tuned models trained on those ques-366

tions for which the test set accuracy is non-zero.367

In other words, learning models are models which368

are able to correctly predict at least one sentence369

completion for facts that were not known by the370

baseline.371

To perform regression tests, we selected the SciQ372

(Welbl et al., 2017) and MMLU (Hendrycks et al.,373

2020a,b) datasets. For SciQ, we measure the ac-374

curacy of the baseline and prefix-tuned models in375

the MCQ setting, by using the same prompt as for376

NOVEL-WD, and selecting the lowest per-token377

perplexity choice. We apply this method on all378

1,000 questions of the test set. For MMLU, we ap-379

pend each of the possible four completions to each380

sentence, and then select the one with the lowest381

per-token perplexity as the model’s answer. This382

is applied to the test sets from each of the 57 cate-383

gories found in the dataset. Due to computational384

costs, regression tests were ran on a random sample385

of 5 prefix-tuned models for each value of k.386

Figure 2: Percentage of prefix-tuned models obtaining
increased accuracy over the baseline. Error bars span
95% confidence intervals.

6 Results and analysis 387

6.1 Base setup 388

Our initial experiment focuses on a single prefix 389

(n = 1, d = 1), corresponding to 8,192 trainable 390

parameters, or 0.000116% of the baseline model’s 391

parameters. For comparison, we also perform the 392

same experiment using LoRA (rank= 8, α = 8) 393

instead of prefix-tuning. We use the same training 394

hyperparameters for both LoRA and prefix-tuning. 395

The proportion of prefix-tuned models with in- 396

creased accuracy in the prediction setting is given 397

in Figure 2, along with the mean accuracy (see 398

Appendix B Figure 4) obtained in the prediction 399

setting for different numbers of facts. 400

For 1 ≤ k ≤ 3, between 54.1% and 55.4% of the 401

models are able to learn at least one information 402

over the baseline. This amount stays stable for 403

k ≤ 10, with the proportion of learning models 404

ranging from 40.5% to 55.4%. For k = 20, this 405

proportion drops to 18.8%, and none of the models 406

trained for k > 20 achieved any accuracy gains 407

over the baseline. Note that a recent work applying 408

control theory to LLMs has shown that WikiText 409

can be nearly perfectly predicted (at 97%) with 410

less than 10 additional prompt tokens (Bhargava 411

et al., 2024), which also somehow confirms from a 412

different point of view this limit of k ≤ 10 tokens 413

than we have found. 414

The baseline model obtains a consistent accu- 415

racy ranging from 3.0% to 6.3%, suggesting that 416

a small number of facts found in the dataset are 417

either already known or easily deducible by the 418

model. In contrast, the prefix-tuned models obtain 419

a mean accuracy peaking at 29.1% for k = 3, and 420
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gradually decreasing for k > 3 until k = 50, for421

which the results are no longer significantly better422

than the baseline. This initial result suggests that423

during training, the prefix is usually able to select424

and remember 1 to 3 facts well, and up to 20 with425

decreasing accuracy. Furthermore, this learning426

is conditional on having a low enough number of427

facts present in the training data; having more than428

10 facts seems to hamper the model’s ability to429

learn even a single fact.430

In comparison, models trained with LoRA sys-431

tematically underperform prefix-tuned ones for all432

values of k, with a prediction accuracy reaching433

20.4% for k = 2, and values ranging from 4.6% to434

14.4% for other values of k. Furthermore, they typ-435

ically obtain pLM scores that are similar or lower436

than the ones of prefix-tuned models. This may437

be due to the low rank value of 8 used in our ex-438

periments; however, rank 8 LoRA adds 3,932,160439

parameters to the base model, a number which is440

480 times higher than the parameters contained441

in a single prefix. We therefore argue that while442

LoRA may outperform prefix-tuning at higher ma-443

trix ranks, it does so in a much less cost-efficient444

manner than prefix-tuning.445

6.1.1 Error analysis446

With k = 1, about half of the facts found in447

NOVEL-WD were not learned by a single prefix.448

While we could not identify meaningful semantic449

or content differences between the types of facts450

that were learned and those that were not, we re-451

port in Table 6 in appendix A quantitative statistics452

between those two categories. For each reported453

statistic, the non-learned value was found to be454

significantly larger than the learned one, as mea-455

sured using a one-sided Welch’s t-test (p = 0.05).456

This suggests that the facts that were not success-457

fully learned are typically longer and are farther458

from the baseline model’s distribution, both in their459

sentence form and in the text completion setting,460

which might result in an inability for prefix-tuning461

to sufficiently steer the model towards learning462

them.463

6.2 Detecting overfitting and forgetting464

We report the training loss in Figure 3 and norm465

of the two prefix vectors in Appendix B Figure 5466

measured post-training in each experiment.467

We observe that for k = 1, almost all experi-468

ments end with a training loss approaching zero,469

with the exceptions of a few outliers for which470

Figure 3: Training loss in the basic setup, measured
post-training.

the loss remains high. This confirms our previ- 471

ous finding that the prefix is almost always able 472

to learn a single fact, but may not be able to gen- 473

eralize in the prediction setting. When increasing 474

k, the losses increase linearly up to k = 10 (me- 475

dian value: Ltrain = 0.38). For n ≥ 20, the 476

loss increases sharply and quickly approaches the 477

baseline model’s loss of 4.38. We interpret this 478

inflection as consistent with our previous observa- 479

tions, suggesting that a change of learning mode 480

occurs in the vicinity of k = 15: For lower values, 481

the model is efficiently able to learn and general- 482

ize novel information, while for higher values, the 483

model may no longer able to store all facts and 484

instead unsuccessfully attempt to learn a combined 485

representation of the training set. These findings 486

are also consistent with the evolution of the prefix 487

norm given: For n ≤ 3, we observe a linear in- 488

crease in prefix norm, which may indicate that the 489

model does not make full use of the available prefix 490

capacity. For 3 ≤ n ≤ 10, the prefix norm is nearly 491

constant and may signal increasing compression 492

within the prefix. Finally, for n ≥ 10, the prefix 493

norm decreases rapidly. 494

Finally, we report in Table 2 the results of the 495

evaluation over SciQ and MMLU, which shows 496

that the prefix-tuned models do not seem to forget 497

facts learned during pre-training or incur any loss of 498

reasoning capabilities, for any value of k. Surpris- 499

ingly, our prefix-tuned models even perform consis- 500

tently and significantly better than the baseline for 501

all values of k. Our hypothesis is that, by "finetun- 502

ing" (through a prefix) the LLM on Wikipedia-like 503

sentences, we specialize the LLM to interpret its in- 504

puts in a more "factual way" and in the Wikipedia 505

domain, which is useful for the type of factual 506
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SciQ acc. MMLU acc.
k Min Max Avg

Baseline 0.757 0.130 0.463 0.307
1 0.833 0.184 0.512 0.343
2 0.864 0.189 0.517 0.341
3 0.840 0.189 0.517 0.340
4 0.838 0.184 0.517 0.339
5 0.827 0.191 0.509 0.339
8 0.833 0.184 0.509 0.341
10 0.834 0.193 0.509 0.341
20 0.808 0.185 0.515 0.328
50 0.835 0.190 0.518 0.335

100 0.826 0.192 0.512 0.340
200 0.828 0.189 0.524 0.342

Table 2: Accuracy of the models on the MMLU and
SciQ datasets, averaged over 5 random runs for each
value of k. For MMLU, we report the score obtained by
the lowest and highest accuracy as well as the average
across categories.

MCQ questions that occur in SciQ and MMLU.507

However, we did not study this hypothesis in detail508

and leave this question open for future work.509

6.3 Impact of prefix size510

Table 3 contains the results obtained when prefix-511

tuning BLOOMZ-7B1 while varying the number512

of virtual tokens n contained in the prefix.513

n=1 n=20 n=100
k Acc pLM Acc pLM Acc pLM
1 0.274 0.541 0.353 0.601 0.365 0.619
2 0.279 0.548 0.333 0.613 0.357 0.607
3 0.291 0.554 0.315 0.589 0.358 0.616
4 0.247 0.464 0.321 0.607 0.337 0.619
5 0.227 0.493 0.316 0.582 0.304 0.612
8 0.177 0.405 0.256 0.524 0.270 0.452

10 0.159 0.485 0.245 0.601 0.268 0.512
20 0.123 0.188 0.199 0.500 0.218 0.500
50 0.076 0 0.116 0.167 0.113 0.167
100 0.053 0 0.086 0.400 0.096 0.400
200 0.055 0 0.063 0 0.070 0

Table 3: Proportion of learning models (pLM) and mean
prediction accuracy for different number of virtual to-
kens n in the prefix. Bold values denote statistically
significant improvements over n = 1, using a one-sided
z-test for proportions for pLM and a one-sided t-test for
the accuracy (p = 0.05).

We observe significant improvement in accu-514

racy for nearly all values of k when increasing515

the prefix size from 1 to 20, as well as signifi-516

cant gains in the proportion of learning models for517

k ∈ {1, 4, 20, 100}. Similar results are obtained518

when further increasing the prefix size from 1 to519

100. However, none of the variation in accuracy or520

proportion of learning models between n = 20 and521

n = 100 are statistically significant.522

We interpret those results as follows: Increasing 523

the prefix size only modestly increases the chances 524

for a model to be able to learn at least one fact. 525

However, such an increase has a strong impact 526

on the prediction capabilities of the model, which 527

suggests that the model is able to learn more facts 528

and to generalize better. 529

We hypothesize that the former may stem from 530

the varying complexity of the facts in our dataset: 531

for some facts, the base model may already con- 532

tain information about the subject and predicate, 533

and prefix-tuning might only be needed to learn the 534

value of the object. A typical example of this situ- 535

ation can be found in facts of the type "[historical 536

figure] was born on [date]". On the contrary, there 537

exist more complex facts for which the subject and 538

predicate themselves might be novel, and for which 539

the base model might not contain information. We 540

also note that increasing the prefix size past 20 541

brings no further improvement to the learning and 542

generalization capacities of our model, which may 543

indicate that prefixes are inherently limited in terms 544

of information capacity. 545

6.4 Impact of prefix depth 546

We report in Table 4 the results obtained by increas- 547

ing the number of layers spanned by the prefix in 548

our initial setup from d = 1 (minimal depth) to 549

d = 30 (full-depth prefix). 550

d=1 d=30
k Acc pLM Acc pLM
1 0.274 0.541 0.354 0.590
2 0.279 0.548 0.441 0.667
3 0.291 0.554 0.520 0.768
4 0.247 0.464 0.467 0.690
5 0.227 0.493 0.470 0.731
8 0.177 0.405 0.487 0.690
10 0.159 0.485 0.476 0.789
20 0.123 0.188 0.401 0.813
50 0.076 0 0.275 0.333

100 0.053 0 0.130 0.800
200 0.055 0 0.101 0.000

Table 4: Proportion of learning models (pLM) and mean
prediction accuracy for different prefix depths d in the
prefix. Bold values denote statistically significant im-
provements over d = 1, using a one-sided z-test for
proportions for pLM and a one-sided t-test for the accu-
racy (p = 0.05).

We observe that increasing the prefix depth has 551

a significant effect on both the accuracy and the 552

proportion of learning models. For all values of k, 553

the average accuracy is increased by 8 to 31%, with 554

the highest increase reached for k = 10. The high- 555

est average accuracy is obtained for k = 3, which 556
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once more suggests that up to three facts can be557

efficiently stored within a prefix, but performance558

stays comparable up to k = 10.559

The second main observation is the fact that560

the proportion of learning models significantly in-561

creases for all values of k except k = 1, with gains562

of up to 80% for k = 100. We hypothesize that in-563

creasing the prefix depth allows for more complex564

information to be learned and enables the model to565

learn at least one information for all but the highest566

amount of training facts. Increasing the value of567

d from 1 to 30 effectively multiplies the number568

of trainable parameters by 30, but far surpasses569

the results obtained by increasing the prefix length570

by a factor of 100. We therefore remark that pre-571

fix depth seems to have a much stronger effect on572

model performance than prefix length.573

6.5 Impact of base model574

To investigate the effect that the type and size of the575

base model may have on prefix-tuning, we repeat576

our initial experiments on BLOOMZ-1B7, the 1.7577

billion parameter version of BLOOMZ, chosen for578

scale comparisons. We measure the accuracy of the579

baseline models in the prediction setting over the580

entirety of NOVEL-WD. BLOOMZ-1B7 obtained581

an overall accuracy of 4.4%, while BLOOMZ-7B1582

reached a similarly low value of 5.0%.583

The results obtained after prefix-tuning are re-584

ported in Table 5. In terms of scaling, we first

BLOOMZ-1B7 BLOOMZ-7B1
k Acc pLM Acc pLM
1 0.293 0.565 0.274 0.541
2 0.273 0.556 0.279 0.548
3 0.262 0.589 0.291 0.554
4 0.213 0.464 0.247 0.464
5 0.189 0.403 0.227 0.493
8 0.152 0.286 0.177 0.405
10 0.112 0.394 0.159 0.485
20 0.085 0.189 0.123 0.188
50 0.053 0 0.076 0

100 0.045 0 0.053 0
200 0.039 0 0.055 0

Table 5: Proportion of learning models (pLM) and mean
prediction accuracy for different number of virtual to-
kens n in the prefix. Bold values denote statistically
significant improvements over the previous column, us-
ing a one-sided z-test for proportions for pLM and a
one-sided t-test for the accuracy (p = 0.05).

585
note that there are no significant improvements586

in terms of the proportion of learning models be-587

tween BLOOMZ-1B7 and BLOOMZ-7B1. This588

strengthens the intuition that this may be due to the589

inherent complexity of some facts in the dataset, 590

and to the fact that the ability to learn a fact is 591

already present in smaller models. However, in- 592

creasing the model size has a noticeable effect on 593

the prediction accuracy, which increases by sev- 594

eral percentage points for k ∈ {4, 5, 10, 20, 50}. 595

We believe that this is partially due to the scaling 596

generalization capabilities of the models. How- 597

ever, as the number of trainable parameters almost 598

doubles between BLOOMZ-1B7 and BLOOMZ- 599

7B1, these improvements may also be explained by 600

an increase in prefix capacity. 601

Finally, to give an idea of the extracted facts, the 602

quality of the synthetic generated sentences and 603

which facts are correctly classified by the baseline 604

model, Table 7 in Appendix C shows a random 605

extract of known facts and generated sentences: 606

some facts may "leak" from the LLM pretraining 607

corpus (e.g., Frederik Storm in Denmark), or may 608

be guessed (e.g., Vitale Faliero, language spoken, 609

Italian) or may be answered by chance (e.g., A 610

View to a Kill, MPA rating, PG). This question of 611

leakage vs. actual forecasting is discussed in more 612

details in (Halawi et al., 2024). 613

7 Conclusion 614

In this study, we have developed a dataset for novel 615

fact learning in pre-trained language models. We 616

have shown that prefix-tuning can be used to learn 617

new facts, and investigated the effect of various 618

factors on prefix-tuning performance. Our main 619

recommendation is to use full-depth prefixes, but 620

to limit the prefix length to 20 virtual tokens. 621

We see several major avenues for future research 622

based on this work. While we measured the effect 623

of different factors independently, their combined 624

effect might be different. In particular, it is hard to 625

predict how prefix length and depth may interact 626

together. Another research direction is the use of 627

different and more recent baseline architectures 628

such as Mixtral (Jiang et al., 2024). Finally, a 629

long-term goal could be to scale our approach to 630

larger datasets, for example by using a mixture of 631

prefixes at capacity along with a routing module. 632

This could allow the use of a small, regular stream 633

of new information to continually update a model. 634

The code used to create NOVEL-WD and perform 635

our experiments can be found on GitHub. 636
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8 Limitations637

While this paper addresses the challenge of updat-638

ing LLMs with novel facts, there are other types639

of "updates" that should be achieved to make the640

updated LLM as useful as a new LLM pretrained641

from scratch on an up-to-date corpus, such as lan-642

guage and topic drifts. The method described in643

this work can not solve this issue. More generally,644

representing knowledge with triples is very limited,645

and can hardly for instance encode time-dependent646

and location-dependent cultural preferences, com-647

mon sense and beliefs. This work is thus strongly648

limited in terms of the type of knowledge it can649

capture, but it is only a first step towards a more650

general LLM updating paradigm.651

Another limitation is that only a few facts are652

injected in the LLM with our method, while contin-653

ual updating of the LLM would require a constantly654

increasing number of facts to be added. To achieve655

this, our method would require an additional step656

to select or generate the appropriate prefixes, de-657

pending on the observed context, in a similar way658

as what is done with RAG or alternatively mixture659

of experts. We have not tested in this work such660

an enhancement, and we have only focused so far661

on studying the usefulness of prefix tuning as an662

alternative to RAG and LoRA.663

Finally, an apparent limitation may be the size664

of NOVEL-WD, which is quite small. How-665

ever, this is mainly because of the high cost666

of running the large number of experiments re-667

quired in this study. However, since 2020, Wiki-668

data grows at a rate of 7 million entities per669

year (see https://en.wikisource.org/wiki/670

Wikidata_The_Making_Of), and the filtering that671

we apply leads to about 32000 remaining new facts672

per day (as checked for 14th March 2024), so get-673

ting data at scale should not be an issue. Further-674

more, although we made a few manual interven-675

tions to check for generation errors when creating676

the dataset and benchmarks, we are convinced such677

interventions could be avoided when using better678

LLM, such as Llama3-70b or Qwen-72b.679
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A Learned and non-learned facts 1027

Table 6 gives some statistics about the facts that 1028

have been learned or not learned in our experi- 1029

ments. 1030

B Impact from the number of novel facts 1031

Figure 4 complements Figure 2 by showing the 1032

mean accuracy of the models as a function of the 1033

number of facts, confirming the diminushing re- 1034

turns when increasing the number of new facts 1035

beyond 10. 1036

Figure 4: Mean accuracy of prefix-tuned (PT) models,
LoRA models and of the baseline (right) in the predic-
tion setting. Error bars span 95% confidence intervals.

Figure 5 complements Figure 3 by showing the 1037

observation of two phases with less and more than 1038

10 new facts. 1039

Figure 5: Frobenius norm of the key and value vectors
of the prefix in the basic setup, measured post-training.

C Qualitative examples 1040

Table 7 shows both examples of generated sen- 1041

tences and facts that are already known by the 1042
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Train set facts Test set facts
Metric Non-learned Learned Non-learned Learned
Length (characters) 57.8 51.0 73.5 66.2
Length (tokens) 15.5 13.3 18.2 15.9
Length of o (characters) 17.8 15.6 - -
BLOOMZ-7B1 per-token perplexity 4.56 4.30 4.26 4.18

Table 6: Quantitative comparison of the facts of NOVEL-WD that were successfully learned and those which were
not within a single prefix. Reported values are averaged per category.

model. All of these samples have been randomly1043

extracted, without any cherry picking.1044

The Lesser hairy-footed dunnart is also known as S. youngsoni.
Milady de Winter died by homicide.
Garden Warbler is also known as S. borin.
Dylan and Cole Sprouse were born on 4 August 1992.
Yannick Aguemon is 180 centimetres tall.
Heinrich Hoffmann died of natural causes.
Chen Lin, occupation, writer
White Flag, language of work or name, English
A View to a Kill, MPA rating, PG
Corey Hart, language spoken, English
Extinction, mitigated by, conservation efforts
Frederik Storm, country for sport, Denmark

Table 7: Random samples of generated sentences (top)
and "already known" facts (bottom)
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