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Abstract

Active learning (AL) is a technique for effi-
ciently selecting subsets of data for annota-
tion and fine-tuning, which has been shown to
outperform random sampling in classification
tasks. However, it remains unclear why apply-
ing similar strategies does not consistently lead
to similar gains in performance on natural lan-
guage generation tasks. We hypothesize that
previous methods underperform random sam-
pling as they rarely consider interactions be-
tween the selected samples, and thus overlook
training dynamics which may impact model
performance. We find that in machine transla-
tion (MT), the ordering of the samples has a
significant impact on performance, and show
that fine-tuning the model on multiple shuffles
of the data can allow AL to outperform random
sampling in cases where it previously did not.
We then present ways in which some shuffles
of the training data learn the task of MT sub-
optimally, to motivate future AL strategies to
explicitly account for training dynamics and
mitigate these failure modes.

1 Introduction

Active learning (AL) is a training paradigm used to
efficiently select unlabeled data to annotate which
yields the best model performance. This is use-
ful when annotation resources are constrained, like
for machine translation (MT) in low-resource lan-
guages. AL often works by greedily selecting the
most informative data at each iteration, based on
various metrics of model uncertainty or data diver-
sity and representativeness. This has successfully
been applied to various image and text classifica-
tion tasks (Kirsch et al., 2019; LaBonte et al., 2022;
Gal and Ghahramani, 2016; Zhang et al., 2017; Ein-
Dor et al., 2020; Prabhu et al., 2019). However, it
remains unclear why applying AL strategies in text
generation does not achieve similar gains in perfor-
mance (Perlitz et al., 2023). This is surprising, as
it suggests that models do not reliably benefit from

being trained on samples deemed as informative
according to AL metrics.

We aim to understand why AL fails to outper-
form random sampling in text generation. One
hypothesis is that the poor performance stems from
the fact that current methods only focus on maxi-
mizing informativeness metrics at each round, and
fail to account for interactions between the sam-
ples selected across rounds. Hence, there may
be unnoticed training dynamics, which make the
complex patterns and representations in generation
tasks even harder to learn. In this work, we probe
whether training dynamics may be impacting the
performance of AL strategies. In particular, we ask:
To what extent do training dynamics explain the
variance in model performance, compared to
informativeness metrics which AL optimize for?

Overall, we find that the ordering of the samples
significantly affects the model’s performance. We
demonstrate that models can achieve better perfor-
mance by using AL and accounting for ordering,
by rerunning the model with different shuffles of
the data. In some cases, fine-tuning on data cho-
sen by AL with the optimal ordering outperforms
data selected randomly, when it previously did not.
Hence, future AL work should focus not only on
what samples to select, but also on how to account
for ordering and dynamics between the selected
data. Our analysis is structured in three parts.

We first validate the underperformance of AL in
MT, by showing that using AL strategies to choose
data to fine-tune MT models on does not yield
better performance than randomly choosing (Figure
1). Even an oracle, where we use the gold-label
translations to choose samples which the model
performs poorly on, does not outperform random
sampling (Figure 1).

We then show that the ordering of the samples
have a considerable impact on model performance.
Specifically, we first find that metrics of informa-
tion content which AL strategies optimize for are



only weakly correlated with performance. We then
find that the variance in performance is explained
more by the ordering of samples than the choice of
samples themselves. We show that by finding “bet-
ter” orderings, models achieve better performance
using data selected with AL strategies. In some
cases, taking the best model across multiple shuf-
fles allows AL to outperform random sampling.

Finally, we perform a case study to understand
the ways in which certain orderings of the data
negatively impact the model’s performance, to mo-
tivate future work to address these failure modes.
We analyze an English-Filipino MT dataset, as Fil-
ipino is one of the languages which has abundant
unlabeled data, but scarce labeled data (Joshi et al.,
2020), making it an ideal candidate for AL. We find
that in some shuffles of the data, the model learns
incorrect patterns or distorted representations, in
ways that it does not recover from. While it is un-
clear what characteristics of an ordering of data
results in suboptimal performance, our findings un-
derscore the need to avoid these suboptimal runs
by finding the “better” orderings of the training
data. Hence, future work in AL should consider
ways to optimize both for the data informativeness
and training dynamics, both in MT and possibly in
other generation tasks.

2 Related Work

Active Learning Active learning (AL) is a train-
ing paradigm where data is iteratively selected, an-
notated, and added to the training pool from a set of
unlabeled candidates (Cohn et al., 1996). AL has
been used to efficiently select subsets that achieve
better performance than random sampling on image
(Kirsch et al., 2019; LaBonte et al., 2022; Gal and
Ghahramani, 2016) and text classification (Zhang
et al., 2017; Ein-Dor et al., 2020; Prabhu et al.,
2019; Siddhant and Lipton, 2018) tasks. However,
Perlitz et al. (2023) found that AL strategies did not
outperform a random baseline for generation tasks
when choosing 100-500 samples. This may hinder
the use of AL in machine translation (MT) for low-
resource settings, where reducing annotation costs
would be most beneficial, as specialized annotation
can cost up to $5 USD/sentence (Labs, 2025). We
analyze the systematic underperformance, to better
understand AL in the very low-resource setting.

Active Learning in Machine Translation In this
work, we focus on machine translation (MT). In
contrast to most work applying AL to MT which

uses thousands of examples (Zhao et al., 2020;
Zeng et al., 2019; Mohiuddin et al., 2022; Chi-
moto and Bassett, 2022), we constrain the number
of samples to 100 as Perlitz et al. (2023) did, to
reflect a very low-resource setting scenario. While
we focus on MT, our insights may extend to AL in
other text generation tasks.

Acquisition Functions Work in AL often fo-
cuses on the acquisition function — the strategy
for selecting samples. According to Zhang et al.
(2022) there are two broad categories: Represen-
tativeness strategies maximize the diversity of the
training examples selected, measured using word-
based (Zhao et al., 2020; Zeng et al., 2019) or
embedding-based (Sener and Savarese, 2018) met-
rics. Uncertainty strategies choose samples which
the model is most uncertain about and, thus, from
which the model is assumed to learn the most in-
formation. These use token probability or entropy
(Zhao et al., 2020; Mohiuddin et al., 2022), vari-
ance in model responses (Gal et al., 2017; Schmidt
et al., 2022; Liu and Yu, 2023; Zeng et al., 2019),
or predicted quality scores (Chimoto and Bassett,
2022). In our work, we validate the effectiveness of
these strategies in MT and analyze the relationship
between these metrics and model performance.

3 Validation Study

We try AL strategies in MT, to validate that AL
fails to consistently outperform random sampling.

AL Algorithm At each iteration, we choose a
subset S; from an unlabeled dataset D using acqui-
sition function f,q, label it, and fine-tune a model
0 on it, with the goal of maximizing performance
on a test set at each iteration (Algorithm 1).

Algorithm 1 Active Learning Framework

Require:
D (Unlabeled Dataset)
b (Budget per Round), n (Num Rounds)
0 (Language Model)
faq (Acquisition Function)
for : < 1ton do
for j <+ 1to |D| do
score; < faq(Dj,0)
end for
S; «— argmax (1 ... n1i(rj=p D_ics SCOTE;
Finetune 6 on S;
end for




Implementation Details For the acquisition
function f,q, we use average token probability
and entropy (Zhao et al., 2020), lexical similarity
(Schmidt et al., 2022), BALD (Gal and Ghahra-
mani, 2016), Greedy Core Set (Sener and Savarese,
2018), Delfy (Zhao et al., 2020) (See Appendix A).
We test MBART 50 (Tang et al., 2020), a pre-
trained multilingual model that can be fine-tuned
on one GPU, making it relatively more accessible
to fine-tune than LLMs. We use 10K samples from
NLLB (Team et al., 2022) as the unlabeled dataset
D, and select b = 100 samples at each round with
the largest score from f,q. We test the model on
FLORES-Plus (NLLB Team et al., 2024).

Results We find that selecting new training sam-
ples using AL strategies does not consistently out-
perform selecting them by randomly sampling (See
Figure 1, left). Note that we define outperforming
as achieving higher performance across all rounds,
as we want a strategy that beats random for any n.

Seeing as the AL strategies do not beat random,
we explore the performance of an oracle: at each
iteration, we identify the samples which the model
performs worst on using the gold-label transla-
tions (pick-worst), measured by the individual ChrF
score for the sample against the reference. We as-
sume the model will improve more when trained
on samples it performs poorly on. For comparison,
we also try the opposite strategy, choosing samples
which the model performs well on (pick-best).

Like Perlitz et al. (2023), we find that the pick-
worst strategy does not consistently achieve higher
test set performance than random sampling across
all the rounds of AL (See Figure 1, right). Given
that various AL strategies do not outperform ran-
dom sampling, we must re-evaluate the assumption
that choosing data that maximizes informativeness
metrics yields better performance.

4 Analysis Setup

Given that AL is unable to consistently outperform
random sampling, we investigate the assumption
of AL that maximizing the informativeness of a
dataset, as measured by metrics of uncertainty or
representativeness, leads to better performance. For
this analysis, we adopt the following set up:

Model We use Multilingual BART 50 Base
(MBART) (Tang et al., 2020); MBART was pre-
trained on 50 languages; we use a multilingual
model to reflect a real-world setting where users ap-

ply AL when fine-tuning a pretrained model, which
has seen multilingual data. Unless stated, we use a
batch size of 8, learning rate of 5e-5, and 5 epochs.

Datasets We use four language pairs from NLLB
(Team et al., 2022): English-Afrikaans (Eng-Afr),
English-German (Eng-Deu), English-Filipino (Eng-
Fil), and English-Hatian Creole (Eng-Hat) for fine-
tuning; we sample 10K sentence pairs for the candi-
date set. We use FLORES Plus (NLLB Team et al.,
2024) as our test set. We select these languages
to test the model’s behavior when the language is
in the pre-training data (Afrikaans, German, and
Filipino) and when it is not (Hatian Creole).

Evaluation In all analyses, we use the average
ChrF+ score (Popovié, 2017), which is a character-
level F1 score shown to correlate well with human
ratings in translation tasks, over the test set.

5 Results

5.1 To what extent do training dynamics
explain the variance in performance,
compared to metrics of informativeness
which AL typically optimize for?

Selecting different subsets yields varying per-
formance We verify if using different subsets of
the data yields different levels of performance. We
sample 500 subsets with 100 samples each from
the candidate set. For each subset, we finetune
MBART and evaluate on the test set, and plot the
distribution of resulting test set ChrF+ scores.

Figure 2 shows a wide variance in performance
across subsets, confirming that the choice of subset
impacts the performance. We analyze if the data’s
information content, measured by AL metrics, ex-
plain the performance across subsets.

Performance is only weakly associated with met-
rics of information content optimized for by AL
To understand the relationship between AL metrics
and performance, we measure the correlation be-
tween ChrF scores and various AL metrics. For
representativeness metrics, we compute (1) DelFy
(Zhao et al., 2020) - a word frequency metric with a
penalty for previously seen words, (2) L2 Distance
(Ni et al., 2022; Sener and Savarese, 2018) - the
average L2 distance of training examples from the
center!, and (3) word-level statistics of the dataset:
the vocabulary size of the train set, the percentage

! Computed with the hidden state of the encoder’s last layer;
Center is the average embedding over the training examples
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Figure 1: Various AL strategies are unable to consistently achieve better test set performance than random sampling;
Plot shows test set performance (ChrF+) per AL round, plotted with smoothing over 5 steps
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Figure 2: Fine-tuning on different subsets of the data
yields considerable variance in test set performance;
Plotted using 500 subsets with 100 samples each

of vocabulary shared by train and test sets, and
the percentage of test set vocabulary present in the
train set (Appendix A.1).

For uncertainty metrics, we compute metrics by
sample, then average over the dataset. We compute
average token probability and entropy (Zhao et al.,
2020), lexical similarity (Schmidt et al., 2022), and
BALD score (Gal et al., 2017) (Appendix A.2).

As shown in Table 1, informativeness metrics are
only weakly correlated with performance. Repre-
sentativeness metrics are more strongly correlated
with performance, but only achieve 19% at most.

To understand how much of the variance in per-
formance these metrics explain, we regress the
ChrF+ scores on the features computed above using
ordinary least squares, and find that these features

Afr Deu Fil Hat
° Number of Vocab 0.16 -0.15 0.08 -0.05
= % Shared Vocab 0.19  -0.06 0.07  -0.10
g % Test Vocab Seen 0.19  -0.08 0.07 -0.10
] Delfy (Source) -0.09 0.02 0.04 0.03
§ Delfy (Target) -0.04  -0.02 0.01 0.10
& L2 Distance 0.03 -0.21 0.04 -0.04
> Mean Token Prob (Min) -0.03 -0.07 -0.02 0.02
g Mean Token Prob (Avg) -0.09 -0.08 -0.05 0.07
5 BALD 0.07 -0.05 0.02 0.01
g Lexical Similarity 0.12  -0.07 0.08  -0.06
= Mean Token Entropy -0.09 0.05 -0.14 0.04

Table 1: Spearman correlation between AL metrics and
model performance (Test Set ChrF)

jointly explain only 4.1% (Eng-Afr), 5.1% (Eng-
Deu), 2.0% (Eng-Fil), and 2.5% (Eng-Hat) of the
total variance in performance (using R2). This
suggests that metrics of informativeness which AL
optimizes for only loosely determine performance.
This challenges the underlying assumption that op-
timizing for such metrics yields better performance.

In fact, most of the variance in performance can
be attributed to the ordering of the samples of
the data, rather than the samples themselves
Given that the metrics of informativeness do not
explain the variance in performance, we turn our
attention to other sources of the observed variation.
So far, the only variable we changed is the sample
used to fine-tune the model. Thus, the only param-
eters we can change are the sampled data and the
order in which they are shown to the model. We
can decompose the variance in performance into
the variance attributed to the samples, vs the or-
dering of those samples as follows, where G is the
set of sampled subsets, each with N shuffles of the



same data, p; ; is the performance (ChrF+ score)
from the i-th subset with the j-th ordering, p; is
the average performance for group ¢, and p is the
average performance across all samples.
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We study how much of the variance in perfor-
mance is a result of the contents of the sample
compared to the order of its elements. To do this,
we fine-tune models on multiple shuffles of the
same sample, and repeat this for multiple samples.
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Figure 3: Reshuffling the same data yields considerable
variance in performance; Each plot uses 500 shuffles of
a set of 100 samples

We observe a large variance in performance from
shuffling the data (Figure 3). In fact, the variance
from shuffling the same data nears/exceeds the vari-
ance from sampling new data when comparing Fig-
ure 2 to 3 (Sample vs Shuffle: Eng-Afr: 8.4 vs.
6.5; Eng-Deu: 13.7 vs. 13.5; Eng-Fil: 7.1 vs. 7.8;
Eng-Hat: 5.4 vs. 3.9). We repeat this with 2 to 200
samples with 20 re-orderings each. Using the above
equation, we find that ordering explains much of
the overall variance in performance (Figure 4). We
repeat this using different batch sizes (8, 16, 32)
and learning rates (1le-5, Se-5, 1e-4), and still find
that a majority of the variance is explained by or-
dering (Figure 5).

% Variance from Ordering

Figure 4: Across multiple groups of samples, each shuf-
fled 20 times, the ordering of the samples accounts for
between 80% to 95% of variance

5.2 How can these findings be used to improve
AL performance?

So far, we demonstrated that the ordering of the
samples have a large impact on performance, which
suggests that these should be considered when us-
ing AL. We show that considering both ordering
and AL can lead to better performance.

We take the data selected by various AL strate-
gies, train the model on various shuffles of the same
data, and take the model with the best result. As
shown in Table 2, we are almost always able to
find a shuffle of the data that leads to better perfor-
mance. In some cases, shuffling results in an AL
strategy outperforming random sampling, when it
previously did not (highlighted in green).

It should be noted that this in itself is not a
method, as we have optimized directly for test set
performance in order to demonstrate that models
can achieve better performance when trying differ-
ent orderings. This aims to motivate future work
in AL to find both the optimal subset and their
optimal ordering simultaneously.

6 Case Study on Failure Modes Induced
by Sample Ordering

The previous findings suggest that the informative-
ness of the samples (according to AL metrics) is
only weakly associated with performance, whereas
we expected this to impact performance most. In
contrast, sample ordering has a much larger impact.

We study the behavior of models trained on dif-
ferent orderings of the same samples, looking at
both the lexical and embedding level. Our aim is to



Strategy NS WS NS WS NS

BALD 42,6 465 1.8 48.1 47.0
Core Set  47.7  50.6 3.1 52.0 544
DelFy 267 296 31.6 39.1 432
Lex Sim 183 270 0.0 29.3 34.8

MTE 484 499 494 51.2 521 532 455 458 0.0 469 47.7 48.6
MTP 417 443 372 44.8 42.4 442 0.0 432 43.1 439 0.0 44.8
Random 342 415 431 46.0 47.3 49.1 0.0 439 44.0 454 474 47.4
Eng-Fil Eng-Hat
500 1000 2000 500 1000 2000

Strategy NS WS NS WS NS

WS NS WS NS WS NS WS

BALD 40.2 402 382 408 400
Core Set  39.6 454 472 473 46.6
DelFy 235 262 333 333 351
Lex Sim 17.1 21.0 312 312 336
MTE 408 451 463 465 471
MTP 319 404 378 396 401
Random 315 377 364 401 422

41.0 9.4 215 244 29.3 29.9 32.6
50.1 29 334 0.9 36.2 37.5 37.5
38.9 9.2 17.0  10.7 18.1 5.8 24.5
336 112 11.9 39 11.3 15.2 15.2
49.1 0.6 305 324 34.7 11.6 36.9
40.6 0.6 253 190 26.7 17.0 27.4
442 100 220 156 252 27.6 29.8

Table 2: Best test set ChrF+ score across 50 shuffles of the data selected using AL strategies; Shuffling the data post-
AL yields improvements in nearly all strategies when using 500, 1000, and 2000 samples, sometimes outperforming
random when the strategy initially did not; NS: No Shuffling (1st AL run), WS: With Shuffling; Runs that beat
random sampling are written in bold, and those that beat it only after shuffling are highlighted in green
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Figure 5: Percent of variance in test set performance
measured by ChrF+ from ordering, computed using 20
samples shuffled 20 times each, on 25% of the original
test set; Ordering accounts for most of the variance in
performance across different hyperparameters

understand the ways in which some orderings learn
MT suboptimally, in ways that others do not. By
understanding the failure modes caused by certain
orderings, we can better motivate future methods
to understand the mechanism by which samples
interact with each other, and use these to propose

AL strategies that account for the sample ordering.

6.0.1 Some runs lead to poor acquisition of
the task and unexpected interactions
with the model’s parametric knowledge

We fine-tune models on multiple shuffles of an
English-Filipino task. We use a batch size of one to
isolate the effect of each training sample. At each
training step, we analyze how the predictions for
the test set change. We observe the following:

In some orderings, the model learns incorrect
translations of the vocabulary In one shuffle for
example, at fine-tuning step 91, the model is trained
on the word panalangin, which means prayer. Af-
ter one or more fine-tuning steps, the model starts
to incorrectly use that word in various test samples.
In fact, at the end of fine-tuning, the model incor-
rectly generates the word panalangin in 253 out of
1012 test set examples (See Table 3). This suggests
that the model generates the vocabulary en masse
without necessarily learning its meaning. In con-
trast, in another shuffle of the data, the model is
fine-tuned on the word panalangin at step 14, and
does not exhibit this incorrect usage of the word.

In some orderings, the models learn less of the
vocabulary words in the training data We see
that models are unable to correctly learn certain
Filipino vocabulary despite having been trained on
them (Figure 6). Moreover, this failure to learn
vocabulary is more severe in some shuffles of the
data than others. In 4/5 shuffles of the same data,



Set Step Input Target
Train 91 A for our beloved nation. Isang sa aming mahal na nasyon.
Set Step Input Prediction
Test 94 The tenth named storm of the Atlantic Hurricane season, Subtropical ~ Ang lalake ang huling named na na na named na ang
Storm Jerry, formed in the Atlantic Ocean today. panalangin..., ang panalangin sa Atlantic ng Amerika...
95 The number of people present was so large that it was not possible for ~ Ang mga tao na ito ay hindi posible para sa lahat ng tao ang
everybody to gain access to the funeral in St. Peter’s Square. panalangin sa St. Peter’s Square.
Prime Minister Stephen Harper has agreed to send the government’s Stephen Harper ay nag-iisa ang panalangin sa ang lahat ng
’Clean Air Act’... for review, before its second reading, after Tuesday’s ~ mga tao para sa panalangin...
25 minute meeting with NDP leader Jack Layton at the PMO.
97 The final match of the series will take place at Ellis Park in Johannes-  Ang palangin sa Ellis Park sa Johannesburg, ang panalan-

burg next week, when the Springboks play Australia.

gin sa Australia ng mga tao ng mga tao ng Australia.

Table 3: Models incorrectly generate the word panalangin across various samples after being fine-tuned on an
example with the word (Red indicates wrong usage of the word)

the model fails to generate at least one vocabulary
word seen in the training data for 72.1% of test set
examples. However in another shuffle, 85.1% of
test samples have at least one Filipino word which
the model does not generate.

% Vocab Seen vs Learned
Training Idx 56, Spearman Corr: 0.05
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Figure 6: Plot of % Filipino vocabulary per test example
trained on vs. generated at test time (i.e. learned); Train-
ing on more vocabulary does not mean the model learns
to generate those vocabulary; Each point is generated
using a sample in the test set

Some runs also exhibit more interactions with
the model’s parametric knowledge We observe
that using some shuffles, models generate words
not in the training data more frequently. This sug-
gests that in some shuffles, models rely more on
their parametric knowledge; hence, particular shuf-
fles induce more reliance on parametric knowledge.

To illustrate, in one shuffle, the model correctly
generates at least one OOD word in 42.7% of test
samples; but only does so for 16.3% of samples
using another shuffle. In Table 4, the model gen-
erates gulang (age/old), despite it not being in the
training corpus.

Additionally, in some orderings of the data, the
model incorrectly generates words from other lan-

guages more frequently, despite the training corpus
solely being in Filipino. For example, it translates
he added as katanya, which means “he said” in
Indonesian. This happens across many test set ex-
amples?. In some orderings of the data, more test
samples have foreign language words (Indonesian:
319, Cebuano: 232), whereas in other orderings,
there are fewer (Indonesian: 154, Cebuano: 195
words). It should be noted that these numbers are
overestimated as both languages share words with
Filipino, but we manually review and confirm that
many of them are indeed non-Filipino.

Overall, we find that some orderings lead mod-
els to learn incorrect translations, fail to acquire
vocabulary, or incorrectly use words from paramet-
ric knowledge more frequently, and hence achieve
worse performance, whereas others do not.

6.0.2 Some orderings negatively impact the
learned representations of the data

We explore why certain orderings exhibit good per-
formance, and others do not, by studying both man-
ually crafted lexical features (See Appendix B),
and the model embeddings.

We fine-tune models on various shuffies of an
English-Filipino dataset, and analyze the model’s
predictions. We create pairs of similar examples,
and analyze the behavior of the model by analyzing
how the hidden state embeddings of these pairs of
samples change throughout fine-tuning.

We hypothesize that some orderings of the data
allow the model to learn the representation of the
samples well, in the sense that similar sentences
have similar embeddings - and hence learn sensi-
ble embeddings that yield good performance. In
contrast, other orderings incorrectly “move” the

2We identify the languages using Python googletrans



Type Text Comment
Source “We now have 4-month-old mice that are non-diabetic that used to be diabetic,” he added
Target “Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic,”
dagdag niya
Prediction (Step 23) “We now have 4-month-old mice na hindi-diabetic,” katanya. Foreign (Indonesian; katanya: he said)
Prediction (Step 70) “We ngayon mayroon dalawang buwan gulang na mga maliliit na... katawan ng” OOD word (gulang: age/old)

Table 4: Models generate words not in the training data, both correctly (gulang) and incorrectly (katanya)
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Figure 7: For the same set of data, some orderings may lead the model to learn good representations of the
data, leading pairs of similar sentences to have similar embeddings (left), whereas other orderings push certain
representations of sentences further away (right); For a pair of similar sentences, we compute the cosine similarity
of their embeddings by step (left), and their tSNE embeddings for each pair (green and blue, same number) (right)

representations of some samples to a part of the
embedding space from which they are unable to
get back, thereby distorting the embedding and
leading to poorer performance.

To demonstrate this, we take ten sentences from
the NLLB which are in neither the train nor test set,
and write a sentence with similar in meaning for
each. We expect the representations of each pair
to get closer as the training progresses. In some
orderings (See Figure 7, left), the model learns sim-
ilar representations for similar sentences, shown by
the increasing cosine similarity between pairs of
similar sentences, and pairs of sentences with the
same IDs being close in embedding space (blue and
green dots with the same ID are close). In contrast,
other orderings (See Figure 7, right) incorrectly
move the representation for one of the sentences
further away from its pair, from which it is unable
to recover, shown by the drop in cosine similarity
for one pair at fine-tuning step 22, which does not
go up again. Moreover, multiple pairs of sentences
have dissimilar embeddings (4, 8, 9, 10).

Our findings show that some orderings of the
data lead to poor acquisition of the MT task, or
potentially distorted representations. This aims to
motivate future work that analyzes why some order-
ings lead to suboptimal performance, and propose
AL strategies that select data in way that maximizes
informativeness metrics while avoiding the failure
modes we observed.

7 Conclusion

In this paper, we demonstrate that applying active
learning (AL) strategies to machine translation to
sample data fails to consistently achieve better test
set performance versus random sampling. We an-
alyze reasons for its underperformance, and find
that the ordering of samples significantly impact
the model’s performance. In some training runs,
we observe that MT models learn distorted repre-
sentations or learn wrong patterns from the data
which stem from noise in the task and interactions
with the model’s parametric memory. By account-
ing for training dynamics, models can achieve bet-
ter performance using data chosen using AL, and
ultimately improve the use of AL in various low-
resource scenarios.

This work aims to show how improving model
performance is not solely a problem of optimizing
for the right informativeness metrics; it requires un-
derstanding the complexities of training and learn-
ing involved in translation, and broader genera-
tion tasks. We hope these findings motivate future
work in AL in text generation to explicitly consider
training dynamics. Concretely, future work could
(1) verify if the results generalize to other gener-
ation tasks, (2) analyze and identify interpretable
characteristics of the ordering of samples that are
associated with better performance to be used as
heuristics in future AL algorithms, and (3) design
AL strategies which select samples that are both in-
formative and also correctly learned by the model.



Limitations

We emphasize that our results are based on very
specific model and dataset choices; hence, the cur-
rent results should not be taken to generalize across
all tasks, datasets, and models. Moreover, we are
only able to test a specific set of hyperparameters
due to the computational cost of the experiments,
but even the choice of hyperparameters may yield
different model behaviors across runs. We also
want to highlight that our section on training dy-
namics is based off a qualitative study of one trans-
lation direction, which the authors chose as they
had access to speakers in that language. These re-
sults merely serve to provide hypotheses as to why
models may fail to learn from the patterns in the
data, but more rigorous experimentation is required
to make stronger claims about translation or even
generation as a whole.

We also note that evaluation must be done before
deploying any MT model into a real world setting;
while AL seeks to improve the performance of
these MT models, it should by no means be naively
applied and deployed without further testing.
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A AL Metrics

A.1 Representativeness Metrics
Delfy (Zhang et al., 2022)

foun(S) = ¢ . Delfy(x)

|S| z€S
Delfy(z) =
1 || log(C(x;|U) + 1) o
‘$| i=1 Zw’eU 10g(C(w’|U) + 1) PDelfy (L4
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Where U is the set of untranslated target sen-
tences, U () is the set of untranslated sentences
with [s score higher than Is(x), L = {} is the
(empty) set of already selected sentences, C'(w|.S)
is the number of times word w appears in a set .5,
and ppeify and py ¢ are penalty functions to penalize
seen words, in which we use Ao = 1

L2 Distance

fio(S —hg, (S5 (@)

Z the

€S

s

Where hy,(x) € R? is the hidden state represen-
tation of x, obtained by taking the last hidden state
of encoder fy and averaging it over the vocab, so
that it is a vector of dimension d, and h , (S) is the
average hidden state across all samples in S.

Greedy Core Set (Sener and Savarese, 2018)
We describe one round of the greedy core set by
Sener and Savarese (2018) in Algorithm 2, where

where A(z,y) = ||y, (x) = gy (1)]13
A.2 Informativeness Metrics

Average Token Probability & Entropy (Zhao
et al., 2020)

19l
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Algorithm 2 Core Set Algorithm (1 Round)
Require:
D (Unlabeled Dataset), £ (Labeled Dataset)
b (Budget per Round), fy (LM)
fori < 1tobdo
u 4— argmax,cp minge g Az, y)
L+ L J{u}
D « D\{u}
end for

Lexical Similarity (Schmidt et al., 2022)
Z}gl Z}gl Meteor (3, 7))
N(N —1)

We compute lexical similarity, where similarity

is measured using METEOR (Banerjee and Lavie,
2005).

fis(z) = ®

BALD (Gal et al., 2017)
|9]
fpaLp (@ |ZH p(Ge|g<t, )
6
TR _— ©
s 5] H (0"l 2)
i=1 t=1
H (p(Gelg<t, ) =
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Where § is the predicted output, §(*) is the i-
th predicted output generated by sampling using
(%)

dropout, and ¢; and g, ’ are their ¢-th tokens

B Analysis of Ordering Features

What about the shuffling of the data explains the
variance in performance? We explore whether
ordering the samples to prioritize data with specific
features is associated with better performance. We
first determine how well ordered the training data
is with respect to a feature. To do this, we define
the slope of a feature, which is the coefficient 3 ob-
tained from regressing feature = a+ - -rank+e
using ordinary least squares (OLS), where rank is
the position which a sample appears in the dataset,
and feature is the value of the feature for that
sample. A positive 3 indicates that the samples are
presented in increasing order of the feature, and a
negative 3 shows decreasing order. Per sample, we
define the following features:



* Lexical Features (Target): length (in words),
mean word length (in characters), DelFy score

* Quality Features: translation quality score

* Model Uncertainty of the Sample: baseline
model average token probability, average to-
ken entropy, BALD, and lexical similarity

To compute the translation quality of a sample,
we translate the text written in the target language
back into English using Google Translate?, and
compare how similar it is to the original English
text using ChrF+ (Popovi¢, 2017); a high ChrF+
indicates that the translation has good quality.

Then, to understand if ordering the samples in
increasing or decreasing order with respect to a fea-
ture impacts performance, we compute the Spear-
man correlation between the ChrF scores and the
feature slopes. A positive correlation means that
training a model with samples in increasing order
with respect to a feature is associated with better
performance, whereas a negative coefficient means
training samples in decreasing order of that feature
is associated with better performance.

Ordering with respect to features of the data (e.g.
length, difficulty, noise) are unable to explain the
differences in performance We then study what
about the ordering of the samples could explain
the differences in performance. We compute the
feature slopes, which represent how well-ordered
a particular training run is with respect to a cer-
tain feature of the samples. We then compute the
Spearman correlation between the ChrF scores and
the feature slopes, to understand whether ordering
samples by particular features is associated with
better performance (See Table 5).

For Eng-Afr, training runs achieve better perfor-
mance when the data is ordered from (1) short to
long samples (Target Length), (2) samples which
the model is certain about to those which it is un-
certain about (Avg Token Entropy and Lexical Sim-
ilarity), and (3) noisy to clean samples (Translation
Quality). For Eng-Deu, the ordering with respect to
the computed features do not have any statistically
significant relationship with performance.

However, the characteristics of ordering we com-
pute only account for 1.7% (Eng-Afr), 0.9% (Eng-
Deu), 1.9% (Eng-Fil), 3.5% (Eng-Hat) of the vari-
ance in performance (computed by regressing ChrF
on all feature slopes with OLS, using R?). This

3Implemented using the Pythongoogletrans package
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Afr Deu Fil Hat

Sample Target Length 0.029 0.022 0.071 0.047
Sample Delfy -0.071 -0.023 0.041 0.011
Sample Translation Quality 0.029  -0.083 0.001 0.009
Model Unc. (Avg Token Prob) 0.019 0.029 -0.037 -0.003
Model Unc. (Avg Token Ent) -0.003  -0.046 0.002 0.010
Model Unc. (BALD) -0.003  -0.035  -0.027 0.040
Model Unc. (Lex Sim) -0.020 0.054 0.011 -0.040

Table 5: Spearman correlation between ChrF and fea-
ture slopes, a positive/negative value means fine-tuning
models with increasing/decreasing order of a feature is
associated with better performance; Unc.: Uncertainty

suggests that while ordering has an impact on per-
formance, it cannot be fully explained by easily
interpretable features of the ordering.

C Fine-Tuning Details

We run all our experiments on RTX 8000 GPUs;
each active learning run in the validation exper-
iment took roughly 10 GPU hours, whereas the
sampling and ordering GPU hours took roughly 72
GPU hours per translation direction.

D Dataset Details

We use the NLLB dataset (NLLB Team et al., 2024)
under the ODC-By License, and the FLORES Plus
dataset (Team et al., 2022) under the CC BY-SA 4.0
License, which allow the use of these datasets for
research purposes. We scan the datasets to check
that there are no malicious or harmful content in
the translation pairs. For these datasets, we use
the English-Afrikaans, English-German, English-
Filipino, and English-Hatian Creole datasets.



