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Abstract

Active learning (AL) is a technique for effi-001
ciently selecting subsets of data for annota-002
tion and fine-tuning, which has been shown to003
outperform random sampling in classification004
tasks. However, it remains unclear why apply-005
ing similar strategies does not consistently lead006
to similar gains in performance on natural lan-007
guage generation tasks. We hypothesize that008
previous methods underperform random sam-009
pling as they rarely consider interactions be-010
tween the selected samples, and thus overlook011
training dynamics which may impact model012
performance. We find that in machine transla-013
tion (MT), the ordering of the samples has a014
significant impact on performance, and show015
that fine-tuning the model on multiple shuffles016
of the data can allow AL to outperform random017
sampling in cases where it previously did not.018
We then present ways in which some shuffles019
of the training data learn the task of MT sub-020
optimally, to motivate future AL strategies to021
explicitly account for training dynamics and022
mitigate these failure modes.023

1 Introduction024

Active learning (AL) is a training paradigm used to025

efficiently select unlabeled data to annotate which026

yields the best model performance. This is use-027

ful when annotation resources are constrained, like028

for machine translation (MT) in low-resource lan-029

guages. AL often works by greedily selecting the030

most informative data at each iteration, based on031

various metrics of model uncertainty or data diver-032

sity and representativeness. This has successfully033

been applied to various image and text classifica-034

tion tasks (Kirsch et al., 2019; LaBonte et al., 2022;035

Gal and Ghahramani, 2016; Zhang et al., 2017; Ein-036

Dor et al., 2020; Prabhu et al., 2019). However, it037

remains unclear why applying AL strategies in text038

generation does not achieve similar gains in perfor-039

mance (Perlitz et al., 2023). This is surprising, as040

it suggests that models do not reliably benefit from041

being trained on samples deemed as informative 042

according to AL metrics. 043

We aim to understand why AL fails to outper- 044

form random sampling in text generation. One 045

hypothesis is that the poor performance stems from 046

the fact that current methods only focus on maxi- 047

mizing informativeness metrics at each round, and 048

fail to account for interactions between the sam- 049

ples selected across rounds. Hence, there may 050

be unnoticed training dynamics, which make the 051

complex patterns and representations in generation 052

tasks even harder to learn. In this work, we probe 053

whether training dynamics may be impacting the 054

performance of AL strategies. In particular, we ask: 055

To what extent do training dynamics explain the 056

variance in model performance, compared to 057

informativeness metrics which AL optimize for? 058

Overall, we find that the ordering of the samples 059

significantly affects the model’s performance. We 060

demonstrate that models can achieve better perfor- 061

mance by using AL and accounting for ordering, 062

by rerunning the model with different shuffles of 063

the data. In some cases, fine-tuning on data cho- 064

sen by AL with the optimal ordering outperforms 065

data selected randomly, when it previously did not. 066

Hence, future AL work should focus not only on 067

what samples to select, but also on how to account 068

for ordering and dynamics between the selected 069

data. Our analysis is structured in three parts. 070

We first validate the underperformance of AL in 071

MT, by showing that using AL strategies to choose 072

data to fine-tune MT models on does not yield 073

better performance than randomly choosing (Figure 074

1). Even an oracle, where we use the gold-label 075

translations to choose samples which the model 076

performs poorly on, does not outperform random 077

sampling (Figure 1). 078

We then show that the ordering of the samples 079

have a considerable impact on model performance. 080

Specifically, we first find that metrics of informa- 081

tion content which AL strategies optimize for are 082
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only weakly correlated with performance. We then083

find that the variance in performance is explained084

more by the ordering of samples than the choice of085

samples themselves. We show that by finding “bet-086

ter” orderings, models achieve better performance087

using data selected with AL strategies. In some088

cases, taking the best model across multiple shuf-089

fles allows AL to outperform random sampling.090

Finally, we perform a case study to understand091

the ways in which certain orderings of the data092

negatively impact the model’s performance, to mo-093

tivate future work to address these failure modes.094

We analyze an English-Filipino MT dataset, as Fil-095

ipino is one of the languages which has abundant096

unlabeled data, but scarce labeled data (Joshi et al.,097

2020), making it an ideal candidate for AL. We find098

that in some shuffles of the data, the model learns099

incorrect patterns or distorted representations, in100

ways that it does not recover from. While it is un-101

clear what characteristics of an ordering of data102

results in suboptimal performance, our findings un-103

derscore the need to avoid these suboptimal runs104

by finding the “better” orderings of the training105

data. Hence, future work in AL should consider106

ways to optimize both for the data informativeness107

and training dynamics, both in MT and possibly in108

other generation tasks.109

2 Related Work110

Active Learning Active learning (AL) is a train-111

ing paradigm where data is iteratively selected, an-112

notated, and added to the training pool from a set of113

unlabeled candidates (Cohn et al., 1996). AL has114

been used to efficiently select subsets that achieve115

better performance than random sampling on image116

(Kirsch et al., 2019; LaBonte et al., 2022; Gal and117

Ghahramani, 2016) and text classification (Zhang118

et al., 2017; Ein-Dor et al., 2020; Prabhu et al.,119

2019; Siddhant and Lipton, 2018) tasks. However,120

Perlitz et al. (2023) found that AL strategies did not121

outperform a random baseline for generation tasks122

when choosing 100-500 samples. This may hinder123

the use of AL in machine translation (MT) for low-124

resource settings, where reducing annotation costs125

would be most beneficial, as specialized annotation126

can cost up to $5 USD/sentence (Labs, 2025). We127

analyze the systematic underperformance, to better128

understand AL in the very low-resource setting.129

Active Learning in Machine Translation In this130

work, we focus on machine translation (MT). In131

contrast to most work applying AL to MT which132

uses thousands of examples (Zhao et al., 2020; 133

Zeng et al., 2019; Mohiuddin et al., 2022; Chi- 134

moto and Bassett, 2022), we constrain the number 135

of samples to 100 as Perlitz et al. (2023) did, to 136

reflect a very low-resource setting scenario. While 137

we focus on MT, our insights may extend to AL in 138

other text generation tasks. 139

Acquisition Functions Work in AL often fo- 140

cuses on the acquisition function – the strategy 141

for selecting samples. According to Zhang et al. 142

(2022) there are two broad categories: Represen- 143

tativeness strategies maximize the diversity of the 144

training examples selected, measured using word- 145

based (Zhao et al., 2020; Zeng et al., 2019) or 146

embedding-based (Sener and Savarese, 2018) met- 147

rics. Uncertainty strategies choose samples which 148

the model is most uncertain about and, thus, from 149

which the model is assumed to learn the most in- 150

formation. These use token probability or entropy 151

(Zhao et al., 2020; Mohiuddin et al., 2022), vari- 152

ance in model responses (Gal et al., 2017; Schmidt 153

et al., 2022; Liu and Yu, 2023; Zeng et al., 2019), 154

or predicted quality scores (Chimoto and Bassett, 155

2022). In our work, we validate the effectiveness of 156

these strategies in MT and analyze the relationship 157

between these metrics and model performance. 158

3 Validation Study 159

We try AL strategies in MT, to validate that AL 160

fails to consistently outperform random sampling. 161

AL Algorithm At each iteration, we choose a 162

subset Si from an unlabeled dataset D using acqui- 163

sition function faq, label it, and fine-tune a model 164

θ on it, with the goal of maximizing performance 165

on a test set at each iteration (Algorithm 1). 166

Algorithm 1 Active Learning Framework

Require:
D (Unlabeled Dataset)
b (Budget per Round), n (Num Rounds)
θ (Language Model)
faq (Acquisition Function)
for i← 1 to n do

for j ← 1 to |D| do
scorej ← faq(Dj , θ)

end for
Si ← argmaxI⊂{1,··· ,n}:|I|=b

∑
i∈I scorei

Finetune θ on Si
D ← D\Si

end for
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Implementation Details For the acquisition167

function faq, we use average token probability168

and entropy (Zhao et al., 2020), lexical similarity169

(Schmidt et al., 2022), BALD (Gal and Ghahra-170

mani, 2016), Greedy Core Set (Sener and Savarese,171

2018), Delfy (Zhao et al., 2020) (See Appendix A).172

We test MBART 50 (Tang et al., 2020), a pre-173

trained multilingual model that can be fine-tuned174

on one GPU, making it relatively more accessible175

to fine-tune than LLMs. We use 10K samples from176

NLLB (Team et al., 2022) as the unlabeled dataset177

D, and select b = 100 samples at each round with178

the largest score from faq. We test the model on179

FLORES-Plus (NLLB Team et al., 2024).180

Results We find that selecting new training sam-181

ples using AL strategies does not consistently out-182

perform selecting them by randomly sampling (See183

Figure 1, left). Note that we define outperforming184

as achieving higher performance across all rounds,185

as we want a strategy that beats random for any n.186

Seeing as the AL strategies do not beat random,187

we explore the performance of an oracle: at each188

iteration, we identify the samples which the model189

performs worst on using the gold-label transla-190

tions (pick-worst), measured by the individual ChrF191

score for the sample against the reference. We as-192

sume the model will improve more when trained193

on samples it performs poorly on. For comparison,194

we also try the opposite strategy, choosing samples195

which the model performs well on (pick-best).196

Like Perlitz et al. (2023), we find that the pick-197

worst strategy does not consistently achieve higher198

test set performance than random sampling across199

all the rounds of AL (See Figure 1, right). Given200

that various AL strategies do not outperform ran-201

dom sampling, we must re-evaluate the assumption202

that choosing data that maximizes informativeness203

metrics yields better performance.204

4 Analysis Setup205

Given that AL is unable to consistently outperform206

random sampling, we investigate the assumption207

of AL that maximizing the informativeness of a208

dataset, as measured by metrics of uncertainty or209

representativeness, leads to better performance. For210

this analysis, we adopt the following set up:211

Model We use Multilingual BART 50 Base212

(MBART) (Tang et al., 2020); MBART was pre-213

trained on 50 languages; we use a multilingual214

model to reflect a real-world setting where users ap-215

ply AL when fine-tuning a pretrained model, which 216

has seen multilingual data. Unless stated, we use a 217

batch size of 8, learning rate of 5e-5, and 5 epochs. 218

Datasets We use four language pairs from NLLB 219

(Team et al., 2022): English-Afrikaans (Eng-Afr), 220

English-German (Eng-Deu), English-Filipino (Eng- 221

Fil), and English-Hatian Creole (Eng-Hat) for fine- 222

tuning; we sample 10K sentence pairs for the candi- 223

date set. We use FLORES Plus (NLLB Team et al., 224

2024) as our test set. We select these languages 225

to test the model’s behavior when the language is 226

in the pre-training data (Afrikaans, German, and 227

Filipino) and when it is not (Hatian Creole). 228

Evaluation In all analyses, we use the average 229

ChrF+ score (Popović, 2017), which is a character- 230

level F1 score shown to correlate well with human 231

ratings in translation tasks, over the test set. 232

5 Results 233

5.1 To what extent do training dynamics 234

explain the variance in performance, 235

compared to metrics of informativeness 236

which AL typically optimize for? 237

Selecting different subsets yields varying per- 238

formance We verify if using different subsets of 239

the data yields different levels of performance. We 240

sample 500 subsets with 100 samples each from 241

the candidate set. For each subset, we finetune 242

MBART and evaluate on the test set, and plot the 243

distribution of resulting test set ChrF+ scores. 244

Figure 2 shows a wide variance in performance 245

across subsets, confirming that the choice of subset 246

impacts the performance. We analyze if the data’s 247

information content, measured by AL metrics, ex- 248

plain the performance across subsets. 249

Performance is only weakly associated with met- 250

rics of information content optimized for by AL 251

To understand the relationship between AL metrics 252

and performance, we measure the correlation be- 253

tween ChrF scores and various AL metrics. For 254

representativeness metrics, we compute (1) DelFy 255

(Zhao et al., 2020) - a word frequency metric with a 256

penalty for previously seen words, (2) L2 Distance 257

(Ni et al., 2022; Sener and Savarese, 2018) - the 258

average L2 distance of training examples from the 259

center1, and (3) word-level statistics of the dataset: 260

the vocabulary size of the train set, the percentage 261

1Computed with the hidden state of the encoder’s last layer;
Center is the average embedding over the training examples
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Figure 1: Various AL strategies are unable to consistently achieve better test set performance than random sampling;
Plot shows test set performance (ChrF+) per AL round, plotted with smoothing over 5 steps

Figure 2: Fine-tuning on different subsets of the data
yields considerable variance in test set performance;
Plotted using 500 subsets with 100 samples each

of vocabulary shared by train and test sets, and262

the percentage of test set vocabulary present in the263

train set (Appendix A.1).264

For uncertainty metrics, we compute metrics by265

sample, then average over the dataset. We compute266

average token probability and entropy (Zhao et al.,267

2020), lexical similarity (Schmidt et al., 2022), and268

BALD score (Gal et al., 2017) (Appendix A.2).269

As shown in Table 1, informativeness metrics are270

only weakly correlated with performance. Repre-271

sentativeness metrics are more strongly correlated272

with performance, but only achieve 19% at most.273

To understand how much of the variance in per-274

formance these metrics explain, we regress the275

ChrF+ scores on the features computed above using276

ordinary least squares, and find that these features277

Afr Deu Fil Hat
R

ep
re

se
nt

at
iv

e Number of Vocab 0.16 -0.15 0.08 -0.05
% Shared Vocab 0.19 -0.06 0.07 -0.10
% Test Vocab Seen 0.19 -0.08 0.07 -0.10
Delfy (Source) -0.09 0.02 0.04 0.03
Delfy (Target) -0.04 -0.02 0.01 0.10
L2 Distance 0.03 -0.21 0.04 -0.04

U
nc

er
ta

in
ty Mean Token Prob (Min) -0.03 -0.07 -0.02 0.02

Mean Token Prob (Avg) -0.09 -0.08 -0.05 0.07
BALD 0.07 -0.05 0.02 0.01
Lexical Similarity 0.12 -0.07 0.08 -0.06
Mean Token Entropy -0.09 0.05 -0.14 0.04

Table 1: Spearman correlation between AL metrics and
model performance (Test Set ChrF)

jointly explain only 4.1% (Eng-Afr), 5.1% (Eng- 278

Deu), 2.0% (Eng-Fil), and 2.5% (Eng-Hat) of the 279

total variance in performance (using R2). This 280

suggests that metrics of informativeness which AL 281

optimizes for only loosely determine performance. 282

This challenges the underlying assumption that op- 283

timizing for such metrics yields better performance. 284

In fact, most of the variance in performance can 285

be attributed to the ordering of the samples of 286

the data, rather than the samples themselves 287

Given that the metrics of informativeness do not 288

explain the variance in performance, we turn our 289

attention to other sources of the observed variation. 290

So far, the only variable we changed is the sample 291

used to fine-tune the model. Thus, the only param- 292

eters we can change are the sampled data and the 293

order in which they are shown to the model. We 294

can decompose the variance in performance into 295

the variance attributed to the samples, vs the or- 296

dering of those samples as follows, where G is the 297

set of sampled subsets, each with N shuffles of the 298
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same data, pi,j is the performance (ChrF+ score)299

from the i-th subset with the j-th ordering, p̄i is300

the average performance for group i, and p̄ is the301

average performance across all samples.302

1

NG

∑
i∈G

N∑
j=1

(pi,j − p̄)2︸ ︷︷ ︸
Total Variance

=303

1

NG

∑
i∈G

N∑
j=1

(pi,j − p̄i)
2

︸ ︷︷ ︸
Variance within Groups

(from Ordering)

+
1

G

∑
i∈G

(p̄i − p̄)2︸ ︷︷ ︸
Variance between Groups

(from Sampling)

304

We study how much of the variance in perfor-305

mance is a result of the contents of the sample306

compared to the order of its elements. To do this,307

we fine-tune models on multiple shuffles of the308

same sample, and repeat this for multiple samples.309

Figure 3: Reshuffling the same data yields considerable
variance in performance; Each plot uses 500 shuffles of
a set of 100 samples

We observe a large variance in performance from310

shuffling the data (Figure 3). In fact, the variance311

from shuffling the same data nears/exceeds the vari-312

ance from sampling new data when comparing Fig-313

ure 2 to 3 (Sample vs Shuffle: Eng-Afr: 8.4 vs.314

6.5; Eng-Deu: 13.7 vs. 13.5; Eng-Fil: 7.1 vs. 7.8;315

Eng-Hat: 5.4 vs. 3.9). We repeat this with 2 to 200316

samples with 20 re-orderings each. Using the above317

equation, we find that ordering explains much of318

the overall variance in performance (Figure 4). We319

repeat this using different batch sizes (8, 16, 32)320

and learning rates (1e-5, 5e-5, 1e-4), and still find321

that a majority of the variance is explained by or-322

dering (Figure 5).323

Figure 4: Across multiple groups of samples, each shuf-
fled 20 times, the ordering of the samples accounts for
between 80% to 95% of variance

5.2 How can these findings be used to improve 324

AL performance? 325

So far, we demonstrated that the ordering of the 326

samples have a large impact on performance, which 327

suggests that these should be considered when us- 328

ing AL. We show that considering both ordering 329

and AL can lead to better performance. 330

We take the data selected by various AL strate- 331

gies, train the model on various shuffles of the same 332

data, and take the model with the best result. As 333

shown in Table 2, we are almost always able to 334

find a shuffle of the data that leads to better perfor- 335

mance. In some cases, shuffling results in an AL 336

strategy outperforming random sampling, when it 337

previously did not (highlighted in green). 338

It should be noted that this in itself is not a 339

method, as we have optimized directly for test set 340

performance in order to demonstrate that models 341

can achieve better performance when trying differ- 342

ent orderings. This aims to motivate future work 343

in AL to find both the optimal subset and their 344

optimal ordering simultaneously. 345

6 Case Study on Failure Modes Induced 346

by Sample Ordering 347

The previous findings suggest that the informative- 348

ness of the samples (according to AL metrics) is 349

only weakly associated with performance, whereas 350

we expected this to impact performance most. In 351

contrast, sample ordering has a much larger impact. 352

We study the behavior of models trained on dif- 353

ferent orderings of the same samples, looking at 354

both the lexical and embedding level. Our aim is to 355
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Eng-Afr Eng-Deu

500 1000 2000 500 1000 2000

Strategy NS WS NS WS NS WS NS WS NS WS NS WS

BALD 42.6 46.5 1.8 48.1 47.0 49.5 42.0 44.2 43.9 45.7 0.1 48.1
Core Set 47.7 50.6 3.1 52.0 54.4 54.4 0.0 47.0 47.7 47.7 47.8 49.2
DelFy 26.7 29.6 31.6 39.1 43.2 43.2 38.8 41.2 42.0 43.8 44.7 46.6
Lex Sim 18.3 27.0 0.0 29.3 34.8 34.8 39.4 39.4 39.9 39.9 39.7 42.0
MTE 48.4 49.9 49.4 51.2 52.1 53.2 45.5 45.8 0.0 46.9 47.7 48.6
MTP 41.7 44.3 37.2 44.8 42.4 44.2 0.0 43.2 43.1 43.9 0.0 44.8
Random 34.2 41.5 43.1 46.0 47.3 49.1 0.0 43.9 44.0 45.4 47.4 47.4

Eng-Fil Eng-Hat

500 1000 2000 500 1000 2000

Strategy NS WS NS WS NS WS NS WS NS WS NS WS

BALD 40.2 40.2 38.2 40.8 40.0 41.0 9.4 21.5 24.4 29.3 29.9 32.6
Core Set 39.6 45.4 47.2 47.3 46.6 50.1 2.9 33.4 0.9 36.2 37.5 37.5
DelFy 23.5 26.2 33.3 33.3 35.1 38.9 9.2 17.0 10.7 18.1 5.8 24.5
Lex Sim 17.1 21.0 31.2 31.2 33.6 33.6 11.2 11.9 3.9 11.3 15.2 15.2
MTE 40.8 45.1 46.3 46.5 47.1 49.1 0.6 30.5 32.4 34.7 11.6 36.9
MTP 31.9 40.4 37.8 39.6 40.1 40.6 0.6 25.3 19.0 26.7 17.0 27.4
Random 31.5 37.7 36.4 40.1 42.2 44.2 10.0 22.0 15.6 25.2 27.6 29.8

Table 2: Best test set ChrF+ score across 50 shuffles of the data selected using AL strategies; Shuffling the data post-
AL yields improvements in nearly all strategies when using 500, 1000, and 2000 samples, sometimes outperforming
random when the strategy initially did not; NS: No Shuffling (1st AL run), WS: With Shuffling; Runs that beat
random sampling are written in bold, and those that beat it only after shuffling are highlighted in green

Figure 5: Percent of variance in test set performance
measured by ChrF+ from ordering, computed using 20
samples shuffled 20 times each, on 25% of the original
test set; Ordering accounts for most of the variance in
performance across different hyperparameters

understand the ways in which some orderings learn356

MT suboptimally, in ways that others do not. By357

understanding the failure modes caused by certain358

orderings, we can better motivate future methods359

to understand the mechanism by which samples360

interact with each other, and use these to propose361

AL strategies that account for the sample ordering.362

6.0.1 Some runs lead to poor acquisition of 363

the task and unexpected interactions 364

with the model’s parametric knowledge 365

We fine-tune models on multiple shuffles of an 366

English-Filipino task. We use a batch size of one to 367

isolate the effect of each training sample. At each 368

training step, we analyze how the predictions for 369

the test set change. We observe the following: 370

In some orderings, the model learns incorrect 371

translations of the vocabulary In one shuffle for 372

example, at fine-tuning step 91, the model is trained 373

on the word panalangin, which means prayer. Af- 374

ter one or more fine-tuning steps, the model starts 375

to incorrectly use that word in various test samples. 376

In fact, at the end of fine-tuning, the model incor- 377

rectly generates the word panalangin in 253 out of 378

1012 test set examples (See Table 3). This suggests 379

that the model generates the vocabulary en masse 380

without necessarily learning its meaning. In con- 381

trast, in another shuffle of the data, the model is 382

fine-tuned on the word panalangin at step 14, and 383

does not exhibit this incorrect usage of the word. 384

In some orderings, the models learn less of the 385

vocabulary words in the training data We see 386

that models are unable to correctly learn certain 387

Filipino vocabulary despite having been trained on 388

them (Figure 6). Moreover, this failure to learn 389

vocabulary is more severe in some shuffles of the 390

data than others. In 4/5 shuffles of the same data, 391
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Set Step Input Target

Train 91 A prayer for our beloved nation. Isang panalangin sa aming mahal na nasyon.

Set Step Input Prediction

Test 94 The tenth named storm of the Atlantic Hurricane season, Subtropical
Storm Jerry, formed in the Atlantic Ocean today.

Ang lalake ang huling named na na na named na ang
panalangin..., ang panalangin sa Atlantic ng Amerika...

95 The number of people present was so large that it was not possible for
everybody to gain access to the funeral in St. Peter’s Square.

Ang mga tao na ito ay hindi posible para sa lahat ng tao ang
panalangin sa St. Peter’s Square.

Prime Minister Stephen Harper has agreed to send the government’s
’Clean Air Act’... for review, before its second reading, after Tuesday’s
25 minute meeting with NDP leader Jack Layton at the PMO.

Stephen Harper ay nag-iisa ang panalangin sa ang lahat ng
mga tao para sa panalangin...

97 The final match of the series will take place at Ellis Park in Johannes-
burg next week, when the Springboks play Australia.

Ang palangin sa Ellis Park sa Johannesburg, ang panalan-
gin sa Australia ng mga tao ng mga tao ng Australia.

Table 3: Models incorrectly generate the word panalangin across various samples after being fine-tuned on an
example with the word (Red indicates wrong usage of the word)

the model fails to generate at least one vocabulary392

word seen in the training data for 72.1% of test set393

examples. However in another shuffle, 85.1% of394

test samples have at least one Filipino word which395

the model does not generate.396

Figure 6: Plot of % Filipino vocabulary per test example
trained on vs. generated at test time (i.e. learned); Train-
ing on more vocabulary does not mean the model learns
to generate those vocabulary; Each point is generated
using a sample in the test set

Some runs also exhibit more interactions with397

the model’s parametric knowledge We observe398

that using some shuffles, models generate words399

not in the training data more frequently. This sug-400

gests that in some shuffles, models rely more on401

their parametric knowledge; hence, particular shuf-402

fles induce more reliance on parametric knowledge.403

To illustrate, in one shuffle, the model correctly404

generates at least one OOD word in 42.7% of test405

samples; but only does so for 16.3% of samples406

using another shuffle. In Table 4, the model gen-407

erates gulang (age/old), despite it not being in the408

training corpus.409

Additionally, in some orderings of the data, the410

model incorrectly generates words from other lan-411

guages more frequently, despite the training corpus 412

solely being in Filipino. For example, it translates 413

he added as katanya, which means “he said” in 414

Indonesian. This happens across many test set ex- 415

amples2. In some orderings of the data, more test 416

samples have foreign language words (Indonesian: 417

319, Cebuano: 232), whereas in other orderings, 418

there are fewer (Indonesian: 154, Cebuano: 195 419

words). It should be noted that these numbers are 420

overestimated as both languages share words with 421

Filipino, but we manually review and confirm that 422

many of them are indeed non-Filipino. 423

Overall, we find that some orderings lead mod- 424

els to learn incorrect translations, fail to acquire 425

vocabulary, or incorrectly use words from paramet- 426

ric knowledge more frequently, and hence achieve 427

worse performance, whereas others do not. 428

6.0.2 Some orderings negatively impact the 429

learned representations of the data 430

We explore why certain orderings exhibit good per- 431

formance, and others do not, by studying both man- 432

ually crafted lexical features (See Appendix B), 433

and the model embeddings. 434

We fine-tune models on various shuffles of an 435

English-Filipino dataset, and analyze the model’s 436

predictions. We create pairs of similar examples, 437

and analyze the behavior of the model by analyzing 438

how the hidden state embeddings of these pairs of 439

samples change throughout fine-tuning. 440

We hypothesize that some orderings of the data 441

allow the model to learn the representation of the 442

samples well, in the sense that similar sentences 443

have similar embeddings - and hence learn sensi- 444

ble embeddings that yield good performance. In 445

contrast, other orderings incorrectly “move” the 446

2We identify the languages using Python googletrans
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Type Text Comment

Source “We now have 4-month-old mice that are non-diabetic that used to be diabetic,” he added

Target “Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic,”
dagdag niya

Prediction (Step 23) “We now have 4-month-old mice na hindi-diabetic,” katanya. Foreign (Indonesian; katanya: he said)

Prediction (Step 70) “We ngayon mayroon dalawang buwan gulang na mga maliliit na... katawan ng” OOD word (gulang: age/old)

Table 4: Models generate words not in the training data, both correctly (gulang) and incorrectly (katanya)

Figure 7: For the same set of data, some orderings may lead the model to learn good representations of the
data, leading pairs of similar sentences to have similar embeddings (left), whereas other orderings push certain
representations of sentences further away (right); For a pair of similar sentences, we compute the cosine similarity
of their embeddings by step (left), and their tSNE embeddings for each pair (green and blue, same number) (right)

representations of some samples to a part of the447

embedding space from which they are unable to448

get back, thereby distorting the embedding and449

leading to poorer performance.450

To demonstrate this, we take ten sentences from451

the NLLB which are in neither the train nor test set,452

and write a sentence with similar in meaning for453

each. We expect the representations of each pair454

to get closer as the training progresses. In some455

orderings (See Figure 7, left), the model learns sim-456

ilar representations for similar sentences, shown by457

the increasing cosine similarity between pairs of458

similar sentences, and pairs of sentences with the459

same IDs being close in embedding space (blue and460

green dots with the same ID are close). In contrast,461

other orderings (See Figure 7, right) incorrectly462

move the representation for one of the sentences463

further away from its pair, from which it is unable464

to recover, shown by the drop in cosine similarity465

for one pair at fine-tuning step 22, which does not466

go up again. Moreover, multiple pairs of sentences467

have dissimilar embeddings (4, 8, 9, 10).468

Our findings show that some orderings of the469

data lead to poor acquisition of the MT task, or470

potentially distorted representations. This aims to471

motivate future work that analyzes why some order-472

ings lead to suboptimal performance, and propose473

AL strategies that select data in way that maximizes474

informativeness metrics while avoiding the failure475

modes we observed.476

7 Conclusion 477

In this paper, we demonstrate that applying active 478

learning (AL) strategies to machine translation to 479

sample data fails to consistently achieve better test 480

set performance versus random sampling. We an- 481

alyze reasons for its underperformance, and find 482

that the ordering of samples significantly impact 483

the model’s performance. In some training runs, 484

we observe that MT models learn distorted repre- 485

sentations or learn wrong patterns from the data 486

which stem from noise in the task and interactions 487

with the model’s parametric memory. By account- 488

ing for training dynamics, models can achieve bet- 489

ter performance using data chosen using AL, and 490

ultimately improve the use of AL in various low- 491

resource scenarios. 492

This work aims to show how improving model 493

performance is not solely a problem of optimizing 494

for the right informativeness metrics; it requires un- 495

derstanding the complexities of training and learn- 496

ing involved in translation, and broader genera- 497

tion tasks. We hope these findings motivate future 498

work in AL in text generation to explicitly consider 499

training dynamics. Concretely, future work could 500

(1) verify if the results generalize to other gener- 501

ation tasks, (2) analyze and identify interpretable 502

characteristics of the ordering of samples that are 503

associated with better performance to be used as 504

heuristics in future AL algorithms, and (3) design 505

AL strategies which select samples that are both in- 506

formative and also correctly learned by the model. 507
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Limitations508

We emphasize that our results are based on very509

specific model and dataset choices; hence, the cur-510

rent results should not be taken to generalize across511

all tasks, datasets, and models. Moreover, we are512

only able to test a specific set of hyperparameters513

due to the computational cost of the experiments,514

but even the choice of hyperparameters may yield515

different model behaviors across runs. We also516

want to highlight that our section on training dy-517

namics is based off a qualitative study of one trans-518

lation direction, which the authors chose as they519

had access to speakers in that language. These re-520

sults merely serve to provide hypotheses as to why521

models may fail to learn from the patterns in the522

data, but more rigorous experimentation is required523

to make stronger claims about translation or even524

generation as a whole.525

We also note that evaluation must be done before526

deploying any MT model into a real world setting;527

while AL seeks to improve the performance of528

these MT models, it should by no means be naively529

applied and deployed without further testing.530
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A AL Metrics691

A.1 Representativeness Metrics692

Delfy (Zhang et al., 2022)

fDelfy(S) =
1

|S|
∑
x∈S

Delfy(x)

Delfy(x) =

1

|x|

|x|∑
i=1

log(C(xi|U) + 1)∑
w′∈U log(C(w′|U) + 1)

· pDelfy(xi)

lf(x) =

1

|x|

|x|∑
i=1

log(C(xi|U) + 1)∑
w′∈U log(C(w′|U) + 1)

· pLf(xi)

pDelfy(xi) = e−λ1C(xi|L) · e−λ2C(xi|Û(x))

pLf(xi) = e−λ1C(xi|L)

(1)

693

Where U is the set of untranslated target sen-694

tences, Û(x) is the set of untranslated sentences695

with ls score higher than ls(x), L = {} is the696

(empty) set of already selected sentences, C(w|S)697

is the number of times word w appears in a set S,698

and pDelfy and pLf are penalty functions to penalize699

seen words, in which we use λ2 = 1700

L2 Distance

fL2(S) =
1

|S|
∑
x∈S
||hfθ(x)− h̄fθ(S)||

2
2 (2)701

Where hfθ(x) ∈ Rd is the hidden state represen-702

tation of x, obtained by taking the last hidden state703

of encoder fθ and averaging it over the vocab, so704

that it is a vector of dimension d, and h̄fθ(S) is the705

average hidden state across all samples in S.706

Greedy Core Set (Sener and Savarese, 2018)707

We describe one round of the greedy core set by708

Sener and Savarese (2018) in Algorithm 2, where709

where ∆(x, y) = ||hfθ(x)− hfθ(y)||22710

A.2 Informativeness Metrics711

Average Token Probability & Entropy (Zhao712

et al., 2020)

fATP(x) =
1

|ŷ|

|ŷ|∑
t=1

p(ŷt|ŷ<t, x) (3)713

fATE(x) =
1

|ŷ|

|ŷ|∑
t=1

H (p(ŷt|ŷ<t, x)) (4)714

Algorithm 2 Core Set Algorithm (1 Round)

Require:
D (Unlabeled Dataset), L (Labeled Dataset)
b (Budget per Round), fθ (LM)
for i← 1 to b do

u← argmaxx∈D miny∈L∆(x, y)
L ← L

⋃
{u}

D ← D\{u}
end for

Lexical Similarity (Schmidt et al., 2022)

fLS(x) =

∑10
i=1

∑10
j=1 Meteor(ŷ(i), ŷ(j))

N(N − 1)
(5) 715

We compute lexical similarity, where similarity 716

is measured using METEOR (Banerjee and Lavie, 717

2005). 718

BALD (Gal et al., 2017)

fBALD(x) =
1

|ŷ|

|ŷ|∑
t=1

H (p(ŷt|ŷ<t, x))

−1

k

k∑
i=1

1

|ŷ(i)|

|ŷ(i)|∑
t=1

H
(
p(ŷ

(i)
t |ŷ

(i)
<t, x)

) (6) 719

H (p(ŷt|ŷ<t, x)) = 720

−
|V|∑
j=1

p(ŷt,j |ŷ<t, x)log (p(ŷt,j |ŷ<t, x)) 721

Where ŷ is the predicted output, ŷ(i) is the i- 722

th predicted output generated by sampling using 723

dropout, and ŷt and ŷ
(i)
t are their t-th tokens 724

B Analysis of Ordering Features 725

What about the shuffling of the data explains the 726

variance in performance? We explore whether 727

ordering the samples to prioritize data with specific 728

features is associated with better performance. We 729

first determine how well ordered the training data 730

is with respect to a feature. To do this, we define 731

the slope of a feature, which is the coefficient β ob- 732

tained from regressing feature = α+β ·rank+ϵ 733

using ordinary least squares (OLS), where rank is 734

the position which a sample appears in the dataset, 735

and feature is the value of the feature for that 736

sample. A positive β indicates that the samples are 737

presented in increasing order of the feature, and a 738

negative β shows decreasing order. Per sample, we 739

define the following features: 740
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• Lexical Features (Target): length (in words),741

mean word length (in characters), DelFy score742

• Quality Features: translation quality score743

• Model Uncertainty of the Sample: baseline744

model average token probability, average to-745

ken entropy, BALD, and lexical similarity746

To compute the translation quality of a sample,747

we translate the text written in the target language748

back into English using Google Translate3, and749

compare how similar it is to the original English750

text using ChrF+ (Popović, 2017); a high ChrF+751

indicates that the translation has good quality.752

Then, to understand if ordering the samples in753

increasing or decreasing order with respect to a fea-754

ture impacts performance, we compute the Spear-755

man correlation between the ChrF scores and the756

feature slopes. A positive correlation means that757

training a model with samples in increasing order758

with respect to a feature is associated with better759

performance, whereas a negative coefficient means760

training samples in decreasing order of that feature761

is associated with better performance.762

Ordering with respect to features of the data (e.g.763

length, difficulty, noise) are unable to explain the764

differences in performance We then study what765

about the ordering of the samples could explain766

the differences in performance. We compute the767

feature slopes, which represent how well-ordered768

a particular training run is with respect to a cer-769

tain feature of the samples. We then compute the770

Spearman correlation between the ChrF scores and771

the feature slopes, to understand whether ordering772

samples by particular features is associated with773

better performance (See Table 5).774

For Eng-Afr, training runs achieve better perfor-775

mance when the data is ordered from (1) short to776

long samples (Target Length), (2) samples which777

the model is certain about to those which it is un-778

certain about (Avg Token Entropy and Lexical Sim-779

ilarity), and (3) noisy to clean samples (Translation780

Quality). For Eng-Deu, the ordering with respect to781

the computed features do not have any statistically782

significant relationship with performance.783

However, the characteristics of ordering we com-784

pute only account for 1.7% (Eng-Afr), 0.9% (Eng-785

Deu), 1.9% (Eng-Fil), 3.5% (Eng-Hat) of the vari-786

ance in performance (computed by regressing ChrF787

on all feature slopes with OLS, using R2). This788

3Implemented using the Pythongoogletrans package

Afr Deu Fil Hat

Sample Target Length 0.029 0.022 0.071 0.047
Sample Delfy -0.071 -0.023 0.041 0.011
Sample Translation Quality 0.029 -0.083 0.001 0.009
Model Unc. (Avg Token Prob) 0.019 0.029 -0.037 -0.003
Model Unc. (Avg Token Ent) -0.003 -0.046 0.002 0.010
Model Unc. (BALD) -0.003 -0.035 -0.027 0.040
Model Unc. (Lex Sim) -0.020 0.054 0.011 -0.040

Table 5: Spearman correlation between ChrF and fea-
ture slopes, a positive/negative value means fine-tuning
models with increasing/decreasing order of a feature is
associated with better performance; Unc.: Uncertainty

suggests that while ordering has an impact on per- 789

formance, it cannot be fully explained by easily 790

interpretable features of the ordering. 791

C Fine-Tuning Details 792

We run all our experiments on RTX 8000 GPUs; 793

each active learning run in the validation exper- 794

iment took roughly 10 GPU hours, whereas the 795

sampling and ordering GPU hours took roughly 72 796

GPU hours per translation direction. 797

D Dataset Details 798

We use the NLLB dataset (NLLB Team et al., 2024) 799

under the ODC-By License, and the FLORES Plus 800

dataset (Team et al., 2022) under the CC BY-SA 4.0 801

License, which allow the use of these datasets for 802

research purposes. We scan the datasets to check 803

that there are no malicious or harmful content in 804

the translation pairs. For these datasets, we use 805

the English-Afrikaans, English-German, English- 806

Filipino, and English-Hatian Creole datasets. 807
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