

000 001 SCALABLE VARIATIONAL BAYESIAN FINE-TUNING OF 002 LLMS VIA ORTHOGONALIZED LOW-RANK ADAPTER 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 When deploying large language models (LLMs) to safety-critical applications, un-
012 certainty quantification (UQ) is of utmost importance to self-assess the reliability
013 of the LLM-based decisions. However, such decisions typically suffer from over-
014 confidence, particularly after parameter-efficient fine-tuning (PEFT) for down-
015 stream domain-specific tasks with limited data. Existing methods to alleviate this
016 issue either rely on Laplace approximation based post-hoc framework, yielding
017 uncalibrated uncertainty estimates, or variational Bayesian training that requires
018 expensive Monte Carlo sampling with high computation and memory overheads.
019 To address these limitations, we build on the Bayesian last layer (BLL) model,
020 where the LLM-based *deterministic* feature extractor is followed by random LL
021 parameters for uncertainty reasoning. Since existing low-rank adapters (LoRA)
022 for PEFT have limited expressiveness due to rank collapse, we address this with
023 Polar-decomposed Low-rank Adapter Representation (PoLAR), an orthogonalized
024 parameterization paired with Riemannian optimization to enable more stable
025 and expressive adaptation. Building on this PoLAR-BLL model, we leverage the
026 variational (V) inference framework to put forth a scalable Bayesian fine-tuning
027 approach which jointly seeks the PoLAR parameters and approximate posterior of
028 the LL parameters via alternating optimization. The resulting PoLAR-VBLL is a
029 flexible framework that nicely integrates architecture-enhanced optimization with
030 scalable Bayesian inference to endow LLMs with well-calibrated UQ. Our empir-
031 ical results verify the effectiveness of PoLAR-VBLL in terms of generalization
032 and uncertainty estimation on both in-distribution and out-of-distribution data for
033 various common-sense reasoning tasks.

034 1 INTRODUCTION 035

036 Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains,
037 from natural language understanding to complex reasoning tasks (Brown et al., 2020; Touvron et al.,
038 2023). When deploying to safety-critical applications, uncertainty quantification (UQ) is of utmost
039 importance to self-assess the reliability of the LLM-based decisions. While large-scale pre-trained
040 models exhibit reasonable calibration during pre-training (Kadavath et al., 2022), they fail to accu-
041 rately express predictive uncertainty after parameter-efficient fine-tuning (PEFT) using limited data
042 in downstream tasks (Jiang et al., 2021). Particularly, fine-tuned LLMs often exhibit significant over-
043 confidence, which poses serious risks in high-stakes scenarios where reliable uncertainty estimation
044 is essential for trustworthy decision-making (Yang et al., 2024).

045 To endow fine-tuned LLMs with well-calibrated UQ, several attempts have been made by leverag-
046 ing advances in Bayesian neural networks (BNNs). Ensemble approaches (Lakshminarayanan et al.,
047 2017; Wang et al., 2023) require training multiple model copies, which incurs significant computa-
048 tional overhead (Wang et al., 2023). Post-hoc methods like Laplace approximation (LA) apply
049 Bayesian inference after MAP estimation, but this bifurcated optimization—where posterior approxi-
050 mation is separated from training—leads to suboptimal estimation (Yang et al., 2024). Variational
051 methods like BLoB (Wang et al., 2024), while enabling joint optimization of mean and covariance
052 during training, require expensive Monte Carlo sampling with prohibitive memory overhead that
053 scales poorly with model size, making them impractical for large-scale deployment. Going beyond
these approaches, there are other methods for UQ in BNNs, including deep kernel learning (Wilson

054 et al., 2016) and variational Bayesian last layers (VBLL) (Harrison et al., 2024), which have not
 055 been explored for LLM fine-tuning.
 056

057 On the other hand, the prohibitive computational cost of full fine-tuning has led to the widespread
 058 adoption of PEFT methods. The Low-Rank Adaptation (LoRA) (Hu et al., 2022), which param-
 059 eters weight updates as the product of two low-rank matrices, suffers from directional diversity
 060 collapse where the stable rank often collapses to values close to 1, severely underutilizing the al-
 061 located subspace (Lion et al., 2025). Alternative approaches like DoRA (Liu et al., 2024) decom-
 062 pose weights into magnitude and direction but still suffer from suboptimal rank utilization, while
 063 AdaLoRA (Zhang et al., 2023) attempts adaptive rank allocation but requires expensive SVD op-
 064 erations. The recently proposed PoLAR (Lion et al., 2025) addresses these limitations through polar
 065 decomposition with orthogonality constraints, demonstrating superior rank utilization and providing
 066 an improved foundation for uncertainty quantification. However, existing Bayesian LLM fine-tuning
 067 approaches still adopt the vanilla LoRA representation. There is a pressing need to tailor advances
 068 in architecture-aware optimization to scale up the UQ performance of LLMs in practice.
 069

Building on the aforementioned prior works, the contribution of this paper is summarized as follows.

- 070 Relying on the Bayesian last layer (BLL) model, where the LLM-based *deterministic* fea-
 071 ture extractor is followed by random LL parameters for UQ, we leverage PoLAR-based
 072 LLM adapter, an orthogonalized parameterization to alleviate the rank collapse of LoRA
 073 representation and further enable more stable and expressive adaptation (Lion et al., 2025).
- 074 This PoLAR-BLL model is amenable to variational (V) training, where we will jointly
 075 seek the PoLAR parameters via efficient landing field methods in Riemannian optimization
 076 and the approximate posterior of the LL parameters. The resulting PoLAR-VBLL lever-
 077 ages both architectural improvements to the underlying adaptation mechanism and scalable
 078 Bayesian inference that alleviates the computational overheads of existing methods.
- 079 Further, given the trained PoLAR parameters and variational posterior, we will apply an
 080 additional post-hoc LA around the posterior mean of the LL parameters to enhance uncer-
 081 tainty calibration. Different from existing LA-based methods that work with maximum-
 082 a-posterior (MAP) parameter estimates, the current approach also benefits from the vari-
 083 tional training.
- 084 • Comprehensive evaluations corroborate that PoLAR-VBLL consistently outperforms ex-
 085 isting approaches in both predictive accuracy and uncertainty calibration on both in-
 086 distribution and out-of-distribution tasks.

087 2 RELATED WORK

090 2.1 UQ FOR FINE-TUNED LLMs AND BNNs

092 While large-scale pre-trained models exhibit reasonable calibration during pre-training (Kadavath
 093 et al., 2022), they fail to accurately express predictive uncertainty after fine-tuning (Jiang et al.,
 094 2021), particularly when adapted to domain-specific tasks with limited data. This degradation ne-
 095 cessitates Bayesian approaches for reliable uncertainty estimation in safety-critical applications. Re-
 096 cent Bayesian PEFT methods exhibit limitations. Ensemble approaches (Lakshminarayanan et al.,
 097 2017) require training multiple LoRA copies with significant computational overhead. Laplace-
 098 LoRA (Yang et al., 2024) applies post-hoc approximation after MAP estimation, but this bifurcated
 099 optimization leads to suboptimal posterior estimates. BLoB (Wang et al., 2024) performs variational
 100 inference directly on LoRA parameters during training, achieving joint mean-covariance optimiza-
 101 tion. However, BLoB requires expensive Monte Carlo sampling for evaluating the so-termed evi-
 102 dence lower bound, resulting in prohibitive memory overhead that scales poorly with model size,
 103 while remaining fundamentally constrained by LoRA’s low stable rank. Several variants aim to
 104 reduce BLoB’s high memory cost. ScalaBL (Samplawski et al., 2025) uses stochastic subspace in-
 105 ference to reduce the number of variational parameters; C-LoRA (Rahmati et al., 2025) replaces
 106 them with deterministic contextual MLPs; and TFB (Shi et al., 2024) applies post-hoc search for
 107 Bayesian inference of deterministically trained adapters. Despite these optimizations, these meth-
 108 ods still rely on Monte Carlo sampling and suffer from inference latency. VBLL (Harrison et al.,
 109 2024) demonstrates superior computational efficiency compared to full-adapter Bayesian methods

108 by targeting only the classification layer. Unlike BLoB’s expensive Monte Carlo sampling, VBLL
 109 achieves analytical solutions with memory complexity scaling with output dimensions rather than
 110 adapter parameters. Previous applications in Bayesian optimization demonstrate its effectiveness
 111 (Brunzema et al., 2025), but its adaptation to LLM fine-tuning with advanced adapter architectures,
 112 such as PoLAR, remains unexplored.

114 2.2 PARAMETER-EFFICIENT FINE-TUNING

116 The prohibitive computational cost of full fine-tuning for billion-parameter models has made
 117 parameter-efficient fine-tuning essential. LoRA (Hu et al., 2022) has gained widespread adoption
 118 by learning additive low-rank updates $\Delta \mathbf{W}$ on top of the frozen pre-trained weights \mathbf{W} . Subse-
 119 quent work has aimed to improve LoRA’s effectiveness further. AdaLoRA (Zhang et al., 2023)
 120 introduces adaptive rank allocation during training. DoRA (Liu et al., 2024) decomposes weights
 121 into magnitude and direction components. GaLore (Zhao et al., 2024) applies low-rank projection
 122 to optimizer states to reduce memory requirements. However, recent analysis reveals fundamental
 123 limitations: LoRA suffers from directional diversity collapse where the stable rank of $\Delta \mathbf{W}$ re-
 124 mains well below the allocated linear algebraic rank, limiting expressiveness. PoLAR addresses
 125 this through a re-parametrization with orthogonal constraints on direction matrices, and a tailored
 126 Riemannian optimization (Ablin & Peyré, 2022) is employed for faster training on GPUs. In spite
 127 of these advances, adaptation to the Bayesian counterparts remains a rather uncharted territory –
 128 existing Bayesian fine-tuning approaches all rely on the vanilla LoRA.

129 3 VARIATIONAL TRAINING OF LLM-BASED BAYESIAN LAST LAYER MODEL 130 VIA ORTHOGONAL LOW-RANK ADAPTATION

132 Toward adapting the advances of PEFT so as to endow uncertainty-aware fine-tuning of LLM with
 133 scalability, we present a unified framework that combines Polar-decomposed Low-rank Adapter
 134 Representation (PoLAR) with Variational Bayesian Last Layers (VBLL) for parameter-efficient fine-
 135 tuning of LLMs with principled uncertainty quantification. The resulting approach addresses the
 136 fundamental limitation of standard LoRA’s low stable rank while providing calibrated uncertainty
 137 estimates through scalable variational Bayesian inference.

138 3.1 BAYESIAN LAST LAYER MODEL WITH LLM-BASED FEATURE EXTRACTOR

140 To endow LLM-based inference with UQ, we will rely on the Bayesian last layer (BLL) model Harrison et al. (2024), where a deterministic LLM-based feature extractor is followed by random last layer
 141 weights for uncertainty representation. Specifically, let $\phi_{\mathbf{W}}(\mathbf{x}) \in \mathbb{R}^d$ be the d -dimensional feature
 142 mapping with \mathbf{W} collecting the weights of the LLM. Given training dataset $\mathcal{D} := \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$
 143 with $\mathbf{y}_n := [y_{n,1}, \dots, y_{n,C}]^\top \in \{0, 1\}^{C \times 1}$ being a one-hot encoding of a C -class classification
 144 task, the BLL model per sample n is given by

$$147 p(\mathbf{y}_n | \mathbf{x}_n, \Theta) = \frac{\exp(\mathbf{y}_n^\top \mathbf{z}_n)}{\mathbf{1}_C^\top \exp(\mathbf{z}_n)}, \quad \mathbf{z}_n = \Theta \phi_{\mathbf{W}}(\mathbf{x}_n) \quad (1)$$

149 where $\mathbf{1}_C$ is a $C \times 1$ all-one vector, $\Theta = [\theta_1, \dots, \theta_C]^\top \in \mathbb{R}^{C \times d}$ is the classification weight matrix
 150 with $\theta_c \in \mathbb{R}^d$ being the *random* weight vector for class c with iid Gaussian prior

$$152 p(\Theta) = \prod_{c=1}^C \mathcal{N}(\theta_c; \mathbf{0}, \sigma_\theta^2 \mathbf{I}_d) \quad (2)$$

154 where the prior variance σ_θ^2 is a *hyperparameter* to be tuned.

156 Direct optimization of the marginal likelihood $p(\mathcal{D}) = \int p(\mathcal{D} | \Theta) p(\Theta) d\Theta$ is intractable due to the
 157 nonlinear softmax-based likelihood function in equation 1. Moreover, gradient computation would
 158 require the full marginal likelihood, making mini-batch training impossible, and the flexibility of
 159 neural network features can lead to over-concentration of the posterior. To address these issues,
 160 we rely on the variational inference framework that jointly seeks the model parameters \mathbf{W} and
 161 parameter posterior $q(\Theta)$ by maximizing the evidence lower bound (ELBO)

$$162 \mathcal{L}^{\text{ELBO}}(q(\Theta), \mathbf{W}; \mathcal{D}) = \mathbb{E}_{q(\Theta)}[\log p(\mathcal{D} | \Theta)] - \text{KL}(q(\Theta) \| p(\Theta)) \quad (3)$$

162 where

$$164 \log p(\mathcal{D}|\Theta) = \log \prod_{n=1}^N \log p(\mathbf{y}_n|\mathbf{x}_n, \Theta) = \sum_{n=1}^N \mathbf{y}_n^\top \mathbf{z}_n - \sum_{n=1}^N \log(\mathbf{1}_C^\top \exp(\mathbf{z}_n)) \quad (4)$$

167 For the sake of tractability, the approximate posterior of Θ will be assumed to be factorizable across
168 classes and the per-class parameter posterior will be approximated by a Gaussian with mean μ_c and
169 covariance \mathbf{S}_c , namely,

$$170 \quad q(\Theta) = \prod_{c=1}^C q(\Theta_c) = \prod_{c=1}^C \mathcal{N}(\theta_c; \mu_c, \mathbf{S}_c) \quad (5)$$

173 where we assume factorization across classes (reducing computational complexity) while retaining
174 full covariance $\mathbf{S}_c \in \mathbb{R}^{d \times d}$ within each class (capturing feature correlations).

175 Taking the expectation of (4) wrt $q(\Theta)$ in (5) is intractable due to the log-softmax. We will apply
176 again Jensen's inequality to yield a lower bound as

$$177 \quad \mathbb{E}_{q(\Theta)} \left[-\log \sum_{c=1}^C \exp(z_{n,c}) \right] \geq -\log \mathbb{E} \left[\sum_{c=1}^C \exp(z_{n,c}) \right] = -\log \sum_{c=1}^C \mathbb{E} [\exp(z_{n,c})] . \quad (6)$$

181 Since $z_{n,c} = \theta_c^\top \phi_{\mathbf{W}}(\mathbf{x}_n)$ and $\theta_c \sim \mathcal{N}(\mu_c, \mathbf{S}_c)$, we have

$$182 \quad \mathbb{E}[z_{n,c}] = \mu_c^\top \phi_{\mathbf{W}}(\mathbf{x}_n) \quad (7)$$

$$184 \quad \mathbb{E}[\exp(z_{n,c})] = \exp \left(\mu_c^\top \phi_{\mathbf{W}}(\mathbf{x}_n) + \frac{1}{2} \phi_{\mathbf{W}}(\mathbf{x}_n)^\top \mathbf{S}_c \phi_{\mathbf{W}}(\mathbf{x}_n) \right) \quad (8)$$

186 Further, the KL divergence term is expressed explicitly as

$$188 \quad \text{KL}(q(\Theta) \| p(\Theta)) = \sum_{c=1}^C \text{KL}(\mathcal{N}(\mu_c, \mathbf{S}_c) \| \mathcal{N}(\mathbf{0}, \sigma_\theta^2 \mathbf{I}_d)) \\ 189 \quad = \sum_{c=1}^C \left(\frac{1}{2\sigma_\theta^2} (\text{tr}(\mathbf{S}_c) + \mu_c^\top \mu_c) - \frac{1}{2} \log |\mathbf{S}_c| \right) + \frac{dC}{2} \log \sigma_\theta^2 - \frac{dC}{2} \quad (9)$$

194 Combining all terms, the ELBO objective is given by

$$196 \quad \mathcal{L}^{\text{ELBO}}(\Psi, \mathbf{W}; \mathcal{D}) = \sum_{n=1}^N \left[\sum_{c=1}^C y_{n,c} \mu_c^\top \phi_{\mathbf{W}}(\mathbf{x}_n) - \text{LSE}_c \left(\mu_c^\top \phi_{\mathbf{W}}(\mathbf{x}_n) + \frac{1}{2} \phi_{\mathbf{W}}(\mathbf{x}_n)^\top \mathbf{S}_c \phi_{\mathbf{W}}(\mathbf{x}_n) \right) \right] \\ 197 \quad - \sum_{c=1}^C \left[\frac{1}{2\sigma_\theta^2} (\text{tr}(\mathbf{S}_c) + \mu_c^\top \mu_c) - \frac{1}{2} \log |\mathbf{S}_c| \right] + \text{const} \quad (10)$$

202 where $\Psi := \{(\mu_c, \mathbf{S}_c)\}_{c=1}^C$ collects the variational parameters and $\text{LSE}_c(\cdot) = \log \sum_{c=1}^C \exp(\cdot)$
203 denotes the log-sum-exp function with sum over class c , which provides numerical stability when
204 computing the logarithm of sums of exponentials.

205 Given a pre-trained LLM with weights \mathbf{W}_0 , the fine-tuned weight parameterization is typically given
206 by $\mathbf{W} := \mathbf{W}_0 + \Delta \mathbf{W}$. For PEFT, $\Delta \mathbf{W}$ is typically sought as a low-rank representation. However,
207 standard LoRA-based approaches suffer from low *stable rank* during training, where the learned
208 adapters collapse to suboptimal low-dimensional subspaces. To address this issue, we will adapt
209 orthogonalized LoRA by leveraging the advances in Riemannian optimization.

211 3.2 FINE-TUNED LLM VIA ORTHOGONALIZED LORA

213 A powerful feature extractor is essential, not only because it provides more informative inputs to
214 VBLL, but also because UQ is particularly valuable when the performance on the downstream task
215 is already strong. While LoRA remains a popular approach, recent studies suggest that it cannot
fully utilize the allocated rank, resulting in a significant gap relative to its full expressive potential. In

particular, standard LoRA often suffers from a low stable rank, which is a smooth proxy for matrix rank, during training, causing the learned adapters to collapse into suboptimal low-dimensional subspaces even if its rank r is chosen large. This issue becomes more significant in the context of UQ for LLMs; see Fig.1(a). To this end, we advocate the use of recently developed orthogonalized low-rank adapters.

Orthogonal Parametrization. We leverage the PoLAR parameterization, where the additive weight for a particular layer $\Delta \mathbf{W} \in \mathbb{R}^{m \times n}$ is given by

$$\Delta \mathbf{W} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^\top. \quad (11)$$

Here, $\mathbf{U} \in \text{St}(m, r)$, $\mathbf{V} \in \text{St}(n, r)$, and $\boldsymbol{\Lambda} \in \mathbb{R}^{r \times r}$ is unconstrained for effective optimization with $\text{St}(m, r) := \{\mathbf{M} \in \mathbb{R}^{m \times r} | \mathbf{M}^\top \mathbf{M} = \mathbf{I}_r\}$ denoting a Stiefel manifold, i.e., matrices with orthonormal columns. These orthogonality constraints effectively prevent rank collapse when optimized properly. Integrating PoLAR into the VBLL framework, we will adapt the ELBO objective (10) by setting $\mathbf{W} := \mathbf{W}_0 + \Delta \mathbf{W}$ with $\Delta \mathbf{W} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^\top$ parametrized by PoLAR. Thus, the resulting PoLAR-VBLL jointly seek the PoLAR parameters $\Psi_{\text{polar}} := \{\mathbf{U}, \boldsymbol{\Lambda}, \mathbf{V}\}$ and the variational parameters Ψ via

$$\{\hat{\Psi}, \hat{\Psi}_{\text{polar}}\} = \arg \max_{\Psi, \Psi_{\text{polar}}} \mathcal{L}^{\text{ELBO}}(\Psi, \Psi_{\text{polar}}; \mathcal{D}) \quad \text{s.to } \mathbf{U} \in \text{St}(m, r), \mathbf{V} \in \text{St}(n, r). \quad (12)$$

Scalable Optimization via Landing Fields. To cope with the manifold constraints on \mathbf{U} and \mathbf{V} , standard approaches rely on Riemannian optimization, which involves retraction operations. On Stiefel manifolds, these retractions require either SVD or QR factorization, making them impractical for large-scale models. This computational bottleneck can be alleviated using landing methods (Gao et al., 2022; Schechtman et al., 2023). For instance, optimizing \mathbf{U} simply requires to replace its Euclidean gradient with the so-termed landing field:

$$\Gamma(\mathbf{U}) = \psi(\mathbf{U})\mathbf{U} + \lambda \nabla N(\mathbf{U}) \quad (13)$$

where $\psi(\mathbf{U}) = \text{Skew}(\nabla_{\mathbf{U}} \mathcal{L}(\mathbf{U}, \boldsymbol{\Lambda}, \mathbf{V}) \mathbf{U}^\top)$ is the (generalized) Riemannian gradient component and $\nabla N(\mathbf{U}) = 4\mathbf{U}(\mathbf{U}^\top \mathbf{U} - \mathbf{I}_r)$ is the gradient of the infeasibility penalty $N(\mathbf{U}) = \|\mathbf{U}^\top \mathbf{U} - \mathbf{I}_r\|_F^2$. The parameter $\lambda > 0$ controls the strength of penalization for constraint violations. In other words, landing is an infeasible method, but with a properly chosen λ , the constraints are satisfied asymptotically at convergence. By avoiding costly SVD operations, this approach achieves a $3 \times$ to $18 \times$ speedup compared to retraction-based methods on GPUs, depending on the chosen rank.

The combination of orthogonal parameterization and scalable optimization yields theoretical benefits. Notably, PoLAR has been shown, under some assumptions, to converge faster as the rank r increases, in stark contrast to LoRA (Lion et al., 2025). This improved scaling with r enables the design of more expressive feature extractors tailored to available memory budgets, thereby justifying our adoption of PoLAR.

Joint Optimization of PoLAR-VBLL. To solve the optimization problem in (12), we will adopt alternating optimization, that consists of the following two steps per iteration.

- *Variational posterior update:* The gradients with respect to the variational parameters Ψ_c follow standard variational inference procedures (see Eqs. (21)-(22) in App. A.3);
- *PoLAR parameter update:* For the PoLAR parameters constrained to Stiefel manifolds, we employ landing field (cf. Eq. 13) to avoid expensive retraction operations. See App. A.3 (Eqs. (23)–(30)) for detailed derivation of the Riemannian gradients and updates.

The unified framework, together with infeasible Riemannian optimization for computational efficiency, yields a feature extractor that enhances both downstream performance and the reliability of uncertainty quantification.

3.3 UNCERTAINTY-AWARE PREDICTIVE INFERENCE

Having available the parameter estimates after training in PoLAR-VBLL, we are ready to predict for the label $y \in \{1, \dots, C\}$ for any given test input \mathbf{x} . Specifically, this predictive pdf is given by

$$p(y|\mathbf{x}, \mathcal{D}) = \int_{\boldsymbol{\Theta}} p(y|\boldsymbol{\Theta}, \mathbf{x}) q(\boldsymbol{\Theta}) d\boldsymbol{\Theta} \approx \frac{1}{K} \sum_{k=1}^K p(y|\mathbf{x}, \boldsymbol{\Theta}^{(k)}) \quad (14)$$

270 where we have employed Monte Carlo sampling to approximate the integral via $\Theta^{(k)} \sim q(\Theta)$ and
 271 $p(y|\mathbf{x}, \Theta^{(k)}) = \text{softmax}(\Theta^{(k)} \phi_{\hat{\mathbf{W}}}(\mathbf{x}))$ with $\hat{\mathbf{W}} = \mathbf{W}_0 + \hat{\mathbf{U}}\hat{\Lambda}\hat{\mathbf{V}}^\top$.
 272

273 While the PoLAR-VBLL framework provides an efficient method for end-to-end training, the ELBO
 274 objective (10), derived via Jensen’s inequality, constitutes a tractable but possibly loose lower bound
 275 on the true log marginal likelihood. Maximizing this ELBO is effective for identifying a high-quality
 276 mode of the posterior—the estimated variational mean $\hat{\mu}_c$ —the resulting variational covariance $\hat{\mathbf{S}}_c$
 277 may not perfectly capture the true posterior curvature. To alleviate this issue, we introduce an addi-
 278 tional step via post-hoc LA to further refine the quality of the learned covariance matrix. Specifically,
 279 given the estimated PoLAR parameters $\hat{\Psi}_{\text{polar}}$, we will evaluate the Hessian of $\log p(\mathcal{D}, \Theta|\hat{\Psi}_{\text{polar}})$
 280 at the posterior mean $\{\hat{\mu}_c\}_c$ as

$$281 \mathbf{H} = -\nabla_{\Theta}^2 \left(\log p(\mathcal{D}|\Theta, \hat{\Psi}_{\text{polar}}) + \log p(\Theta) \right) \Big|_{\Theta=\{\mu_c\}_c} \quad (15)$$

283 where $\log p(\mathcal{D}|\Theta, \hat{\Psi}_{\text{polar}})$ and $\log p(\Theta)$ are given by (4) and (2). Note that \mathbf{H} is also the Bayesian
 284 Fisher information matrix of Θ , whose inverse $\Sigma = \mathbf{H}^{-1}$, the Bayesian Cramer-Rao lower bound,
 285 can be taken as a covariance matrix for Θ . For the sake of tractability, we will still enforce a
 286 factorizable posterior over Θ , by ignoring the off-diagonal elements in Σ . With Σ_c being the matrix
 287 on the diagonal of Σ corresponding to θ_c , the resulting corrected posterior is
 288

$$289 \tilde{q}(\theta_c|\mathcal{D}) = \mathcal{N}(\theta_c; \hat{\mu}_c, \Sigma_c) \quad (16)$$

290 which will be used to make the prediction in (14).
 291

292 **Remark.** Our strategy uses the scalable VBLL framework to first identify a high-quality mode $\hat{\mu}_c$
 293 along with the PoLAR parameters, and then applies LA as a ‘finishing touch’ to better characterize
 294 the posterior covariance around this well-chosen point. Notably, the post-hoc LA calibration does
 295 not affect the accuracy of the calibrated model (Yang et al., 2024). This hybrid approach nicely com-
 296 bines the strengths of variational training and post-hoc LA for enhanced uncertainty assessment. We
 297 have empirically validated the benefits of this additional step in our ablation studies, demonstrating
 298 improved performance on key UQ metrics such as calibration and out-of-distribution detection.
 299

300 4 EXPERIMENTAL RESULTS

301 In this section, we compare our PoLAR-VBLL with existing methods on real-world datasets. We
 302 first introduce the experimental settings, including baselines, fine-tuning protocols, and evaluation
 303 procedures. We then evaluate PoLAR-VBLL’s uncertainty estimation and generalization abilities in
 304 both in-distribution and out-of-distribution scenarios.
 305

306 4.1 SETTINGS

307 **Fine-tuning and Evaluation.** We implement PoLAR-VBLL using the PEFT library (Mangrulkar
 308 et al., 2022) and fine-tune the LLaMA2-7B model (Touvron et al., 2023) on common-sense rea-
 309 soning tasks. Additional evaluations on LLaMA-3.1-8B are delegated to the Appendices in the
 310 supplementary file due to space limitations; see Table 8. Following Laplace-LoRA (Yang et al.,
 311 2024) and BLOB (Wang et al., 2024), we apply PoLAR adapters (Lion et al., 2025) to the output
 312 layer as well as the queries and values of all attention layers. For the hyperparameters, we follow
 313 the default configurations outlined in the PEFT library (Mangrulkar et al., 2022) and the original
 314 PoLAR implementation (Lion et al., 2025) to guarantee the highest level of reproducibility. This
 315 encompasses aspects such as the total number of training steps, the learning rate, and the LoRA rank
 316 (see App. A.4 for further details). For fairness, the rank of the adapters in all the methods is set to
 317 $r = 8$ here.

318 For common-sense reasoning tasks, we cast them as a classification problem corresponding to possi-
 319 ble answers from each dataset and fine-tune the LLM to maximize the ELBO objective in Eq. (10).
 320 For the classification head in our VBLL framework, we initialize the variational posterior means
 321 $\{\mu_c\}$ using the pre-trained language model head weights corresponding to answer tokens (e.g., A, B,
 322 C, D for multiple-choice tasks), which significantly reduces training time by leveraging the model’s
 323 pre-existing knowledge of answer formatting. For evaluation, in addition to Accuracy (ACC), we
 324 use Expected Calibration Error (ECE) (Naeini et al., 2015) and Negative Log-Likelihood (NLL) to
 325 assess the models’ uncertainty estimation ability.

324
 325 Table 1: Performances on ID datasets in terms of ACC, ECE, and NLL using LLaMA2-7B. Bold
 326 and underlined denote the best and the second-best performance, respectively.

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377			
			WG-S	ARC-C	ARC-E	OBQA
327 328 329 330 331 332 333 334	ACC (%)	MLE	68.99±0.58	69.10±2.84	85.65±0.92	81.52±0.25
		MAP	68.62±0.71	67.59±0.40	86.55±0.55	81.38±0.65
		MCD	69.46±0.62	68.69±1.30	86.21±0.46	81.72±0.10
		ENS	69.57±0.66	66.20±2.01	84.40±0.81	81.38±0.91
		BBB	66.54±7.87	68.13±1.27	86.86±0.74	82.06±0.59
		LA	69.45±1.73	66.78±0.69	80.05±0.22	82.07±0.67
		BLoB ($N=10$)	69.07±0.34	68.81±1.09	86.56±0.35	81.52±0.74
		PoLAR-VBLL	71.62±0.27	70.92±0.24	88.03±0.44	82.53±0.12
327 328 329 330 331 332 333 334	ECE (%)	MLE	29.83±0.58	29.00±1.97	13.12±1.39	12.55±0.46
		MAP	29.76±0.87	29.42±0.68	12.07±0.55	13.26±0.82
		MCD	27.98±0.44	27.53±0.80	12.20±0.56	13.10±0.11
		ENS	28.52±0.55	29.16±2.37	12.57±0.58	15.34±0.27
		BBB	21.81±12.95	26.23±1.47	12.28±0.58	11.38±1.07
		LA	13.47±1.43	16.25±2.61	33.29±0.57	6.12±1.55
		BLoB ($N=10$)	9.35±1.37	9.59±1.88	3.64±0.53	3.77±1.47
		PoLAR-VBLL	7.31±0.32	7.41±0.78	2.63±0.81	4.63±1.43
327 328 329 330 331 332 333 334	NLL	MLE	3.17±0.37	2.85±0.27	1.17±0.13	0.73±0.03
		MAP	2.46±0.34	2.66±0.11	0.90±0.05	0.75±0.01
		MCD	2.79±0.53	2.67±0.15	1.00±0.14	0.77±0.03
		ENS	2.71±0.08	2.46±0.22	0.82±0.03	1.06±0.04
		BBB	1.40±0.55	2.23±0.04	0.91±0.06	0.66±0.05
		LA	0.67±0.01	1.03±0.04	0.88±0.00	0.72±0.01
		BLoB ($N=10$)	0.63±0.01	0.78±0.02	0.40±0.01	0.50±0.01
		PoLAR-VBLL	0.60±0.01	0.91±0.00	0.47±0.03	0.63±0.02

Baselines and Implementation Details. We compare PoLAR-VBLL with state-of-the-art approaches for UQ applied on top of LoRA fine-tuning, including Monte-Carlo Dropout (MCD) (Gal & Ghahramani, 2016), Bayes By Backprop (BBB) (Blundell et al., 2015; Xiong et al., 2023), Deep Ensemble (ENS) (Lakshminarayanan et al., 2017; Balabanov & Linander, 2024; Wang et al., 2023), and the latest Laplace-LoRA (LA) (Yang et al., 2024; Kristiadi et al., 2024). Additionally, we report the performance of two standard PEFT baseline methods: Maximum Likelihood Estimation (MLE) (Hu et al., 2022; Myung, 2003; Le Cam, 1990) and Maximum A Posteriori (MAP) (Greig et al., 1989). Comparisons with additional BLoB-based variants, including ScalaBL (SAMPLAWSKI et al., 2025), C-LoRA (Rahmati et al., 2025), and TFB (Shi et al., 2024), are presented in the supplementary file; see Table 8.

We fine-tune a LLaMA2-7B model on four datasets requiring common-sense reasoning abilities, Winogrande-small (WG-S) (Sakaguchi et al., 2021), ARC-Challenge (ARC-C) (Clark et al., 2018), ARC-Easy (ARC-E) (Clark et al., 2018), OpenBookQA (OBQA) (Mihaylov et al., 2018), and additional chemistry (Chem) and physics (Phy) from the MMLU benchmark (Hendrycks et al., 2021a;b) for out-of-distribution evaluation. The datasets are split in the same manner as those in BLoB, and for each baseline, we report the better result between our reproduced numbers and those seen in BLoB. For all baseline methods, we utilize the same pre-trained LLM backbone and maintain consistent hyperparameters across all datasets.

4.2 RESULTS ON IN-DISTRIBUTION (ID) DATASETS

As shown in Table 1, our proposed PoLAR-VBLL demonstrates strong performance on the four ID commonsense reasoning tasks. Specifically, our approach attains the highest ACC on all evaluated datasets, while simultaneously achieving best or second-best performance in terms of ECE and NLL. This distinct our approach from BLoB, where a smaller N , i.e., number of samples at

378
 379 Table 2: Performances on OOD datasets in terms of ACC, ECE, and NLL using LLaMA2-7B. Bold
 380 and underlined denote the best and the second-best performance, respectively.

Metric	Method	Datasets					
		In-Dist.		Smaller Dist. Shift		Larger Dist. Shift	
		OBQA	ARC-C	ARC-E	Chem	Phy	
ACC (%)	MLE	81.52 \pm 0.25	66.20 \pm 0.87	75.12 \pm 0.83	40.62 \pm 2.25	28.82 \pm 1.30	
	MAP	81.38 \pm 0.91	<u>69.59\pm0.23</u>	75.47 \pm 0.73	<u>44.79\pm0.00</u>	28.47 \pm 1.20	
	MCD	81.72 \pm 0.10	69.03 \pm 0.70	76.00 \pm 1.58	<u>42.71\pm0.01</u>	29.17 \pm 4.54	
	ENS	81.38 \pm 0.65	67.34 \pm 0.70	75.18 \pm 2.03	43.75 \pm 1.04	30.56 \pm 2.62	
	BBB	82.06 \pm 0.59	67.25 \pm 1.18	75.83 \pm 0.75	42.36 \pm 0.49	30.21 \pm 2.25	
	LA	<u>82.07\pm0.67</u>	69.14 \pm 1.15	74.94 \pm 0.96	44.10 \pm 1.30	<u>31.60\pm0.49</u>	
	BLoB (N=10)	81.52 \pm 0.74	67.71 \pm 1.13	<u>76.37\pm0.80</u>	44.79 \pm 1.47	31.60 \pm 2.73	
	PoLAR-VBLL	82.53\pm0.12	70.07\pm0.48	81.24\pm0.78	45.67\pm0.58	33.33\pm0.98	
ECE (%)	MLE	12.55 \pm 0.46	22.20 \pm 0.39	16.47 \pm 0.86	21.72 \pm 0.30	29.60 \pm 1.29	
	MAP	15.34 \pm 0.27	19.31 \pm 0.46	15.68 \pm 0.51	17.55 \pm 1.95	30.25 \pm 2.18	
	MCD	14.45 \pm 0.84	19.54 \pm 0.33	15.32 \pm 1.16	17.90 \pm 0.63	29.53 \pm 4.20	
	ENS	13.26 \pm 0.82	7.59 \pm 1.43	6.44 \pm 0.83	12.04 \pm 4.57	17.52 \pm 1.28	
	BBB	11.38 \pm 1.07	19.90 \pm 0.66	13.41 \pm 0.85	15.67 \pm 1.23	26.10 \pm 4.76	
	LA	6.12 \pm 1.15	<u>5.84\pm0.64</u>	8.51 \pm 1.06	10.76 \pm 3.41	<u>13.91\pm0.90</u>	
	BLoB (N=10)	3.77\pm1.47	9.55 \pm 0.40	<u>5.48\pm1.27</u>	9.77 \pm 1.35	18.29 \pm 1.35	
	PoLAR-VBLL	<u>4.63\pm1.43</u>	5.12\pm0.90	5.09\pm0.77	6.49\pm2.07	6.03\pm2.21	
NLL	MLE	0.73 \pm 0.03	1.16 \pm 0.00	0.92 \pm 0.03	1.56 \pm 0.06	1.66 \pm 0.05	
	MAP	1.06 \pm 0.04	1.10 \pm 0.07	0.93 \pm 0.04	1.55 \pm 0.06	1.65 \pm 0.03	
	MCD	1.06 \pm 0.08	1.08 \pm 0.00	0.88 \pm 0.03	1.59 \pm 0.07	1.67 \pm 0.05	
	ENS	0.75 \pm 0.01	0.86 \pm 0.01	0.69 \pm 0.03	1.28\pm0.00	1.39 \pm 0.03	
	BBB	0.66 \pm 0.05	1.06 \pm 0.01	0.79 \pm 0.02	1.49 \pm 0.05	<u>1.62\pm0.06</u>	
	LA	0.72 \pm 0.01	0.81\pm0.00	0.70 \pm 0.02	1.35 \pm 0.03	1.36\pm0.01	
	BLoB (N=10)	0.50\pm0.01	<u>0.83\pm0.01</u>	0.60\pm0.01	1.38 \pm 0.01	1.46 \pm 0.02	
	PoLAR-VBLL	0.63 \pm 0.02	0.88 \pm 0.00	0.69 \pm 0.01	1.29 \pm 0.00	1.36\pm0.01	

410 inference, gives a better ACC but with significantly worse ECE or NLL, and its ACC is still worse
 411 than our method in terms of ACC; see Table 3 in App. A.5 for more details. This simultaneous
 412 improvement in ACC, ECE, and NLL is particularly significant, as it addresses the prevalent over-
 413 confidence problem inherent in standard MLE fine-tuning approaches, and it validates the efficacy
 414 of our methodology in developing more reliable and well-calibrated models.

415 The performance gains can be attributed to the distinct yet synergistic roles of PoLAR and the VBLL
 416 inference scheme. The consistent accuracy improvements come with PoLAR, which mitigates the
 417 rank collapse in LoRA, thereby leading to a more expressive feature representation. The signifi-
 418 cant gains in calibration are primarily driven by the VBLL, which places a posterior distribution
 419 over the final layer’s weights, explicitly modeling uncertainty and effectively reducing model over-
 420 confidence. The synergy between these components is critical, as the superior feature foundation
 421 provided by PoLAR enables VBLL to learn a more nuanced and reliable mapping from features
 422 to predictive distributions, ultimately resulting in a model that is simultaneously more accurate and
 423 better calibrated. The NLL and ECE metrics can be further decreased by increasing the number of
 424 training epochs.

425 4.3 RESULTS ON OUT-OF-DISTRIBUTION (OOD) DATASETS

427 To assess the robustness of our approach under distributional shifts, we fine-tune our model on
 428 OBQA and evaluate its performance across datasets with varying degrees of distribution mismatch.
 429 Since the in-distribution dataset OBQA consists of multiple-choice, elementary-level science ques-
 430 tions, we consider ARC-E and ARC-C to exhibit smaller distributional shifts. In comparison, the
 431 college-level chemistry and physics subsets of the MMLU benchmark represent larger distributional
 432 shifts.

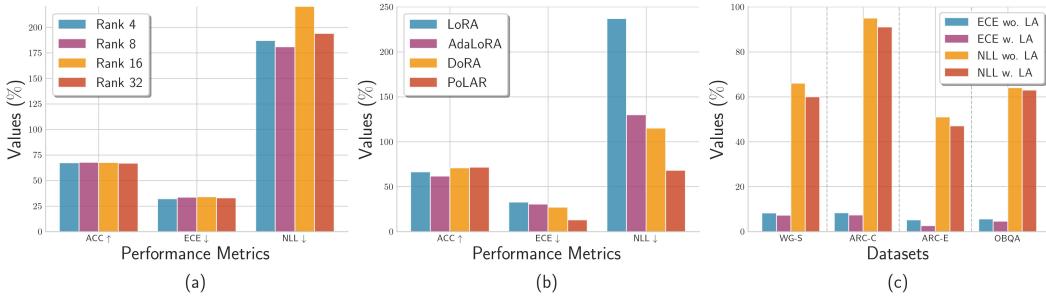


Figure 1: Ablation studies on the WG-S dataset using LLaMA 2-7B: (a) Performance of LoRA-VBLL using different ranks; (b) VBLL coupled with different adapters; and (c) ECE and NLL performances of PoLAR-VBLL with and without LA.

As presented in Table 2, our proposed method, PoLAR-VBLL, demonstrates exceptional OOD generalization capabilities. It consistently achieves the highest predictive accuracy across all evaluation settings, with particularly notable improvements in larger distribution shifts.

This superior performance indicates that our approach effectively captures generalizable representations that transfer well beyond the training distribution. From an uncertainty quantification perspective, PoLAR-VBLL exhibits remarkable calibration consistency across distributional shifts. The method achieves the best or second-best ECE performance across all out-of-distribution settings. Similarly, the NLL results demonstrate competitive performance, with our method maintaining reliable probabilistic predictions across varying shift magnitudes. These results underscore a critical finding: while many existing methods suffer from degraded uncertainty estimation under distribution shift, our approach maintains both high accuracy and well-calibrated uncertainty estimates. This dual robustness is essential for practical deployment, where models must not only perform well on shifted data but also provide trustworthy confidence indicators to enable appropriate decision-making in uncertain scenarios.

4.4 ABLATION STUDIES

We conduct ablation studies to validate each component of our PoLAR-VBLL framework. All three experiments are evaluated on the WG-S, with the same LLaMA 2-7B backbone. Our analysis of adapter rank in Figure 1(a), standard LoRA demonstrates minimal performance differences across various ranks, with performance remaining relatively flat regardless of rank size, confirming that rank collapse prevents effective utilization of larger rank allocations. To justify our choice of PoLAR, we benchmarked it against other PEFT methods from LoRA, adaLoRA, and DoRA. The results in Figure 1(b) are definitive: PoLAR achieves superior performance across accuracy, ECE, and NLL. Such empirical results show that PoLAR’s more expressive feature representation provides a better foundation not only for the prediction task but also for subsequent uncertainty estimation within the VBLL framework. We also evaluated the post-hoc LA. As shown in Figure 1(c), applying LA after training consistently reduces both ECE and NLL across all tested datasets. This demonstrates that our framework identifies a high-quality posterior mode, allowing the LA step to effectively refine the covariance structure and further improve the final uncertainty estimates. Additionally, our VBLL approach achieves the lowest GPU memory consumption among competing UQ methods, providing computational advantages through analytical ELBO computation as shown in Table 6 in App. B.1. Lastly, an ablation study has been conducted to show the effects of VBLL and LA coupled with the same PoLAR adapter in Table 9 in App. B.3, where it is shown that PoLAR-VBLL outperforms PoLAR-LA and combining VBLL with post-hoc LA offers the maximal performance gains.

5 CONCLUSIONS

This paper introduced PoLAR-VBLL, a scalable and unified framework for uncertainty-aware fine-tuning of LLMs. PoLAR addresses the rank collapse issue in conventional adapters through orthogonality constraints, yielding a more expressive feature extractor. Building on this foundation, VBLL enables efficient, sampling-free Bayesian training on the final layer for principled UQ. Extensive experiments demonstrate that PoLAR-VBLL consistently outperforms state-of-the-art baselines in both accuracy and uncertainty calibration. This work presents a principled and practical pathway towards developing more reliable and trustworthy fine-tuned LLMs for real-world applications.

486
487

REPRODUCIBILITY STATEMENT

488
489
490
491
492
493
494
495
496
497

To ensure the reproducibility of our work, we provide all necessary implementation details. Our code is implemented using the PyTorch framework. A complete list of dependencies is provided in the Appendix [A.4](#) and `requirements.txt` file in the project's root directory. All experiments were conducted on a server equipped with one NVIDIA A6000 ada (48GB) GPU. A single full run of our main experiment requires approximately 72 hours (500 epochs) to complete. We will publicly release all source code, model weights, and scripts used to generate key figures, accompanied by a detailed `README.md` file that includes step-by-step instructions for environment setup, data preprocessing, and model training/evaluation. The code will be made available in a GitHub repository upon acceptance. The datasets used in our study are publicly available, and the specific preprocessing steps are detailed in Appendix [A.4](#) .

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Pierre Ablin and Gabriel Peyré. Fast and accurate optimization on the orthogonal manifold with-
543 out retraction. *International Conference on Artificial Intelligence and Statistics*, pp. 5636–5657,
544 2022.

545 Oleksandr Balabanov and Hampus Linander. Uncertainty quantification in fine-tuned llms using
546 lora ensembles. *arXiv preprint arXiv:2402.12264*, 2024.

547 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
548 neural network. In *International conference on machine learning*, pp. 1613–1622. PMLR, 2015.

549 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
550 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
551 Few-Shot Learners. *Proc. Adv. Neural Inf. Process. Syst.*, 33:1877–1901, 2020.

552

553 Paul Brunzema, Mikkel Jordahn, John Willes, Sebastian Trimpe, Jasper Snoek, and James Harrison.
554 Bayesian Optimization via Continual Variational Last Layer Training. *Proc. Int. Conf. Learn.
555 Represent.*, 2025.

556

557 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
558 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
559 *arXiv preprint arXiv:1803.05457*, 2018.

560

561 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
562 Philipp Hennig. Laplace redux—effortless Bayesian deep learning. In *NeurIPS*, 2021.

563

564 Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
565 uncertainty in deep learning. *Proc. Int. Conf. Mach. Learn.*, pp. 1050–1059, 2016.

566

567 Bin Gao, Simon Vary, Pierre Ablin, and P-A Absil. Optimization flows landing on the stiefel mani-
568 fold. *IFAC-PapersOnLine*, 55(30):25–30, 2022.

569

570 Dorothy M Greig, Bruce T Porteous, and Allan H Seheult. Exact maximum a posteriori estimation
571 for binary images. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 51
(2):271–279, 1989.

572

573 James Harrison, John Willes, and Jasper Snoek. Variational Bayesian Last Layers. *Proc. Int. Conf.
Learn. Represent.*, 2024.

574

575 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
576 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference
on Learning Representations (ICLR)*, 2021a.

577

578 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
579 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
580 tional Conference on Learning Representations (ICLR)*, 2021b.

581

582 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
583 Weizhu Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models,. *Proc. Int. Conf.
Learn. Represent.*, 1(2):3, 2022.

584

585 Peng Jiang, Daji Ergu, Fangyuan Liu, Yong Cai, and Bo Ma. Can we trust you? on calibration of
586 a probabilistic object detector for autonomous driving. *IEEE/RSJ International Conference on
587 Intelligent Robots and Systems (IROS)*, pp. 3188–3194, 2021.

588

589 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
590 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
591 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

592

593 Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and
Geoff Pleiss. A Sober Look at LLMs for Material Discovery: Are They Actually Good for
Bayesian Optimization Over Molecules? *Proc. Int. Conf. Mach. Learn.*, 2024.

594 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
 595 Uncertainty Estimation using Deep Ensembles. *Proc. Adv. Neural Inf. Process. Syst.*, 30, 2017.
 596

597 Lucien Le Cam. Maximum likelihood: an introduction. *International Statistical Review/Revue
 598 Internationale de Statistique*, pp. 153–171, 1990.

599 Kai Lion, Liang Zhang, Bingcong Li, and Niao He. Polar: Polar-decomposed low-rank adapter
 600 representation. *arXiv preprint arXiv:2506.03133*, 2025.
 601

602 Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
 603 narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
 604 distance awareness. *Advances in neural information processing systems*, 33:7498–7512, 2020.

605 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 606 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. *arXiv
 607 preprint arXiv:2402.09353*, 2024.

608 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
 609 preprint arXiv:1608.03983*, 2016.
 610

611 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 612 arXiv:1711.05101*, 2017.

613 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 614 Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. In *Peft: State-of-the-art
 615 parameter-efficient fine-tuning methods*. 2022.

616 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 617 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.

618 In Jae Myung. Tutorial on maximum likelihood estimation. *Journal of mathematical Psychology*,
 619 47(1):90–100, 2003.

620 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
 621 bilities using bayesian binning. In *Proceedings of the AAAI conference on artificial intelligence*,
 622 volume 29, 2015.

623 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint
 624 arXiv:1912.01703*, 2019.

625 Janis Postels, Mattia Segu, Tao Sun, Luca Sieber, Luc Van Gool, Fisher Yu, and Federico Tombari.
 626 On the practicality of deterministic epistemic uncertainty. *arXiv preprint arXiv:2107.00649*, 2021.
 627

628 Amir Hossein Rahmati, Sanket Jantre, Weifeng Zhang, Yucheng Wang, Byung-Jun Yoon, Nathan M
 629 Urban, and Xiaoning Qian. C-lora: Contextual low-rank adaptation for uncertainty estimation in
 630 large language models. *arXiv preprint arXiv:2505.17773*, 2025.

631 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 632 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

633 Colin Samplawski, Adam D Cobb, Manoj Acharya, Ramneet Kaur, and Susmit Jha. Scalable
 634 bayesian low-rank adaptation of large language models via stochastic variational subspace in-
 635 ference. *arXiv preprint arXiv:2506.21408*, 2025.

636 Sholom Schechtman, Daniil Tiapkin, Michael Muehlebach, and Eric Moulines. Orthogonal direc-
 637 tions constrained gradient method: from non-linear equality constraints to stiefel manifold. In
 638 *The Thirty Sixth Annual Conference on Learning Theory*, pp. 1228–1258. PMLR, 2023.

639 Haizhou Shi, Yibin Wang, Ligong Han, Huan Zhang, and Hao Wang. Training-free bayesianization
 640 for low-rank adapters of large language models. *arXiv preprint arXiv:2412.05723*, 2024.
 641

642 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 643 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 644 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

648 Xi Wang, Laurence Aitchison, and Maja Rudolph. LoRA ensembles for large language model fine-
649 tuning. *arXiv preprint arXiv:2310.00035*, 2023.
650

651 Yibin Wang, Haizhou Shi, Ligong Han, Dimitris N. Metaxas, and Hao Wang. BLoB: Bayesian
652 Low-Rank Adaptation by Backpropagation for Large Language Models. *Proc. Adv. Neural Inf.*
653 *Process. Syst.*, 2024.

654 Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep Kernel Learning.
655 *Proc. Int. Conf. Artif. Intel. and Stats.*, pp. 370–378, 2016.
656

657 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
658 express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint*
659 *arXiv:2306.13063*, 2023.

660 Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian Low-rank Adapta-
661 tion for Large Language Models. *Proc. Int. Conf. Learn. Represent.*, 2024.

662 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
663 and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. *arXiv preprint*
664 *arXiv:2303.10512*, 2023.

665 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
666 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint*
667 *arXiv:2403.03507*, 2024.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **USAGE OF LLMs**
705706 During the preparation of this paper, we utilized large language models (LLMs), such as OpenAI’s
707 ChatGPT, only for the purpose of improving typos, grammar, and clarity. For instance, we utilized
708 ChatGPT to proofread and refine the phrasing of specific sentences, as well as to verify spelling and
709 grammatical accuracy. However, all core research ideas, experimental designs, result analysis, and
710 the final narrative structure of the paper were exclusively conceived and formulated by the authors.
711 No LLM was used to generate any of the core scientific content of this work, such as algorithm
712 design, theoretical derivations, or experimental results.
713714 **A.1 COMPUTATIONAL COMPLEXITY ANALYSIS**715 We provide a detailed computational complexity analysis for each phase of our PoLAR-VBLL
716 framework, demonstrating its efficiency compared to alternative approaches for uncertainty quan-
717 tification in fine-tuned LLMs.
718719 **A.1.1 TRAINING PHASE COMPLEXITY**720 The joint optimization of PoLAR adapter parameters $\Psi_{\text{polar}} := \{\mathbf{U}, \mathbf{\Lambda}, \mathbf{V}\}$ and variational parame-
721 ters $\Psi = \{\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_C, \mathbf{S}_1, \dots, \mathbf{S}_C\}$ involves the following computational costs per training itera-
722 tion:
723724 **Feature Extraction:** Computing LLM features $\phi_{\mathbf{W}}(\mathbf{x}_i)$ where $\mathbf{W} = \mathbf{W}_0 + \mathbf{U}\mathbf{\Lambda}\mathbf{V}^\top$ for a batch of
725 size B requires $\mathcal{O}(B \cdot \text{LLM}_{\text{cost}})$ operations, where LLM_{cost} represents the computational cost of a
726 single forward pass through the base language model.
727728 **PoLAR Parameter Updates:** The landing field optimization on Stiefel manifolds incurs:
729730

- 731 • Euclidean Gradient Calculation: $\mathcal{O}(mn)$
- 732 • Riemannian gradient computation: $\mathcal{O}(m^2r + n^2r)$ for skew-symmetric operations $\psi(\mathbf{U})$
733 and $\psi(\mathbf{V})$
- 734 • Constraint gradient computation: $\mathcal{O}((m + n)r^2)$ for infeasibility penalties $\nabla N(\mathbf{U}) =$
735 $4\mathbf{U}(\mathbf{U}^\top \mathbf{U} - \mathbf{I}_r)$ and $\nabla N(\mathbf{V})$
- 736 • Parameter updates: $\mathcal{O}(r(m + n + r))$ for \mathbf{U} , \mathbf{V} , and $\mathbf{\Lambda}$ updates via landing field method

737 **VBLL Parameter Updates:** Variational inference optimization requires:
738739

- 740 • ELBO computation: $\mathcal{O}(B \cdot C \cdot d)$ for likelihood terms and log-sum-exp operations in Eq. 12
- 741 • KL divergence computation: $\mathcal{O}(C \cdot d^2)$ for trace and determinant operations in covariance
742 matrices \mathbf{S}_c
- 743 • Gradient computation: $\mathcal{O}(C \cdot d^2)$ for gradients with respect to variational means $\boldsymbol{\mu}_c$ and
744 covariances \mathbf{S}_c
- 745 • Parameter updates: $\mathcal{O}(B \cdot C \cdot d^2)$ for updating C class-specific posterior distributions

746 The total complexity per training iteration is:
747

748
$$\mathcal{O}(B \cdot \text{LLM}_{\text{cost}} + r(m^2 + n^2) + B \cdot C \cdot d^2 + r(m + n + r)) \quad (17)$$

749 For T training iterations, the overall training complexity becomes:
750

751
$$\mathcal{O}(T \cdot (B \cdot \text{LLM}_{\text{cost}} + r(m^2 + n^2) + B \cdot C \cdot d^2 + r(m + n + r))) \quad (18)$$

752 **A.1.2 PREDICTIVE INFERENCE COMPLEXITY**
753754 The uncertainty-aware prediction phase involves:
755756 **Optional Laplace Calibration:** Computing the Hessian of the negative log-likelihood for posterior
757 refinement requires $\mathcal{O}(C \cdot d^2)$ operations using Kronecker-factored approximation (KFAC), which
758 is significantly more efficient than the naive $\mathcal{O}((C \cdot d)^2)$ full Hessian computation.
759

756 **Monte Carlo Sampling:** For K posterior samples from $q(\Theta)$:

757

- 758 • Parameter sampling: $\mathcal{O}(K \cdot C \cdot d^2)$ for sampling from multivariate Gaussians $\mathcal{N}(\mu_c, \mathbf{S}_c)$
- 759 • Forward computation: $\mathcal{O}(K \cdot C \cdot d)$ for logit computation $\mathbf{z} = \Theta \phi_{\mathbf{W}}(\mathbf{x}^*)$ and softmax
- 760 normalization

761 Total inference complexity per test point:

762

$$\mathcal{O}(\text{LLM}_{\text{cost}} + C \cdot d^2 + K \cdot C \cdot d^2) \quad (19)$$

763 **A.1.3 COMPARISON WITH BASELINE METHODS**

764 **vs. Standard LoRA:** Our PoLAR parameterization adds $\mathcal{O}(r^2)$ overhead per update compared to
765 LoRA's $\mathcal{O}(r)$ due to orthogonality constraints, but this is negligible when $r \ll d$ while providing
766 substantially improved stable rank utilization.

767 **vs. BLoB:** BLoB requires expensive Monte Carlo sampling during training with $\mathcal{O}(N_{\text{MC}} \cdot \text{LLM}_{\text{cost}})$
768 cost per ELBO evaluation, where N_{MC} is the number of Monte Carlo samples. Our VBLL approach
769 achieves analytical ELBO computation, eliminating this sampling overhead.

770 **vs. Ensemble Methods:** Maintaining M separate adapter copies requires $\mathcal{O}(M \cdot r(m + n))$ storage
771 and $\mathcal{O}(M \cdot \text{LLM}_{\text{cost}})$ inference time. Our Bayesian approach achieves comparable uncertainty quality
772 with $\mathcal{O}(C \cdot d^2)$ additional parameters.

773 **vs. Laplace-LoRA:** Post-hoc Laplace approximation around suboptimal MAP estimates requires
774 similar Hessian computation but lacks the joint optimization benefits of our integrated approach.

775 **A.1.4 MEMORY COMPLEXITY**

776 The space complexity of our framework is:

777

$$\mathcal{O}(|\mathbf{W}_0| + r(m + n + r) + C \cdot d^2 + B \cdot d) \quad (20)$$

778 where $|\mathbf{W}_0|$ represents the frozen pre-trained model size, $r(m + n + r)$ accounts for PoLAR parameters,
779 $C \cdot d^2$ stores VBLL covariance matrices, and $B \cdot d$ handles intermediate feature storage during
780 batch processing.

781 **A.2 DETAILED ALGORITHM SPECIFICATIONS**

782 **A.3 DETAILED GRADIENT DERIVATIONS**

783 This section provides the complete derivation of gradient updates for the joint PoLAR-VBLL opti-
784 mization procedure described in Section 3.2.

785 **A.3.1 VARIATIONAL PARAMETER UPDATES**

786 The gradients with respect to the variational parameters $\{\mu_c, \mathbf{S}_c\}$ follow standard variational infer-
787 ence procedures:

788

$$\frac{\partial \mathcal{L}^{\text{ELBO}}}{\partial \mu_c} = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \left[y_{i,c} \phi_{\mathbf{W}}(\mathbf{x}_i) - \frac{\exp(\mu_c^\top \phi_{\mathbf{W}}(\mathbf{x}_i) + \frac{1}{2} \phi_{\mathbf{W}}(\mathbf{x}_i)^\top \mathbf{S}_c \phi_{\mathbf{W}}(\mathbf{x}_i))}{\sum_{j=1}^C \exp(\mu_j^\top \phi_{\mathbf{W}}(\mathbf{x}_i) + \frac{1}{2} \phi_{\mathbf{W}}(\mathbf{x}_i)^\top \mathbf{S}_j \phi_{\mathbf{W}}(\mathbf{x}_i))} \phi_{\mathbf{W}}(\mathbf{x}_i) \right] - \frac{1}{\sigma_\theta^2} \mu_c \quad (21)$$

789

$$\frac{\partial \mathcal{L}^{\text{ELBO}}}{\partial \mathbf{S}_c} = \frac{1}{2|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \left[-\frac{\exp(\mu_c^\top \phi_{\mathbf{W}}(\mathbf{x}_i) + \frac{1}{2} \phi_{\mathbf{W}}(\mathbf{x}_i)^\top \mathbf{S}_c \phi_{\mathbf{W}}(\mathbf{x}_i))}{\sum_{j=1}^C \exp(\mu_j^\top \phi_{\mathbf{W}}(\mathbf{x}_i) + \frac{1}{2} \phi_{\mathbf{W}}(\mathbf{x}_i)^\top \mathbf{S}_j \phi_{\mathbf{W}}(\mathbf{x}_i))} \phi_{\mathbf{W}}(\mathbf{x}_i) \phi_{\mathbf{W}}(\mathbf{x}_i)^\top \right] - \frac{1}{2\sigma_\theta^2} \mathbf{I}_d + \frac{1}{2} \mathbf{S}_c^{-1} \quad (22)$$

Algorithm 1 PoLAR-VBLL Training

810
 811
 812 **Require:** Pre-trained LLM weights \mathbf{W}_0 , training dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{|\mathcal{N}|}$, rank r , hyperparameters $\{\eta_{\text{polar}}, \eta_{\text{vbll}}, \lambda, \sigma_\theta^2\}$
 813
 814 **Ensure:** Converged PoLAR parameters $\{\hat{\mathbf{U}}, \hat{\mathbf{\Lambda}}, \hat{\mathbf{V}}\}$, variational posterior $q(\Theta)$
 815 1: Initialize $\mathbf{U}_0 \in \text{St}(m, r)$, $\mathbf{V}_0 \in \text{St}(n, r)$ via QR decomposition of random matrices
 816 2: Initialize $\mathbf{\Lambda}_0 \sim \mathcal{N}(\mathbf{0}, 0.01^2 \mathbf{I}_{r \times r})$
 817 3: Initialize VBLL parameters: $\boldsymbol{\mu}_{c,0} = \mathbf{w}_{\text{pretrain},c}$, $\mathbf{S}_{c,0} = \sigma_\theta^2 \mathbf{I}_d$ for $c = 1, \dots, C$
 818 4: **for** $t = 0, 1, \dots, T - 1$ **do**
 819 5: Sample mini-batch $\mathcal{B}_t \subset \mathcal{D}$ of size B
 820 6: Extract features: $\phi_t(\mathbf{x}_i) = \phi_{\mathbf{W}_0 + \mathbf{U}_t \mathbf{\Lambda}_t \mathbf{V}_t^\top}(\mathbf{x}_i)$ for all $\mathbf{x}_i \in \mathcal{B}_t$
 821 7: Compute ELBO: $\mathcal{L}_t^{\text{ELBO}}(\boldsymbol{\Psi}_{\text{polar}}, \boldsymbol{\Psi}; \mathcal{B}_t)$ using Eq. 12
 822 8: // PoLAR parameter updates via landing field method
 823 9: Compute weight gradient: $\mathbf{G}_t = \frac{\partial \mathcal{L}_t^{\text{ELBO}}}{\partial (\mathbf{U}_t \mathbf{\Lambda}_t \mathbf{V}_t^\top)}$
 824 10: Compute factor gradients:
 825 11: $\nabla_{\mathbf{\Lambda}} \mathcal{L}_t^{\text{ELBO}} = \mathbf{U}_t^\top \mathbf{G}_t \mathbf{V}_t$
 826 12: $\nabla_{\mathbf{U}} \mathcal{L}_t^{\text{ELBO}} = \mathbf{G}_t \mathbf{V}_t \mathbf{\Lambda}_t^\top$
 827 13: $\nabla_{\mathbf{V}} \mathcal{L}_t^{\text{ELBO}} = \mathbf{G}_t^\top \mathbf{U}_t \mathbf{\Lambda}_t$
 828 14: Compute Riemannian gradients:
 829 15: $\psi(\mathbf{U}_t) = \text{Skew}(\nabla_{\mathbf{U}} \mathcal{L}_t^{\text{ELBO}} \cdot \mathbf{U}_t^\top)$
 830 16: $\psi(\mathbf{V}_t) = \text{Skew}(\nabla_{\mathbf{V}} \mathcal{L}_t^{\text{ELBO}} \cdot \mathbf{V}_t^\top)$
 831 17: Landing field updates:
 832 18: $\boldsymbol{\Gamma}(\mathbf{U}_t) = \psi(\mathbf{U}_t) \mathbf{U}_t + \lambda \cdot 4 \mathbf{U}_t (\mathbf{U}_t^\top \mathbf{U}_t - \mathbf{I}_r)$
 833 19: $\boldsymbol{\Gamma}(\mathbf{V}_t) = \psi(\mathbf{V}_t) \mathbf{V}_t + \lambda \cdot 4 \mathbf{V}_t (\mathbf{V}_t^\top \mathbf{V}_t - \mathbf{I}_r)$
 834 20: Update PoLAR parameters:
 835 21: $\mathbf{U}_{t+1} = \mathbf{U}_t - \eta_{\text{polar}} \boldsymbol{\Gamma}(\mathbf{U}_t)$
 836 22: $\mathbf{V}_{t+1} = \mathbf{V}_t - \eta_{\text{polar}} \boldsymbol{\Gamma}(\mathbf{V}_t)$
 837 23: $\mathbf{\Lambda}_{t+1} = \mathbf{\Lambda}_t - \eta_{\text{polar}} \nabla_{\mathbf{\Lambda}} \mathcal{L}_t^{\text{ELBO}}$
 838 24: // VBLL parameter updates
 839 25: **for** $c = 1, \dots, C$ **do**
 840 26: Compute variational gradients using Eqs. 21–22
 841 27: $\boldsymbol{\mu}_{c,t+1} = \boldsymbol{\mu}_{c,t} - \eta_{\text{vbll}} \frac{\partial \mathcal{L}_t^{\text{ELBO}}}{\partial \boldsymbol{\mu}_c}$
 842 28: $\mathbf{S}_{c,t+1} = \mathbf{S}_{c,t} - \eta_{\text{vbll}} \frac{\partial \mathcal{L}_t^{\text{ELBO}}}{\partial \mathbf{S}_c}$
 843 29: Project $\mathbf{S}_{c,t+1}$ to positive definite cone if necessary
 844 30: **end for**
 845 31: **end for**
 846 32: **Return** $\hat{\mathbf{U}} = \mathbf{U}_T, \hat{\mathbf{\Lambda}} = \mathbf{\Lambda}_T, \hat{\mathbf{V}} = \mathbf{V}_T, q(\Theta) = \prod_{c=1}^C \mathcal{N}(\boldsymbol{\theta}_c; \boldsymbol{\mu}_{c,T}, \mathbf{S}_{c,T})$

847
 848 A.3.2 POLAR PARAMETER UPDATES
 849

850 For the PoLAR parameters, we employ the chain rule to propagate gradients through the feature
 851 extractor $\phi_{\mathbf{W}}(\mathbf{x})$ where $\mathbf{W} = \mathbf{W}_0 + \mathbf{U} \mathbf{\Lambda} \mathbf{V}^\top$. Let $\mathbf{G} := \frac{\partial \mathcal{L}^{\text{ELBO}}}{\partial (\mathbf{U} \mathbf{\Lambda} \mathbf{V}^\top)}$ denote the gradient with respect
 852 to the weight update. Then:

853
 854
 855
$$\frac{\partial \mathcal{L}^{\text{ELBO}}}{\partial \mathbf{\Lambda}} = \mathbf{U}^\top \mathbf{G} \mathbf{V} \tag{23}$$

856
 857
$$\nabla_{\mathbf{U}} \mathcal{L}^{\text{ELBO}} = \mathbf{G} \mathbf{V} \mathbf{\Lambda}^\top \tag{24}$$

858
 859
$$\nabla_{\mathbf{V}} \mathcal{L}^{\text{ELBO}} = \mathbf{G}^\top \mathbf{U} \mathbf{\Lambda} \tag{25}$$

860
 861 A.3.3 RIEMANNIAN GRADIENT COMPUTATION
 862

863 Since \mathbf{U} and \mathbf{V} are constrained to Stiefel manifolds, we convert the Euclidean gradients to their
 864 Riemannian counterparts. For a matrix $\mathbf{X} \in \text{St}(m, r)$, the Riemannian gradient is:

16

Algorithm 2 PoLAR-VBLL Uncertainty-Aware Prediction

Require: Converged PoLAR parameters $\{\hat{\mathbf{U}}, \hat{\mathbf{A}}, \hat{\mathbf{V}}\}$, variational posterior $q(\Theta)$, test input \mathbf{x}^* , training data \mathcal{D} , number of samples K , Laplace refinement flag

Ensure: Predictive distribution $p(y^*|\mathbf{x}^*, \mathcal{D})$

- 1: **if** Laplace refinement enabled **then**
- 2: // Optional posterior refinement via Laplace approximation
- 3: Compute converged means: $\mu_c^* = \mu_{c,T}$ for $c = 1, \dots, C$
- 4: Compute Hessian using KFAC approximation:
- 5: $\mathbf{H}_c = -\nabla_{\theta_c}^2 \log p(\mathcal{D}|\theta_c = \mu_c^*, \hat{\mathbf{U}}, \hat{\mathbf{A}}, \hat{\mathbf{V}})$
- 6: Form Laplace posterior: $q_{\text{Lap}}(\theta_c) = \mathcal{N}(\mu_c^*, \mathbf{H}_c^{-1})$ for $c = 1, \dots, C$
- 7: **end if**
- 8: // Extract test features
- 9: $\phi^* = \phi_{\mathbf{W}_0 + \hat{\mathbf{U}}\hat{\mathbf{A}}\hat{\mathbf{V}}^\top}(\mathbf{x}^*)$
- 10: // Monte Carlo sampling for predictive distribution
- 11: Initialize prediction accumulator: $\mathbf{p}_{\text{pred}} = \mathbf{0}_C$
- 12: **for** $k = 1, \dots, K$ **do**
- 13: **if** Laplace refinement enabled **then**
- 14: Sample classification weights: $\theta_c^{(k)} \sim q_{\text{Lap}}(\theta_c)$ for $c = 1, \dots, C$
- 15: **else**
- 16: Sample classification weights: $\theta_c^{(k)} \sim q(\theta_c) = \mathcal{N}(\mu_{c,T}, \mathbf{S}_{c,T})$ for $c = 1, \dots, C$
- 17: **end if**
- 18: Form weight matrix: $\Theta^{(k)} = [\theta_1^{(k)}, \dots, \theta_C^{(k)}]^\top$
- 19: Compute logits: $\mathbf{z}^{(k)} = \Theta^{(k)} \phi^*$
- 20: Compute sample prediction: $\mathbf{p}^{(k)} = \text{softmax}(\mathbf{z}^{(k)})$
- 21: Accumulate: $\mathbf{p}_{\text{pred}} = \mathbf{p}_{\text{pred}} + \mathbf{p}^{(k)}$
- 22: **end for**
- 23: Average predictions: $p(y^*|\mathbf{x}^*, \mathcal{D}) = \frac{1}{K} \mathbf{p}_{\text{pred}}$
- 24: **Return** Predictive distribution $p(y^*|\mathbf{x}^*, \mathcal{D})$

$$\text{grad}_B f(\mathbf{X}) = \nabla f(\mathbf{X}) - \mathbf{X} \nabla f(\mathbf{X})^\top \mathbf{X} \quad (26)$$

Applying this to our PoLAR parameters:

$$\psi(\mathbf{U}) = \text{Skew}(\nabla_{\mathbf{U}} \mathcal{L}^{\text{ELBO}} \cdot \mathbf{U}^{\top}) = \text{Skew}(\mathbf{G} \mathbf{V} \boldsymbol{\Lambda}^{\top} \mathbf{U}^{\top}) \quad (27)$$

$$\psi(\mathbf{V}) \equiv \text{Skew}(\nabla_{\mathbf{V}} \mathcal{L}^{\text{ELBO}} \cdot \mathbf{V}^\top) \equiv \text{Skew}(\mathbf{G}^\top \mathbf{U} \mathbf{A} \mathbf{V}^\top) \quad (28)$$

where $\text{Skew}(\mathbf{A}) = \frac{1}{2}(\mathbf{A} - \mathbf{A}^\top)$ extracts the skew-symmetric component.

A.3.4 LANDING FIELD UPDATES

Following the infeasible optimization approach, we replace the expensive retraction operations with landing field updates:

$$\Gamma(\mathbf{U}) = \psi(\mathbf{U})\mathbf{U} + \lambda \nabla N(\mathbf{U}) \quad (29)$$

$$\Gamma(\mathbf{V}) = \psi(\mathbf{V})\mathbf{V} + \lambda \nabla N(\mathbf{V}) \quad (30)$$

where $\nabla N(\mathbf{U}) = 4\mathbf{U}(\mathbf{U}^\top \mathbf{U} - \mathbf{I}_r)$ and $\nabla N(\mathbf{V}) = 4\mathbf{V}(\mathbf{V}^\top \mathbf{V} - \mathbf{I}_r)$ are the gradients of the infeasibility penalties $N(\mathbf{U}) = \|\mathbf{U}^\top \mathbf{U} - \mathbf{I}_r\|_F^2$ and $N(\mathbf{V}) = \|\mathbf{V}^\top \mathbf{V} - \mathbf{I}_r\|_F^2$, respectively.

The complete update procedure alternates between updating the variational parameters using standard gradient-based optimizers (e.g., Adam) on Eqs. 21–22, and updating the PoLAR parameters using the landing field approach on Eqs. 23, 29, and 30.

918 A.4 IMPLEMENTATION DETAILS
919920 A.4.1 TRAINING SETTINGS
921922 **Model Architecture.** Our implementation builds upon the LLaMA-2-7B foundation model (Tou-
923 vron et al., 2023), utilizing its pre-trained language modeling head for VBLL mean initialization.
924925 **PoLAR Configuration.** The manifold penalty coefficient in PoLAR $\lambda = 1.0$. We parameterize
926 the S matrix using the identity initialization and apply Landing Field optimization (Lion et al., 2025;
927 Gao et al., 2022; Schechtman et al., 2023) with gradient type set to "landing". The Landing Field
928 callback is enabled during training to maintain stability in optimization on the Grassmann manifold.
929930 **VBLL Parameterization.** For VBLL, we adopt the dense parameterization for computational ef-
931 ficiency while maintaining uncertainty quantification capabilities. The Jensen bound is used for
932 approximating the softmax function. Prior hyperparameters are set as follows: prior scale $\sigma_0^2 = 1.0$,
933 Wishart scale $\nu_0 = 10^{-2}$, degrees of freedom $\rho = 1.0$. The regularization weight for KL divergence
934 is computed as $\lambda_{\text{reg}} = 1/|\mathcal{D}_{\text{train}}|$ where $|\mathcal{D}_{\text{train}}|$ is the training set size. This regularization weight can
935 be used to adjust the emphasis of model performance on ACC or Uncertainty Quantification abil-
936 ity. All parameter values are the default classification setting in the VBLL library (Harrison et al.,
937 2024). For the standard training process, we employ a two-step training approach. The λ_{reg} is first
938 set to $1/\mathcal{D}$ for the ACC increasing. After training for a couple of epochs, increasing λ_{reg} further will
939 largely suppress both NLL and ECE metrics.
940941 **Training Configuration.** For all shared parameters, we follow the setting of BLoB's official
942 single-GPU scripts, except for LoRA Rank and LoRA Alpha, to ease BNN training and improve
943 performance. We train all methods (PoLAR-VBLL and baselines) for 500 epochs with a batch size
944 of 4, evaluation batch size of 8, and maximum sequence length of 300 tokens. All methods use
945 AdamW (Loshchilov & Hutter, 2017) optimizers with learning rate 10^{-4} and a CosineAnnealing-
946 WarmRestarts scheduler (Loshchilov & Hutter, 2016). Baselines are reproduced strictly following
947 the implementations from their official repositories. For sampling-based methods (BLoB, TFB,
948 ScalaBL, C-LoRA), we set training sampling $K_{\text{train}} = 1$ (single sample per forward pass) and infer-
949 ence sampling $K_{\text{eval}} = 10$. LoRA/PoLAR rank ($r = 16$), alpha ($\alpha = 32$), and dropout (0.1). All
950 training is conducted in BF16 precision on CUDA devices. For all MC-based uncertainty quantifi-
951 cation evaluations, we use $n_{\text{samples}} = 10$.
952953 **LA Calibration.** For post-hoc calibration, we apply LA with a diagonal Hessian structure over all
954 model parameters. The prior precision is set to 1.0.
955956 A.4.2 COMPUTATIONAL ENVIRONMENT
957958 **Hardware Specifications** All experiments are conducted on a high-performance computing sys-
959 tem equipped with NVIDIA RTX A6000 Ada GPUs and AMD 9600 Threadripper processors with
960 64 cores and 128 threads. This configuration provides substantial computational resources for both
961 GPU-accelerated training and CPU-intensive operations such as Hessian computation for Laplace
962 approximation.
963964 **Software Dependencies.** Our implementation leverages several key Python packages: Py-
965 Torch (Paszke, 2019) for deep learning operations, HuggingFace PEFT (Mangrulkar et al., 2022)
966 for adapter implementations, custom Laplace approximation libraries (Yang et al., 2024; Daxberger
967 et al., 2021; Kristiadi et al., 2024) for post-hoc uncertainty calibration, PoLAR optimization li-
968 braries (Lion et al., 2025), and VBLL (Variational Bayesian Last Layer) implementations (Harr-
969 erson et al., 2024). Complete dependency specifications and version information are provided in our
970 requirements.txt file, which will be made available upon acceptance.
971

972
 973 Table 3: Performances on ID datasets in terms of ACC, ECE, and NLL using LlaMA2-7B. Bold
 974 and underlined denote the best and the second-best performance, respectively. Here, we include
 975 PoLAR-VBLL with and without LA.

976 977 Metric	978 979 980 981 982 983 984 Method	985 986 987 988 989 990 991 992 993 994 995 Datasets			
		996 997 WG-S	998 999 ARC-C	999 1000 ARC-E	1000 1001 OBQA
996 997 998 999 999 1000 1001 1002 ACC (%)	999 1000 MLE	68.99 \pm 0.58	69.10 \pm 2.84	85.65 \pm 0.92	81.52 \pm 0.25
	999 1000 MAP	68.62 \pm 0.71	67.59 \pm 0.40	86.55 \pm 0.55	81.38 \pm 0.65
	999 1000 MCD	69.46 \pm 0.62	68.69 \pm 1.30	86.21 \pm 0.46	81.72 \pm 0.10
	999 1000 ENS	69.57 \pm 0.66	66.20 \pm 2.01	84.40 \pm 0.81	81.38 \pm 0.91
	999 1000 BBB	66.54 \pm 7.87	68.13 \pm 1.27	86.86 \pm 0.74	82.06 \pm 0.59
	999 1000 LA	69.45 \pm 1.73	66.78 \pm 0.69	80.05 \pm 0.22	82.07 \pm 0.67
	999 1000 BLoB (N=0)	70.89 \pm 0.82	70.83 \pm 1.57	86.68 \pm 0.60	82.73 \pm 0.41
	999 1000 PoLAR-VBLL (wo. LA)		71.62\pm0.27	70.92\pm0.24	88.03\pm0.44
999 1000 1001 1002 1003 1004 ECE (%)	999 1000 PoLAR-VBLL		71.62\pm0.27	70.92\pm0.24	88.03\pm0.44
	999 1000 MLE	29.83 \pm 0.58	29.00 \pm 1.97	13.12 \pm 1.39	12.55 \pm 0.46
	999 1000 MAP	29.76 \pm 0.87	29.42 \pm 0.68	12.07 \pm 0.55	13.26 \pm 0.82
	999 1000 MCD	27.98 \pm 0.44	27.53 \pm 0.80	12.20 \pm 0.56	13.10 \pm 0.11
	999 1000 ENS	28.52 \pm 0.55	29.16 \pm 2.37	12.57 \pm 0.58	15.34 \pm 0.27
	999 1000 BBB	21.81 \pm 12.95	26.23 \pm 1.47	12.28 \pm 0.58	11.38 \pm 1.07
	999 1000 LA	13.47 \pm 1.43	16.25 \pm 2.61	33.29 \pm 0.57	6.12 \pm 1.55
	999 1000 BLoB (N=0)	20.62 \pm 0.83	20.61 \pm 1.16	9.43 \pm 0.38	8.36 \pm 0.38
1000 1001 1002 1003 1004 NLL	999 1000 PoLAR-VBLL (wo. LA)	8.26 \pm 0.60	8.36 \pm 0.13	5.22 \pm 0.41	5.58 \pm 0.34
	999 1000 PoLAR-VBLL		7.31\pm0.32	7.41\pm0.78	2.63\pm0.81
	999 1000 MLE	3.17 \pm 0.37	2.85 \pm 0.27	1.17 \pm 0.13	0.73 \pm 0.03
	999 1000 MAP	2.46 \pm 0.34	2.66 \pm 0.11	0.90 \pm 0.05	0.75 \pm 0.01
	999 1000 MCD	2.79 \pm 0.53	2.67 \pm 0.15	1.00 \pm 0.14	0.77 \pm 0.03
	999 1000 ENS	2.71 \pm 0.08	2.46 \pm 0.22	0.82 \pm 0.03	1.06 \pm 0.04
	999 1000 BBB	1.40 \pm 0.55	2.23 \pm 0.04	0.91 \pm 0.06	0.66 \pm 0.05
	999 1000 LA [116]	0.67 \pm 0.01	1.03 \pm 0.04	0.88 \pm 0.00	0.72 \pm 0.01
1005 1006 1007 1008	999 1000 BLoB (N=0)	0.91 \pm 0.10	1.19 \pm 0.02	0.56 \pm 0.01	0.56\pm0.02
	999 1000 PoLAR-VBLL (wo. LA)		0.66\pm0.03	0.95\pm0.07	0.51\pm0.03
	999 1000 PoLAR-VBLL		0.60\pm0.01	0.91\pm0.00	0.47\pm0.03
	999 1000 0.63 \pm 0.02				

1008 A.5 ADDITIONAL EXPERIMENTAL RESULTS

1011 A.5.1 FULL COMPARISON ON IN-DISTRIBUTION DATASETS

1013 Table 3 provides a comprehensive comparison. BLoB exhibits a trade-off between accuracy and un-
 1014 certainty quantification: at N=0 sampling, it achieves higher accuracy performance but with reduced
 1015 calibration quality. Even under these optimal accuracy conditions, BLoB achieves lower accuracy
 1016 than our method across all datasets and shows higher ECE and NLL values. As sampling increases,
 1017 BLoB exhibits improved uncertainty metrics, albeit with a corresponding reduction in predictive
 1018 accuracy.

1019 Our PoLAR-VBLL framework achieves competitive accuracy across all datasets while maintaining
 1020 strong uncertainty calibration. The framework demonstrates that it is possible to obtain both high
 1021 predictive performance and well-calibrated uncertainties without requiring the typical trade-off. The
 1022 additional LA refinement further enhances our method’s ECE and NLL performance while main-
 1023 taining accuracy, suggesting that our variational training provides a robust foundation for posterior
 1024 refinement. These results suggest that the combination of PoLAR’s enhanced feature representation
 1025 and VBLL’s principled uncertainty quantification offers a promising approach for achieving both
 accuracy and calibration in uncertainty-aware models.

1026 A.6 TRAINING PROTOCOL: EXTENDED TRAINING SCHEDULE
10271028 **Motivation for Extended Training.** A natural question arises regarding our choice of training
1029 schedule, particularly given that some baseline methods specify shorter training durations in their
1030 original implementations. We address this by examining the BLoB baseline as a representative case
1031 study on WinoGrande-Simple (WG-S).1032 **Convergence Analysis of BLoB Official Implementation.** We strictly followed the official BLoB
1033 repository¹ and executed their provided shell script (`blob-llama-all-single-gpu.sh`)
1034 without modification. For WG-S, the official configuration specifies:
10351036

- 1037 • Batch size: 4
- 1038 • Maximum gradient steps: 5,000
- 1039 • Training samples: 640 (steps per epoch: $640/4 = 160$)
- 1040 • Total epochs: $5000/160 = 31.25$ epochs

10411042
1043 Table 4: Training dynamics of BLoB on WG-S using official implementation. Training accuracy
1044 and loss exhibit significant instability with no clear convergence by epoch 32.
1045

Epoch	Training Accuracy (%)			Training Loss		
	Seed 1	Seed 2	Seed 3	Seed 1	Seed 2	Seed 3
1	51.13	49.12	53.64	0.7062	0.7097	0.6923
5	72.75	70.63	78.89	0.5796	0.5459	0.5003
10	67.97	62.40	76.86	0.6869	0.6569	0.4949
15	51.61	61.27	68.78	0.7080	0.6729	0.6043
20	44.35	62.77	58.29	0.7190	0.6315	0.6758
25	50.23	60.71	67.43	0.7099	0.6535	0.5755
30	50.39	61.47	68.86	0.6959	0.6480	0.5933
31	52.55	58.83	64.50	0.6993	0.6502	0.6084
32	45.86	64.08	65.17	0.7130	0.6290	0.5758

1057
1058 Table 5: Validation results for BLoB at epoch 32 (5,000 steps) on WG-S dataset. Seed 1 produced
1059 NaN predictions and is excluded. Low validation accuracy suggests undertraining.
1060

Seed	Val ACC (%)	Val ECE (%)	Val NLL
Seed 2	60.99	3.28	0.66
Seed 3	58.14	3.27	0.67

1061 **Critical Observations.** Table 4 summarizes the training dynamics over epoch 32 (5,000 steps)
1062 across three random seeds provided by the official scripts. The training curves exhibit significant
1063 instability with no apparent convergence at 32 epochs. Training accuracy fluctuates dramatically
1064 across all seeds—for instance, Seed 1 drops from 72.75% at epoch 5 to 44.35% at epoch 20, while
1065 training loss fails to monotonically decrease. Validation accuracy remains substantially low (58–
1066 61%), far below the results reported in the original BLoB paper, and Seed 1 consistently produces
1067 NaN predictions during validation across multiple independent runs. The low ECE and NLL values
1068 likely reflect undertraining rather than good calibration, as the model has not yet learned to make
1069 confident predictions on this task.
10701071 **Rationale for Longer Training Schedule.** Given the apparent lack of convergence in the official
1072 BLoB implementation and similar observations with other baselines, we adopted a unified training
1073 schedule of 500 epochs for all methods. This ensures fair comparison under identical training
1074 conditions, provides sufficient duration for all methods to reach stable performance, and offers adequate
10751076 ¹Cloned via git from the official source <https://github.com/Wang-ML-Lab/bayesian-peft>
1077
1078
1079

margin based on our empirical observation that most methods converge within 200 epochs, while certain baselines on challenging datasets require 300–400+ epochs in the worst case.

This extended training protocol ensures that performance differences reflect genuine methodological advantages rather than artifacts of premature termination or convergence failures.

B EXTEND EXPERIMENTS ON LLAMA 3.1 8B

B.1 MEMORY USAGE AND RUN TIME

We evaluate the computational efficiency of different uncertainty quantification methods on the WG-S dataset. All experiments are conducted with a training batch size of 4, an inference batch size of 8, LoRA rank $r = 16$, $\alpha = 32$, and a sequence length of 400. These hyperparameters are kept consistent across all methods to ensure a fair comparison. In terms of PoLAR-BLoB, we applied variational inference to the core matrix $\Lambda \in \mathbb{R}^{r \times r}$ in the PoLAR decomposition $\Delta \mathbf{W} = \mathbf{U} \Lambda \mathbf{V}^\top$, while keeping the orthogonal factors $\mathbf{U} \in \text{St}(m, r)$ and $\mathbf{V} \in \text{St}(n, r)$ deterministic.

Table 6: GPU memory usage and runtime comparison across different uncertainty quantification methods. **Bold** denotes the best performance for each metric.

Method	Training Memory (MB)	Test Memory (MB)	Runtime per Epoch (min)
PoLAR-VBLL (Ours)	32,272	16,396	1:13
PoLAR-BLoB	31,728	18,874	14:36
LoRA-BLoB	40,475	18,762	14:49
PoLAR-LA-LL	31,714	15,662	0:34
PoLAR-LA	31,714	43,678	0:44
LoRA-LA-LL	30,612	16,313	0:43
LoRA-LA	30,612	42,131	0:57
LoRA-VBLL	30,546	16,764	1:14
TFB	30,612	16,667	0:48
ScalaBL	27,318	19,552	10:42
C-LoRA	24,236	19,102	10:04

As shown in Table 6, our method demonstrates a substantial reduction in runtime compared to BLoB-based methods, achieving approximately 12 \times speedup (1:13 vs. \sim 14:40 min/epoch). Meanwhile, PoLAR-VBLL maintains a competitive inference memory footprint that is significantly lower than full-network Laplace approximations such as PoLAR-LA (16,396 MB vs. 43,678 MB).

The computational efficiency of PoLAR-VBLL stems from its architectural design that fundamentally differs from existing approaches. While BLoB-based methods rely on expensive full-network sampling that necessitates K complete forward passes through the entire LLM backbone, our framework employs head-only sampling. This design choice enables a single backbone pass while restricting the stochastic sampling to the computationally lightweight last layer, dramatically reducing both memory consumption and inference time.

Furthermore, our PoLAR-VBLL leverages an analytical ELBO solution, which allows for exact gradient computation without the sampling overhead inherent in Monte Carlo-based approaches. In contrast, BLoB incurs approximately 50% additional parameter overhead (Samplawski et al., 2025; Rahmati et al., 2025) due to maintaining both mean and variance parameters across all adapter layers.

Table 7: Variational parameters per layer for different methods.

Method	Variational Parameters per Layer	Calculation
LoRA-BLoB	131,072	$r \times d \times 2 = 16 \times 4096 \times 2$
PoLAR-BLoB	512	$r \times r \times 2 = 16 \times 16 \times 2$
ScalaBL	32	$r \times 2 = 16 \times 2$

Table 7 presents the variational parameter counts per layer for different methods. The dramatic difference between LoRA-BLoB (131,072 parameters) and PoLAR-BLoB (512 parameters) arises from the structural distinction in where stochasticity is introduced. LoRA-BLoB performs variational inference on the full low-rank matrices of dimension $d \times r$, whereas PoLAR-BLoB restricts the variational treatment to the core matrix of dimension $r \times r$. It is worth noting that C-LoRA adopts an entirely different approach by using deterministic parameters. Specifically, C-LoRA employs a contextual MLP module to dynamically generate input-dependent perturbation matrices, with parameter count per layer given by $(r \times 64 + 64) + (64 \times r^2 \times 2 + r^2 \times 2)$. The lower memory usage of C-LoRA can be attributed to two factors: first, the absence of the reparameterization trick eliminates the need to store noise matrices and intermediate states for backpropagation; second, deterministic parameters avoid the doubling of optimizer states (momentum and variance in AdamW) that variational methods require for both mean and variance parameters.

Memory Analysis Beyond Static Parameter Counts. A superficial analysis might suggest that LoRA adapters contribute less than 10% additional memory overhead. However, this perspective considers only static parameter counts and overlooks the dynamic memory consumption during training. In practice, GPU memory comprises several components: the base model parameters (Llama-2-7B in fp16), adapter parameters, optimizer states that store momentum and variance for each trainable parameter (effectively 2 \times the trainable parameter memory), gradient buffers, and activation memory. Among these, the activation and reparameterization overhead often constitutes the dominant factor in peak memory usage. LoRA-BLoB performs reparameterization on large projection matrices of dimension $d \times r$, requiring storage of high-dimensional noise matrices and intermediate computation states. In contrast, PoLAR restricts this operation to the compact core matrix of dimension $r \times r$. Crucially, this overhead scales linearly with both batch size and sequence length, making the architectural choice increasingly important for larger-scale training.

In fact, BLoB’s high memory cost is well-documented and motivates recent methods (ScalableBL (Samplawski et al., 2025), C-LoRA (Rahmati et al., 2025)) specifically designed to reduce this overhead.

Experimental Configuration and Fair Comparison. Our experimental settings differ from those in the original BLoB paper: we use LoRA rank of 16, alpha of 32, sequence length of 400, and target all projection layers including `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, and `down_proj`. The original BLoB paper uses rank of 8, alpha of 16, sequence length of 300, targeting only `q_proj`, `v_proj`, and `lm_head`. These differences render absolute numbers not directly comparable with those reported in the original BLoB paper. Nevertheless, our comparison remains fair as all methods are evaluated under identical settings within our unified framework. All methods use $K = 1$ samples during training, consistent with official BLoB implementation and standard practice. All baselines are implemented from their official repositories with the same percentage of trainable parameters.

In summary, PoLAR-VBLL effectively bridges the gap between predictive performance and computational efficiency, making it a practical choice for uncertainty quantification in resource-constrained deployment scenarios.

B.2 ADDITIONAL BACKBONE EVALUATION ON LLAMA-3.1-8B

We conducted comprehensive experiments on Llama-3.1-8B across all six datasets with all baseline methods using the 5-epoch fine-tuning setting suggested by TFB (Shi et al., 2024). Note that this setting is not optimal for variational Bayesian methods, as the ELBO objective balances both accuracy and KL regularization simultaneously. In contrast, methods with deterministic training and post-hoc posterior estimation optimize solely for cross-entropy, potentially allowing them to achieve higher accuracy within limited training epochs. The batch size is set to 4, and the maximum sequence length is restricted to 300 tokens. For the LoRA configuration, we set the rank to $r = 8$ and the scaling factor to $\alpha = 16$.

These comprehensive results in Table 8 demonstrate that our framework generalizes effectively beyond Llama-2-7B to larger and more recent model architectures, consistently achieving superior uncertainty quantification while maintaining competitive predictive performance, even under the limited training budget that inherently favors deterministic methods.

1188

1189 Table 8: Performances on ID datasets in terms of ACC, ECE, and NLL using Llama-3.1-8B.
1190 The evaluation is done across six datasets used in Wang et al. (2024); Shi et al. (2024). **Bold**
1191 and underlined denote the best and the second-best performance, respectively. **Note on ScalaBL:**
1192 We strictly followed the official implementation and hyperparameter configurations for ScalaBL.
1193 However, despite our best efforts, our reproduction yielded a model where the low ECE comes at
1194 the cost of substantially reduced accuracy. This pattern suggests potential underfitting in this specific
1195 setting.

Metric	Method	Datasets					
		WG-S	ARC-C	ARC-E	WG-M	OBQA	BoolQ
ACC (%)	LA	77.22 \pm 1.38	84.49 \pm 0.37	89.86 \pm 0.54	84.04 \pm 0.23	88.32 \pm 0.33	88.26 \pm 0.50
	PoLAR-LA	<u>77.51</u> \pm 0.94	<u>84.57</u> \pm 1.10	91.80 \pm 0.19	<u>83.88</u> \pm 0.90	<u>88.70</u> \pm 0.56	89.54 \pm 0.86
	PoLAR-LA-LL	<u>77.51</u> \pm 0.94	<u>84.57</u> \pm 1.10	91.80 \pm 0.19	<u>83.88</u> \pm 0.90	<u>88.70</u> \pm 0.56	89.54 \pm 0.86
	TFB-LL	77.31 \pm 2.01	82.75 \pm 0.20	89.95 \pm 0.59	83.44 \pm 1.09	88.66 \pm 0.30	89.15 \pm 1.40
	TFB	77.61 \pm 1.19	83.34 \pm 1.03	90.90 \pm 0.01	83.31 \pm 0.35	88.44 \pm 0.24	87.98 \pm 1.79
	BLOB	76.68 \pm 0.99	82.88 \pm 0.51	91.49 \pm 0.21	80.78 \pm 1.05	87.90 \pm 0.35	88.58 \pm 0.17
	C-LoRA	73.07 \pm 0.50	78.72 \pm 0.47	89.88 \pm 0.87	77.46 \pm 0.78	86.59 \pm 0.14	88.18 \pm 1.29
	Scalabl	49.92 \pm 0.69	79.40 \pm 1.48	89.21 \pm 0.20	53.40 \pm 1.43	69.62 \pm 7.99	82.18 \pm 2.14
	PoLAR-VBLL (w/o LA)	77.91 \pm 0.47	85.05 \pm 0.77	91.60 \pm 0.03	84.97 \pm 0.05	89.07 \pm 0.23	89.32 \pm 1.29
	PoLAR-VBLL	77.91 \pm 0.47	85.05 \pm 0.77	91.60 \pm 0.03	84.97 \pm 0.05	89.07 \pm 0.23	89.32 \pm 1.29
ECE (%)	LA	4.15 \pm 0.52	6.35 \pm 0.84	9.94 \pm 0.59	6.71 \pm 1.69	3.54 \pm 0.13	2.18 \pm 0.47
	PoLAR-LA	<u>3.58</u> \pm 0.18	4.52 \pm 1.40	3.27 \pm 0.86	4.31 \pm 0.29	2.83 \pm 0.49	3.35 \pm 0.45
	PoLAR-LA-LL	<u>7.95</u> \pm 0.92	<u>6.07</u> \pm 0.72	2.94 \pm 0.67	6.37 \pm 1.10	3.75 \pm 0.01	5.52 \pm 0.12
	TFB-LL	9.99 \pm 0.90	5.02 \pm 2.15	<u>3.13</u> \pm <u>0.24</u>	4.12 \pm 1.57	3.58 \pm 0.21	3.87 \pm 1.41
	TFB	9.05 \pm 0.39	6.53 \pm 1.99	3.17 \pm 0.21	<u>3.68</u> \pm <u>1.57</u>	2.76 \pm 0.16	3.89 \pm 1.68
	BLOB	14.83 \pm 1.21	9.29 \pm 0.57	4.12 \pm 0.26	8.23 \pm 1.04	3.33 \pm 0.29	3.36 \pm 0.94
	C-LoRA	18.36 \pm 0.58	15.56 \pm 2.44	5.40 \pm 0.23	7.96 \pm 2.84	6.58 \pm 1.23	3.94 \pm 0.47
	Scalabl	4.86 \pm 0.50	18.75 \pm 7.45	10.07 \pm 0.66	2.73 \pm 0.87	24.67 \pm 4.34	14.48 \pm 1.29
	PoLAR-VBLL (w/o LA)	9.04 \pm 0.18	7.40 \pm 0.26	3.61 \pm 0.22	6.10 \pm 0.01	<u>2.50</u> \pm <u>0.10</u>	2.63 \pm 0.23
	PoLAR-VBLL	3.31 \pm 1.40	3.56 \pm 0.41	3.22 \pm 0.42	3.00 \pm 0.10	2.44 \pm 0.11	1.88 \pm 0.27
NLL	LA	0.67 \pm 0.04	0.63 \pm 0.04	0.41 \pm 0.02	0.52 \pm 0.01	0.40 \pm 0.02	0.36 \pm 0.01
	PoLAR-LA	0.60 \pm 0.05	0.52 \pm 0.01	0.31 \pm 0.01	0.46 \pm 0.02	<u>0.34</u> \pm <u>0.02</u>	0.32 \pm 0.01
	PoLAR-LA-LL	0.76 \pm 0.12	0.58 \pm 0.05	<u>0.26</u> \pm <u>0.01</u>	0.52 \pm 0.06	<u>0.37</u> \pm <u>0.01</u>	0.34 \pm 0.03
	TFB-LL	<u>0.59</u> \pm <u>0.05</u>	0.53 \pm 0.01	0.28 \pm 0.02	<u>0.41</u> \pm <u>0.01</u>	0.32 \pm 0.01	<u>0.29</u> \pm <u>0.04</u>
	TFB	0.55 \pm 0.01	0.51 \pm 0.02	0.27 \pm 0.02	<u>0.41</u> \pm <u>0.01</u>	0.32 \pm 0.01	0.30 \pm 0.02
	BLOB	0.79 \pm 0.06	0.62 \pm 0.07	0.29 \pm 0.01	0.47 \pm 0.03	0.38 \pm 0.00	0.28 \pm 0.00
	C-LoRA	0.85 \pm 0.03	0.88 \pm 0.08	0.35 \pm 0.01	0.56 \pm 0.07	0.45 \pm 0.05	0.31 \pm 0.01
	Scalabl	0.65 \pm 0.00	0.69 \pm 0.13	0.35 \pm 0.00	0.64 \pm 0.00	0.96 \pm 0.23	0.46 \pm 0.08
	PoLAR-VBLL (w/o LA)	0.61 \pm 0.01	<u>0.51</u> \pm <u>0.05</u>	0.27 \pm 0.03	<u>0.40</u> \pm <u>0.01</u>	0.32 \pm 0.02	0.29 \pm 0.00
	PoLAR-VBLL	0.55 \pm 0.02	0.50 \pm 0.05	0.24 \pm 0.04	0.39 \pm 0.01	0.32 \pm 0.02	0.29 \pm 0.00

B.3 ABLATION STUDY ON THE EFFECTS OF VBLL AND LA

To systematically evaluate the contribution of VBLL and LA in our framework, we conduct a comprehensive ablation study across all six datasets using Llama-3.1-8B as the backbone. Following the experimental protocol suggested by TFB (Shi et al., 2024), we fine-tune all methods for five epochs. Since our method applies Laplace Approximation (LA) exclusively to the last layer, we include PoLAR-LA-LL (which applies LA only to the last layer of a deterministically trained model) to ensure a direct and fair comparison. For completeness, we also compare against PoLAR-LA, which applies LA across all adapter layers.

The results presented in Table 9 reveal the following important findings regarding the individual contributions of VBLL and LA to our framework.

VBLL as the Dominant Factor for Uncertainty Quantification. The complete PoLAR-VBLL framework achieves the best ECE and NLL across nearly all datasets while maintaining competitive accuracy. Notably, even without the final LA refinement step, the PoLAR-VBLL (w/o LA) variant already delivers highly competitive calibration performance, particularly on OBQA and BoolQ where it achieves the second-best ECE. This observation demonstrates that VBLL is the primary driver of UQ quality in our framework, rather than relying on LA as a remedial component.

Limitations of Deterministic Training for Uncertainty Estimation. A comparison between PoLAR-LA and PoLAR-LA-LL provides valuable insights into the limitations of post-hoc uncer-

1242
 1243 Table 9: Ablation study of effects of VBLL and LA coupled with the PoLAR adapter across six
 1244 datasets using LLaMa-3.1-8B. **Bold** and underlined denote the best and the second-best perfor-
 1245 mance, respectively.

1246 1247 Metric	1248 Method	1249 Datasets					
		1250 WG-S	1251 ARC-C	1252 ARC-E	1253 WG-M	1254 OBQA	1255 BoolQ
1256 ACC (%) ↑	PoLAR-LA	<u>77.51</u> ±0.94	<u>84.57</u> ±1.10	91.80 ± 0.19	83.88±0.90	88.70±0.56	89.54 ± 0.86
	PoLAR-LA-LL	<u>77.51</u> ±0.94	<u>84.57</u> ±1.10	91.80 ± 0.19	83.88±0.90	88.70±0.56	89.54 ± 0.86
	PoLAR-VBLL (w/o LA)	<u>77.91</u> ± <u>0.47</u>	<u>85.05</u> ± <u>0.77</u>	<u>91.60</u> ±0.03	<u>84.97</u> ± <u>0.05</u>	<u>89.07</u> ± <u>0.23</u>	89.32±1.29
	PoLAR-VBLL (Full)	<u>77.91</u> ± <u>0.47</u>	<u>85.05</u> ± <u>0.77</u>	<u>91.60</u> ±0.03	<u>84.97</u> ± <u>0.05</u>	<u>89.07</u> ± <u>0.23</u>	89.32±1.29
1257 ECE (%) ↓	PoLAR-LA	<u>3.58</u> ±0.18	<u>4.52</u> ±1.40	3.27±0.86	4.31±0.29	2.83±0.49	3.35±0.45
	PoLAR-LA-LL	<u>7.95</u> ±0.92	<u>6.07</u> ±0.72	2.94 ± 0.67	6.37±1.10	3.75±0.01	5.52±0.12
	PoLAR-VBLL (w/o LA)	9.04±0.18	7.40±0.26	3.61±0.22	6.10±0.01	2.50±0.10	2.63±0.23
	PoLAR-VBLL (Full)	<u>3.31</u> ± <u>1.40</u>	<u>3.56</u> ± <u>0.41</u>	<u>3.22</u> ±0.42	<u>3.00</u> ± <u>0.10</u>	<u>2.44</u> ± <u>0.11</u>	<u>1.88</u> ± <u>0.27</u>
1258 NLL ↓	PoLAR-LA	<u>0.60</u> ± <u>0.05</u>	0.52±0.01	0.31±0.01	0.46±0.02	<u>0.34</u> ± <u>0.02</u>	0.32±0.01
	PoLAR-LA-LL	<u>0.76</u> ±0.12	0.58±0.05	<u>0.26</u> ± <u>0.01</u>	0.52±0.06	0.37±0.01	0.34±0.03
	PoLAR-VBLL (w/o LA)	0.61±0.01	<u>0.51</u> ± <u>0.05</u>	<u>0.27</u> ±0.03	<u>0.40</u> ± <u>0.01</u>	0.32 ± 0.02	0.29 ± 0.00
	PoLAR-VBLL (Full)	<u>0.55</u> ± <u>0.02</u>	<u>0.50</u> ± <u>0.05</u>	<u>0.24</u> ± <u>0.04</u>	<u>0.39</u> ± <u>0.01</u>	<u>0.32</u> ± <u>0.02</u>	<u>0.29</u> ± <u>0.00</u>

1259 tainty estimation on deterministically trained models. While both methods achieve comparable NLL
 1260 values, this similarity is largely attributable to high-confidence predictions rather than proper cal-
 1261ibration. The substantially higher ECE of PoLAR-LA-LL compared to PoLAR-LA across most
 1262 datasets indicates that applying LA exclusively to the last layer of a deterministically trained model
 1263 is insufficient for achieving well-calibrated uncertainty estimates. This performance gap suggests
 1264 that deterministic training fails to discover posterior geometries amenable to uncertainty quantifica-
 1265 tion, necessitating LA compensation across all adapter layers to achieve reasonable calibration.

1266 **VBLL Provides Superior Initialization for Laplace Refinement.** A striking observation
 1267 emerges from comparing our full PoLAR-VBLL method against PoLAR-LA: despite applying LA
 1268 only to the last layer, PoLAR-VBLL achieves superior calibration compared to PoLAR-LA, which
 1269 applies LA across all layers. This result underscores the effectiveness of variational training in dis-
 1270 covering high-quality posterior modes. The VBLL component actively guides the optimization pro-
 1271cess toward parameter configurations that inherently support reliable uncertainty estimation, thereby
 1272 providing an ideal foundation for subsequent LA refinement. Consequently, only minimal post-hoc
 1273 adjustment at the last layer is required to achieve state-of-the-art uncertainty quantification.

1274 **Trade-off Between Accuracy and Calibration.** Under the five-epoch fine-tuning protocol sug-
 1275 gested by TFB (Shi et al., 2024), which favors methods based on deterministic training followed
 1276 by post-hoc posterior estimation, we observe that deterministic methods (PoLAR-LA and PoLAR-
 1277 LA-LL) achieve marginally higher accuracy on certain datasets such as ARC-E and BoolQ. This
 1278 advantage stems from their exclusive optimization of the cross-entropy loss without regularization
 1279 from the KL divergence term. In contrast, VBLL jointly optimizes predictive accuracy and the
 1280 variational objective, which may result in slightly lower accuracy on some benchmarks. However,
 1281 this joint optimization yields substantially superior uncertainty quantification, as evidenced by the
 1282 consistently better ECE and NLL achieved by PoLAR-VBLL across the majority of datasets.

1283 **Summary.** These comprehensive results across six datasets demonstrate that VBLL constitutes
 1284 the core working component of our framework. The synergy between VBLL, which performs mode
 1285 discovery during training, and LA, which refines the local posterior geometry post-hoc, represents
 1286 an intentional and effective design choice. The experimental evidence firmly establishes that LA
 1287 serves as a complementary refinement step rather than a compensatory mechanism for a deficient
 1288 VBLL component.

1291 B.3.1 DISENTANGLING POLAR AND VBLL CONTRIBUTIONS

1292 Another potential concern is whether our performance gains stem primarily from the PoLAR pa-
 1293 rameterization rather than the VBLL component. To address this, we conduct an additional ablation
 1294 study on WinoGrande-Simple using Llama-2-7B, where we apply PoLAR parameterization to
 1295 multiple baseline uncertainty quantification methods.

1296
 1297 Table 10: Extended ablation study comparing PoLAR-VBLL with PoLAR substituted baselines
 1298 on WG-S using Llama-2-7B. Results demonstrate that variational treatment of the classification
 1299 layer (VBLL) is more effective than applying VI to adapter parameters (BLoB).

Method	ACC (%) \uparrow	ECE (%) \downarrow	NLL \downarrow
PoLAR-LA	70.33 \pm 0.69	12.16 \pm 2.58	0.69 \pm 0.03
PoLAR-LA-LL	70.33 \pm 0.69	14.63 \pm 1.14	0.71 \pm 0.05
PoLAR-BLoB	70.39 \pm 0.26	12.06 \pm 0.81	0.73 \pm 0.04
PoLAR-VBLL (w/o LA)	71.62\pm0.27	8.26 \pm 0.60	0.66 \pm 0.03
PoLAR-VBLL (Full)	71.62\pm0.27	7.31\pm0.32	0.60\pm0.01

1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308 The results in Table 10 clearly demonstrate that VBLL, rather than PoLAR parameterization alone, is
 1309 responsible for our method’s superior uncertainty quantification. All variants in this ablation employ
 1310 the same PoLAR adapter structure, yet their calibration performance varies dramatically. PoLAR +
 1311 LAP and PoLAR + BLoB achieve comparable calibration, while PoLAR-VBLL (w/o LA) delivers
 1312 substantially better performance with approximately 1.5 \times lower ECE. Notably, even without the LA
 1313 refinement step, PoLAR-VBLL (w/o LA) already achieves strong calibration, confirming that VBLL
 1314 constitutes the primary working mechanism. The final LA step provides further refinement, but the
 1315 core uncertainty quantification capability comes from VBLL’s ability to discover well-calibrated
 1316 posterior modes during training.

1317 B.4 TIGHTNESS OF THE JENSEN BOUND

1318 A potential concern regarding our VBLL formulation is whether the Jensen bound employed in Eq. 6
 1319 provides a sufficiently tight approximation to the true ELBO objective. To address this concern, we
 1320 conduct an empirical comparison between our analytical Jensen-based estimator and a Monte Carlo
 1321 (MC) estimator with 50 samples across the full training horizon.

1322 Specifically, we train PoLAR-VBLL on the WG-S dataset using Llama-3.1-8B as the backbone
 1323 and record the training loss computed by both estimators at regular intervals over 400 training steps.
 1324 The results are presented in Table 11.

1325
 1326 Table 11: Comparison of training loss trajectories between the Jensen bound and 50-sample Monte
 1327 Carlo estimation on WGS dataset using Llama-3.1-8B.

Training Steps	VBLL (Jensen)	VBLL (50-sample MC)	Absolute Gap
0	69.50	61.23	8.27
50	50.71	50.97	0.26
100	45.57	45.65	0.08
150	40.95	40.86	0.09
200	36.96	36.95	0.01
250	33.57	33.74	0.17
300	31.08	31.36	0.28
350	29.55	29.89	0.34
400	28.49	28.83	0.34

1328
 1329 The results reveal several important observations regarding the fidelity of our Jensen-based optimiza-
 1330 tion. First, the initial gap between the two estimators (8.27 at step 0) undergoes rapid convergence
 1331 within the first 50 training steps, decreasing to merely 0.26. This rapid alignment indicates that the
 1332 Jensen bound quickly becomes an accurate proxy for the true objective as the model parameters
 1333 move away from their random initialization.

1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349 Second, after this initial convergence phase, the absolute gap remains remarkably stable throughout
 1340 the remainder of training, consistently staying below 0.35 from step 50 to step 400. This stability
 1341 demonstrates that the Jensen bound maintains its approximation quality across the entire optimiza-
 1342 tion trajectory, rather than degrading as the posterior distribution evolves during training.

1350
 1351 Third, and most critically, the gap does not exhibit any increasing trend as training progresses. This
 1352 absence of divergence confirms that optimizing the Jensen-based lower bound does not lead the
 1353 model toward regions where the bound becomes loose or misleading. Instead, the Jensen estimator
 1354 and the MC estimator track each other closely throughout the full training horizon.

1355 These extended results provide strong empirical evidence that our analytical Jensen-based formula-
 1356 tion maintains fidelity to the true ELBO objective. The tight correspondence between the two esti-
 1357 mators validates our design choice of employing the Jensen bound, which enables efficient closed-
 1358 form gradient computation without sacrificing optimization quality. This computational advantage
 1359 is substantial: while the 50-sample MC estimator requires 50 forward passes through the last layer
 1360 per training step, our Jensen-based approach achieves comparable optimization trajectories with a
 1361 single analytical computation.

1362 B.5 SENSITIVITY TO PRIOR AND INITIALIZATION

1363 We conduct a comprehensive sensitivity analysis to evaluate the robustness of our method with
 1364 respect to two critical factors: (1) the choice of prior distribution, and (2) the initialization of varia-
 1365 tional parameters. We investigate the sensitivity to the prior scale parameter σ_0 , which controls the
 1366 width of the Gaussian prior over the last-layer weights $\mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I})$. To assess initialization robust-
 1367 ness, all experiments are conducted across three different random seeds $\{1, 2, 3\}$, which affect both
 1368 data shuffling and stochastic aspects of variational parameter initialization. We report the mean and
 1369 standard deviation across these seeds.

1370
 1371
 1372 Table 12: Sensitivity analysis of prior scale σ_0 on WG-S under LLaMA 2 7B. Results are averaged
 1373 over three random seeds with standard deviations reported. ACC: accuracy (%), ECE: expected
 1374 calibration error (%), NLL: negative log-likelihood.

Prior Scale (σ_0)	ACC (\uparrow)	ECE (\downarrow)	NLL (\downarrow)
0.1	70.92 ± 0.24	9.10 ± 0.53	0.68 ± 0.04
1.0 (Default)	71.62 ± 0.27	8.26 ± 0.60	0.66 ± 0.03
10.0	70.70 ± 0.50	10.59 ± 1.17	0.69 ± 0.07

1381
 1382 Table 12 summarizes the performance under different prior scales on the WG-S dataset. We can
 1383 make the following observations:

1384 **(1) Optimal prior scale:** The prior scale $\sigma_0 = 1.0$ achieves the best overall performance across all
 1385 metrics. Both overly restrictive ($\sigma_0 = 0.1$) and overly diffuse ($\sigma_0 = 10.0$) priors result in degraded
 1386 performance, with decreases in accuracy and increases in both calibration error and negative log-
 1387 likelihood.

1388 **(2) Convergence dynamics:** We observe that as the prior scale increases from 0.1 to 10.0, the opti-
 1389 mization process converges progressively more slowly during training. This suggests that exces-
 1390 sively wide priors introduce additional optimization challenges, potentially requiring more iterations
 1391 to reach comparable solution quality.

1392 **(3) Initialization robustness:** The relatively small standard deviations across different random
 1393 seeds demonstrate that our method exhibits strong robustness to initialization. This stability is con-
 1394 sistent across all tested prior scales, indicating that the variational learning process reliably converges
 1395 to high-quality solutions despite variations in random initialization. The consistency across seeds
 1396 also validates the reproducibility of our approach.

1397 B.6 STABLE RANK ANALYSIS AND THEORETICAL JUSTIFICATION

1398
 1399 In this section, we provide both theoretical motivation and empirical validation for combining Po-
 1400 LAR with VBLL. We first establish the theoretical foundation linking feature geometry to uncer-
 1402 tainty quantification quality, and then present empirical evidence demonstrating that PoLAR pre-
 1403 serves the geometric properties essential for reliable Bayesian inference.

1404
1405 B.6.1 THEORETICAL MOTIVATION: DISTANCE-AWARE FEATURES FOR BAYESIAN LAST
1406 LAYER METHODS
1407

1407 Recent work on deterministic uncertainty quantification has established that last-layer Bayesian
1408 methods critically depend on the geometric properties of the feature extractor. In particular,
1409 SNGP (Liu et al., 2020) demonstrates that distance-aware features—where semantically distinct
1410 inputs remain well-separated in the feature space—are essential for reliable uncertainty estimation.
1411 We argue that VBLL shares this requirement: when the Bayesian last layer receives features from a
1412 distance-preserving extractor, it can effectively distinguish between in-distribution (ID) and out-of-
1413 distribution (OOD) samples based on their relative positions in the feature space.
1414

1414 A critical failure mode arises when the learned transformation exhibits low effective dimensionality,
1415 a phenomenon termed feature collapse (Postels et al., 2021). Under feature collapse, the adapter
1416 projects high-dimensional inputs onto a narrow, low-dimensional subspace, causing semantically
1417 diverse inputs—including OOD samples—to cluster together indistinguishably from ID data. This
1418 geometric compression fundamentally limits the Bayesian last layer’s capacity to detect distribution
1419 shift, as the distance information necessary for uncertainty-aware inference is lost during feature
1420 extraction.
1421

1421 The stable rank of the learned weight update $\Delta \mathbf{W}$ provides a quantitative measure of this geometric
1422 property. Defined as

$$1423 \text{stable-rank}(\Delta \mathbf{W}) = \frac{\|\Delta \mathbf{W}\|_F^2}{\|\Delta \mathbf{W}\|_2^2}, \quad (31)$$

1425 the stable rank captures the effective dimensionality of the transformation by computing the ratio of
1426 the squared Frobenius norm to the squared spectral norm. A stable rank approaching 1.0 indicates
1427 a nearly rank-1 projection that severely compresses the feature space, while higher values suggest a
1428 more isotropic transformation that preserves multiple effective directions.
1429

1430 B.6.2 EMPIRICAL VALIDATION: POLAR PRESERVES FEATURE GEOMETRY
1431

1432 To empirically validate our theoretical motivation, we conduct a comparative stable rank analysis
1433 between LoRA and PoLAR across multiple datasets. Figure 2 presents the distribution of stable
1434 rank values for both methods.

1435 The results reveal a striking contrast between the two adaptation strategies. Standard LoRA exhibits
1436 an average stable rank of approximately 1.53, approaching the theoretical minimum of 1.0. This
1437 low value indicates that LoRA effectively performs a nearly rank-1 projection, compressing the
1438 learned updates into a highly anisotropic subspace despite the nominally higher allocated rank. Such
1439 geometric compression aligns with previous observations of rank collapse in LoRA (Lion et al.,
1440 2025) and explains the suboptimal performance of LoRA-based uncertainty quantification methods,
1441 particularly in OOD detection scenarios where distance preservation is critical.

1442 In contrast, PoLAR maintains a significantly higher average stable rank of approximately 2.86. By
1443 constraining the low-rank factors \mathbf{U} and \mathbf{V} to the Stiefel manifold through orthogonality constraints,
1444 PoLAR encourages a more isotropic transformation that preserves multiple effective directions in
1445 the feature space. This geometric preservation directly supports the requirements of VBLL: the
1446 Bayesian last layer receives features that maintain semantic distances between inputs, enabling more
1447 reliable uncertainty estimation for both ID and OOD samples.

1448 The connection between stable rank and downstream performance is evident in our experimental
1449 results. Across all evaluation benchmarks, PoLAR-based methods consistently outperform their
1450 LoRA counterparts in both predictive accuracy and uncertainty calibration. The higher stable rank
1451 of PoLAR translates to richer feature representations that better capture task-specific patterns while
1452 preserving the geometric structure necessary for principled Bayesian inference.
1453

1454 B.6.3 SUMMARY: A PRINCIPLED DESIGN
1455

1456 We emphasize that our framework follows a principled design methodology where each component
1457 addresses a specific, well-motivated requirement, rather than claiming an axiomatic derivation from
1458 first principles. The roles of the three components are as follows:

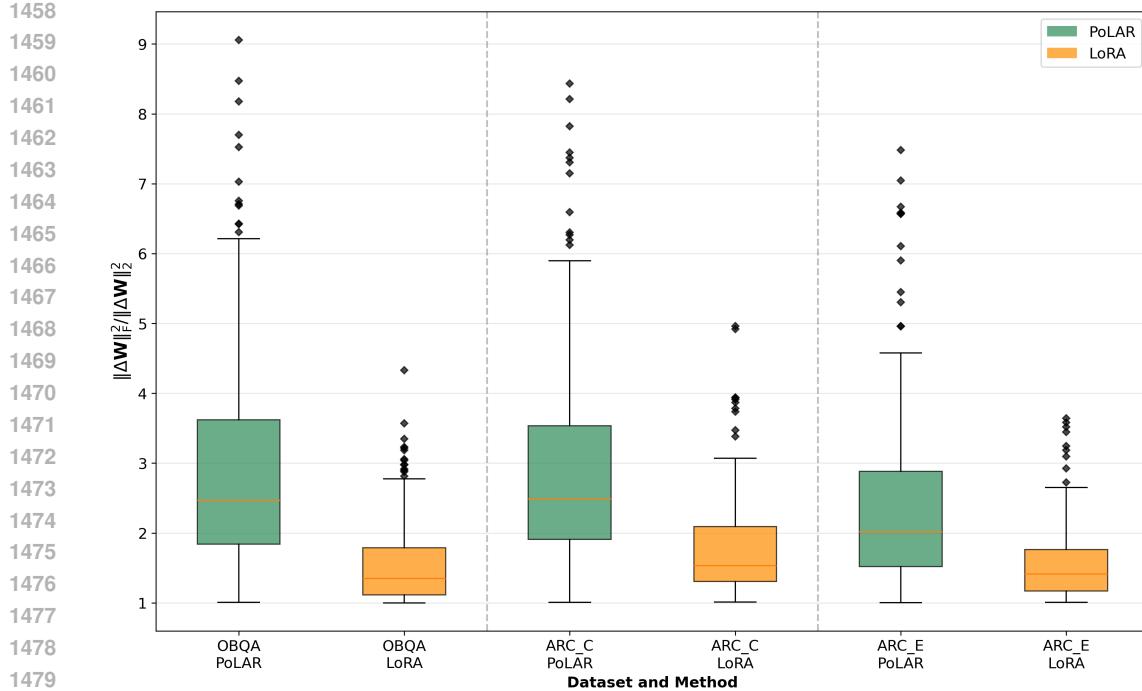


Figure 2: Stable rank comparison between PoLAR and LoRA across three datasets. PoLAR consistently achieves higher stable rank values, indicating better preservation of feature geometry and effective utilization of the allocated parameter space.

PoLAR serves as the feature extractor that preserves feature geometry through orthogonality constraints, maintaining the high stable rank necessary for distance-aware representations. This geometric preservation directly addresses the requirements identified by SNGP (Liu et al., 2020) for effective last-layer uncertainty methods.

VBLL provides tractable predictive uncertainty through variational inference on the last layer weights. Beyond uncertainty quantification, VBLL actively guides the optimization process toward high-quality posterior modes that support reliable calibration. This mode discovery during training is essential for the subsequent refinement step.

The optional LA refines the local posterior geometry around the well-calibrated mode identified by VBLL. Crucially, without VBLL to locate an appropriate posterior mode, LA alone cannot achieve proper calibration—as demonstrated by the inferior performance of PoLAR-LA-LL compared to PoLAR-VBLL in our ablation studies. VBLL provides the necessary initialization that enables LA to serve as an effective finishing touch.

This principled combination, where each component’s role is both theoretically motivated and empirically validated, underlies the consistent superior performance of PoLAR-VBLL across diverse benchmarks and model architectures.