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ABSTRACT

When deploying large language models (LLMs) to safety-critical applications, un-
certainty quantification (UQ) is of utmost importance to self-assess the reliability
of the LLM-based decisions. However, such decisions typically suffer from over-
confidence, particularly after parameter-efficient fine-tuning (PEFT) for down-
stream domain-specific tasks with limited data. Existing methods to alleviate this
issue either rely on Laplace approximation based post-hoc framework, yielding
uncalibrated uncertainty estimates, or variational Bayesian training that requires
expensive Monte Carlo sampling with high computation and memory overheads.
To address these limitations, we build on the Bayesian last layer (BLL) model,
where the LLM-based deterministic feature extractor is followed by random LL
parameters for uncertainty reasoning. Since existing low-rank adapters (LoRA)
for PEFT have limited expressiveness due to rank collapse, we address this with
Polar-decomposed Low-rank Adapter Representation (PoLAR), an orthogonal-
ized parameterization paired with Riemannian optimization to enable more stable
and expressive adaptation. Building on this PoLAR-BLL model, we leverage the
variational (V) inference framework to put forth a scalable Bayesian fine-tuning
approach which jointly seeks the PoLAR parameters and approximate posterior of
the LL parameters via alternating optimization. The resulting PoLAR-VBLL is a
flexible framework that nicely integrates architecture-enhanced optimization with
scalable Bayesian inference to endow LLMs with well-calibrated UQ. Our empir-
ical results verify the effectiveness of PoLAR-VBLL in terms of generalization
and uncertainty estimation on both in-distribution and out-of-distribution data for
various common-sense reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains,
from natural language understanding to complex reasoning tasks (Brown et al., 2020; Touvron et al.,
2023). When deploying to safety-critical applications, uncertainty quantification (UQ) is of utmost
importance to self-assess the reliability of the LLM-based decisions. While large-scale pre-trained
models exhibit reasonable calibration during pre-training (Kadavath et al., 2022), they fail to accu-
rately express predictive uncertainty after parameter-efficient fine-tuning (PEFT) using limited data
in downstream tasks (Jiang et al., 2021). Particularly, fine-tuned LLMs often exhibit significant over-
confidence, which poses serious risks in high-stakes scenarios where reliable uncertainty estimation
is essential for trustworthy decision-making (Yang et al., 2024).

To endow fine-tuned LLMs with well-calibrated UQ, several attempts have been made by leverag-
ing advances in Bayesian neural networks (BNNs). Ensemble approaches (Lakshminarayanan et al.,
2017; Wang et al., 2023) require training multiple model copies, which incurs significant compu-
tational overhead (Wang et al., 2023). Post-hoc methods like Laplace approximation (LA) apply
Bayesian inference after MAP estimation, but this bifurcated optimization—where posterior approx-
imation is separated from training—leads to suboptimal estimation (Yang et al., 2024). Variational
methods like BLoB (Wang et al., 2024), while enabling joint optimization of mean and covariance
during training, require expensive Monte Carlo sampling with prohibitive memory overhead that
scales poorly with model size, making them impractical for large-scale deployment. Going beyond
these approaches, there are other methods for UQ in BNNs, including deep kernel learning (Wilson
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et al., 2016) and variational Bayesian last layers (VBLL) (Harrison et al., 2024), which have not
been explored for LLM fine-tuning.

On the other hand, the prohibitive computational cost of full fine-tuning has led to the widespread
adoption of PEFT methods. The Low-Rank Adaptation (LoRA) (Hu et al., 2022), which parame-
terizes weight updates as the product of two low-rank matrices, suffers from directional diversity
collapse where the stable rank often collapses to values close to 1, severely underutilizing the al-
located subspace (Lion et al., 2025). Alternative approaches like DoRA (Liu et al., 2024) decom-
pose weights into magnitude and direction but still suffer from suboptimal rank utilization, while
AdaLoRA (Zhang et al., 2023) attempts adaptive rank allocation but requires expensive SVD oper-
ations. The recently proposed PoLAR (Lion et al., 2025) addresses these limitations through polar
decomposition with orthogonality constraints, demonstrating superior rank utilization and providing
an improved foundation for uncertainty quantification. However, existing Bayesian LLM fine-tuning
approaches still adopt the vanilla LoRA representation. There is a pressing need to tailor advances
in architecture-aware optimization to scale up the UQ performance of LLMs in practice.

Building on the aforementioned prior works, the contribution of this paper is summarized as follows.

• Relying on the Bayesian last layer (BLL) model, where the LLM-based deterministic fea-
ture extractor is followed by random LL parameters for UQ, we leverage PoLAR-based
LLM adapter, an orthogonalized parameterization to alleviate the rank collapse of LoRA
representation and further enable more stable and expressive adaptation (Lion et al., 2025).

• This PoLAR-BLL model is amenable to variational (V) training, where we will jointly
seek the PoLAR parameters via efficient landing field methods in Riemannian optimization
and the approximate posterior of the LL parameters. The resulting PoLAR-VBLL lever-
ages both architectural improvements to the underlying adaptation mechanism and scalable
Bayesian inference that alleviates the computational overheads of existing methods.

• Further, given the trained PoLAR parameters and variational posterior, we will apply an
additional post-hoc LA around the posterior mean of the LL parameters to enhance uncer-
tainty calibration. Different from existing LA-based methods that work with maximum-
a-posterior (MAP) parameter estimates, the current approach also benefits from the varia-
tional training.

• Comprehensive evaluations corroborate that PoLAR-VBLL consistently outperforms ex-
isting approaches in both predictive accuracy and uncertainty calibration on both in-
distribution and out-of-distribution tasks.

2 RELATED WORK

2.1 UQ FOR FINE-TUNED LLMS AND BNNS

While large-scale pre-trained models exhibit reasonable calibration during pre-training (Kadavath
et al., 2022), they fail to accurately express predictive uncertainty after fine-tuning (Jiang et al.,
2021), particularly when adapted to domain-specific tasks with limited data. This degradation ne-
cessitates Bayesian approaches for reliable uncertainty estimation in safety-critical applications. Re-
cent Bayesian PEFT methods exhibit limitations. Ensemble approaches (Lakshminarayanan et al.,
2017) require training multiple LoRA copies with significant computational overhead. Laplace-
LoRA (Yang et al., 2024) applies post-hoc approximation after MAP estimation, but this bifurcated
optimization leads to suboptimal posterior estimates. BLoB (Wang et al., 2024) performs variational
inference directly on LoRA parameters during training, achieving joint mean-covariance optimiza-
tion. However, BLoB requires expensive Monte Carlo sampling for evaluating the so-termed evi-
dence lower bound, resulting in prohibitive memory overhead that scales poorly with model size,
while remaining fundamentally constrained by LoRA’s low stable rank. Several variants aim to
reduce BLoB’s high memory cost. ScalaBL (Samplawski et al., 2025) uses stochastic subspace in-
ference to reduce the number of variational parameters; C-LoRA (Rahmati et al., 2025) replaces
them with deterministic contextual MLPs; and TFB (Shi et al., 2024) applies post-hoc search for
Bayesian inference of deterministically trained adapters. Despite these optimizations, these meth-
ods still rely on Monte Carlo sampling and suffer from inference latency. VBLL (Harrison et al.,
2024) demonstrates superior computational efficiency compared to full-adapter Bayesian methods
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by targeting only the classification layer. Unlike BLoB’s expensive Monte Carlo sampling, VBLL
achieves analytical solutions with memory complexity scaling with output dimensions rather than
adapter parameters. Previous applications in Bayesian optimization demonstrate its effectiveness
(Brunzema et al., 2025), but its adaptation to LLM fine-tuning with advanced adapter architectures,
such as PoLAR, remains unexplored.

2.2 PARAMETER-EFFICIENT FINE-TUNING

The prohibitive computational cost of full fine-tuning for billion-parameter models has made
parameter-efficient fine-tuning essential. LoRA (Hu et al., 2022) has gained widespread adoption
by learning additive low-rank updates ∆W on top of the frozen pre-trained weights W. Subse-
quent work has aimed to improve LoRA’s effectiveness further. AdaLoRA (Zhang et al., 2023)
introduces adaptive rank allocation during training. DoRA (Liu et al., 2024) decomposes weights
into magnitude and direction components. GaLore (Zhao et al., 2024) applies low-rank projection
to optimizer states to reduce memory requirements. However, recent analysis reveals fundamental
limitations: LoRA suffers from directional diversity collapse where the stable rank of ∆W re-
mains well below the allocated linear algebraic rank, limiting expressiveness. PoLAR addresses
this through a re-parametrization with orthogonal constraints on direction matrices, and a tailored
Riemannian optimization (Ablin & Peyré, 2022) is employed for faster training on GPUs. In spite
of these advances, adaptation to the Bayesian counterparts remains a rather uncharted territory –
existing Bayesian fine-tuning approaches all rely on the vanilla LoRA.

3 VARIATIONAL TRAINING OF LLM-BASED BAYESIAN LAST LAYER MODEL
VIA ORTHOGONAL LOW-RANK ADAPTATION

Toward adapting the advances of PEFT so as to endow uncertainty-aware fine-tuning of LLM with
scalability, we present a unified framework that combines Polar-decomposed Low-rank Adapter
Representation (PoLAR) with Variational Bayesian Last Layers (VBLL) for parameter-efficient fine-
tuning of LLMs with principled uncertainty quantification. The resulting approach addresses the
fundamental limitation of standard LoRA’s low stable rank while providing calibrated uncertainty
estimates through scalable variational Bayesian inference.

3.1 BAYESIAN LAST LAYER MODEL WITH LLM-BASED FEATURE EXTRACTOR

To endow LLM-based inference with UQ, we will rely on the Bayesian last layer (BLL) model Harri-
son et al. (2024), where a deterministic LLM-based feature extractor is followed by random last layer
weights for uncertainty representation. Specifically, let ϕW(x) ∈ Rd be the d-dimensional feature
mapping with W collecting the weights of the LLM. Given training dataset D := {(xn,yn)}Nn=1
with yn := [yn,1, . . . , yn,C ]

⊤ ∈ {0, 1}C×1 being a one-hot encoding of a C-class classification
task, the BLL model per sample n is given by

p(yn|xn,Θ) =
exp(y⊤

n zn)

1⊤
C exp(zn)

, zn = ΘϕW(xn) (1)

where 1C is a C × 1 all-one vector, Θ = [θ1, . . . ,θC ]
⊤ ∈ RC×d is the classification weight matrix

with θc ∈ Rd being the random weight vector for class c with iid Gaussian prior

p(Θ) =

C∏
c=1

N (θc;0, σ
2
θId) (2)

where the prior variance σ2
θ is a hyperparameter to be tuned.

Direct optimization of the marginal likelihood p(D) =
∫
p(D|Θ)p(Θ)dΘ is intractable due to the

nonlinear softmax-based likelihood function in equation 1. Moreover, gradient computation would
require the full marginal likelihood, making mini-batch training impossible, and the flexibility of
neural network features can lead to over-concentration of the posterior. To address these issues,
we rely on the variational inference framework that jointly seeks the model parameters W and
parameter posterior q(Θ) by maximizing the evidence lower bound (ELBO)

LELBO(q(Θ),W;D) = Eq(Θ)[log p(D|Θ)]− KL(q(Θ)∥p(Θ)) (3)
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where

log p(D|Θ) = log

N∏
n=1

log p(yn|xn,Θ) =

N∑
n=1

y⊤
n zn −

N∑
n=1

log(1⊤
C exp(zn)) (4)

For the sake of tractability, the approximate posterior of Θ will be assumed to be factorizable across
classes and the per-class parameter posterior will be approximated by a Gaussian with mean µc and
covariance Sc, namely,

q(Θ) =

C∏
c=1

q(Θc) =

C∏
c=1

N (θc;µc,Sc) (5)

where we assume factorization across classes (reducing computational complexity) while retaining
full covariance Sc ∈ Rd×d within each class (capturing feature correlations).

Taking the expectation of (4) wrt q(Θ) in (5) is intractable due to the log-softmax. We will apply
again Jensen’s inequality to yield a lower bound as

Eq(Θ)

[
− log

C∑
c=1

exp(zn,c)

]
≥− logE

[
C∑

c=1

exp(zn,c)

]
= − log

C∑
c=1

E [exp(zn,c)] . (6)

Since zn,c = θ
⊤
c ϕW(xn) and θc ∼ N (µc,Sc), we have

E[zn,c] = µ⊤
c ϕW(xn) (7)

E[exp(zn,c)] = exp

(
µ⊤

c ϕW(xn) +
1

2
ϕW(xn)

⊤ScϕW(xn)

)
(8)

Further, the KL divergence term is expressed explicitly as

KL(q(Θ)∥p(Θ)) =

C∑
c=1

KL(N (µc,Sc)∥N (0, σ2
θId))

=

C∑
c=1

(
1

2σ2
θ

(
tr(Sc) + µ

⊤
c µc

)
− 1

2
log |Sc|

)
+

dC

2
log σ2

θ −
dC

2
(9)

Combining all terms, the ELBO objective is given by

LELBO(Ψ,W;D) =

N∑
n=1

[
C∑

c=1

yn,cµ
⊤
c ϕW(xn)− LSEc

(
µ⊤

c ϕW(xn) +
1

2
ϕW(xn)

⊤ScϕW(xn)

)]

−
C∑

c=1

[
1

2σ2
θ

(
tr(Sc) + µ

⊤
c µc

)
− 1

2
log |Sc|

]
+ const (10)

where Ψ := {(µc,Sc)}Cc=1 collects the variational parameters and LSEc(·) = log
∑C

c=1 exp(·)
denotes the log-sum-exp function with sum over class c, which provides numerical stability when
computing the logarithm of sums of exponentials.

Given a pre-trained LLM with weights W0, the fine-tuned weight parameterization is typically given
by W := W0 +∆W. For PEFT, ∆W is typically sought as a low-rank representation. However,
standard LoRA-based approaches suffer from low stable rank during training, where the learned
adapters collapse to suboptimal low-dimensional subspaces. To address this issue, we will adapt
orthogonalized LoRA by leveraging the advances in Riemannian optimization.

3.2 FINE-TUNED LLM VIA ORTHOGONALIZED LORA

A powerful feature extractor is essential, not only because it provides more informative inputs to
VBLL, but also because UQ is particularly valuable when the performance on the downstream task
is already strong. While LoRA remains a popular approach, recent studies suggest that it cannot
fully utilize the allocated rank, resulting in a significant gap relative to its full expressive potential. In
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particular, standard LoRA often suffers from a low stable rank, which is a smooth proxy for matrix
rank, during training, causing the learned adapters to collapse into suboptimal low-dimensional
subspaces even if its rank r is chosen large. This issue becomes more significant in the context of
UQ for LLMs; see Fig.1(a). To this end, we advocate the use of recently developed orthogonalized
low-rank adapters.

Orthogonal Parametrization. We leverage the PoLAR parameterization, where the additive weight
for a particular layer ∆W ∈ Rm×n is given by

∆W = UΛV⊤. (11)
Here, U ∈ St(m, r), V ∈ St(n, r), and Λ ∈ Rr×r is unconstrained for effective optimization with
St(m, r) := {M ∈ Rm×r|M⊤M = Ir} denoting a Stiefel manifold, i.e., matrices with orthonormal
columns. These orthogonality constraints effectively prevent rank collapse when optimized properly.
Integrating PoLAR into the VBLL framework, we will adapt the ELBO objective (10) by setting
W := W0 + ∆W with ∆W = UΛV⊤ parametrized by PoLAR. Thus, the resulting PoLAR-
VBLL jointly seek the PoLAR parameters Ψpolar := {U,Λ,V} and the variational parameters Ψ
via

{Ψ̂, Ψ̂polar} = argmax
Ψ,Ψpolar

LELBO(Ψ,Ψpolar;D) s.toU ∈ St(m, r),V ∈ St(n, r) . (12)

Scalable Optimization via Landing Fields. To cope with the manifold constraints on U and V,
standard approaches rely on Riemannian optimization, which involves retraction operations. On
Stiefel manifolds, these retractions require either SVD or QR factorization, making them impractical
for large-scale models. This computational bottleneck can be alleviated using landing methods (Gao
et al., 2022; Schechtman et al., 2023). For instance, optimizing U simply requires to replace its
Euclidean gradient with the so-termed landing field:

Γ(U) = ψ(U)U+ λ∇N(U) (13)
where ψ(U) = Skew(∇UL(U,Λ,V)U⊤) is the (generalized) Riemannian gradient component
and ∇N(U) = 4U(U⊤U − Ir) is the gradient of the infeasibility penalty N(U) = ∥U⊤U −
Ir∥2F . The parameter λ > 0 controls the strength of penalization for constraint violations. In other
words, landing is an infeasible method, but with a properly chosen λ, the constraints are satisfied
asymptotically at convergence. By avoiding costly SVD operations, this approach achieves a 3× to
18× speedup compared to retraction-based methods on GPUs, depending on the chosen rank.

The combination of orthogonal parameterization and scalable optimization yields theoretical ben-
efits. Notably, PoLAR has been shown, under some assumptions, to converge faster as the rank r
increases, in stark contrast to LoRA (Lion et al., 2025). This improved scaling with r enables the
design of more expressive feature extractors tailored to available memory budgets, thereby justifying
our adoption of PoLAR.

Joint Optimization of PoLAR-VBLL. To solve the optimization problem in (12), we will adopt
alternating optimization, that consists of the following two steps per iteration.

• Variational posterior update: The gradients with respect to the variational parameters Ψc

follow standard variational inference procedures (see Eqs. (21)-(22) in App. A.3);
• PoLAR parameter update: For the PoLAR parameters constrained to Stiefel manifolds, we

employ landing field (cf. Eq. 13) to avoid expensive retraction operations. See App. A.3
(Eqs. (23)–(30)) for detailed derivation of the Riemannian gradients and updates.

The unified framework, together with infeasible Riemannian optimization for computational effi-
ciency, yields a feature extractor that enhances both downstream performance and the reliability of
uncertainty quantification.

3.3 UNCERTAINTY-AWARE PREDICTIVE INFERENCE

Having available the parameter estimates after training in PoLAR-VBLL, we are ready to predict
for the label y ∈ {1, . . . , C} for any given test input x. Specifically, this predictive pdf is given by

p(y|x,D) =

∫
Θ

p(y|Θ,x)q(Θ)dΘ ≈ 1

K

K∑
k=1

p(y|x,Θ(k)) (14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where we have employed Monte Carlo sampling to approximate the integral via Θ(k) ∼ q(Θ) and
p(y|x,Θ(k)) = softmax(Θ(k)ϕŴ(x)) with Ŵ = W0 + ÛΛ̂V̂⊤.

While the PoLAR-VBLL framework provides an efficient method for end-to-end training, the ELBO
objective (10), derived via Jensen’s inequality, constitutes a tractable but possibly loose lower bound
on the true log marginal likelihood. Maximizing this ELBO is effective for identifying a high-quality
mode of the posterior—the estimated variational mean µ̂c—the resulting variational covariance Ŝc

may not perfectly capture the true posterior curvature. To alleviate this issue, we introduce an addi-
tional step via post-hoc LA to further refine the quality of the learned covariance matrix. Specifically,
given the estimated PoLAR parameters Ψ̂polar, we will evaluate the Hessian of log p(D,Θ|Ψ̂polar)
at the posterior mean {µ̂c}c as

H = −∇2
Θ

(
log p(D|Θ, Ψ̂polar) + log p(Θ)

) ∣∣∣
Θ={µc}c

(15)

where log p(D|Θ, Ψ̂polar) and log p(Θ) are given by (4) and (2). Note that H is also the Bayesian
Fisher information matrix of Θ, whose inverse Σ = H−1, the Bayesian Cramer-Rao lower bound,
can be taken as a covariance matrix for Θ. For the sake of tractability, we will still enforce a
factorizable posterior over Θ, by ignoring the off-diagonal elements in Σ. With Σc being the matrix
on the diagonal of Σ corresponding to θc, the resulting corrected posterior is

q̃(θc|D) = N (θc; µ̂c,Σc) (16)

which will be used to make the prediction in (14).

Remark. Our strategy uses the scalable VBLL framework to first identify a high-quality mode µ̂c

along with the PoLAR parameters, and then applies LA as a ‘finishing touch’ to better characterize
the posterior covariance around this well-chosen point. Notably, the post-hoc LA calibration does
not affect the accuracy of the calibrated model (Yang et al., 2024). This hybrid approach nicely com-
bines the strengths of variational training and post-hoc LA for enhanced uncertainty assessment. We
have empirically validated the benefits of this additional step in our ablation studies, demonstrating
improved performance on key UQ metrics such as calibration and out-of-distribution detection.

4 EXPERIMENTAL RESULTS

In this section, we compare our PoLAR-VBLL with existing methods on real-world datasets. We
first introduce the experimental settings, including baselines, fine-tuning protocols, and evaluation
procedures. We then evaluate PoLAR-VBLL’s uncertainty estimation and generalization abilities in
both in-distribution and out-of-distribution scenarios.

4.1 SETTINGS

Fine-tuning and Evaluation. We implement PoLAR-VBLL using the PEFT library (Mangrulkar
et al., 2022) and fine-tune the LlaMA2-7B model (Touvron et al., 2023) on common-sense rea-
soning tasks. Additional evaluations on LlaMA-3.1-8B are delegated to the Appendices in the
supplementary file due to space limitations; see Table 8. Following Laplace-LoRA (Yang et al.,
2024) and BLOB (Wang et al., 2024), we apply PoLAR adapters (Lion et al., 2025) to the output
layer as well as the queries and values of all attention layers. For the hyperparameters, we follow
the default configurations outlined in the PEFT library (Mangrulkar et al., 2022) and the original
PoLAR implementation (Lion et al., 2025) to guarantee the highest level of reproducibility. This
encompasses aspects such as the total number of training steps, the learning rate, and the LoRA rank
(see App. A.4 for further details). For fairness, the rank of the adapters in all the methods is set to
r = 8 here.

For common-sense reasoning tasks, we cast them as a classification problem corresponding to possi-
ble answers from each dataset and fine-tune the LLM to maximize the ELBO objective in Eq. (10).
For the classification head in our VBLL framework, we initialize the variational posterior means
{µc} using the pre-trained language model head weights corresponding to answer tokens (e.g., A, B,
C, D for multiple-choice tasks), which significantly reduces training time by leveraging the model’s
pre-existing knowledge of answer formatting. For evaluation, in addition to Accuracy (ACC), we
use Expected Calibration Error (ECE) (Naeini et al., 2015) and Negative Log-Likelihood (NLL) to
assess the models’ uncertainty estimation ability.
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Table 1: Performances on ID datasets in terms of ACC, ECE, and NLL using LlaMA2-7B. Bold
and underlined denote the best and the second-best performance, respectively.

Metric Method Datasets
WG-S ARC-C ARC-E OBQA

ACC (%)

MLE 68.99±0.58 69.10±2.84 85.65±0.92 81.52±0.25
MAP 68.62±0.71 67.59±0.40 86.55±0.55 81.38±0.65
MCD 69.46±0.62 68.69±1.30 86.21±0.46 81.72±0.10
ENS 69.57±0.66 66.20±2.01 84.40±0.81 81.38±0.91
BBB 66.54±7.87 68.13±1.27 86.86±0.74 82.06±0.59
LA 69.45±1.73 66.78±0.69 80.05±0.22 82.07±0.67
BLoB (N=10) 69.07±0.34 68.81±1.09 86.56±0.35 81.52±0.74

PoLAR-VBLL 71.62±0.27 70.92±0.24 88.03±0.44 82.53±0.12

ECE (%)

MLE 29.83±0.58 29.00±1.97 13.12±1.39 12.55±0.46
MAP 29.76±0.87 29.42±0.68 12.07±0.55 13.26±0.82
MCD 27.98±0.44 27.53±0.80 12.20±0.56 13.10±0.11
ENS 28.52±0.55 29.16±2.37 12.57±0.58 15.34±0.27
BBB 21.81±12.95 26.23±1.47 12.28±0.58 11.38±1.07
LA 13.47±1.43 16.25±2.61 33.29±0.57 6.12±1.55
BLoB (N=10) 9.35±1.37 9.59±1.88 3.64±0.53 3.77±1.47
PoLAR-VBLL 7.31±0.32 7.41±0.78 2.63±0.81 4.63±1.43

NLL

MLE 3.17±0.37 2.85±0.27 1.17±0.13 0.73±0.03
MAP 2.46±0.34 2.66±0.11 0.90±0.05 0.75±0.01
MCD 2.79±0.53 2.67±0.15 1.00±0.14 0.77±0.03
ENS 2.71±0.08 2.46±0.22 0.82±0.03 1.06±0.04
BBB 1.40±0.55 2.23±0.04 0.91±0.06 0.66±0.05
LA 0.67±0.01 1.03±0.04 0.88±0.00 0.72±0.01
BLoB (N=10) 0.63±0.01 0.78±0.02 0.40±0.01 0.50±0.01
PoLAR-VBLL 0.60±0.01 0.91±0.00 0.47±0.03 0.63±0.02

Baselines and Implementation Details. We compare PoLAR-VBLL with state-of-the-art ap-
proaches for UQ applied on top of LoRA fine-tuning, including Monte-Carlo Dropout (MCD) (Gal
& Ghahramani, 2016), Bayes By Backprop (BBB) (Blundell et al., 2015; Xiong et al., 2023), Deep
Ensemble (ENS) (Lakshminarayanan et al., 2017; Balabanov & Linander, 2024; Wang et al., 2023),
and the latest Laplace-LoRA (LA) (Yang et al., 2024; Kristiadi et al., 2024). Additionally, we report
the performance of two standard PEFT baseline methods: Maximum Likelihood Estimation (MLE)
(Hu et al., 2022; Myung, 2003; Le Cam, 1990) and Maximum A Posteriori (MAP) (Greig et al.,
1989). Comparisions with additional BLoB-based variants, including ScalaBL (Samplawski et al.,
2025), C-LoRA (Rahmati et al., 2025), and TFB (Shi et al., 2024), are presented in the supplemen-
tary file; see Table 8.

We fine-tune a LlaMA2-7B model on four datasets requiring common-sense reasoning abilities,
Winogrande-small (WG-S) (Sakaguchi et al., 2021), ARC-Challenge (ARC-C) (Clark et al., 2018),
ARC-Easy (ARC-E) (Clark et al., 2018), OpenBookQA (OBQA) (Mihaylov et al., 2018), and addi-
tional chemistry (Chem) and physics (Phy) from the MMLU benchmark (Hendrycks et al., 2021a;b)
for out-of-distribution evaluation. The datasets are split in the same manner as those in BLoB,
and for each baseline, we report the better result between our reproduced numbers and those seen
in BLoB. For all baseline methods, we utilize the same pre-trained LLM backbone and maintain
consistent hyperparameters across all datasets.

4.2 RESULTS ON IN-DISTRIBUTION (ID) DATASETS

As shown in Table 1, our proposed PoLAR-VBLL demonstrates strong performance on the four
ID commonsense reasoning tasks. Specifically, our approach attains the highest ACC on all eval-
uated datasets, while simultaneously achieving best or second-best performance in terms of ECE
and NLL. This distinct our approach from BLoB, where a smaller N , i.e., number of samples at
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Table 2: Performances on OOD datasets in terms of ACC, ECE, and NLL using LlaMA2-7B. Bold
and underlined denote the best and the second-best performance, respectively.

Metric Method
Datasets

In-Dist. Smaller Dist. Shift Larger Dist. Shift
OBQA ARC-C ARC-E Chem Phy

ACC (%)

MLE 81.52±0.25 66.20±0.87 75.12±0.83 40.62±2.25 28.82±1.30
MAP 81.38±0.91 69.59±0.23 75.47±0.73 44.79±0.00 28.47±1.20
MCD 81.72±0.10 69.03±0.70 76.00±1.58 42.71±0.01 29.17±4.54
ENS 81.38±0.65 67.34±0.70 75.18±2.03 43.75±1.04 30.56±2.62
BBB 82.06±0.59 67.25±1.18 75.83±0.75 42.36±0.49 30.21±2.25
LA 82.07±0.67 69.14±1.15 74.94±0.96 44.10±1.30 31.60±0.49
BLoB (N=10) 81.52±0.74 67.71±1.13 76.37±0.80 44.79±1.47 31.60±2.73

PoLAR-VBLL 82.53±0.12 70.07±0.48 81.24±0.78 45.67±0.58 33.33±0.98

ECE (%)

MLE 12.55±0.46 22.20±0.39 16.47±0.86 21.72±0.30 29.60±1.29
MAP 15.34±0.27 19.31±0.46 15.68±0.51 17.55±1.95 30.25±2.18
MCD 14.45±0.84 19.54±0.33 15.32±1.16 17.90±0.63 29.53±4.20
ENS 13.26±0.82 7.59±1.43 6.44±0.83 12.04±4.57 17.52±1.28
BBB 11.38±1.07 19.90±0.66 13.41±0.85 15.67±1.23 26.10±4.76
LA 6.12±1.15 5.84±0.64 8.51±1.06 10.76±3.41 13.91±0.90
BLoB (N=10) 3.77±1.47 9.55±0.40 5.48±1.27 9.77±1.35 18.29±1.35

PoLAR-VBLL 4.63±1.43 5.12±0.90 5.09±0.77 6.49±2.07 6.03±2.21

NLL

MLE 0.73±0.03 1.16±0.00 0.92±0.03 1.56±0.06 1.66±0.05
MAP 1.06±0.04 1.10±0.07 0.93±0.04 1.55±0.06 1.65±0.03
MCD 1.06±0.08 1.08±0.00 0.88±0.03 1.59±0.07 1.67±0.05
ENS 0.75±0.01 0.86±0.01 0.69±0.03 1.28±0.00 1.39±0.03
BBB 0.66±0.05 1.06±0.01 0.79±0.02 1.49±0.05 1.62±0.06
LA 0.72±0.01 0.81±0.00 0.70±0.02 1.35±0.03 1.36±0.01
BLoB (N=10) 0.50±0.01 0.83±0.01 0.60±0.01 1.38±0.01 1.46±0.02

PoLAR-VBLL 0.63±0.02 0.88±0.00 0.69±0.01 1.29±0.00 1.36±0.01

inference, gives a better ACC but with significantly worse ECE or NLL, and its ACC is still worse
than our method in terms of ACC; see Table 3 in App. A.5 for more details. This simultaneous
improvement in ACC, ECE, and NLL is particularly significant, as it addresses the prevalent over-
confidence problem inherent in standard MLE fine-tuning approaches, and it validates the efficacy
of our methodology in developing more reliable and well-calibrated models.

The performance gains can be attributed to the distinct yet synergistic roles of PoLAR and the VBLL
inference scheme. The consistent accuracy improvements come with PoLAR, which mitigates the
rank collapse in LoRA, thereby leading to a more expressive feature representation. The signifi-
cant gains in calibration are primarily driven by the VBLL, which places a posterior distribution
over the final layer’s weights, explicitly modeling uncertainty and effectively reducing model over-
confidence. The synergy between these components is critical, as the superior feature foundation
provided by PoLAR enables VBLL to learn a more nuanced and reliable mapping from features
to predictive distributions, ultimately resulting in a model that is simultaneously more accurate and
better calibrated. The NLL and ECE metrics can be further decreased by increasing the number of
training epochs.

4.3 RESULTS ON OUT-OF-DISTRIBUTION (OOD) DATASETS

To assess the robustness of our approach under distributional shifts, we fine-tune our model on
OBQA and evaluate its performance across datasets with varying degrees of distribution mismatch.
Since the in-distribution dataset OBQA consists of multiple-choice, elementary-level science ques-
tions, we consider ARC-E and ARC-C to exhibit smaller distributional shifts. In comparison, the
college-level chemistry and physics subsets of the MMLU benchmark represent larger distributional
shifts.
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Figure 1: Ablation studies on the WG-S dataset using LLaMA 2-7B: (a) Performance of LoRA-
VBLL using different ranks; (b) VBLL coupled with different adapters; and (c) ECE and NLL
performances of PoLAR-VBLL with and without LA.

As presented in Table 2, our proposed method, PoLAR-VBLL, demonstrates exceptional OOD gen-
eralization capabilities. It consistently achieves the highest predictive accuracy across all evaluation
settings, with particularly notable improvements in larger distribution shifts.

This superior performance indicates that our approach effectively captures generalizable representa-
tions that transfer well beyond the training distribution. From an uncertainty quantification perspec-
tive, PoLAR-VBLL exhibits remarkable calibration consistency across distributional shifts. The
method achieves the best or second-best ECE performance across all out-of-distribution settings.
Similarly, the NLL results demonstrate competitive performance, with our method maintaining re-
liable probabilistic predictions across varying shift magnitudes. These results underscore a critical
finding: while many existing methods suffer from degraded uncertainty estimation under distri-
bution shift, our approach maintains both high accuracy and well-calibrated uncertainty estimates.
This dual robustness is essential for practical deployment, where models must not only perform well
on shifted data but also provide trustworthy confidence indicators to enable appropriate decision-
making in uncertain scenarios.

4.4 ABLATION STUDIES

We conduct ablation studies to validate each component of our PoLAR-VBLL framework. All
three experiments are evaluated on the WG-S, with the same LLaMA 2-7B backbone. Our anal-
ysis of adapter rank in Figure 1(a), standard LoRA demonstrates minimal performance differences
across various ranks, with performance remaining relatively flat regardless of rank size, confirm-
ing that rank collapse prevents effective utilization of larger rank allocations. To justify our choice
of PoLAR, we benchmarked it against other PEFT methods from LoRA, adaLoRA, and DoRA.
The results in Figure 1(b) are definitive: PoLAR achieves superior performance across accuracy,
ECE, and NLL. Such empirical results show that PoLAR’s more expressive feature representation
provides a better foundation not only for the prediction task but also for subsequent uncertainty esti-
mation within the VBLL framework. We also evaluated the post-hoc LA. As shown in Figure 1(c),
applying LA after training consistently reduces both ECE and NLL across all tested datasets. This
demonstrates that our framework identifies a high-quality posterior mode, allowing the LA step to
effectively refine the covariance structure and further improve the final uncertainty estimates. Ad-
ditionally, our VBLL approach achieves the lowest GPU memory consumption among competing
UQ methods, providing computational advantages through analytical ELBO computation as shown
in Table 6 in App. B.1. Lastly, an ablation study has been conducted to show the effects of VBLL
and LA coupled with the same PoLAR adapter in Table 9 in App. B.3, where it is shown that
PoLAR-VBLL outperforms PoLAR-LA and combining VBLL with post-hoc LA offers the maxi-
mal perforance gains.

5 CONCLUSIONS

This paper introduced PoLAR-VBLL, a scalable and unified framework for uncertainty-aware fine-
tuning of LLMs. PoLAR addresses the rank collapse issue in conventional adapters through orthog-
onality constraints, yielding a more expressive feature extractor. Building on this foundation, VBLL
enables efficient, sampling-free Bayesian training on the final layer for principled UQ. Extensive
experiments demonstrate that PoLAR-VBLL consistently outperforms state-of-the-art baselines in
both accuracy and uncertainty calibration. This work presents a principled and practical pathway
towards developing more reliable and trustworthy fine-tuned LLMs for real-world applications.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all necessary implementation details. Our
code is implemented using the PyTorch framework. A complete list of dependencies is provided in
the Appendix A.4 and requirements.txt file in the project’s root directory. All experiments
were conducted on a server equipped with one NVIDIA A6000 ada (48GB) GPU. A single full
run of our main experiment requires approximately 72 hours ( 500 epochs) to complete. We will
publicly release all source code, model weights, and scripts used to generate key figures, accompa-
nied by a detailed README.md file that includes step-by-step instructions for environment setup,
data preprocessing, and model training/evaluation. The code will be made available in a GitHub
repository upon acceptance. The datasets used in our study are publicly available, and the specific
preprocessing steps are detailed in Appendix A.4 .
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A APPENDIX

USAGE OF LLMS

During the preparation of this paper, we utilized large language models (LLMs), such as OpenAI’s
ChatGPT, only for the purpose of improving typos, grammar, and clarity. For instance, we utilized
ChatGPT to proofread and refine the phrasing of specific sentences, as well as to verify spelling and
grammatical accuracy. However, all core research ideas, experimental designs, result analysis, and
the final narrative structure of the paper were exclusively conceived and formulated by the authors.
No LLM was used to generate any of the core scientific content of this work, such as algorithm
design, theoretical derivations, or experimental results.

A.1 COMPUTATIONAL COMPLEXITY ANALYSIS

We provide a detailed computational complexity analysis for each phase of our PoLAR-VBLL
framework, demonstrating its efficiency compared to alternative approaches for uncertainty quan-
tification in fine-tuned LLMs.

A.1.1 TRAINING PHASE COMPLEXITY

The joint optimization of PoLAR adapter parameters Ψpolar := {U,Λ,V} and variational parame-
ters Ψ = {µ1, . . . ,µC ,S1, . . . ,SC} involves the following computational costs per training itera-
tion:

Feature Extraction: Computing LLM features ϕW(xi) where W = W0 +UΛV⊤ for a batch of
size B requires O(B · LLMcost) operations, where LLMcost represents the computational cost of a
single forward pass through the base language model.

PoLAR Parameter Updates: The landing field optimization on Stiefel manifolds incurs:

• Euclidean Gradient Calculation: O(mnr)

• Riemannian gradient computation: O(m2r + n2r) for skew-symmetric operations ψ(U)
and ψ(V)

• Constraint gradient computation: O((m + n)r2) for infeasibility penalties ∇N(U) =
4U(U⊤U− Ir) and ∇N(V)

• Parameter updates: O(r(m+ n+ r)) for U, V, and Λ updates via landing field method

VBLL Parameter Updates: Variational inference optimization requires:

• ELBO computation: O(B ·C ·d) for likelihood terms and log-sum-exp operations in Eq. 12
• KL divergence computation: O(C · d2) for trace and determinant operations in covariance

matrices Sc

• Gradient computation: O(C · d2) for gradients with respect to variational means µc and
covariances Sc

• Parameter updates: O(B · C · d2) for updating C class-specific posterior distributions

The total complexity per training iteration is:

O
(
B · LLMcost + r(m2 + n2) +B · C · d2 + r(m+ n+ r)

)
(17)

For T training iterations, the overall training complexity becomes:

O
(
T ·

(
B · LLMcost + r(m2 + n2) +B · C · d2 + r(m+ n+ r)

))
(18)

A.1.2 PREDICTIVE INFERENCE COMPLEXITY

The uncertainty-aware prediction phase involves:

Optional Laplace Calibration: Computing the Hessian of the negative log-likelihood for posterior
refinement requires O(C · d2) operations using Kronecker-factored approximation (KFAC), which
is significantly more efficient than the naive O((C · d)2) full Hessian computation.

14
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Monte Carlo Sampling: For K posterior samples from q(Θ):

• Parameter sampling: O(K · C · d2) for sampling from multivariate Gaussians N (µc,Sc)

• Forward computation: O(K · C · d) for logit computation z = ΘϕW(x∗) and softmax
normalization

Total inference complexity per test point:
O
(
LLMcost + C · d2 +K · C · d2

)
(19)

A.1.3 COMPARISON WITH BASELINE METHODS

vs. Standard LoRA: Our PoLAR parameterization adds O(r2) overhead per update compared to
LoRA’s O(r) due to orthogonality constraints, but this is negligible when r ≪ d while providing
substantially improved stable rank utilization.

vs. BLoB: BLoB requires expensive Monte Carlo sampling during training with O(NMC ·LLMcost)
cost per ELBO evaluation, where NMC is the number of Monte Carlo samples. Our VBLL approach
achieves analytical ELBO computation, eliminating this sampling overhead.

vs. Ensemble Methods: Maintaining M separate adapter copies requires O(M · r(m+n)) storage
and O(M ·LLMcost) inference time. Our Bayesian approach achieves comparable uncertainty quality
with O(C · d2) additional parameters.

vs. Laplace-LoRA: Post-hoc Laplace approximation around suboptimal MAP estimates requires
similar Hessian computation but lacks the joint optimization benefits of our integrated approach.

A.1.4 MEMORY COMPLEXITY

The space complexity of our framework is:
O
(
|W0|+ r(m+ n+ r) + C · d2 +B · d

)
(20)

where |W0| represents the frozen pre-trained model size, r(m+n+ r) accounts for PoLAR param-
eters, C ·d2 stores VBLL covariance matrices, and B ·d handles intermediate feature storage during
batch processing.

A.2 DETAILED ALGORITHM SPECIFICATIONS

A.3 DETAILED GRADIENT DERIVATIONS

This section provides the complete derivation of gradient updates for the joint PoLAR-VBLL opti-
mization procedure described in Section 3.2.

A.3.1 VARIATIONAL PARAMETER UPDATES

The gradients with respect to the variational parameters {µc,Sc} follow standard variational infer-
ence procedures:

∂LELBO

∂µc
=

1

|D|

|D|∑
i=1

[
yi,cϕW(xi)−

exp(µ⊤
c ϕW(xi) +

1
2ϕW(xi)

⊤ScϕW(xi))∑C
j=1 exp(µ

⊤
j ϕW(xi) +

1
2ϕW(xi)⊤SjϕW(xi))

ϕW(xi)

]

− 1

σ2
θ

µc (21)

∂LELBO

∂Sc
=

1

2|D|

|D|∑
i=1

[
−

exp(µ⊤
c ϕW(xi) +

1
2ϕW(xi)

⊤ScϕW(xi))∑C
j=1 exp(µ

⊤
j ϕW(xi) +

1
2ϕW(xi)⊤SjϕW(xi))

ϕW(xi)ϕW(xi)
⊤

]

− 1

2σ2
θ

Id +
1

2
S−1
c (22)
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Algorithm 1 PoLAR-VBLL Training

Require: Pre-trained LLM weights W0, training dataset D = {(xi,yi)}|N |
i=1, rank r, hyperparame-

ters {ηpolar, ηvbll, λ, σ
2
θ}

Ensure: Converged PoLAR parameters {Û, Λ̂, V̂}, variational posterior q(Θ)
1: Initialize U0 ∈ St(m, r), V0 ∈ St(n, r) via QR decomposition of random matrices
2: Initialize Λ0 ∼ N (0, 0.012Ir×r)
3: Initialize VBLL parameters: µc,0 = wpretrain,c, Sc,0 = σ2

θId for c = 1, . . . , C
4: for t = 0, 1, . . . , T − 1 do
5: Sample mini-batch Bt ⊂ D of size B
6: Extract features: ϕt(xi) = ϕW0+UtΛtV⊤

t
(xi) for all xi ∈ Bt

7: Compute ELBO: LELBO
t (Ψpolar,Ψ;Bt) using Eq. 12

8: // PoLAR parameter updates via landing field method
9: Compute weight gradient: Gt =

∂LELBO
t

∂(UtΛtV⊤
t )

10: Compute factor gradients:
11: ∇ΛLELBO

t = U⊤
t GtVt

12: ∇ULELBO
t = GtVtΛ

⊤
t

13: ∇VLELBO
t = G⊤

t UtΛt

14: Compute Riemannian gradients:
15: ψ(Ut) = Skew(∇ULELBO

t ·U⊤
t )

16: ψ(Vt) = Skew(∇VLELBO
t ·V⊤

t )
17: Landing field updates:
18: Γ(Ut) = ψ(Ut)Ut + λ · 4Ut(U

⊤
t Ut − Ir)

19: Γ(Vt) = ψ(Vt)Vt + λ · 4Vt(V
⊤
t Vt − Ir)

20: Update PoLAR parameters:
21: Ut+1 = Ut − ηpolarΓ(Ut)
22: Vt+1 = Vt − ηpolarΓ(Vt)
23: Λt+1 = Λt − ηpolar∇ΛLELBO

t
24: // VBLL parameter updates
25: for c = 1, . . . , C do
26: Compute variational gradients using Eqs. 21–22
27: µc,t+1 = µc,t − ηvbll

∂LELBO
t

∂µc

28: Sc,t+1 = Sc,t − ηvbll
∂LELBO

t

∂Sc

29: Project Sc,t+1 to positive definite cone if necessary
30: end for
31: end for
32: Return Û = UT , Λ̂ = ΛT , V̂ = VT , q(Θ) =

∏C
c=1 N (θc;µc,T ,Sc,T )

A.3.2 POLAR PARAMETER UPDATES

For the PoLAR parameters, we employ the chain rule to propagate gradients through the feature
extractor ϕW(x) where W = W0+UΛV⊤. Let G := ∂LELBO

∂(UΛV⊤)
denote the gradient with respect

to the weight update. Then:

∂LELBO

∂Λ
= U⊤GV (23)

∇ULELBO = GVΛ⊤ (24)

∇VLELBO = G⊤UΛ (25)

A.3.3 RIEMANNIAN GRADIENT COMPUTATION

Since U and V are constrained to Stiefel manifolds, we convert the Euclidean gradients to their
Riemannian counterparts. For a matrix X ∈ St(m, r), the Riemannian gradient is:
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Algorithm 2 PoLAR-VBLL Uncertainty-Aware Prediction

Require: Converged PoLAR parameters {Û, Λ̂, V̂}, variational posterior q(Θ), test input x∗,
training data D, number of samples K, Laplace refinement flag

Ensure: Predictive distribution p(y∗|x∗,D)
1: if Laplace refinement enabled then
2: // Optional posterior refinement via Laplace approximation
3: Compute converged means: µ∗

c = µc,T for c = 1, . . . , C
4: Compute Hessian using KFAC approximation:
5: Hc = −∇2

θc
log p(D|θc = µ∗

c , Û, Λ̂, V̂)

6: Form Laplace posterior: qLap(θc) = N (µ∗
c ,H

−1
c ) for c = 1, . . . , C

7: end if
8: // Extract test features
9: ϕ∗ = ϕW0+ÛΛ̂V̂⊤(x∗)

10: // Monte Carlo sampling for predictive distribution
11: Initialize prediction accumulator: ppred = 0C

12: for k = 1, . . . ,K do
13: if Laplace refinement enabled then
14: Sample classification weights: θ(k)c ∼ qLap(θc) for c = 1, . . . , C
15: else
16: Sample classification weights: θ(k)c ∼ q(θc) = N (µc,T ,Sc,T ) for c = 1, . . . , C
17: end if
18: Form weight matrix: Θ(k) = [θ

(k)
1 , . . . ,θ

(k)
C ]⊤

19: Compute logits: z(k) = Θ(k)ϕ∗

20: Compute sample prediction: p(k) = softmax(z(k))
21: Accumulate: ppred = ppred + p(k)

22: end for
23: Average predictions: p(y∗|x∗,D) = 1

Kppred
24: Return Predictive distribution p(y∗|x∗,D)

gradRf(X) = ∇f(X)−X∇f(X)⊤X (26)

Applying this to our PoLAR parameters:

ψ(U) = Skew(∇ULELBO ·U⊤) = Skew(GVΛ⊤U⊤) (27)

ψ(V) = Skew(∇VLELBO ·V⊤) = Skew(G⊤UΛV⊤) (28)

where Skew(A) = 1
2 (A−A⊤) extracts the skew-symmetric component.

A.3.4 LANDING FIELD UPDATES

Following the infeasible optimization approach, we replace the expensive retraction operations with
landing field updates:

Γ(U) = ψ(U)U+ λ∇N(U) (29)
Γ(V) = ψ(V)V + λ∇N(V) (30)

where ∇N(U) = 4U(U⊤U− Ir) and ∇N(V) = 4V(V⊤V − Ir) are the gradients of the infea-
sibility penalties N(U) = ∥U⊤U− Ir∥2F and N(V) = ∥V⊤V − Ir∥2F , respectively.

The complete update procedure alternates between updating the variational parameters using stan-
dard gradient-based optimizers (e.g., Adam) on Eqs. 21–22, and updating the PoLAR parameters
using the landing field approach on Eqs. 23, 29, and 30.
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A.4 IMPLEMENTATION DETAILS

A.4.1 TRAINING SETTINGS

Model Architecture. Our implementation builds upon the LLaMA-2-7B foundation model (Tou-
vron et al., 2023), utilizing its pre-trained language modeling head for VBLL mean initialization.

PoLAR Configuration. The manifold penalty coefficient in PoLAR λ = 1.0. We parameterize
the S matrix using the identity initialization and apply Landing Field optimization (Lion et al., 2025;
Gao et al., 2022; Schechtman et al., 2023) with gradient type set to ”landing”. The Landing Field
callback is enabled during training to maintain stability in optimization on the Grassmann manifold.

VBLL Parameterization. For VBLL, we adopt the dense parameterization for computational ef-
ficiency while maintaining uncertainty quantification capabilities. The Jensen bound is used for
approximating the softmax function. Prior hyperparameters are set as follows: prior scale σ2

0 = 1.0,
Wishart scale ν0 = 10−2, degrees of freedom ρ = 1.0. The regularization weight for KL divergence
is computed as λreg = 1/|Dtrain| where |Dtrain| is the training set size. This regularization weight can
be used to adjust the emphasis of model performance on ACC or Uncertainty Quantification abil-
ity. All parameter values are the default classification setting in the VBLL library (Harrison et al.,
2024). For the standard training process, we employ a two-step training approach. The λreg is first
set to 1/D for the ACC increasing. After training for a couple of epochs, increasing λreg further will
largely suppress both NLL and ECE metrics.

Training Configuration. For all shared parameters, we follow the setting of BLoB’s official
single-GPU scripts, except for LoRA Rank and LoRA Alpha, to ease BNN training and improve
performance. We train all methods (PoLAR-VBLL and baselines) for 500 epochs with a batch size
of 4, evaluation batch size of 8, and maximum sequence length of 300 tokens. All methods use
AdamW (Loshchilov & Hutter, 2017) optimizers with learning rate 10−4 and a CosineAnnealing-
WarmRestarts scheduler (Loshchilov & Hutter, 2016). Baselines are reproduced strictly following
the implementations from their official repositories. For sampling-based methods (BLoB, TFB,
ScalaBL, C-LoRA), we set training sampling Ktrain = 1 (single sample per forward pass) and infer-
ence sampling Keval = 10. LoRA/PoLAR rank (r = 16), alpha (α = 32), and dropout (0.1). All
training is conducted in BF16 precision on CUDA devices. For all MC-based uncertainty quantifi-
cation evaluations, we use nsamples = 10.

LA Calibration. For post-hoc calibration, we apply LA with a diagonal Hessian structure over all
model parameters. The prior precision is set to 1.0.

A.4.2 COMPUTATIONAL ENVIRONMENT

Hardware Specifications All experiments are conducted on a high-performance computing sys-
tem equipped with NVIDIA RTX A6000 Ada GPUs and AMD 9600 Threadripper processors with
64 cores and 128 threads. This configuration provides substantial computational resources for both
GPU-accelerated training and CPU-intensive operations such as Hessian computation for Laplace
approximation.

Software Dependencies. Our implementation leverages several key Python packages: Py-
Torch (Paszke, 2019) for deep learning operations, HuggingFace PEFT (Mangrulkar et al., 2022)
for adapter implementations, custom Laplace approximation libraries (Yang et al., 2024; Daxberger
et al., 2021; Kristiadi et al., 2024) for post-hoc uncertainty calibration, PoLAR optimization li-
braries (Lion et al., 2025), and VBLL (Variational Bayesian Last Layer) implementations (Harri-
son et al., 2024). Complete dependency specifications and version information are provided in our
requirements.txt file, which will be made available upon acceptance.
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Table 3: Performances on ID datasets in terms of ACC, ECE, and NLL using LlaMA2-7B. Bold
and underlined denote the best and the second-best performance, respectively. Here, we include
PoLAR-VBLL with and without LA.

Metric Method Datasets
WG-S ARC-C ARC-E OBQA

ACC (%)

MLE 68.99±0.58 69.10±2.84 85.65±0.92 81.52±0.25
MAP 68.62±0.71 67.59±0.40 86.55±0.55 81.38±0.65
MCD 69.46±0.62 68.69±1.30 86.21±0.46 81.72±0.10
ENS 69.57±0.66 66.20±2.01 84.40±0.81 81.38±0.91
BBB 66.54±7.87 68.13±1.27 86.86±0.74 82.06±0.59
LA 69.45±1.73 66.78±0.69 80.05±0.22 82.07±0.67
BLoB (N=0) 70.89±0.82 70.83±1.57 86.68±0.60 82.73±0.41

PoLAR-VBLL (wo. LA) 71.62±0.27 70.92±0.24 88.03±0.44 82.53±0.12
PoLAR-VBLL 71.62±0.27 70.92±0.24 88.03±0.44 82.53±0.12

ECE (%)

MLE 29.83±0.58 29.00±1.97 13.12±1.39 12.55±0.46
MAP 29.76±0.87 29.42±0.68 12.07±0.55 13.26±0.82
MCD 27.98±0.44 27.53±0.80 12.20±0.56 13.10±0.11
ENS 28.52±0.55 29.16±2.37 12.57±0.58 15.34±0.27
BBB 21.81±12.95 26.23±1.47 12.28±0.58 11.38±1.07
LA 13.47±1.43 16.25±2.61 33.29±0.57 6.12±1.55
BLoB (N=0) 20.62±0.83 20.61±1.16 9.43±0.38 8.36±0.38

PoLAR-VBLL (wo. LA) 8.26±0.60 8.36±0.13 5.22±0.41 5.58±0.34
PoLAR-VBLL 7.31±0.32 7.41±0.78 2.63±0.81 4.63±1.43

NLL

MLE 3.17±0.37 2.85±0.27 1.17±0.13 0.73±0.03
MAP 2.46±0.34 2.66±0.11 0.90±0.05 0.75±0.01
MCD 2.79±0.53 2.67±0.15 1.00±0.14 0.77±0.03
ENS 2.71±0.08 2.46±0.22 0.82±0.03 1.06±0.04
BBB 1.40±0.55 2.23±0.04 0.91±0.06 0.66±0.05
LA [116] 0.67±0.01 1.03±0.04 0.88±0.00 0.72±0.01
BLoB (N=0) 0.91±0.10 1.19±0.02 0.56±0.01 0.56±0.02
PoLAR-VBLL (wo. LA) 0.66±0.03 0.95±0.07 0.51±0.03 0.64±0.01
PoLAR-VBLL 0.60±0.01 0.91±0.00 0.47±0.03 0.63±0.02

A.5 ADDITIONAL EXPERIMENTAL RESULTS

A.5.1 FULL COMPARISON ON IN-DISTRIBUTION DATASETS

Table 3 provides a comprehensive comparison. BLoB exhibits a trade-off between accuracy and un-
certainty quantification: at N=0 sampling, it achieves higher accuracy performance but with reduced
calibration quality. Even under these optimal accuracy conditions, BLoB achieves lower accuracy
than our method across all datasets and shows higher ECE and NLL values. As sampling increases,
BLoB exhibits improved uncertainty metrics, albeit with a corresponding reduction in predictive
accuracy.

Our PoLAR-VBLL framework achieves competitive accuracy across all datasets while maintaining
strong uncertainty calibration. The framework demonstrates that it is possible to obtain both high
predictive performance and well-calibrated uncertainties without requiring the typical trade-off. The
additional LA refinement further enhances our method’s ECE and NLL performance while main-
taining accuracy, suggesting that our variational training provides a robust foundation for posterior
refinement. These results suggest that the combination of PoLAR’s enhanced feature representation
and VBLL’s principled uncertainty quantification offers a promising approach for achieving both
accuracy and calibration in uncertainty-aware models.
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A.6 TRAINING PROTOCOL: EXTENDED TRAINING SCHEDULE

Motivation for Extended Training. A natural question arises regarding our choice of training
schedule, particularly given that some baseline methods specify shorter training durations in their
original implementations. We address this by examining the BLoB baseline as a representative case
study on WinoGrande-Simple (WG-S).

Convergence Analysis of BLoB Official Implementation. We strictly followed the official BLoB
repository1 and executed their provided shell script (blob-llama-all-single-gpu.sh)
without modification. For WG-S, the official configuration specifies:

• Batch size: 4

• Maximum gradient steps: 5,000

• Training samples: 640 (steps per epoch: 640/4 = 160)

• Total epochs: 5000/160 = 31.25 epochs

Table 4: Training dynamics of BLoB on WG-S using official implementation. Training accuracy
and loss exhibit significant instability with no clear convergence by epoch 32.

Epoch Training Accuracy (%) Training Loss
Seed 1 Seed 2 Seed 3 Seed 1 Seed 2 Seed 3

1 51.13 49.12 53.64 0.7062 0.7097 0.6923
5 72.75 70.63 78.89 0.5796 0.5459 0.5003

10 67.97 62.40 76.86 0.6869 0.6569 0.4949
15 51.61 61.27 68.78 0.7080 0.6729 0.6043
20 44.35 62.77 58.29 0.7190 0.6315 0.6758
25 50.23 60.71 67.43 0.7099 0.6535 0.5755
30 50.39 61.47 68.86 0.6959 0.6480 0.5933
31 52.55 58.83 64.50 0.6993 0.6502 0.6084
32 45.86 64.08 65.17 0.7130 0.6290 0.5758

Table 5: Validation results for BLoB at epoch 32 (5,000 steps) on WG-S dataset. Seed 1 produced
NaN predictions and is excluded. Low validation accuracy suggests undertraining.

Seed Val ACC (%) Val ECE (%) Val NLL
Seed 2 60.99 3.28 0.66
Seed 3 58.14 3.27 0.67

Critical Observations. Table 4 summarizes the training dynamics over poch 32 (5,000 steps)
across three random seeds provided by the official scripts. The training curves exhibit significant
instability with no apparent convergence at 32 epochs. Training accuracy fluctuates dramatically
across all seeds—for instance, Seed 1 drops from 72.75% at epoch 5 to 44.35% at epoch 20, while
training loss fails to monotonically decrease. Validation accuracy remains substantially low (58–
61%), far below the results reported in the original BLoB paper, and Seed 1 consistently produces
NaN predictions during validation across multiple independent runs. The low ECE and NLL values
likely reflect undertraining rather than good calibration, as the model has not yet learned to make
confident predictions on this task.

Rationale for Longer Training Schedule. Given the apparent lack of convergence in the official
BLoB implementation and similar observations with other baselines, we adopted a unified training
schedule of 500 epochs for all methods. This ensures fair comparison under identical training con-
ditions, provides sufficient duration for all methods to reach stable performance, and offers adequate

1Cloned via git from the official source https://github.com/Wang-ML-Lab/bayesian-peft
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margin based on our empirical observation that most methods converge within 200 epochs, while
certain baselines on challenging datasets require 300–400+ epochs in the worst case.

This extended training protocol ensures that performance differences reflect genuine methodological
advantages rather than artifacts of premature termination or convergence failures.

B EXTEND EXPERIMENTS ON LLAMA 3.1 8B

B.1 MEMORY USAGE AND RUN TIME

We evaluate the computational efficiency of different uncertainty quantification methods on the WG-
S dataset. All experiments are conducted with a training batch size of 4, an inference batch size of
8, LoRA rank r = 16, α = 32, and a sequence length of 400. These hyperparameters are kept
consistent across all methods to ensure a fair comparison. In terms of PoLAR-BLoB, we applied
variational inference to the core matrix Λ ∈ Rr×r in the PoLAR decomposition ∆W = UΛV⊤,
while keeping the orthogonal factors U ∈ St(m, r) and V ∈ St(n, r) deterministic.

Table 6: GPU memory usage and runtime comparison across different uncertainty quantification
methods. Bold denotes the best performance for each metric.

Method Training Memory (MB) Test Memory (MB) Runtime per Epoch (min)
PoLAR-VBLL (Ours) 32,272 16,396 1:13
PoLAR-BLoB 31,728 18,874 14:36
LoRA-BLoB 40,475 18,762 14:49
PoLAR-LA-LL 31,714 15,662 0:34
PoLAR-LA 31,714 43,678 0:44
LoRA-LA-LL 30,612 16,313 0:43
LoRA-LA 30,612 42,131 0:57
LoRA-VBLL 30,546 16,764 1:14
TFB 30,612 16,667 0:48
ScalaBL 27,318 19,552 10:42
C-LoRA 24,236 19,102 10:04

As shown in Table 6, our method demonstrates a substantial reduction in runtime compared to
BLoB-based methods, achieving approximately 12× speedup (1:13 vs. ∼14:40 min/epoch). Mean-
while, PoLAR-VBLL maintains a competitive inference memory footprint that is significantly lower
than full-network Laplace approximations such as PoLAR-LA (16,396 MB vs. 43,678 MB).

The computational efficiency of PoLAR-VBLL stems from its architectural design that fundamen-
tally differs from existing approaches. While BLoB-based methods rely on expensive full-network
sampling that necessitates K complete forward passes through the entire LLM backbone, our frame-
work employs head-only sampling. This design choice enables a single backbone pass while restrict-
ing the stochastic sampling to the computationally lightweight last layer, dramatically reducing both
memory consumption and inference time.

Furthermore, our PoLAR-VBLL leverages an analytical ELBO solution, which allows for exact
gradient computation without the sampling overhead inherent in Monte Carlo-based approaches. In
contrast, BLoB incurs approximately 50% additional parameter overhead (Samplawski et al., 2025;
Rahmati et al., 2025) due to maintaining both mean and variance parameters across all adapter
layers.

Table 7: Variational parameters per layer for different methods.
Method Variational Parameters per Layer Calculation
LoRA-BLoB 131,072 r × d× 2 = 16× 4096× 2
PoLAR-BLoB 512 r × r × 2 = 16× 16× 2
ScalaBL 32 r × 2 = 16× 2
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Table 7 presents the variational parameter counts per layer for different methods. The dramatic
difference between LoRA-BLoB (131,072 parameters) and PoLAR-BLoB (512 parameters) arises
from the structural distinction in where stochasticity is introduced. LoRA-BLoB performs varia-
tional inference on the full low-rank matrices of dimension d × r, whereas PoLAR-BLoB restricts
the variational treatment to the core matrix of dimension r×r. It is worth noting that C-LoRA adopts
an entirely different approach by using deterministic parameters. Specifically, C-LoRA employs a
contextual MLP module to dynamically generate input-dependent perturbation matrices, with pa-
rameter count per layer given by (r × 64 + 64) + (64 × r2 × 2 + r2 × 2). The lower memory
usage of C-LoRA can be attributed to two factors: first, the absence of the reparameterization trick
eliminates the need to store noise matrices and intermediate states for backpropagation; second, de-
terministic parameters avoid the doubling of optimizer states (momentum and variance in AdamW)
that variational methods require for both mean and variance parameters.

Memory Analysis Beyond Static Parameter Counts. A superficial analysis might suggest that
LoRA adapters contribute less than 10% additional memory overhead. However, this perspective
considers only static parameter counts and overlooks the dynamic memory consumption during
training. In practice, GPU memory comprises several components: the base model parameters
(Llama-2-7B in fp16), adapter parameters, optimizer states that store momentum and variance
for each trainable parameter (effectively 2× the trainable parameter memory), gradient buffers, and
activation memory. Among these, the activation and reparameterization overhead often constitutes
the dominant factor in peak memory usage. LoRA-BLoB performs reparameterization on large
projection matrices of dimension d × r, requiring storage of high-dimensional noise matrices and
intermediate computation states. In contrast, PoLAR restricts this operation to the compact core
matrix of dimension r×r. Crucially, this overhead scales linearly with both batch size and sequence
length, making the architectural choice increasingly important for larger-scale training.

In fact, BLoB’s high memory cost is well-documented and motivates recent methods (Scal-
aBL (Samplawski et al., 2025), C-LoRA (Rahmati et al., 2025)) specifically designed to reduce
this overhead.

Experimental Configuration and Fair Comparison. Our experimental settings differ from those
in the original BLoB paper: we use LoRA rank of 16, alpha of 32, sequence length of 400, and target
all projection layers including q proj, k proj, v proj, o proj, gate proj, up proj, and
down proj. The original BLoB paper uses rank of 8, alpha of 16, sequence length of 300, targeting
only q proj, v proj, and lm head. These differences render absolute numbers not directly
comparable with those reported in the original BLoB paper. Nevertheless, our comparison remains
fair as all methods are evaluated under identical settings within our unified framework. All methods
use K = 1 samples during training, consistent with official BLoB implementation and standard
practice. All baselines are implemented from their official repositories with the same percentage of
trainable parameters.

In summary, PoLAR-VBLL effectively bridges the gap between predictive performance and compu-
tational efficiency, making it a practical choice for uncertainty quantification in resource-constrained
deployment scenarios.

B.2 ADDITIONAL BACKBONE EVALUATION ON LLAMA-3.1-8B

We conducted comprehensive experiments on Llama-3.1-8B across all six datasets with all base-
line methods using the 5-epoch fine-tuning setting suggested by TFB (Shi et al., 2024). Note that
this setting is not optimal for variational Bayesian methods, as the ELBO objective balances both
accuracy and KL regularization simultaneously. In contrast, methods with deterministic training
and post-hoc posterior estimation optimize solely for cross-entropy, potentially allowing them to
achieve higher accuracy within limited training epochs. The batch size is set to 4, and the maximum
sequence length is restricted to 300 tokens. For the LoRA configuration, we set the rank to r = 8
and the scaling factor to α = 16.

These comprehensive results in Table 8 demonstrate that our framework generalizes effectively be-
yond Llama-2-7B to larger and more recent model architectures, consistently achieving superior
uncertainty quantification while maintaining competitive predictive performance, even under the
limited training budget that inherently favors deterministic methods.
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Table 8: Performances on ID datasets in terms of ACC, ECE, and NLL using Llama-3.1-8B.
The evaluation is done across six datasets used in Wang et al. (2024); Shi et al. (2024). Bold
and underlined denote the best and the second-best performance, respectively. Note on ScalaBL:
We strictly followed the official implementation and hyperparameter configurations for ScalaBL.
However, despite our best efforts, our reproduction yielded a model where the low ECE comes at
the cost of substantially reduced accuracy. This pattern suggests potential underfitting in this specific
setting.

Metric Method Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (%)

LA 77.22±1.38 84.49±0.37 89.86±0.54 84.04±0.23 88.32±0.33 88.26±0.50
PoLAR-LA 77.51±0.94 84.57±1.10 91.80±0.19 83.88±0.90 88.70±0.56 89.54±0.86
PoLAR-LA-LL 77.51±0.94 84.57±1.10 91.80±0.19 83.88±0.90 88.70±0.56 89.54±0.86
TFB-LL 77.31±2.01 82.75±0.20 89.95±0.59 83.44±1.09 88.66±0.30 89.15±1.40
TFB 77.61±1.19 83.34±1.03 90.90±0.01 83.31±0.35 88.44±0.24 87.98±1.79
BLOB 76.68±0.99 82.88±0.51 91.49±0.21 80.78±1.05 87.90±0.35 88.58±0.17
C-LoRA 73.07±0.50 78.72±0.47 89.88±0.87 77.46±0.78 86.59±0.14 88.18±1.29
ScalaBL 49.92±0.69 79.40±1.48 89.21±0.20 53.40±1.43 69.62±7.99 82.18±2.14

PoLAR-VBLL (w/o LA) 77.91±0.47 85.05±0.77 91.60±0.03 84.97±0.05 89.07±0.23 89.32±1.29
PoLAR-VBLL 77.91±0.47 85.05±0.77 91.60±0.03 84.97±0.05 89.07±0.23 89.32±1.29

ECE (%)

LA 4.15±0.52 6.35±0.84 9.94±0.59 6.71±1.69 3.54±0.13 2.18±0.47
PoLAR-LA 3.58±0.18 4.52±1.40 3.27±0.86 4.31±0.29 2.83±0.49 3.35±0.45
PoLAR-LA-LL 7.95±0.92 6.07±0.72 2.94±0.67 6.37±1.10 3.75±0.01 5.52±0.12
TFB-LL 9.99±0.90 5.02±2.15 3.13±0.24 4.12±1.57 3.58±0.21 3.87±1.41
TFB 9.05±0.39 6.53±1.99 3.17±0.21 3.68±1.57 2.76±0.16 3.89±1.68
BLOB 14.83±1.21 9.29±0.57 4.12±0.26 8.23±1.04 3.33±0.29 3.36±0.94
C-LoRA 18.36±0.58 15.56±2.44 5.40±0.23 7.96±2.84 6.58±1.23 3.94±0.47
ScalaBL 4.86±0.50 18.75±7.45 10.07±0.66 2.73±0.87 24.67±4.34 14.48±1.29

PoLAR-VBLL (w/o LA) 9.04±0.18 7.40±0.26 3.61±0.22 6.10±0.01 2.50±0.10 2.63±0.23
PoLAR-VBLL 3.31±1.40 3.56±0.41 3.22±0.42 3.00±0.10 2.44±0.11 1.88±0.27

NLL

LA 0.67±0.04 0.63±0.04 0.41±0.02 0.52±0.01 0.40±0.02 0.36±0.01
PoLAR-LA 0.60±0.05 0.52±0.01 0.31±0.01 0.46±0.02 0.34±0.02 0.32±0.01
PoLAR-LA-LL 0.76±0.12 0.58±0.05 0.26±0.01 0.52±0.06 0.37±0.01 0.34±0.03
TFB-LL 0.59±0.05 0.53±0.01 0.28±0.02 0.41±0.01 0.32±0.01 0.29±0.04
TFB 0.55±0.01 0.51±0.02 0.27±0.02 0.41±0.01 0.32±0.01 0.30±0.02
BLOB 0.79±0.06 0.62±0.07 0.29±0.01 0.47±0.03 0.38±0.00 0.28±0.00
C-LoRA 0.85±0.03 0.88±0.08 0.35±0.01 0.56±0.07 0.45±0.05 0.31±0.01
ScalaBL 0.65±0.00 0.69±0.13 0.35±0.00 0.64±0.00 0.96±0.23 0.46±0.08

PoLAR-VBLL (w/o LA) 0.61±0.01 0.51±0.05 0.27±0.03 0.40±0.01 0.32±0.02 0.29±0.00
PoLAR-VBLL 0.55±0.02 0.50±0.05 0.24±0.04 0.39±0.01 0.32±0.02 0.29±0.00

B.3 ABLATION STUDY ON THE EFFECTS OF VBLL AND LA

To systematically evaluate the contribution of VBLL and LA in our framework, we conduct a com-
prehensive ablation study across all six datasets using Llama-3.1-8B as the backbone. Following
the experimental protocol suggested by TFB (Shi et al., 2024), we fine-tune all methods for five
epochs. Since our method applies Laplace Approximation (LA) exclusively to the last layer, we in-
clude PoLAR-LA-LL (which applies LA only to the last layer of a deterministically trained model)
to ensure a direct and fair comparison. For completeness, we also compare against PoLAR-LA,
which applies LA across all adapter layers.

The results presented in Table 9 reveal the following important findings regarding the individual
contributions of VBLL and LA to our framework.

VBLL as the Dominant Factor for Uncertainty Quantification. The complete PoLAR-VBLL
framework achieves the best ECE and NLL across nearly all datasets while maintaining competitive
accuracy. Notably, even without the final LA refinement step, the PoLAR-VBLL (w/o LA) vari-
ant already delivers highly competitive calibration performance, particularly on OBQA and BoolQ
where it achieves the second-best ECE. This observation demonstrates that VBLL is the primary
driver of UQ quality in our framework, rather than relying on LA as a remedial component.

Limitations of Deterministic Training for Uncertainty Estimation. A comparison between
PoLAR-LA and PoLAR-LA-LL provides valuable insights into the limitations of post-hoc uncer-
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Table 9: Ablation study of effects of VBLL and LA coupled with the PoLAR adapter across six
datasets using LlaMa-3.1-8B. Bold and underlined denote the best and the second-best perfor-
mance, respectively.

Metric Method Datasets
WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC (%) ↑
PoLAR-LA 77.51±0.94 84.57±1.10 91.80±0.19 83.88±0.90 88.70±0.56 89.54±0.86
PoLAR-LA-LL 77.51±0.94 84.57±1.10 91.80±0.19 83.88±0.90 88.70±0.56 89.54±0.86
PoLAR-VBLL (w/o LA) 77.91±0.47 85.05±0.77 91.60±0.03 84.97±0.05 89.07±0.23 89.32±1.29
PoLAR-VBLL (Full) 77.91±0.47 85.05±0.77 91.60±0.03 84.97±0.05 89.07±0.23 89.32±1.29

ECE (%) ↓
PoLAR-LA 3.58±0.18 4.52±1.40 3.27±0.86 4.31±0.29 2.83±0.49 3.35±0.45
PoLAR-LA-LL 7.95±0.92 6.07±0.72 2.94±0.67 6.37±1.10 3.75±0.01 5.52±0.12
PoLAR-VBLL (w/o LA) 9.04±0.18 7.40±0.26 3.61±0.22 6.10±0.01 2.50±0.10 2.63±0.23
PoLAR-VBLL (Full) 3.31±1.40 3.56±0.41 3.22±0.42 3.00±0.10 2.44±0.11 1.88±0.27

NLL ↓
PoLAR-LA 0.60±0.05 0.52±0.01 0.31±0.01 0.46±0.02 0.34±0.02 0.32±0.01
PoLAR-LA-LL 0.76±0.12 0.58±0.05 0.26±0.01 0.52±0.06 0.37±0.01 0.34±0.03
PoLAR-VBLL (w/o LA) 0.61±0.01 0.51±0.05 0.27±0.03 0.40±0.01 0.32±0.02 0.29±0.00
PoLAR-VBLL (Full) 0.55±0.02 0.50±0.05 0.24±0.04 0.39±0.01 0.32±0.02 0.29±0.00

tainty estimation on deterministically trained models. While both methods achieve comparable NLL
values, this similarity is largely attributable to high-confidence predictions rather than proper cal-
ibration. The substantially higher ECE of PoLAR-LA-LL compared to PoLAR LA across most
datasets indicates that applying LA exclusively to the last layer of a deterministically trained model
is insufficient for achieving well-calibrated uncertainty estimates. This performance gap suggests
that deterministic training fails to discover posterior geometries amenable to uncertainty quantifica-
tion, necessitating LA compensation across all adapter layers to achieve reasonable calibration.

VBLL Provides Superior Initialization for Laplace Refinement. A striking observation
emerges from comparing our full PoLAR-VBLL method against PoLAR-LA: despite applying LA
only to the last layer, PoLAR-VBLL achieves superior calibration compared to PoLAR-LA, which
applies LA across all layers. This result underscores the effectiveness of variational training in dis-
covering high-quality posterior modes. The VBLL component actively guides the optimization pro-
cess toward parameter configurations that inherently support reliable uncertainty estimation, thereby
providing an ideal foundation for subsequent LA refinement. Consequently, only minimal post-hoc
adjustment at the last layer is required to achieve state-of-the-art uncertainty quantification.

Trade-off Between Accuracy and Calibration. Under the five-epoch fine-tuning protocol sug-
gested by TFB (Shi et al., 2024), which favors methods based on deterministic training followed
by post-hoc posterior estimation, we observe that deterministic methods (PoLAR-LA and PoLAR-
LA-LL) achieve marginally higher accuracy on certain datasets such as ARC-E and BoolQ. This
advantage stems from their exclusive optimization of the cross-entropy loss without regularization
from the KL divergence term. In contrast, VBLL jointly optimizes predictive accuracy and the
variational objective, which may result in slightly lower accuracy on some benchmarks. However,
this joint optimization yields substantially superior uncertainty quantification, as evidenced by the
consistently better ECE and NLL achieved by PoLAR-VBLL across the majority of datasets.

Summary. These comprehensive results across six datasets demonstrate that VBLL constitutes
the core working component of our framework. The synergy between VBLL, which performs mode
discovery during training, and LA, which refines the local posterior geometry post-hoc, represents
an intentional and effective design choice. The experimental evidence firmly establishes that LA
serves as a complementary refinement step rather than a compensatory mechanism for a deficient
VBLL component.

B.3.1 DISENTANGLING POLAR AND VBLL CONTRIBUTIONS

Another potential concern is whether our performance gains stem primarily from the PoLAR pa-
rameterization rather than the VBLL component. To address this, we conduct an additional ablation
study on WinoGrande-Simple using Llama-2-7B, where we apply PoLAR parameterization to
multiple baseline uncertainty quantification methods.
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Table 10: Extended ablation study comparing PoLAR-VBLL with PoLAR substituted baselines
on WG-S using Llama-2-7B. Results demonstrate that variational treatment of the classification
layer (VBLL) is more effective than applying VI to adapter parameters (BLoB).

Method ACC (%) ↑ ECE (%) ↓ NLL ↓
PoLAR-LA 70.33±0.69 12.16±2.58 0.69±0.03

PoLAR-LA-LL 70.33±0.69 14.63±1.14 0.71±0.05
PoLAR-BLoB 70.39±0.26 12.06±0.81 0.73±0.04

PoLAR-VBLL (w/o LA) 71.62±0.27 8.26±0.60 0.66±0.03
PoLAR-VBLL (Full) 71.62±0.27 7.31±0.32 0.60±0.01

The results in Table 10 clearly demonstrate that VBLL, rather than PoLAR parameterization alone, is
responsible for our method’s superior uncertainty quantification. All variants in this ablation employ
the same PoLAR adapter structure, yet their calibration performance varies dramatically. PoLAR +
LAP and PoLAR + BLoB achieve comparable calibration, while PoLAR-VBLL (w/o LA) delivers
substantially better performance with approximately 1.5× lower ECE. Notably, even without the LA
refinement step, PoLAR-VBLL (w/o LA) already achieves strong calibration, confirming that VBLL
constitutes the primary working mechanism. The final LA step provides further refinement, but the
core uncertainty quantification capability comes from VBLL’s ability to discover well-calibrated
posterior modes during training.

B.4 TIGHTNESS OF THE JENSEN BOUND

A potential concern regarding our VBLL formulation is whether the Jensen bound employed in Eq. 6
provides a sufficiently tight approximation to the true ELBO objective. To address this concern, we
conduct an empirical comparison between our analytical Jensen-based estimator and a Monte Carlo
(MC) estimator with 50 samples across the full training horizon.

Specifically, we train PoLAR-VBLL on the WG-S dataset using Llama-3.1-8B as the backbone
and record the training loss computed by both estimators at regular intervals over 400 training steps.
The results are presented in Table 11.

Table 11: Comparison of training loss trajectories between the Jensen bound and 50-sample Monte
Carlo estimation on WGS dataset using Llama-3.1-8B.

Training Steps VBLL (Jensen) VBLL (50-sample MC) Absolute Gap
0 69.50 61.23 8.27
50 50.71 50.97 0.26

100 45.57 45.65 0.08
150 40.95 40.86 0.09
200 36.96 36.95 0.01
250 33.57 33.74 0.17
300 31.08 31.36 0.28
350 29.55 29.89 0.34
400 28.49 28.83 0.34

The results reveal several important observations regarding the fidelity of our Jensen-based optimiza-
tion. First, the initial gap between the two estimators (8.27 at step 0) undergoes rapid convergence
within the first 50 training steps, decreasing to merely 0.26. This rapid alignment indicates that the
Jensen bound quickly becomes an accurate proxy for the true objective as the model parameters
move away from their random initialization.

Second, after this initial convergence phase, the absolute gap remains remarkably stable throughout
the remainder of training, consistently staying below 0.35 from step 50 to step 400. This stability
demonstrates that the Jensen bound maintains its approximation quality across the entire optimiza-
tion trajectory, rather than degrading as the posterior distribution evolves during training.
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Third, and most critically, the gap does not exhibit any increasing trend as training progresses. This
absence of divergence confirms that optimizing the Jensen-based lower bound does not lead the
model toward regions where the bound becomes loose or misleading. Instead, the Jensen estimator
and the MC estimator track each other closely throughout the full training horizon.

These extended results provide strong empirical evidence that our analytical Jensen-based formula-
tion maintains fidelity to the true ELBO objective. The tight correspondence between the two esti-
mators validates our design choice of employing the Jensen bound, which enables efficient closed-
form gradient computation without sacrificing optimization quality. This computational advantage
is substantial: while the 50-sample MC estimator requires 50 forward passes through the last layer
per training step, our Jensen-based approach achieves comparable optimization trajectories with a
single analytical computation.

B.5 SENSITIVITY TO PRIOR AND INITIALIZATION

We conduct a comprehensive sensitivity analysis to evaluate the robustness of our method with
respect to two critical factors: (1) the choice of prior distribution, and (2) the initialization of varia-
tional parameters. We investigate the sensitivity to the prior scale parameter σ0, which controls the
width of the Gaussian prior over the last-layer weights N (0, σ2

0I). To assess initialization robust-
ness, all experiments are conducted across three different random seeds {1, 2, 3}, which affect both
data shuffling and stochastic aspects of variational parameter initialization. We report the mean and
standard deviation across these seeds.

Table 12: Sensitivity analysis of prior scale σ0 on WG-S under LLaMA 2 7B. Results are averaged
over three random seeds with standard deviations reported. ACC: accuracy (%), ECE: expected
calibration error (%), NLL: negative log-likelihood.

Prior Scale (σ0) ACC (↑) ECE (↓) NLL (↓)

0.1 70.92± 0.24 9.10± 0.53 0.68± 0.04
1.0 (Default) 71.62± 0.27 8.26± 0.60 0.66± 0.03

10.0 70.70± 0.50 10.59± 1.17 0.69± 0.07

Table 12 summarizes the performance under different prior scales on the WG-S dataset. We can
make the following observations:

(1) Optimal prior scale: The prior scale σ0 = 1.0 achieves the best overall performance across all
metrics. Both overly restrictive (σ0 = 0.1) and overly diffuse (σ0 = 10.0) priors result in degraded
performance, with decreases in accuracy and increases in both calibration error and negative log-
likelihood.

(2) Convergence dynamics: We observe that as the prior scale increases from 0.1 to 10.0, the op-
timization process converges progressively more slowly during training. This suggests that exces-
sively wide priors introduce additional optimization challenges, potentially requiring more iterations
to reach comparable solution quality.

(3) Initialization robustness: The relatively small standard deviations across different random
seeds demonstrate that our method exhibits strong robustness to initialization. This stability is con-
sistent across all tested prior scales, indicating that the variational learning process reliably converges
to high-quality solutions despite variations in random initialization. The consistency across seeds
also validates the reproducibility of our approach.

B.6 STABLE RANK ANALYSIS AND THEORETICAL JUSTIFICATION

In this section, we provide both theoretical motivation and empirical validation for combining Po-
LAR with VBLL. We first establish the theoretical foundation linking feature geometry to uncer-
tainty quantification quality, and then present empirical evidence demonstrating that PoLAR pre-
serves the geometric properties essential for reliable Bayesian inference.
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B.6.1 THEORETICAL MOTIVATION: DISTANCE-AWARE FEATURES FOR BAYESIAN LAST
LAYER METHODS

Recent work on deterministic uncertainty quantification has established that last-layer Bayesian
methods critically depend on the geometric properties of the feature extractor. In particular,
SNGP (Liu et al., 2020) demonstrates that distance-aware features—where semantically distinct
inputs remain well-separated in the feature space—are essential for reliable uncertainty estimation.
We argue that VBLL shares this requirement: when the Bayesian last layer receives features from a
distance-preserving extractor, it can effectively distinguish between in-distribution (ID) and out-of-
distribution (OOD) samples based on their relative positions in the feature space.

A critical failure mode arises when the learned transformation exhibits low effective dimensionality,
a phenomenon termed feature collapse (Postels et al., 2021). Under feature collapse, the adapter
projects high-dimensional inputs onto a narrow, low-dimensional subspace, causing semantically
diverse inputs—including OOD samples—to cluster together indistinguishably from ID data. This
geometric compression fundamentally limits the Bayesian last layer’s capacity to detect distribution
shift, as the distance information necessary for uncertainty-aware inference is lost during feature
extraction.

The stable rank of the learned weight update ∆W provides a quantitative measure of this geometric
property. Defined as

stable-rank(∆W) =
∥∆W∥2F
∥∆W∥22

, (31)

the stable rank captures the effective dimensionality of the transformation by computing the ratio of
the squared Frobenius norm to the squared spectral norm. A stable rank approaching 1.0 indicates
a nearly rank-1 projection that severely compresses the feature space, while higher values suggest a
more isotropic transformation that preserves multiple effective directions.

B.6.2 EMPIRICAL VALIDATION: POLAR PRESERVES FEATURE GEOMETRY

To empirically validate our theoretical motivation, we conduct a comparative stable rank analysis
between LoRA and PoLAR across multiple datasets. Figure 2 presents the distribution of stable
rank values for both methods.

The results reveal a striking contrast between the two adaptation strategies. Standard LoRA exhibits
an average stable rank of approximately 1.53, approaching the theoretical minimum of 1.0. This
low value indicates that LoRA effectively performs a nearly rank-1 projection, compressing the
learned updates into a highly anisotropic subspace despite the nominally higher allocated rank. Such
geometric compression aligns with previous observations of rank collapse in LoRA (Lion et al.,
2025) and explains the suboptimal performance of LoRA-based uncertainty quantification methods,
particularly in OOD detection scenarios where distance preservation is critical.

In contrast, PoLAR maintains a significantly higher average stable rank of approximately 2.86. By
constraining the low-rank factors U and V to the Stiefel manifold through orthogonality constraints,
PoLAR encourages a more isotropic transformation that preserves multiple effective directions in
the feature space. This geometric preservation directly supports the requirements of VBLL: the
Bayesian last layer receives features that maintain semantic distances between inputs, enabling more
reliable uncertainty estimation for both ID and OOD samples.

The connection between stable rank and downstream performance is evident in our experimental
results. Across all evaluation benchmarks, PoLAR-based methods consistently outperform their
LoRA counterparts in both predictive accuracy and uncertainty calibration. The higher stable rank
of PoLAR translates to richer feature representations that better capture task-specific patterns while
preserving the geometric structure necessary for principled Bayesian inference.

B.6.3 SUMMARY: A PRINCIPLED DESIGN

We emphasize that our framework follows a principled design methodology where each component
addresses a specific, well-motivated requirement, rather than claiming an axiomatic derivation from
first principles. The roles of the three components are as follows:
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Figure 2: Stable rank comparison between PoLAR and LoRA across three datasets. PoLAR con-
sistently achieves higher stable rank values, indicating better preservation of feature geometry and
effective utilization of the allocated parameter space.

PoLAR serves as the feature extractor that preserves feature geometry through orthogonality con-
straints, maintaining the high stable rank necessary for distance-aware representations. This geo-
metric preservation directly addresses the requirements identified by SNGP (Liu et al., 2020) for
effective last-layer uncertainty methods.

VBLL provides tractable predictive uncertainty through variational inference on the last layer
weights. Beyond uncertainty quantification, VBLL actively guides the optimization process toward
high-quality posterior modes that support reliable calibration. This mode discovery during training
is essential for the subsequent refinement step.

The optional LA refines the local posterior geometry around the well-calibrated mode identified by
VBLL. Crucially, without VBLL to locate an appropriate posterior mode, LA alone cannot achieve
proper calibration—as demonstrated by the inferior performance of PoLAR-LA-LL compared to
PoLAR-VBLL in our ablation studies. VBLL provides the necessary initialization that enables LA
to serve as an effective finishing touch.

This principled combination, where each component’s role is both theoretically motivated and em-
pirically validated, underlies the consistent superior performance of PoLAR-VBLL across diverse
benchmarks and model architectures.
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