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Abstract
Causal disentanglement seeks a representation of
data involving latent variables that are related via
a causal model. A representation is identifiable
if both the latent model and the transformation
from latent to observed variables are unique. In
this paper, we study observed variables that are
a linear transformation of a linear latent causal
model. Data from interventions are necessary for
identifiability: if one latent variable is missing
an intervention, we show that there exist distinct
models that cannot be distinguished. Conversely,
we show that a single intervention on each la-
tent variable is sufficient for identifiability. Our
proof uses a generalization of the RQ decomposi-
tion of a matrix that replaces the usual orthogonal
and upper triangular conditions with analogues
depending on a partial order on the rows of the
matrix, with partial order determined by a latent
causal model. We corroborate our theoretical re-
sults with a method for causal disentanglement.
We show that the method accurately recovers a la-
tent causal model on synthetic and semi-synthetic
data and we illustrate a use case on a dataset of
single-cell RNA sequencing measurements.

1. Introduction
The goal of representation learning is to find a descrip-
tion of data that is interpretable, useful for reasoning, and
generalizable. Such a representation disentangles the data
into conceptually distinct variables. Traditionally, concep-
tual distinctness of variables has meant statistical indepen-
dence. This is the setting of independent component analysis
(Comon, 1994). However, human reasoning often involves
variables that are not statistically independent. For exam-
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ple, the presence of a sink and the presence of a mirror in
an image. It is therefore natural to generalize conceptual
distinctness to variables that are causally autonomous; i.e.,
interventions can be performed on each variable separately.
This motivates causal disentanglement (Yang et al., 2021),
the recovery of causally autonomous variables from data.

In this paper, we study the identifiability of causal disen-
tanglement; i.e., its uniqueness. We adopt a generative
perspective, as in (Bengio et al., 2013; Moran et al., 2021).
We assume that the observed variables are generated in two
steps. First, latent variables Z are sampled from a distribu-
tion P(Z). Then, the observed variables X are the image of
the latent variables under a deterministic mixing function.
We assume that the latent variables are generated according
to a linear structural equation model and that the mixing
function is an injective linear map. Recent work has studied
identifiability of various settings in representation learning
(Khemakhem et al., 2020; Ahuja et al., 2021). A common
assumption for identifiability is that variables are observed
across multiple contexts, each affecting the latent distribu-
tion P(Z) but not the mixing function. In our setup, each
context is either an intervention on a latent variable, or is
observational, i.e., has no interventions. We use the same
terminology for interventions as Squires & Uhler (2022).
From most to least general, a soft intervention on Zi changes
the dependency of Zi on its direct causes, a perfect interven-
tion removes this dependency but allows for stochasticity of
Zi, and a do-intervention sets Zi to a deterministic value.

Our main result is that our linear causal disentanglement
setup is identifiable if, in addition to an observational con-
text, for each latent variable Zi, there is a context where Zi

is the intervened variable under a perfect intervention; see
Section 3.2. This is a sufficient condition for identifiability.
Furthermore, we show that the condition of at least one in-
tervention per latent node is necessary in the worst case: if
some latent node is not intervened in any context, then there
exist latent causal representations that are not identifiable;
see Section 3.3. Our focus in this paper is on identifiabil-
ity guarantees. Nonetheless, we convert our proofs into
a method for causal disentanglement in the finite-sample
setting. In Section 4, we apply the method to synthetic and
semi-synthetic data and show that it recovers the generative
model, and we compute a linear causal disentanglement on
a single-cell RNA sequencing dataset.
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1.1. Motivating Example

Consider two latent variables Z = (Z1, Z2). Assume that
X = (X1, X2) is observed in two contexts k ∈ {0, 1}, that
X = GZ in both contexts, and that in context k,

Z = AkZ +Ω
1/2
k ε for ε ∼ N (0, I).

Let

A0 = A1 =

[
0 −1
0 0

]
, Ω0 =

[
1 0
0 1

]
,

Ω1 =

[
1 0
0 1/4

]
, G =

[
−2 2
2 −1

]
.

Context k = 1 is an intervention on Z2 that changes its
variance. The covariance of X in contexts k = 0 and k = 1
are, respectively,

Σ0 =

[
20 −16

−16 13

]
and Σ1 =

[
8 −7

−7 25/4

]
,

since Σk = G(I−Ak)
−1Ωk(I−Ak)

−⊤G⊤. However, the
following parameters give the same covariance matrices:

Â0 = Â1 =

[
0 0
0 0

]
, Ω̂0 =

[
1 0
0 1

]
,

Ω̂1 =

[
1 0
0 1/4

]
, Ĝ =

[
−2 4
2 −3

]
.

The second set of parameters imply independence of Z1

and Z2, since (Â0)1,2 = 0, whereas the original param-
eters imply non-independence since (A0)1,2 ̸= 0. This
non-identifiability holds for generic A0, A1, Ω0, Ω1, and G,
where A1 comes from an intervention on Z2, see Section 3.3.
This non-identifiability extends to any number of latent vari-
ables d: we show that, in the worst case, non-identifiability
holds when fewer than d+ 1 contexts are observed.

1.2. Related Work

The growing field of causal representation learning blends
techniques from multiple lines of work. Chief among these
are identifiable representation learning, causal structure
learning, and latent DAG (directed acyclic graph) learning.

Identifiable representation learning. The identifiability of
the linear independent component analysis (ICA) model was
given in Comon (1994). Identifiability of a nonlinear ICA
model is studied in (Hyvarinen et al., 2019; Khemakhem
et al., 2020), in the presence of auxiliary variables. The ICA
model imposes the stringent condition that the latent vari-
ables are independent (in the linear setting) or conditionally
independent given the auxiliary variables (in the nonlinear
setting). Recent works on identifiable representation learn-
ing (Ahuja et al., 2021; Zimmermann et al., 2021) introduce
structure on the data generating process to circumvent the
independence condition. However, they do not consider
latent variables that are causally related.

Causal Structure Learning. Causal structure is identifi-
able up to an equivalence class that depends on the avail-
able interventional data (Verma & Pearl, 1990; Hauser &
Bühlmann, 2012; Yang et al., 2018; Squires et al., 2020;
Jaber et al., 2020). See Squires & Uhler (2022) for a recent
review. A key line of work (Eberhardt et al., 2005; Hyttinen
et al., 2013) characterizes the interventions necessary and
sufficient to ensure that the causal structure is fully iden-
tifiable; i.e., that the equivalence class is of size one. In
particular, Eberhardt et al. (2005) showed that d− 1 inter-
ventions are in the worst case necessary to fully identify a
causal DAG model on d nodes. The current paper extends
this line of work to DAG models over latent variables.

Learning latent DAG models. The task of learning a DAG
over latent variables dates back at least to Silva et al. (2006).
They introduced the notion of a pure child: an observed
variable Xi with only one latent parent, such Xi is also
called an anchor (Halpern et al., 2015; Saeed et al., 2020).
The method of Silva et al. (2006) requires that all observed
variables are pure children. Recent works relax this assump-
tion by studying the linear non-Gaussian setting, where all
latent and observed variables are linear functions of their
parents plus independent non-Gaussian noise. For example,
Cai et al. (2019) propose a method which learns a latent
DAG under the assumption that each latent variable has at
least two pure children. The pure child assumption can be
extended to allow subsets of latent variables with the same
observed children, as in Xie et al. (2020), which introduces
the Generalized Independent Noise condition. This condi-
tion was used by Xie et al. (2022) to permit latent variables
with no observed children; i.e., a hierarchical latent model.

Other works consider the discrete setting, requiring that the
latent and observed variables are discrete (Halpern et al.,
2015) or that the latent variables are discrete (Kivva et al.,
2021). The paper Kivva et al. (2021) relaxes the pure child
assumption, as follows. The children of node Zi are the
variables with a directed edge from Zi. The no twins as-
sumption says that the observed children of any two latent
nodes are distinct sets. A similar assumption called strong
non-redundancy appears in Adams et al. (2021), which con-
siders models whose latent variables can be downstream of
observed variables. See Appendix A. These works require
sparsity in the map between latent and observed variables:
they do not allow all observed variables to be children of all
latent variables, which is the setting of the present paper.

A number of recent works discard the sparsity requirement.
Ahuja et al. (2022a) and Brehmer et al. (2022) learn a latent
DAG from paired counterfactual data. In contrast, we study
unpaired data, which is more realistic in applications such
as biology (Stark et al., 2020). To the best of our knowledge,
only two works consider unpaired data without sparsity as-
sumptions. Liu et al. (2022) study a linear Gaussian model
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Setting Graphical Conditions Identification Result
Silva et al. (2006) LNG All children pure Identified up to Markov equivalence.

Halpern et al. (2015) Dis 1 pure child per latent Identified up to Markov equivalence.
Cai et al. (2019) LNG 2 pure children per latent Fully identified.
Xie et al. (2020) LNG 2 pure children per latent Fully identified.
Xie et al. (2022) LNG 2 pure children per latent* Fully identified.

Kivva et al. (2021) Dis No twins Identified up to Markov equivalence.
Liu et al. (2022) LG None Fully identified from 2|V |

perfect interventions if |E| ≤ |V |.
Ahuja et al. (2022b) Poly None Fully identified from |V | do-interventions.

This paper LNG or LG None Fully identified from |V | perfect interventions.

Table 1: Settings from prior works on learning latent DAG models. LNG is short for linear non-Gaussian, LG for linear
Gaussian, Dis for discrete, and Poly for polynomial mixing. In *, pure children are allowed to be latent. The number of
nodes and the number of edges in the latent graph are denoted |V | and |E|, respectively.

over d latent variables, a nonlinear mixing function, and
vector-valued contexts. Their identifiability result only ap-
plies to our setting if the latent graph has at most as many
edges as nodes, see Appendix K. In that case, their result
implies that 2d interventions suffice for identifiability. We
strengthen this result, showing that (i) d interventions are
sufficient and (ii) no restrictions on the latent graph are re-
quired. Moreover, we show that d interventions are, in the
worst case, necessary. Such necessary conditions do not
appear in prior work on identifying latent DAGs. Finally,
contemporaneous work (Ahuja et al., 2022b) shows that a
latent DAG is identifiable from the more restricted class of
do-interventions, but allow non-linear relationships. See
Table 1 for a summary of prior work.

2. Setup
We consider d latent variables Z = (Z1, . . . , Zd), generated
according to a linear structural equation model. We index
contexts by k ∈ {0} ∪ [K], where [K] := {1, . . . ,K}. The
linear structural equation models in each context are related:
context k = 0 is observational data, while contexts k ∈ [K]
are interventional data. We now state the assumptions for
our model; see also Fig. 1.

Assumption 1.

(a) Linear latent model: Let G be a DAG with nodes
ordered so that an edge j → i implies j > i. The
latent variables Z follow a linear structural equation
model: in context k, the latent variables Z satisfy

Z = AkZ +Ω
1/2
k ε, Cov(ε) = Id,

where Id ∈ Rd×d is the identity matrix, Ωk ∈ Rd×d

is diagonal with positive entries, and Ak ∈ Rd×d has
(Ak)ij ̸= 0 if and only if there is an edge j → i in G.
That is, in context k,

Z = B−1
k ε, where Bk = Ω

−1/2
k (Id −Ak). (1)

(b) Generic single-node interventions: For each k ∈ [K],
there exists ik ∈ {1, . . . , d} such that

Bk = B0 + eikc
⊤
k ,

further, (Bk)
⊤eik is not a multiple of (B0)

⊤eik unless
ik has no parents in G.

(c) Linear observations: Fix p ≥ d. There is a full rank
matrix G ∈ Rp×d such that X = GZ in every context
k. Let H := G† denote its Moore-Penrose pseudoin-
verse. We set the entry of largest absolute value in each
row of H to 1. If multiple entries in a row have same
absolute value we set the leftmost entry to be positive.

Our strongest results hold under one additional assumption.
Assumption 2. Perfect interventions: For each k ∈ [K],
there exists ik ∈ {1, . . . , d} such that

Bk = B0 + eikc
⊤
k ,

where ck = λkeik −B⊤
0 eik for some λk > 0.

Remark 1 (The parts of Assumption 1 that hold without loss
of generality). Taking Var(εi) = 1 for all i holds without
loss of generality, since scaling can be absorbed into the ma-
trix Ωk. A linear structural equation model is causally suffi-
cient if εi ⊥⊥ εj for all i ̸= j. Thus, for a causally sufficient
linear structural equation model, we have Cov(ε) = Id in
Assumption 1(a) without loss of generality. The ordering of
nodes in Assumption 1(a) is also without loss of generality:
a permutation of the latent nodes can be absorbed into G.
Our ordering makes the matrices Ak upper triangular.

The scaling of H in Assumption 1(c) is without loss of gen-
erality, as follows. If {Bk}Kk=0 and H satisfy Assumption 1
then X = (BkH)†ε. Consider the matrices {BkΛ}Kk=0 and
Λ−1H , for Λ diagonal with positive entries. Observe that
X ′ = (BkΛΛ

−1H)†ε, has the same distribution as X in
context k. The alternative matrices satisfy Assumption 1,
except for the scaling condition on H . Assumption 1(c)
therefore fixes the scaling indeterminacy of each node.
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Z1 Z2 Zd

X1 X2 X3 Xp…

…

k = 2 k = 1 k = 3

X = GZ

i1 = 2
i2 = 1
i3 = d

⋮

Figure 1: The proposed setup. The latent variables Z =
(Z1, . . . , Zd) follows a linear DAG model, with contexts
k = 1, . . . ,K being single node interventions on targets
i1, . . . , iK . The observed variables X = (X1, . . . , Xp) are
an injective linear function of the latent variables X = GZ,
where G ∈ Rp×d does not vary across contexts.

The genericity condition in Assumption 1(b) automatically
holds for perfect interventions. It fails to hold only for
soft interventions that changes the variance but not the
edge weights1. We show the importance of the genericity
assumption for the identifiability of causal disentanglement
in Appendix B.

We give an example of a setting in which Assumption 1
might apply. Suppose Z is the internal state of a cell (e.g.,
the concentrations of proteins, the locations of organelles,
etc.) and that each context is an exposure to a different small
molecule. Assumption 1(b) posits that each small molecule
has a highly selective effect, modifying only one cellular
mechanism. Assumption 2 posits that each small molecule
completely disrupts the modified mechanism. While one
does not expect all small molecules to be highly selective,
one could filter based on selectivity.

In Appendix G, we describe a hypothesis test to test impli-
cations of Assumption 1(b), and show empirically that this
test effectively determines model membership.

The covariance of X in context k is rank deficient when
d < p, since X = GZ. We therefore define the precision
matrix of X in context k to be the pseudoinverse of the
covariance matrix, Θk := E[XX⊤]†. Then

Θk = H⊤B⊤
k BkH, (2)

by Prop. 6 in Appendix C, since Covk(Z) = (B⊤
k Bk)

−1.

We consider an unknown latent DAG. Each candidate DAG
has unknown weights on its edges, unknown variances on its
nodes, unknown new weights under each intervention, and
an unknown mixing map to the observed variables. That is,
our goal is to decompose the precision matrices {Θk}Kk=0

in Equation (2) to recover H and {Bk}Kk=0.

We recall some graph theoretic notions. The parents of node
i are paG(i) = {j | j → i in G}, and we define paG(i) :=

1i.e., (Ωk)ik,ik ̸= (Ω0)ik,ik and (Ak)
⊤eik = (A0)

⊤eik

paG(i)∪{i}. Similarly, anG(i) denotes the ancestors of i in
G, the vertices j with a directed path from j to i. We define
anG(i) := anG(i) ∪ {i} and anG(I) := ∪i∈I anG(i). The
source nodes of G are the nodes i with paG(i) = ∅. We
drop the subscript G when the graph is clear from context.

The transitive closure of G, denoted G, is the DAG with
paG(i) = anG(i). Given a DAG G, define the partial order
≺G to be i ≺G j if and only if j ∈ anG(i). Thus, the
transitive closure is the graph with j → i whenever i ≺G j.

To decompose the precision matrices in Equation (2), we
introduce a matrix decomposition defined on a partial order.
Recall that the RQ decomposition writes H ∈ Rd×p as
H = RQ for an upper triangular R ∈ Rd×d and orthogonal
Q ∈ Rd×p. We generalize the RQ decomposition2.

Definition 1 (The partial order RQ decomposition). Given a
partial order ≺, the partial order RQ decomposition writes
H ∈ Rd×p as H = RQ, where R ∈ Rd×d satisfies Rii ≥ 0
and Rij = 0 unless i ⪯ j, and where qi, the i-th row of
Q ∈ Rd×p, is norm one and orthogonal to ⟨qj : i ≺ j⟩.

We recover the usual reduced RQ decomposition (Trefethen
& Bau III, 1997) when ≺ is the total order 1 < · · · < d. We
construct the partial order RQ decomposition in Appendix D.
Finally, given a positive definite matrix M ∈ Rd×d, the
Cholesky factor U ∈ Rd×d, denoted CHOLESKY(M), is the
unique upper triangular matrix with positive diagonal such
that M = U⊤U .

3. Identifiability of Causal Disentanglement
We establish the sufficiency and worst case necessity of one
intervention per latent node for identifiability of our causal
disentanglement problem. The following result describes
recovery of G. Later, we discuss identifiability of the pa-
rameters in our setup. Since the labeling of latent nodes is
unimportant, G is recovered if it is found up to relabeling.

Theorem 1. Assume the setup in Assumption 1 with d latent
variables. Then d interventions are sufficient and, in the
worst case, necessary to recover G from {Θk}k∈K . If As-
sumption 2 also holds, then d interventions are sufficient and,
in the worst case, necessary to recover G from {Θk}k∈K .

3.1. Preliminaries

We note the following basic fact, where v⊗2 := vv⊤:

Fact 1. Let B ∈ Rd×d. Then B⊤B =
∑d

i=1(B
⊤ei)

⊗2.

We give a proof in Appendix F. This fact gives the key
identity that drives our identifiability results.

2The RQ decomposition is used here (rather than the more
familiar QR decomposition) because it gives an expression for the
rows of H , which each correspond to one latent variable.
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Proposition 1. Consider the setup in Assumption 1. Then,
for any k ∈ [K],

Θk −Θ0 = (H⊤B⊤
k eik)

⊗2 − (H⊤B⊤
0 eik)

⊗2.

In particular the rank of the difference Θk −Θ0 is 1 if ik is
a source node in G, and 2 otherwise.

Proof. By Assumption 1, B⊤
k ei = B⊤

0 ei for all i ̸= ik.
Using Fact 1, we have

B⊤
k Bk −B⊤

0 B0 = (B⊤
k eik)

⊗2 − (B⊤
0 eik)

⊗2.

Recall from Equation (2) that Θk = H⊤B⊤
k BkH . The

result follows from left-multiplying both sides of the dis-
played equation by H⊤ and right-multiplying by H . This
shows that rank(Θk − Θ0) ≤ 2. For a source node, both
vectors B⊤

k eik and B⊤
0 eik have just one entry non-zero and

rank(Θk − Θ0) = 1. Otherwise, the vectors have more
than one entry non-zero and, by the genericity condition in
Assumption 1(b), the difference Θk −Θ0 has rank two.

We can reduce a more general causal disentanglement prob-
lem to our setting, as we explain in Appendix F. First, we
can count the latent dimension, since rank(Θk) = d for
any k. Second, we can identify which environments cor-
respond to interventions on the same intervention target,
see Prop. 9. Finally, we can identify which environment is
observational using rank constraints, see Prop. 10. Thus, we
assume without loss of generality that d is known, that the
observational environment is known, and that each node is
only intervened on in one context.

3.2. Sufficiency

We define S(G) to be the set of permutations on d letters
such that σ(j) > σ(i) for all edges j → i. For example, if
G is a complete graph then S(G) contains only the identity.
If G has no edges then S(G) is the group of permutations on
d letters. The permutation matrix corresponding to permu-
tation σ is Pσ ∈ Rd×d with (Pσ)ij = 1{i=σ(j)}. Our main
sufficiency result is the following.
Theorem 2. Assume the set-up in Assumptions 1 and 2 with
one intervention on each latent node. Then the graph G, the
intervention targets ik, and the parameters are identifiable
up to S(G): given a solution (B0, . . . , BK , H), the set of so-
lutions is {(PσB0P

⊤
σ , . . . , PσBKP⊤

σ , PσH) : σ ∈ S(G)}.

Theorem 2 says that solutions to the causal disentanglement
problem are unique up to permutations of the latent nodes
that preserve the property that j → i implies j > i. First,
we verify that each permutation in S(G) gives a solution.
Proposition 2. Assume the set-up in Assumption 1. Given
a solution (B0, . . . , BK , H) to Equation (2) for k ∈ {0} ∪
[K], the matrices (PσB0P

⊤
σ , . . . , PσBKP⊤

σ , PσH) are a
valid solution whenever σ ∈ S(G).

Algorithm 1 ID-ANCESTORS

1: Input: Θk, Θ0, {q̂i}i∈I
2: Output: Vector q̂k, ancestor set A
3: Let A = I
4: for i ∈ I do
5: Let W¬i = ⟨q̂i : j ∈ I \ {i}⟩
6: Let V¬i = projW⊥

i
rowspan(Θk −Θ0)

7: If dim(V¬i) = 1, let A = A \ {i}
8: end for
9: Let W = ⟨q̂a : a ∈ A⟩

10: Let V = projW⊥ rowspan(Θk −Θ0)
11: Take q̂k with first nonzero entry positive and ∥q̂k∥2 =

1, such that ⟨q̂k⟩ = V
12: return q̂k, A

Algorithm 2 ID-PARTIALORDER

1: Input: Precision matrices (Θ0,Θ1, . . . ,ΘK), rank d

2: Output: Factor Q̂, partial order ≺
3: Let I0 = {}, Q̂ = 0d×d

4: for t = 1, . . .K do
5: Let Wt = ⟨q̂i : i ∈ It−1⟩
6: Let Vk = projW⊥

t
rowspan(Θk −Θ0) for k ̸∈ It−1

7: Pick k such that dim(Vk) = 1
8: Let q̂k,A = ID-ANCESTORS(Θk,Θ0, {q̂i}i∈It−1

)
9: Add a′ ≻ k for any a′ ⪰ a, a ∈ A

10: Let It = It−1 ∪ {k}, Q̂t = [q̂k; Q̂t−1]
11: end for
12: return Q̂, ≺

Proof. Let {Bk}Kk=0 and H satisfy Assumption 1 and Equa-
tion (2). Define B

(σ)
k = PσBkP

⊤
σ and H(σ) = PσH for

σ ∈ S(G). Then Θk = H(σ)⊤B
(σ)
k

⊤
B

(σ)
k H(σ). The matri-

ces B(σ)
k are upper triangular, as follows. For all i, j ∈ [p],

we have (B
(σ)
k )σ(i),σ(j) = (Bk)ij . Hence B

(σ)
k is upper tri-

angular when (Bk)ij = 0 for all i, j ∈ [p] with σ(i) > σ(j).
This holds since σ ∈ S(G). Moreover, these matrices also
satisfy Assumption 1(b) with the intervention target σ(ik)
in context k. Finally, H(σ) satisfies Assumption 1(c), since
we just permute the rows of H .

We give a constructive proof of Theorem 2 via an algorithm
to recover H and {Bk}Kk=0 from {Θk}Kk=0

3. The computa-
tional complexity of the algorithm is given in Appendix H.
The bulk of the algorithm is devoted to recovering H . First,
we recover the partial order ≺G (i.e., the DAG G), together
with the matrix Q from a partial order RQ decomposition

3We only use the second moment of X . We do not use the
first moment since we assume E[ε] = 0, and we do not use higher
moments since in the worst case (Gaussian noise), they contain no
additional information.
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of H , up to signs and permutations of rows, in Algorithm 2.
The subroutine Algorithm 1 recovers the ancestors of a node
and its corresponding row of Q. Then we recover R in
Algorithm 3. Having recovered H , the matrices {Bk}Kk=0

are found via the Cholesky decomposition.

We show that Algorithm 2 returns Q from the partial order
RQ decomposition of H , up to a permutation σ ∈ S(G) and
a matrix in Sigd, the d× d diagonal matrices with diagonal
entries ±1.

Proposition 3. Assume the setup in Assumption 1, and that
every latent node is intervened on; i.e, {ik}Kk=1 = [d]. Let
(Q̂,≺) be the output of Algorithm 2. Then ≺ is the partial
order ≺G . Moreover, let H = RQ be the partial order
RQ decomposition of H for the partial order ≺G . Then
Q̂ = SPσQ for some σ ∈ S(G) and S ∈ Sigd.

The following lemma relates the partial order of G to the
linear spaces rowspan(Θk −Θ0).

Lemma 1. Assume the setup in Assumption 1. Let H = RQ
be a partial order RQ decomposition of H . Let ik be the
intervention target of context k and let I ⊆ [d]. Then

(a) rowspan(Θk − Θ0) ⊆ ⟨hi : i ∈ I⟩ if and only if
pa(ik) ⊆ I,

(b) rowspan(Θk −Θ0) ⊆ ⟨qi : i ∈ an(ik)⟩, and

(c) rowspan(Θk −Θ0) ̸⊆ ⟨qi : i ∈ I⟩ if pa(ik) ̸⊆ I.

Proof. Let hi denote the ith row of H , and let αj,ik :=∑
i∈pa(ik)(Bj)ik,ihi. By Prop. 1, we have

rowspan(Θk −Θ0) = ⟨αk,ik ,α0,ik⟩ . (3)

Equation (3) shows that rowspan(Θk − Θ0) ⊂ ⟨hi : i ∈
pa(ik)⟩. This linear space is contained in ⟨hi : i ∈ I⟩
whenever pa(ik) ⊆ I. Conversely, assume there exists j ∈
pa(ik) with j /∈ I. Then, containment of rowspan(Θk −
Θ0) in ⟨hi : i ∈ I⟩ cannot hold: containment implies
(B0)ik,jhj ∈ ⟨hi : i ∈ [p]\{j}⟩, a contradiction since H is
full row rank and (B0)ik,j ̸= 0. Hence (a) holds.

By definition of the partial order RQ decomposition, we
have hi ∈ ⟨qj | j ∈ an(i)⟩. Thus, by transitivity of the
ancestorship relation, (b) holds. Conversely, assume there
exists j ∈ pa(ik) with j /∈ I. Then rowspan(Θk −Θ0) ⊆
⟨qi : i ∈ I⟩ implies that

hj ∈ ⟨qi : i ∈ I⟩+ ⟨hi : i ∈ pa(ik) \ {j}⟩,

since (B0)ik,j ̸= 0. We partition I into the descendants
and non-descendants of j: let Id := {i ∈ I : j ∈ an(i)}
and let Ind := {i ∈ I : j /∈ an(i)}. By definition of
the partial order RQ decomposition, we have qi ⊥ hj

whenever j ∈ an(i). Thus hj ∈ ⟨qi : i ∈ Ind⟩+ ⟨hi : i ∈

Algorithm 3 ITERATIVEDIFFERENCEPROJECTION

1: Input: Precision matrices (Θ0,Θ1, . . . ,ΘK)

2: Output: Ĥ , (B̂0, B̂1, . . . , B̂K)
3: Let d = rank(Θ0)

4: Let Q̂,≺= ID-PARTIALORDER((Θ0,Θ1, . . . ,ΘK), d)

5: Let Ĉk = CHOLESKY((Q̂†)⊤ΘkQ̂
†) for k = 0, . . . ,K

6: Let R̂ = Id
7: for k = 1, . . . ,K do
8: Let D̂k = Ĉk − Ĉ0

9: Let îk be index of the only nonzero row of D̂k

10: Let R̂îk
= (D̂k )̂ik + (Ĉ0)̂ik

11: end for
12: Let Ĥ ′ = R̂Q̂
13: Let Ĥ = Λ̂Ĥ ′, for Λ̂ diagonal such that Ĥ satisfies the

conditions on H in Assumption 1(c)
14: Let B̂0 = CHOLESKY((Ĥ†)⊤Θ0Ĥ

†)

15: Let B̂k = B̂0 + êik

(
|Λ̂îk ,̂ik

|êik − B̂⊤
0 êik

)⊤
for k =

1, . . . ,K
16: return Ĥ , (B̂0, B̂1, . . . , B̂K)

pa(ik) \ {j}⟩. Inverting the partial order RQ decomposition
gives qi ∈ ⟨hi′ : i

′ ∈ an(i)⟩. Hence

hj ∈ ⟨hi : i ∈ an(Ind) ∪ (pa(ik) \ {j})⟩,

a contradiction, since j /∈ an(Ind) and H is full rank.

Proof of Prop. 3. Assume that Q̂t−1 is the last t − 1 rows
of SPσQ, for some σ ∈ S(G) and S ∈ Sigd. Then
Wt−1 = ⟨q̂i : i ∈ It−1⟩. At step t, we pick k such
that Vk = projW⊥

t
rowspan(Θk − Θ0) has dimension one.

Lemma 1 implies that such k are those with pa(ik) ⊆ It−1.
Algorithm 1 returns a set A with pa(ik) ⊆ A ⊆ anG(ik).
Thus Line 2 adds the relation k ≺ a′ if and only if a′ ∈
anG(ik). Hence ≺ is the partial order ≺G . Line 2 picks
q̂k orthogonal to {qi : i ≻G ik}, such that rowspan(Q̂t)
contains rowspan(Θk − Θ0). By Lemma 1 and Defini-
tion 1, this is ±qik . Thus, Q̂t is equal to the last t rows
of S′Pσ′Q, for some σ′ ∈ S(G) and S′ ∈ Sigd. Repeating
for t = 1, . . . ,K gives the result.

We prove Theorem 2 by proving the following result, which
is its constructive analogue.

Theorem 3. Assume the setup in Assumptions 1 and 2, and
that every latent node is intervened; i.e., {ik}Kk=1 = [d]. Let
Ĥ and {B̂k}Kk=0 be the output of Algorithm 3. Then Ĥ =

PσH and B̂k = PσBkP
⊤
σ for all k, for some σ ∈ S(G).

Proof. Let H = RQ. Then Θk = Q⊤R⊤B⊤
kBkRQ, by

Equation (2), and Q̂ = SPσQ for some σ ∈ S(G) and
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S ∈ Sigd, by Prop. 3. Hence (Q̂†)⊤ΘkQ̂
† equals

S
(
PσR

⊤P⊤
σ

) (
PσB

⊤
k P⊤

σ

) (
PσBkP

⊤
σ

) (
PσRP⊤

σ

)
S.

Let C(σ)
k = S(PσBkP

⊤
σ )(PσRP⊤

σ )S. The matrix C
(σ)
k is

upper triangular, since it is a product of four upper trian-
gular matrices, by the definition of S(G) and of the partial
order RQ decomposition, where we use that i ≺G j implies
i < j. Moreover, C(σ)

k has positive diagonal, since the
matrices R and Bk have positive diagonal, by Definition 1
and Assumption 1(a) respectively. Hence Ĉk := C

(σ)
k is the

Cholesky factor of (Q̂†)⊤ΘkQ̂
†. The differences D̂k :=

Ĉk−Ĉ0 equal SPσ(Bk−B0)RP⊤
σ S = SPσeikc

⊤
k RP⊤

σ S,
by Assumption 1(b). The intervention target σ(ik) is the
only nonzero row of D̂k, i.e., îk = σ(ik). Observe that
(D̂k )̂ik + (Ĉ0)̂ik = Sσ(ik),σ(ik)λk(RP⊤

σ )σ(ik). Thus, we
have recovered R̂ = Λ̂PσRP⊤

σ for Λ̂ diagonal such that
Λ̂îk ,̂ik

= ±λk. This gives Ĥ ′ = Λ̂PσRP⊤
σ PσQ = Λ̂PσH .

The scaling in Line 3 recovers Ĥ = PσH and Λ̂. We have
(Ĥ†)⊤Θ0Ĥ

† = PσB
⊤
0 P⊤

σ PσB0P
⊤
σ , where PσB0P

⊤
σ is

upper triangular, and thus we recover B̂0 = PσB0P
⊤
σ from

the Cholesky decomposition. Finally, since |Λ̂îk ,̂ik
| = λk,

Line 3 gives us B̂k = PσBkP
T
σ .

Theorem 3 requires Assumption 2, see Appendix J. In Ap-
pendix K, we compare our identifiability condition to that
of Liu et al. (2022). We show that Liu et al. (2022) requires
that the latent graph has fewer than d edges. In contrast, our
condition imposes no constraints on the latent graph.

3.3. Worst-case Necessity

We show that one intervention per latent node is necessary
for identifiability of our setup, in the worst case. It is clear
that observational data does not suffice for identifiability:
from just observational data, we always have a solution with
independent latent variables, as follows. Let Ĥ = ΛB0H
and B̂0 = Λ−1, for Λ a diagonal matrix with positive entries
such that Assumption 1(c) holds. Then B̂0Ĥ = B0H , i.e.
B̂0, Ĥ solve the causal disentanglement problem. The new
solution has independent latent nodes, since B̂0 is diagonal.

The next result, which follows from prior work in causal
structure learning, says that d− 1 interventions are required
in the worst case, for a fully observed model. This is the
special case of our setup where H is a permutation matrix.
Proposition 4. Assume the setup in Assumptions 1 and 2,
with H a permutation matrix. Let K < d − 1 with all
intervention targets distinct. Then, in the worst case over
intervention targets {ik}Kk=1, B0 and H are not identifiable.

Proof. In the linear Gaussian setting with unknown-target
interventions, the structure of a DAG is only identifiable
up to its interventional Markov equivalence class (MEC),

see e.g. Proposition 3.3(ii) of Castelletti & Peluso (2022).
For single-node interventions, d− 1 interventions are in the
worst case necessary to ensure that the interventional MEC
has size one, by Theorem 3.7 of Eberhardt et al. (2005).

We show that d interventions are necessary, in the worst case,
when H is a general matrix. The proof is in Appendix I.
Proposition 5. Assume the setup in Assumptions 1 and 2,
with K < d. Then there exist H and {Bk}Kk=0 and a set of
K distinct intervention targets such that (i) H and Bk are
not identifiable up to S(G) and (ii) ≺G is not identifiable.

Example 1. Proposition 5 generalizes our motivating exam-
ple from Section 1. Fix H ∈ R2×2 with entries Hij , and fix
upper triangular B0, B1 ∈ R2×2 with entries (B0)ij and
(B1)ij , respectively. Assume i1 = 2; i.e., (B0)11 = (B1)11
and (B0)12 = (B1)12. Let

B̂0=

[
1 0
0 (B0)22

]
, B̂1=

[
1 0
0 (B1)22

]
,

Ĥ=

[
(B0)11H11 + (B0)12H21 (B0)11H12 + (B0)12H22

H21 H22

]
.

Then for k ∈ {0, 1}, we have B̂kĤ = BkH , both equal to[
(B0)11H11 + (B0)12H21 (B0)11H12 + (B0)12H22

(Bk)22H21 (Bk)22H22

]
Remark 2. Prop. 5 pertains to the worst case over inter-
vention targets. It is natural to ask if there exists a better
choice of K intervention targets, for K < d, such that H
and {Bk}Kk=0 are identifiable. For example, when d = 2,
consider G = {2 → 1}, with an intervention on Z1; i.e.,
i1 = 1. Then rowspan(Θ1−Θ0) ⊆ ⟨hi : i ∈ I⟩ if and only
if I = {1, 2}, by Lemma 1(a). Thus, Θ1−Θ0 is rank 2, and
we can detect that i1 = 1 and G = {2 → 1}; otherwise,
we would have rank(Θ1 − Θ0) = 1. While i1 and G are
identifiable, preliminary computational evidence suggests
that the entries of B0, B1, and H are not identifiable.

Proof of Theorem 1. The necessity of d interventions is
Prop. 5. Under Assumption 1 and 2, the sufficiency of d
interventions follows from Theorem 2. Under Assumption 1,
the sufficiency is the recovery of ≺G in Prop. 3.

4. Experimental Results
We adapt our proof of Theorem 3 into a method for causal
disentanglement in the finite-sample setting. We modify
our methods to (1) use matrices instead of vector spaces,
(2) use scores based on singular values to test rank, and (3)
choose a nonzero row based on norms. The adapted algo-
rithms are in Appendix L. In this section, we investigate the
performance of the method in a simulation study. There is a
single hyperparameter γ ∈ [0, 1], the percentage of spectral
energy associated to the largest singular value, above which
we consider a matrix to have rank one. We use γ = 0.99.
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(a) Error in estimating H (b) Error in estimating B0 (c) Intervention targets

Figure 2: The adapted version of Algorithm 3 is consistent for recovering H , B0, and {ik}Kk=1 from noisy data. At
each sample size, we generate 500 random models. Note the logarithmic scale on the x-axis. In (a), we plot the median of
∥Ĥ −H∥2, the error in Frobenius norm. In (b), we plot the median of ∥B̂0 − B̂∥2. In (c), we plot the fraction of models
where all intervention targets were correctly estimated.

4.1. Synthetic Data Generation

We generate 500 random models following Assumption 1
for d = 5 latent and p = 10 observed variables, as follows.
We sample the graph G from an Erdős-Rényi random graph
model with density 0.75. We sample the nonzero entries of
A0 independently from Unif(±[0.25, 1]), and the nonzero
entries of Ω0 independently from Unif([2, 4]). We sample
uniformly among permutations to generate the intervention
targets ik. In context k, we have Ak = A0 − eikA

⊤
0 eik ;

i.e., all entries in row ik are 0. We change (Ω0)ik,ik into a
new value (Ωk)ik,ik , sampled from Unif([6, 8]) to ensure a
non-negligible change. Finally, the entries of H are sam-
pled independently from Unif([−2, 2]). We consider sample
sizes n from 2500 to 250000 and use as input the sample
precision matrices. All code for data generation and for our
adapted versions of Algorithms 1, 2, and 3 (that is, Algo-
rithms 6, 5 and 7) can be found at the link in Appendix M.

4.2. Synthetic Data Results

We show the results of applying our method in the finite-
sample setting, presented in Fig. 2. We measure the error in
estimating the parameters H and B0 and the intervention
targets {ik}Kk=1. Since the problem is only identifiable up
to the partial order ≺G , we align our estimated Ĥ , B̂0, and
{̂ik}Kk=1 with H , B0, and {ik}Kk=1 by picking σ ∈ S(G)
to maximize

∑K
k=1 1{ik = σ(̂ik)}. For small d, this op-

timization can be solved by enumerating over S(G). For
large d, we use the integer linear program in Appendix M.1,
implemented in gurobipy. As expected, the estimation
errors for H and B0 decrease as the sample size increases,
while the fraction of models with all intervention targets
correctly estimated increases.

4.3. Biological Data Results

We evaluate our method on a dataset from Ursu et al. (2022).
This single-cell RNA sequencing (scRNA-seq) dataset con-
sists of 90,000 cells from a lung cancer cell line, with 83
different nonsynonymous mutations of the KRAS oncogene
overexpressed.

Semi-synthetic analysis. The authors divide the mutations
into five categories based on the genes that they affect, and
compute a score for the impact of each mutation. Taking
the two highest impact mutations from each category gives
K = 10 contexts. The wild type KRAS gene is taken as
the observational context. We select p = 100 observational
features to be the most variable genes from the proliferation
regulation category in the Gene Ontology (Ashburner et al.,
2000), which are significant modulators of cancer activity
such as oncogenes and tumor suppressor genes. We com-
pute the sample precision matrices Θ̂0, Θ̂1, . . . , Θ̂10 and use
them as input to Algorithm 7 with γ = 0.99.

Given estimates {B̂k}Kk=1, Ĥ from our algorithm, we let
B̃k = Mk ⊙ B̂k, where (Mk)ij = 1{|(B̂k)ij |>0.04}; i.e., we
truncate the entries away from zero. We treat the resulting
parameters as a new generative model. This tests our method
in a more realistic setting, with parameters based on real
data, while retaining the ability to measure performance.
Since the entries of the matrices B̃k are smaller than for
our synthetic data, we consider larger sample sizes n ∈
{1e6, 5e6, 1e7, 5e7, 1e8}. As seen in Fig. 6, Appendix M.2,
we successfully recover the generative model.

Hypothetical Workflow. We illustrate a hypothetical work-
flow of our method on biological data. If we run our al-
gorithm for all mutations (K = 83) on the p = 83 most
variable genes, we obtain the graph in Fig. 3. We see that
G12R, G12V, G13R, G13V, and G12I all perturb highly-
connected latent nodes with several descendants. The G12
and G13 positions in the KRAS protein are key functional
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Figure 3: The latent graph and intervention targets learned from scRNA-seq data. Edges with weight of magnitude
above 0.2 are shown. Boxes represent context indicators, corresponding to KRAS mutations, with edges to their respective
targets. Red nodes are significantly associated with survival outcomes in the TCGA dataset.

residues whose mutations are known to be causal drivers of
cancer (Huang et al., 2021). This indicates that the learned
graph can highlight influential biological pathways which
may be useful for prioritizing therapeutic development. The
matrix Ĥ from our algorithm gives a mapping from genes
to latent variables that can be transferred across datasets
and related to other observations. For example, we compute
estimates of the latent variables for the 589 lung cancer
patients in the Cancer Genome Atlas (Liu et al., 2018) and
relate these variables to the patients’ survival outcomes. We
find that 5 latent variables, those targeted by the M170L,
I163S, A55G, G12R, and Q25H mutations, are significantly
associated with survival outcomes (at significance 0.1, after
multiple testing correction). See Appendix M.2 for details.
Note that the output of our method should be treated as
exploratory; further theoretical and methodological develop-
ment is required to better match complex real-world data.

5. Discussion
In this paper, we showed that a latent causal model is identi-
fiable when data is available from an intervention on each
latent variable. Conversely, we showed that, in the worst
case, such data is necessary for identifiability of the latent
representation. Our proof is constructive, consisting of an
algorithm for recovering the latent representation, which
can be adapted to the noisy setting. Our algorithm was de-
veloped for maximal clarity of our identifiability result, and
leaves open several directions for future work.

Theory of latent interventional Markov equivalence. We
established sufficient and (worst-case) necessary conditions
for the complete identifiability of the parameters H and
{Bk}Kk=0. However, in many settings, it is expected that
these parameters (and corresponding combinatorial struc-
tures) are only partially identifiable. Indeed, Proposition 5
suggests that the problem parameters may be partially re-
coverable. In future work, it would be interesting to develop
a theory of identifiability for K < p interventions.

Non-linear setting. Our results require that both the latent
linear structural equation model and the mixing function
are linear. We expect that the insights developed here may
apply when one or both of these elements are non-linear.
Notably, the contemporaneous work of Ahuja et al. (2022b)
shows that, under certain conditions, the case of polynomial
mixing can be reduced to the case of linear, which can be
immediately applied to extend our result.

Statistical analysis of causal disentanglement. A next
step beyond identifiability is to investigate the statistical
properties of the setup. This includes lower bounds on
the accuracy of recovering the parameters H and {Bk}Kk=0,
along with corresponding combinatorial structures such as
G and the matching between k and ik, and computationally
efficient algorithms that match these lower bounds. Our
identifiability result suggests that the differences of preci-
sion matrices may play a role. These differences appear in
Varici et al. (2021), which uses techniques for directly esti-
mating differences between precision matrices. Moreover, it
would be interesting to develop a score-based approach, e.g.,
(penalized) maximum likelihood estimation. Our problem
formulation suggests a natural parameterization for such an
approach, which could be addressed using combinatorial
optimization or gradient-based search.
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S., Singer, F., Rätsch, G., and Lehmann, K.-V. Scim:
universal single-cell matching with unpaired feature sets.
Bioinformatics, 36(Supplement 2):i919–i927, 2020.

Trefethen, L. N. and Bau III, D. Numerical linear algebra,
volume 50. Siam, 1997.

Ursu, O., Neal, J. T., Shea, E., Thakore, P. I., Jerby-
Arnon, L., Nguyen, L., Dionne, D., Diaz, C., Bauman,
J., Mosaad, M. M., et al. Massively parallel phenotyping
of coding variants in cancer with perturb-seq. Nature
Biotechnology, pp. 1–10, 2022.

Varici, B., Shanmugam, K., Sattigeri, P., and Tajer, A. Scal-
able intervention target estimation in linear models. Ad-
vances in Neural Information Processing Systems, 34:
1494–1505, 2021.

Verma, T. and Pearl, J. Equivalence and synthesis of causal
models. In Proceedings of the Sixth Annual Conference
on Uncertainty in Artificial Intelligence, pp. 255–270,
1990.

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., and Zhang,
K. Generalized independent noise condition for estimat-
ing latent variable causal graphs. Advances in Neural
Information Processing Systems, 33:14891–14902, 2020.

Xie, F., Huang, B., Chen, Z., He, Y., Geng, Z., and Zhang,
K. Identification of linear non-Gaussian latent hierarchi-
cal structure. In International Conference on Machine
Learning, pp. 24370–24387. PMLR, 2022.

Yang, K., Katcoff, A., and Uhler, C. Characterizing and
learning equivalence classes of causal DAGs under in-
terventions. In International Conference on Machine
Learning, pp. 5541–5550. PMLR, 2018.

Yang, M., Liu, F., Chen, Z., Shen, X., Hao, J., and Wang,
J. CausalVAE: Disentangled representation learning via
neural structural causal models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9593–9602, 2021.

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge,
M., and Brendel, W. Contrastive learning inverts the
data generating process. In International Conference on
Machine Learning, pp. 12979–12990. PMLR, 2021.

11



Linear Causal Disentanglement via Interventions

Contents of Appendix

A Additional related work 13

B Non-generic soft interventions 13

C Pseudoinverse of a covariance matrix 13

D The partial order RQ decomposition 13

E Further preliminaries for identifiability and reduction 14

F Reduction 14

F.1 Reducing to one intervention per node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

F.2 Reducing to a known observational context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

G Hypothesis testing a necessary condition for model membership 15

H Computational complexity 16

I Proofs 17

I.1 Proof of non-identifiability for one missing intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

J Non-identifiability for imperfect interventions 17

J.1 Parameter non-identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

J.2 Graph non-identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

K Comparison to Liu et al. (2022) 18

L Finite-sample algorithms 18

M Code and Data 19

M.1 Optimizing over permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

M.2 Additional information on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

12



Linear Causal Disentanglement via Interventions

A. Additional related work
Fig. 4 shows the two graphical conditions assumed in some prior works.
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(a) Pure children
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(b) No twins

Figure 4: Graphical conditions assumed in prior works. In (a), the orange edges link pure children (X1 and X3) to their
parents (Z1 and Z3, respectively). In (b), the no twins assumption is satisfied since the observed children of Z1, Z2, and Z3

are, respectively, {X1, X2}, {X1, X2, X3}, and {X3}, and these three sets are distinct.

B. Non-generic soft interventions
We discuss the genericity condition in Assumption 1(b). We show that for soft interventions in which this genericity
condition fails to hold, identifiability of the causal disentanglement problem as in Theorem 1 may fail. The following
matrices satisfy all of Assumption 1, except for the genericity condition in Assumption 1(b), since B⊤

1 e1 = 2B⊤
0 e1:

B0 =

[
1 1
0 1

]
, B1 =

[
2 2
0 1

]
, B2 =

[
1 1
0 2

]
, G =

[
1 0
0 1

]
.

Consider the alternative matrices

B̂0 =

[
1 0
0 1

]
, B̂1 =

[
2 0
0 1

]
, B̂2 =

[
1 0
0 2

]
, Ĝ =

[
1 −1
0 1

]
.

These do not differ from the original tuple of matrices via a permutation. However, one can check that they are a valid
solution, since

Θ0 = Θ̂0 =

[
1 1
1 2

]
, Θ1 = Θ̂1 =

[
4 4
4 5

]
, Θ1 = Θ̂1 =

[
1 1
1 5

]
.

C. Pseudoinverse of a covariance matrix
Proposition 6. Let X = GZ for G ∈ Rp×d with full column rank. Assume Cov(Z) is invertible and let K := Cov(Z)−1.
Then Cov(X)† = H⊤KH , where H := G†.

Proof. The covariance matrices Cov(X) and Cov(Z) are related via Cov(X) = G · Cov(Z) ·G⊤. The property (UV )† =
V †U† holds whenever U has full column rank and V has full row rank (Greville, 1966). The matrix G has full column rank,
Cov(Z) has full rank, and G⊤ has full row rank. Hence Cov(X)† = (G⊤)†Cov(Z)†G† = H⊤KH .

D. The partial order RQ decomposition
Recall the partial order RQ decomposition from Definition 1. We present Algorithm 4 to find the partial order RQ
decomposition of a matrix. In Line 4, the normalize operator is normalize(v) := v

∥v∥2
. We let 0d×p denote the d× p matrix

of zeros and Qj⪰i denote the submatrix of Q on rows j with j ⪰ i. We say that a partial order ≺ is consistent with the total
order 1, 2, . . . , d if i ≺ j implies i < j. Any partial order can be put in this form by relabelling.

Proposition 7. Let H ∈ Rd×p be full rank and fix a partial order ≺ over [d]. Then there exists a unique partial order RQ
decomposition of H . If ≺ is consistent with the total order 1, 2, . . . , d, the decomposition is returned by Algorithm 4.

13



Linear Causal Disentanglement via Interventions

Proof. The matrix Qj⪰i has fewer rows than columns and hi ∈ ⟨qj : j ⪰ i⟩, by its construction in Algorithm 4. Hence
the vector r of non-zero entries in the i-th row of R is the unique solution to Q⊤

j⪰ir = hi. By construction, we see that
H = RQ and, moreover, Rij = 0 if j ̸⪰ i, and qi is orthogonal to qj for i ≺ j. Furthermore, the entry Rii is positive, since
qi is the (normalized) projection of hi onto Wi.

Algorithm 4 Partial Order RQ Decomposition

1: Input: Matrix H ∈ Rd×p, partial order ≺ over [d] consistent with the total order 1, 2, . . . , d
2: Output: A partial order RQ decomposition R, Q
3: Let R = 0d×d, Q = 0d×p

4: for i = 1, . . . , d do
5: Let hi be the i-th row of H
6: Let Wi = ⟨qj : j ≻ i⟩
7: Let qi = normalize(projW⊥

i
hi) be the i-th row of Q

8: Let r = (Q⊤
j⪰i)

†hi

9: For i ⪯ j, let Rij = rj
10: end for
11: return R, Q

E. Further preliminaries for identifiability and reduction
We prove Fact 1 and discuss the reduction described in Section 3.1.

Proof of Fact 1. We have B⊤B = B⊤
(∑d

i=1 eie
⊤
i

)
B =

∑d
i=1 B

⊤(eie⊤i )B =
∑d

i=1(B
⊤ei)

⊗2.

Proposition 8. Consider the setup in Assumption 1. For k, ℓ ∈ [K], we have

B⊤
k Bk −B⊤

ℓ Bℓ = (B⊤
k eik)

⊗2 − (B⊤
0 eik)

⊗2 − (B⊤
ℓ eiℓ)

⊗2 + (B⊤
0 eiℓ)

⊗2, (4)

and thus
Θk −Θℓ = (HB⊤

k eik)
⊗2 − (HB⊤

0 eik)
⊗2 − (HB⊤

ℓ eiℓ)
⊗2 + (HB⊤

0 eiℓ)
⊗2.

Proof. The proof follows the same steps as Prop. 1, together with the fact that

B⊤
k Bk −B⊤

ℓ Bℓ = (B⊤
k Bk −B⊤

0 B0)− (B⊤
ℓ Bℓ −B⊤

0 B0).

F. Reduction
In this section, we show that a more general causal disentanglement problem can be simplified to one that satisfies our
assumptions. We consider an unknown observational context, and multiple contexts with the same target. We focus here on
the case of perfect interventions.

F.1. Reducing to one intervention per node

We identify which contexts correspond to interventions on the same node. Thus, we can reduce to the case of one intervention
per node by removing any redundant contexts. We do not use knowledge of which context is the observational context here.

Proposition 9. Consider the setup in Assumptions 1 and 2. Assume generic parameters for B0, λk, and λℓ. For k, ℓ ∈ [K],
we have rk,ℓ = 1 if and only if ik = iℓ, where rk,ℓ := rank(Θk −Θℓ).

Proof. Since H is full rank, we have rk,ℓ = rank(B⊤
k Bk − B⊤

ℓ Bℓ). Thus, we consider rank(B⊤
k Bk − B⊤

ℓ Bℓ). Suppose
ik = iℓ = i. We have

B⊤
k Bk −B⊤

ℓ Bℓ =
(
B⊤

k ei
)⊗2 −

(
B⊤

ℓ ei
)⊗2

,
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by Equation (4) in Prop. 8. Both B⊤
k ei and B⊤

ℓ ei have a single nonzero entry at the i-th coordinate, by Assumption 2. Thus
rk,ℓ = 1.

Suppose ik ̸= iℓ and assume without loss of generality that ik < iℓ. Given a matrix M , let MU denote the submatrix of M
with rows and columns indexed by the elements of the set U . We have

(
B⊤

k Bk −B⊤
ℓ Bℓ

)
{ik,iℓ}

=

[
λ2
k − (B0)

2
ik,ik

−(B0)ik,ik(B0)ik,iℓ
−(B0)ik,ik(B0)ik,iℓ −λ2

ℓ + (B0)
2
iℓ,iℓ

− (B0)
2
ik,iℓ

]
,

by Equation (4) in Prop. 8 and Assumption 2. For generic parameters, this submatrix has rank two, so the full matrix has
rank at least two; i.e., rk,ℓ ≥ 2.

F.2. Reducing to a known observational context

The previous section explains how to reduce to the case with one intervention per latent node. We may also reduce to the
case with only one observational context: if more than one context is the observational context, they will all have the same
inverse covariance matrix, so we may select only one of these contexts to serve as the observational context k = 0. Next we
show that, with one intervention per node, and one observational context, we can identify the observational context. We
show that the observational context has the “sparsest” changes from the other contexts. We formalize this intuition with the
following definition.

Definition 2. The deviation score of context k is

rk :=
∑

ℓ∈[K]\{k}

rk,ℓ,

where rk,ℓ := rank(Θk −Θℓ)forall k, ℓ ∈ [K].

Proposition 10. Consider the setup in Assumption 1. Then k∗ ∈ {0} ∪ [K] is an observational context if and only if
k∗ = argmink∈{0}∪[K] rk.

Proof. Let source(G) denote the set of source nodes in G. By Prop. 1, r0,ℓ = 1 + 1pa(iℓ) ̸=∅ for all ℓ ∈ [K]. Thus,
r0 = 2K − |source(G)|.

For k ̸= 0, we have rk,ℓ ≥ 2 + 1pa(iℓ) ̸=∅ for all ℓ ∈ [K] \ {k}. Thus, 2K. Since G must have at least one source node, we
see that rk > r0 for all k ̸= 0.

G. Hypothesis testing a necessary condition for model membership
We define the null hypothesis

H0 : rank(Θk −Θ0) ≤ 2 ∀ k ∈ [K]

Assumption 1(b) implies that H0 holds, by Prop. 1. The null hypothesis H0 is a necessary condition for membership of
(Θ0,Θ1, . . . ,ΘK) in the model defined by Assumption 1. However, H0 is not a sufficient condition for model membership:
we may have rank(Θk − Θ0) ≤ 2 for all k ∈ [K], despite some interventions not targeting single nodes. For example,
if G is the empty graph, and all interventions have two targets, then H0 holds. These cases may be ruled out with other
conditions implied by model membership. We leave a membership test for our model to future work. Here, we focus on
developing a test for H0.

Prior work on testing latent variables models (Drton et al., 2007; Squires et al., 2022) use such rank constraints. To test
whether a matrix M ∈ Rp×p is rank k, one can test that all minors of size k + 1 vanish; i.e., the collection of hypotheses

HA,B : tA,B = 0 A,B ⊆ [p], |A| = |B| = k + 1

where tA,B := det(MA,B).

For example, Squires et al. (2022) use this to test whether certain submatrices of a covariance matrix are rank one, as follows.
Let M̂ be the sample covariance matrix computed from n samples. If the underlying distribution is multivariate Gaussian,
it is well-known that M̂ follows a Wishart distribution. Now, for each pair of subsets A,B, compute the empirical minor
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Figure 5: Performance of our singular-value-based hypothesis test for H0, the hypothesis that all precision matrix
differences are of rank at most two. The gray line indicates the performance of randomly guessing. Our test performs
thresholding on the value ρ2(Θ̂k − Θ̂0). Here, we vary the threshold from 0.97 to 0.999.

t̂A,B := det(M̂A,B). Then, compute an estimate V̂ar(tA,B). Such an estimate can be obtained by evaluating the expression
for Var(tA,B) in Drton et al. (2008), which characterizes the moments of minors for Wishart matrices. Given this estimate,

compute the z-score zA,B = t̂A,B/

√
V̂ar(tA,B). By typical asymptotic theory, zA,B → N (0, 1) as n → ∞, so we can use

the z-score to compute an asymptotically correct p-value. Finally, the p-values for all pairs of subsets A,B can be aggregated
into a single p-value using a multiple hypothesis testing procedure such as Bonferroni correction or Sidak adjustment.

In principle, a similar procedure can be performed to test our null hypothesis H0. However, under a Gaussianity assumption,
Θk and Θ0 follow inverse Wishart distributions, rather than Wishart distribution. This would require expressions for the
moments of minors for inverse Wishart matrices. We leave such a hypothesis test, which could give guarantees on false
discovery rate control, to future work. Instead, we demonstrate the performance of a simple hypothesis test based on the
singular values of the matrix Θ̂k − Θ̂0. Let

ρ2(M) :=
(
σ2
1(M) + σ2

2(M)
)
/
(∑p

i=1
σ2
i (M)

)

If rank(M) ≤ 2, then ρ2(M) = 1, otherwise, ρ2(M) < 1. Thus, we may test H0 by checking where ρ2(Θ̂k − Θ̂) > τ for
some threshold τ near 1.

We demonstrate the performance of this procedure for testing model membership. We generate 500 random models following
Assumption 1, using the same hyperparameters as in Section 4. These models satisfy H0. We also generate 500 random
models where the interventions target two nodes instead of one. For each k, we pick intervention targets Ik ⊂ [d] with
|Ik| = 2, uniformly at random among all subsets of size two. We hold all other hyperparameters of the simulation fixed. We
consider only n = 2500 samples, the smallest sample size used in Section 4, and vary the threshold τ from 0.97 to 0.999,
linearly spaced over 20 values. The singular value based test is able to determine model membership at a rate well above
random guessing, see Fig. 5.

H. Computational complexity
Algorithm 3 takes as input K precision matrices in Rp×p. If these are each computed from at most n samples, then the total
cost is O(Kp3 +Knp2). Algorithm 2 runs for K rounds and computes at most 2K projections per round. Each projection
costs O(p3), so the cost of this step is O(K2p3). In the remainder of Algorithm 3, we perform O(K) matrix multiplications
and Cholesky decompositions. Each matrix multiplication costs O(p2) and each Cholesky decomposition costs O(p3).
The other operations (e.g. selecting rows) in Algorithm 3 are negligible. Therefore, the overall runtime of Algorithm 3 is
dominated by Algorithm 2, with a total cost of O(K2p3).
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I. Proofs
I.1. Proof of Prop. 5

Proof. For (i), it suffices to find Ĥ and {B̂k}Kk=1 such that B̂kĤ = BkH for all k ∈ [K], and such that there is no σ ∈ S(G)
satisfying B̂k = PσBkP

⊤
σ , H = PσH , by Equation (2). Suppose ik ̸= 1 for any k. Let

B̂k =

[
—– e1 —–
(Bk)2:d,1:d

]
, Ĥ =

[
(B0)

⊤
1 H

H2:d,1:p

]
.

Then, for all k, we have B̂kĤ = BkH . Suppose that Z1 has at least one parent, i.e., (B0)1j ̸= 0 for at least one j > 1.
Then the first row of Ĥ is a nonzero combination of at least two rows of H . Hence it is not equal to a single row of H , since
H is full rank. Thus, Ĥ is not equal to H up to any permutation of rows.

For (ii), observe that for the stated example, the partial order ≺ given by B̂0 differs in general from the partial order ≺G ,
since Z1 has no predecessors in ≺.

J. Non-identifiability for imperfect interventions
J.1. Parameter non-identifiability

In this section, we show that Assumption 2 is necessary to identify H . Let

B0 =

[
(B0)11 (B0)12

0 (B0)22

]
, B1 =

[
(B1)11 (B1)12

0 (B0)22

]
,

B2 =

[
(B0)11 (B0)12

0 (B2)22

]
, H =

[
1 H12

0 1

]
.

Then, for any value Ĥ12 ∈ R, we have BkH = B̂kĤ for all k, where

B̂0 =

[
(B0)11 (B0)12 + (B0)11H12 − (B0)11Ĥ12

0 (B0)22

]
, B̂1 =

[
(B1)11 (B1)12 + (B1)11H12 − (B1)11Ĥ12

0 (B0)22

]
,

B̂2 =

[
(B0)11 (B0)12 + (B0)11H12 − (B0)11Ĥ12

0 (B2)22

]
, Ĥ =

[
1 Ĥ12

0 1

]
.

J.2. Graph non-identifiability

Suppose that G has edges 2 → 1, 3 → 2, and 3 → 1. Then the weight matrices have the form

B0 =

(B0)11 (B0)12 (B0)13
0 (B0)22 (B0)23
0 0 (B0)33

 , B1 =

(B0)11 (B0)12 (B0)13
0 (B1)22 (B1)23
0 0 (B0)33

 ,

B2 =

(B0)11 (B0)12 (B0)13
0 (B2)22 (B2)23
0 0 (B0)33

 , B3 =

(B0)11 (B0)12 (B0)13
0 (B0)22 (B0)23
0 0 (B3)33

 ,

H =

1 H12 H13

0 1 H23

0 0 1

 .

Let Ĝ be the DAG with edges 2 → 1 and 3 → 2. We show that there exist Ĥ and matrices B̂k, following the support of Ĝ,
such that BkH = B̂kĤ for all k. Note that G and Ĝ have the same transitive closure. Let Ĥ12 ∈ R and let Ĥ13, Ĥ23 be a
solution to the system of equations:[

(B0)11 (B0)12 + (B0)11(H12 − Ĥ12)

(B1)11 (B1)12 + (B1)11(H12 − Ĥ12)

][
Ĥ13

Ĥ23

]
=

[
(B0)11H13 + (B0)12H23 + (B0)13
(B1)11H13 + (B1)12H23 + (B1)13

]
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This system generically has a solution, since for generic parameters the matrix on the left hand side is rank two. Then a
solution, with all matrices B̂k have vanishing entry (1, 3), is as follows.

B̂0 =

(B0)11 (B0)12 + (B0)11(H12 − Ĥ12) 0

0 (B0)22 (B0)23 + (B0)22(H23 − Ĥ23)
0 0 (B0)33


B̂1 =

(B1)11 (B1)12 + (B1)11(H12 − Ĥ12) 0

0 (B0)22 (B0)23 + (B0)22(H23 − Ĥ23)
0 0 (B0)33


B̂2 =

(B0)11 (B0)12 + (B0)11(H12 − Ĥ12) 0

0 (B2)22 (B2)23 + (B2)22(H23 − Ĥ23)
0 0 (B0)33


B̂3 =

(B0)11 (B0)12 + (B0)11(H12 − Ĥ12) 0

0 (B0)22 (B0)23 + (B0)22(H23 − Ĥ23)
0 0 (B3)33


K. Comparison to Liu et al. (2022)
We compare Theorem 2 to Liu et al. (2022). We restate their main result for convenience and notation.

Theorem (Theorem 4.1 of Liu et al. (2022)). Let Z = AkZ + εk and X = g(Z) + εx. Let ηk be the sufficient statistic for
the distribution of Z in environment k. That is, ηk = vec(Θ̃k), where Θ̃k denotes the inverse covariance matrix of Z in the
kth setting and vec denotes the vectorization of a matrix. We assume that vec ignores zeros and repetitions. Assume that

(i) {x ∈ X | φεx(x) = 0} has measure zero, where φεx is the characteristic function for εx,

(ii) g is bijective, and

(iii) There exists K + 1 environments such that the following matrix is invertible:

L =

 | | |
η1 − η0 η2 − η0 . . . ηK − η0

| | |

 .

Then we can recover g up to permutation and scaling.

First, we show that (i) and (ii) hold in our setting. Our assumption that X = GZ for G invertible guarantees (ii). Our
assumption that X is a deterministic function of Z corresponds to taking εx ∼ δ0, i.e., εx = 0 with probability one. The
characteristic function is φε(t) = 1, thus satisfying (i).

We now show that (iii) is only satisfied in our setting when the number of edges in the latent graph is at most d. The vector
vec(Θ̃k − Θ̃0) is of length d+ |E|, where |E| is the number of edges in the graphical model defined by Θ0. To be invertible,
L must be a square matrix, and hence we require K ≥ d+ |E|. If |E| > d, then K > 2d, and we must have an intervention
target i such that i = ik for at least three values of k. We have Θ̃k = B⊤

k Bk, and thus

Θ̃k − Θ̃1 = (λkeik)
⊗2 − (B⊤

0 eik)
⊗2 − (λℓei1)

⊗2 + (B⊤
0 ei1)

⊗2

Given k1, k2, and k3 such that ik1
= ik2

= ik3
= i, we see that ηk1

,ηk2
and ηk3

differ only at position (i, i). The space of
vectors that differ in at most one entry is at most two-dimensional. Thus ηk1

, ηk2
, and ηk3

are not linearly independent, and
L is not invertible.

L. Finite-sample algorithms
Matrix rank scoring. In Line 1 of Algorithm 1 and Line 2 of Algorithm 2, we check whether a subspace is rank one. In the
finite-sample setting, we represent these subspaces by matrices and measure how close the matrices are to rank one.
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Algorithm 5 IDENTIFYPARTIALORDERFINITESAMPLE

1: Hyperparameters: γ
2: Input: Precision matrices (Θ0,Θ1, . . . ,ΘK)

3: Output: Factor Q̂, partial order ≺
4: Let I0 = {}, Q̂ = 0d×d

5: for t = 1, . . .K do
6: Let Mk = projQ̂⊥

t−1
(Θk −Θ0) for each k ̸∈ It−1

7: Let ρk = σ2
1(Mk)/(

∑p
i=1 σ

2
i (Mk)) for each k ̸∈ It−1

8: Pick k ∈ argmaxk ̸∈It−1
ρk

9: Let q̂k,A = IDENTIFYANCESTORSFINITESAMPLE(Θk,Θ0, {q̂i}i∈It−1
; γ)

10: Add a′ ≻ k for any a′ ⪰ a, a ∈ A
11: Let It = It−1 ∪ {k}, Q̂t = [q̂k; Q̂t−1]
12: end for
13: return Q̂, ≺

Algorithm 6 IDENTIFYANCESTORSFINITESAMPLE

1: Hyperparameters: γ
2: Input: Θk, Θ0, {q̂i}i∈I
3: Output: Vector q̂k, ancestor set A
4: Let A = I
5: for i ∈ I do
6: Let W¬i = [q̂i : j ∈ I \ {i}]
7: Let M¬i = projW⊥

i
(Θk −Θ0)

8: Let ρk = σ2
1(Mk)/(

∑p
i=1 σ

2
i (Mk)) for each k ̸∈ It−1

9: If ρk ≥ γ, let A = A \ {i}
10: end for
11: Let W = [q̂a : a ∈ A]
12: Let M = projW⊥(Θk −Θ0)
13: Let q̂k be the (normalized) leading left singular vector of M
14: return q̂k, A

We use the score ρ(M) := σ2
1(M)/

(∑p
i=1 σ

2
i (M)

)
, where σi(M) is the ith largest singular value of M ; ρ(M) can be

interpreted as the percentage of spectral energy associated to the largest singular value of M . Using this score to choose the
next element of the partial order does not require hyperparameters, see Line 5 of Algorithm 5. In contrast, using this score
to prune the set of ancestors requires a hyperparameter to determine whether a matrix is close enough to rank one, see γ
in Line 6 of Algorithm 6. Larger values of γ (e.g., 0.999) result in a more conservative algorithm and will output a denser
latent graph, while smaller values of γ (e.g., 0.8) result in more aggressive pruning of the latent graph.

Picking qk. The matrix M in Line 6 of Algorithm 6 is not guaranteed to be rank one in the finite-sample case. We instead
select the leading left singular vector of M .

Picking nonzero rows. In the finite-sample case, the matrix D̂k will not usually have only one nonzero row, see Line 3 of
Algorithm 7. We estimate the intervention target ik by picking the row of largest norm. Since we assume that ik is distinct
for distinct k, we maintain a set N of candidate intervention targets and do not allow replicates.

M. Code and Data
Our code can be found at

https://github.com/csquires/linear-causal-disentanglement-via-interventions.
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Algorithm 7 ITERATIVEDIFFERENCEPROJECTIONFINITESAMPLE

1: Hyperparameters: γ
2: Input: Precision matrices (Θ0,Θ1, . . . ,ΘK)

3: Output: Ĥ , (B̂0, B̂1, . . . , B̂K)
4: Let d = K
5: Let Q̂,≺= IDENTIFYPARTIALORDERFINITESAMPLE((Θ0,Θ1, . . . ,ΘK); γ)

6: Let Ĉk = CHOLESKY((Q̂†)⊤ΘkQ̂
†) for k = 0, . . . ,K

7: Let N = [p]

8: Let R̂ = Id
9: for k = 1, . . . ,K do

10: Let D̂k = Ĉk − Ĉ0

11: Pick îk ∈ argmaxi∈N ∥(D̂k)i∥2
12: Let N = N \ {̂ik}
13: Let R̂îk

= (D̂k )̂ik + (Ĉ0)̂ik
14: end for
15: Let Ĥ ′ = R̂Q̂
16: Let Ĥ = ΛĤ ′, for Λ diagonal such that Ĥ satisfies the conditions on H in Assumption 1(c)
17: Let B̂0 = CHOLESKY((Ĥ†)⊤Θ0Ĥ

†)

18: Let B̂k = B̂0 + êik

(
|Λ̂îk ,̂ik

|êik − B̂⊤
0 êik

)⊤
for k = 1, . . . ,K

19: return Ĥ , (B̂0, B̂1, . . . , B̂K)

M.1. Optimizing over S(G)

Consider a partial order ≺G , a set of true intervention targets i1, . . . , iK , and a set of estimated intervention targets
î1, . . . , îK . The integer linear program (5) computes the topological order π∗ consistent with ≺G that maximizes the number
of agreements between ik and îk. The topological order π∗ can be recovered by letting π∗(i) = j for the unique j such that
Aij = 1. The first two lines of constraints ensure this uniqueness, and that π∗(i) ̸= π∗(i′) for i ̸= i′.

The final line of constraints ensures that π∗ is consistent with ≺G . If π∗ is not consistent with ≺G , then there exists i, i′, j
such that i ≺G i′, Ai′j = 1, and Aij′ = 0 for all j′ ≤ j, which violates the constraint

∑
j′≤j (Aij′ −Ai′j′) ≥ 0.

max
Aij∈{0,1}d×d

K∑
k=1

Aik îk

s.t.
d∑

i=1

Aij = 1 ∀ j ∈ [d]

d∑
j=1

Aij = 1 ∀ i ∈ [d]

∑
j′≤j

(Aij′ −Ai′j′) ≥ 0 ∀ i ≺G i′,∀ j ∈ [d]

(5)

M.2. Additional information on real data

The scRNA-seq dataset of Ursu et al. (2022) is available at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE161824. The TCGA dataset of Liu et al. (2018) is available at https://gdc-hub.
s3.us-east-1.amazonaws.com/download/TCGA-LUAD.survival.tsv and https://gdc-hub.s3.
us-east-1.amazonaws.com/download/TCGA-LUAD.htseq_fpkm.tsv.gz.

Processing. We use EnrichR (Kuleshov et al., 2016) to pick the p = 100 and p = 83 most variable genes in the
proliferation regulation gene set from the Gene Ontology. We use the values from the processed dataset from Ursu et al.
(2022); the only additional processing removes cells which were assigned to synonymous mutations (i.e., those that do not
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Figure 6: (Semi-synthetic) The adapted version of Algorithm 3 is consistent for recovering H , B0, and {ik}Kk=1 from
semi-synthetic data. At each sample size, we generate 50 datasets. Note the logarithmic scale on the x-axis. In (a), we plot
the mean of ∥Ĥ −H∥2, the error in Frobenius norm. In (b), we plot the mean of ∥B̂0 −B0∥2. In (c), we plot the fraction of
models where all intervention targets were correctly estimated.

change any amino acids and hence do not have structural effects).

Semi-synthetic analysis. Our algorithm recovers the problem parameters for the semi-synthetic data, see Fig. 6.

Comparison to TCGA dataset. Our survival analysis is performed using the Cox proportional hazards model from the
lifelines package (Davidson-Pilon, 2019). To correct for multiple hypothesis testing, we use the Benjamini-Hochberg
procedure from the statsmodels package (Seabold & Perktold, 2010).
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