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ABSTRACT

Antibody co-design represents a critical frontier in drug development, where
accurate prediction of both 1D sequence and 3D structure of complementarity-
determining regions (CDRs) is essential for targeting specific epitopes. Despite
recent advances in equivariant graph neural networks for antibody design, cur-
rent approaches often fall short in capturing the intricate interactions that govern
antibody-antigen recognition and binding specificity. In this work, we present
Igformer, a novel end-to-end framework that addresses these limitations through
innovative modeling of antibody-antigen binding interfaces. Our approach refines
the inter-graph representation by integrating personalized propagation with global
attention mechanisms, enabling comprehensive capture of the intricate interplay
between local chemical interactions and global conformational dependencies that
characterize effective antibody-antigen binding. Through extensive validation on
epitope-binding CDR design and structure prediction tasks, Igformer demonstrates
significant improvements over existing methods, suggesting that explicit model-
ing of multi-scale residue interactions can substantially advance computational
antibody design for therapeutic applications.

1 MAIN

Antibodies are Y-shaped proteins that play a pivotal role in the immune system, capable of binding
with high specificity to antigens, including pathogens and foreign molecules Murphy & Weaver
(2016). The design of antibodies for specific epitopes in antigens is an essential yet challenging task
with broad applications in therapeutic development and drug discovery Feldmann & Maini (2003);
Adams & Weiner (2005); Mullard (2022); Wang et al. (2024b). The challenges arise primarily from
the variability and structural complexity of complementarity-determining regions (CDRs), where
binding primarily occurs He et al. (2024). Understanding and modeling the intricate interactions
between antibodies and antigens is crucial for developing an effective computational antibody design
approach Baran et al. (2017); Tennenhouse et al. (2024); Yan et al. (2024).
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Figure 1: End-to-end antibody co-design.

The past decade has witnessed a significant evolution
in antibody design approaches. Traditional methods, in-
cluding sequence-based models Alley et al. (2019); Shin
et al. (2021) and energy-based optimization frameworks
Pantazes & Maranas (2010); Lapidoth et al. (2015);
Adolf-Bryfogle et al. (2018), provided initial solutions
but fell short of fully capturing the structural and func-
tional interactions between antibodies and antigens In-
graham et al. (2019). More recently, learning-based
approaches, particularly equivariant graph neural net-
works, deep generative models, and diffusion models
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Figure 2: Framework of Igformer.

Saka et al. (2021); Jin et al. (2022b); Watson et al. (2022b); Luo et al. (2022); Kong et al. (2023a);
Martinkus et al. (2023); Wang et al. (2024a), have emerged as powerful tools for simultaneously co-
designing CDR 1D sequences and 3D structures. These models represent a significant advancement
over traditional approaches by leveraging deep learning to model complex sequential and structural
relationships. However, many of these methods simplify the problem by focusing exclusively on
backbone modeling or specific CDR regions, overlooking side-chain interactions and the full-atom
geometry that are crucial to accurately modeling antibody-antigen binding Ruffolo et al. (2023b);
Martinkus et al. (2023).

Traditional computational antibody design relies on multi-stage pipelines that separately handle
structure prediction, docking, and CDR generation. A recent work, dyMEAN Kong et al. (2023a),
integrates these tasks into a unified end-to-end framework, providing a more streamlined approach to
antibody co-design. However, despite these advances, dyMEAN does not fully take advantage of
intricate antibody-antigen interactions, leaving opportunities for further improvement in capturing
the detailed molecular interplay at binding interfaces. These limitations highlight the need for a more
sophisticated approach that can simultaneously handle full-atom geometry and complex hierarchical
interactions in antibody-antigen complexes. Further discussion of related works can be found in
Appendix A.

To address these limitations, in this work, we introduce Igformer1, a novel end-to-end framework
for antibody co-design that advances antibody co-design through three key innovations. At its core,
Igformer introduces a sophisticated antibody-antigen inter-graph refinement strategy that uniquely
integrates personalized propagation with a global attention mechanism. The personalized propagation
scheme models local chemical properties and geometric constraints, while the complementary global
attention mechanism captures long-range structural dependencies. This novel dual-scale architecture
enables Igformer to maintain atomic-level precision while effectively capturing intricate residue-level
interactions within the antibody-antigen binding interface. Furthermore, Igformer incorporates E(3)-
equivariance throughout the framework, ensuring that all structural predictions adhere to the physical
and geometric constraints of biological systems.

Through comprehensive experimental evaluation, Igformer demonstrates superior effectiveness across
multiple challenging antibody design tasks. For epitope-binding CDR design, Igformer shows a
2.02% improvements over state-of-the-art models in terms of amino acid recovery rate. For antigen-
antibody complex structure prediction, Igformer achieves remarkable accuracy with an 11.84%
reduction in RMSD compared to existing approaches. These substantial improvements validate the
effectiveness of our technical innovations in addressing the challenges of full-atom geometry and
sequence-structure co-design. Igformer thus represents a significant advancement in computational
antibody design, offering promising new directions for accelerating drug discovery and therapeutic
development.

1Immunoglobulin Transformer (Igformer)
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Table 1: CDR-H3 design. Results of models with * are collected from the dyMEAN paper.

Model Generation Docking
AAR↑ TMscore↑ IDDT↑ CAAR↑ RMSD↓ DockQ↑

RosettaAb* 32.31% 0.9717 0.8272 14.58% 17.70 0.137
DiffAb* 35.31% 0.9695 0.8281 22.17% 23.24 0.158
MEAN* 37.38% 0.9688 0.8252 24.11% 17.30 0.162
HERN* 32.65% - - 19.27% 9.15 0.294
dyMEAN 42.64% 0.9728 0.8438 27.35% 8.42 0.408
Igformer 43.50% 0.9757 0.8650 28.11% 7.15 0.450

Table 2: AAR (%) on multiple CDRs design.
Model CDR-L1 CDR-L2 CDR-L3 CDR-H1 CDR-H2 CDR-H3
dyMEAN 75.55 83.10 52.12 75.51 68.48 37.53
Igformer 75.20 85.32 63.42 77.20 69.25 41.10

2 RESULTS

2.1 IGFORMER

Figure 2 illustrates the overall framework of Igformer. Specifically, the Equivariant Message Passing
(EMP) modules serve as foundational blocks of Igformer, integrating both spatial and biochemical
properties during the message-passing process. Our theoretical analysis confirms the E(3)-equivariant
property of EMP, which lays the theoretical foundation of Igformer.

The key innovation of Igformer lies in its sophisticated inter-graph refinement strategy. The process
begins with the initialization of residue representations and coordinates, followed by intra-graph
construction. Subsequently, based on the constructed intra-graph, Igformer captures the complex
interactions within the binding range between antibody paratope and antigen epitope through two key
modules: Approximate Personalized Propagation (APP), which preserves local interaction informa-
tion, and Simplified Graph Transformer (SGFormer), which captures global binding dependencies.
Next, the learned intricate binding patterns are utilized to refine the inter-graph, followed by Triangle
Multiplicative (TM) module and Axial Attention (AA) module, which generate pairwise residue inter-
actions through different mechanisms. Finally, the refined inter-graph, together with the intra-graph
are processed through a dual-scale EMP modules, responsible for the final coordinate and sequence
predictions. Systematical elaboration on our method and supplementary details can be found in
Appendix C and appendix D.

Dataset. Following previous works on antibody design Jin et al. (2022a); Kong et al. (2023a;b), we
train all models on the Structural Antibody Database (SAbDab) (Dunbar et al., 2013; Schneider et al.,
2021) using the snapshot from November 2022. We split the dataset into training and validation sets
with a ratio of 9:1, yielding 3, 246 antibodies for training and 365 antibodies for validation. The
antibodies are clustered based on their CDR-H3 regions using a 40% sequence identity threshold,
calculated using the BLOSUM62 substitution matrix Foote & Winter (1992). This clustering process,
performed using MMseqs2, results in 1, 644 clusters in the training set and 182 clusters in the
validation set. After that, we evaluate Igformer and other competitors on the RAbD benchmark
Adolf-Bryfogle et al. (2018) for Tasks 1-3, which consists of 60 diverse antibody-antigen complexes.
For Task 4, Igfold benchmark Ruffolo et al. (2023a) consisting of 51 antibody-antigen complexes
is utilized. This test set selection prevents data leakage during the evaluation phase. Detailed
introduction to datasets and training settings of IgFormer are listed in Appendix E.1 and Appendix E.2,
respectively.

2.2 TASK 1: CDR-H3 DESIGN

We first evaluate each model for both sequence and structure prediction on CDR-H3, which plays a
critical role in antigen binding. During training, the model simultaneously predicts CDR-H3 residue
sequences and generates coordinates for the entire antibody structure. We compare Igformer against
five SOTA methods: RosettaAb Adolf-Bryfogle et al. (2018), DiffAb Luo et al. (2022), HERN Jin
et al. (2022a), MEAN Kong et al. (2023b), and dyMEAN Kong et al. (2023a). Evaluation metrics
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Figure 3: Antibody structures by Igformer & dyMEAN.

Table 3: Comparison on multiple CDR and full antibody design.
Multiple CDR Design

Model AAR↑ TMscore↑ lDDT↑ DockQ↑
dyMEAN 60.05% 0.9654 0.8029 0.3973
Igformer 63.55% 0.9750 0.8311 0.4817

Full Antibody Design
Model AAR↑ TMscore↑ lDDT↑ DockQ↑
dyMEAN 71.37% 0.9662 0.7471 0.4237
Igformer 73.69% 0.9681 0.7580 0.4600

include unaligned RMSD for CDR-H3 using CA atoms and sequence-based metrics for CDR-H3.
Details of baselines and metrics can be found in Appendix E.3 and Appendix E.4, respectively.

Table 1 reports the results of the epitope-binding CDR-H3 design task on the RAbD dataset. As we
can observe, Igformer demonstrates superior performance across all evaluation metrics. Specifically,
it achieves an AAR of 43.50%, representing a 2.2% relative improvement over previous SOTA
method dyMEAN, and substantially outperforms earlier approaches like RosettaAb and HERN. Most
notably, Igformer excels in docking performance, achieving an RMSD of 7.15 and a DockQ score
of 0.450, marking a relative improvement of 15.08% and 10.29% respectively over the second-best
method. Figure 3 provides a comparative visualization of predictions generated by Igformer and
dyMEAN. These results demonstrate the enhanced capability of Igformer to capture antibody-antigen
interactions and generate more accurate binding interface predictions.

2.3 TASK 2: MULTIPLE CDR DESIGN

In this set of experiments, we compare Igformer against dyMEAN, the current leading method, on
sequence and structure prediction across all six CDRs using the RAbD dataset. The evaluation
examines structural accuracy through AAR for individual CDR regions and assesses overall antibody
structure quality using additional metrics. As shown in Tables 2-3, Igformer achieves better sequence
recovery results in 5 out of 6 CDRs except for CDR-L1, where Igformer maintains comparable perfor-
mance with dyMEAN. Moreover, Igformer consistently surpasses dyMEAN in overall performance
by substantial margins. Notably, Igformer achieves relative improvements of 5.83% in overall AAR
and 21.24% in DockQ score. These comprehensive results validate the effectiveness of Igformer in
both sequence prediction and structural generation across multiple CDR regions.

2.4 TASK 3: FULL ANTIBODY DESIGN

In this set of experiments, we evaluate predictions across all regions, including both frameworks and
CDRs on RAbD dataset, where the sequences and coordinates for the entire antibody are masked in
the testing phase. Table 3 presents the performance comparison for full antibody design. These results
align with the fundamental characteristic of antibody structure: framework regions exhibit higher
conservation across different antibodies, making them more predictable than hyper-variable CDR
regions. Our experimental findings confirm this biological characteristic, as both models achieve
higher sequence recovery rates in full antibody design compared to CDR-specific prediction tasks.
Notably, Igformer demonstrates consistent superiority over dyMEAN across all evaluation metrics.
Igformer achieves a 3.25% relative improvement in AAR and an 8.57% relative enhancement in
DockQ score. These significant improvements indicate that Igformer not only generates more accurate
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Table 4: Comparison on complex structure prediction. Results with † are predicted using the ground-
truth (GT) structure and serve as the upper bound of this task.

Model Structure Docking
TMscore↑ lDDT↑ RMSD↓ DockQ↑

IgFold⇒HDock* 0.9701 0.8439 16.32 0.202
IgFold⇒HERN* 0.9702 0.8441 9.63 0.429
GT⇒HERN 1.0000† 1.0000† 9.65 0.432
dyMEAN 0.973 0.8676 9.00 0.452
Igformer 0.973 0.8677 7.88 0.522

Table 5: Ablation study on CDR-H3 design.

Model Generation Docking
AAR↑ TMscore↑ lDDT↑ CAAR↑ RMSD↓ DockQ↑

Igformer 43.50% 0.9757 0.8650 28.11% 7.15 0.450
- APP 42.80% 0.9725 0.8412 27.60% 8.30 0.416
- SGFormer 43.45% 0.9743 0.8578 28.00% 7.82 0.431
- TM 43.32% 0.9731 0.8499 27.91% 8.40 0.417
- AA 43.06% 0.9735 0.8460 27.66% 8.12 0.425
- Dual EMP 42.75% 0.9728 0.8430 27.50% 8.22 0.419

sequence predictions but also maintains higher structural fidelity, leading to improved antigen binding
affinity prediction.

2.5 TASK 4: COMPLEX STRUCTURE PREDICTION

In this set of experiments, we evaluate the model performance on the Igfold benchmark Ruffolo et al.
(2023a), focusing on complex structure prediction when given complete antibody sequences, includ-
ing CDR-H3. Evaluation metrics include CDR-H3-specific RMSD and comprehensive structural
assessments of the entire antibody complex.

As demonstrated in Table 4, Igformer establishes new state-of-the-art performance in the complex
structure prediction task, particularly excelling in docking metrics. Specifically, Igformer achieves
relative improvements of 12.44% in RMSD and 15.49% in DockQ scores, respectively. Notably,
even when compared to GT⇒HERN, which utilizes ground-truth structures for docking, Igformer
demonstrates superior docking performance. These results validate the effectiveness of the proposed
inter-graph refinement strategy in capturing the intricate residue interactions within antibody-antigen
binding interfaces.

2.6 ABLATION STUDY

We conduct comprehensive ablation studies to evaluate the individual contributions of key components
in Igformer. Specifically, we systematically analyze APP and SGFormer introduced in Section C.3,
triangle multiplicative module (TM), axial attention (AA), and dual EMP module presented in
Section C.4. Table 5 illustrates the impact of removing each component from Igformer on epitope-
binding CDR-H3 prediction tasks. Results of experiments on Task 4 are provided in Appendix F.1.

Our observations are as follows. Removing the APP reduces performance across all metrics, par-
ticularly affecting the DockQ score (0.416) and RMSD (8.30). The removal of SGFormer shows
similar trends but with less impact, achieving a DockQ score of 0.431 and RMSD of 7.82. These
results demonstrate their crucial role in capturing complicated interface interactions. The triangle
multiplicative module and axial attention mechanism both contribute significantly to model perfor-
mance. Without TM, the AAR drops to 43.32% and DockQ to 0.417, while removing AA results in
an AAR of 43.06% and DockQ of 0.425. Most notably, replacing our dual EMP architecture with a
single message passing framework results in significant performance degradation across all metrics,
with AAR dropping to 42.79% and DockQ to 0.417, validating our design choice of separate intra-
and inter-graph message passing processes.
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3 CONCLUSION

In this paper, we propose Igformer, an end-to-end antibody co-design framework that simultaneously
generates both 1D sequences and 3D structures for epitope-binding antibody CDRs. Igformer
advances existing models through a novel intra-graph refinement process, which is capable of
capturing intricate residue interactions within the epitope-paratope binding region. Through extensive
experimental evaluation, we demonstrate the effectiveness of Igformer, providing a new perspective
for end-to-end antibody co-design tasks.
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A RELATED WORK

Antibody Co-design. Antibody co-design methodologies facilitate the simultaneous generation of
sequence and structure in an end-to-end manner, thereby enabling the modeling of intricate dependen-
cies between backbone conformation and amino acid composition. Specifically, RefineGNN Jin et al.
(2022b) utilized an iterative refinement approach, alternately predicting atom coordinates and residue
types in CDRs through auto-regression. DiffAb Luo et al. (2022) advanced the field by introducing a
diffusion-based framework that explicitly targets specific antigens while considering atomic-level
structures, enabling both sequence and structure generation for CDRs based on framework regions
and target antigens. MEAN Kong et al. (2023b) and its successor dyMEAN Kong et al. (2023a) lever-
aged graph neural networks with E(3)-equivariant architectures for CDR prediction, with dyMEAN
extending to full-atom geometry modeling including both backbone and side chains. AbDiffuser
Martinkus et al. (2023) introduced an efficient SE(3)-equivariant architecture called APMixer for
complete antibody structure generation, demonstrating success in wet-lab validation. Most recently,
IgGM Wang et al. (2024a) expanded capabilities to end-to-end antibody design through a hybrid
diffusion model that can generate complete antibody sequences and structures simultaneously without
requiring template structures.Despite these advances, existing methods have largely simplified or
overlooked the complex interactions at antibody-antigen binding interfaces. Our work addresses this
limitation through a novel inter-graph refinement strategy that integrates personalized propagation
into global attention mechanisms, enabling more accurate modeling of binding interface dynamics.

Sequence Design. The field of sequence design has evolved from LSTM-based approaches to more
advanced language models. LSTM-based antibody design Saka et al. (2021) pioneered sequence
generation for affinity maturation by employing a long short-term memory network trained on
enriched phage display sequences to generate and prioritize antibody variants, using likelihood scores
from the trained model to identify promising candidates and outperforming traditional frequency-
based screening approaches. ProGen Madani et al. (2020) introduced a controllable protein generation
language model trained on 280M sequences, enabling both high-quality sequence generation and
fine-grained control through conditioning. The model employed a transformer architecture and
demonstrated the ability to generate proteins with native-like structural and functional properties.
More recently, EvoDiff Alamdari et al. (2023) introduced an evolutionary-scale diffusion framework
operating directly in sequence space. The model combines discrete diffusion with evolutionary-scale
sequence data to enable both unconditional generation of diverse, structurally-plausible proteins and
flexible conditional generation via sequence inpainting.

Structure Design. Structure design has progressed from single-step prediction to sophisticated
diffusion-based approaches. RFjoint Wang et al. (2021) initially pioneered functional site scaffolding
with structure prediction networks, though limited by its single-step prediction approach. RFdiffusion
Watson et al. (2022a) advanced this approach by fine-tuning the RoseTTAFold structure prediction
network as a denoising network within a diffusion model framework, enabling iteratively protein
structure building from random noise. IgFold Ruffolo et al. (2023a) introduced a specialized antibody
structure prediction framework combining a pre-trained language model (AntiBERTy) with graph
neural networks. This innovation enabled direct prediction of backbone atom coordinates, achieving
accuracy comparable to AlphaFold 2 Jumper et al. (2021) while being significantly faster and elimi-
nating the need for multiple sequence alignments or template structures. Most recently, AlphaFold
3 Abramson et al. (2024) has taken a broader approach by introducing a unified deep-learning
framework capable of predicting structures for diverse biomolecular complexes. It achieves this
by replacing evoformer in Alphafold2 with a simpler Pairformer and employing a diffusion-based
structure module for direct atom coordinates prediction, representing a significant step toward a more
generalized solution for biomolecular structure prediction.

B PROBLEM FORMULATION

Antibodies are Y-shaped proteins with a distinctive molecular architecture: they comprise heavy and
light chains, each containing constant domains that are conserved across antibodies and variable
domains that determine binding specificity. Within these variable domains, the structure alternates
between framework regions (FRs) that maintain structural stability and complementarity-determining
regions (CDRs) that are responsible for antigen recognition, with CDR positions defined by the IMGT
numbering scheme Lefranc et al. (2003). Among these regions, the CDR-H3 loop in the heavy chain
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Figure 4: Illustration of antibody-antigen complex.

variable domain exhibits the highest variability and plays a pivotal role in antigen recognition Narciso
et al. (2011); Tsuchiya & Mizuguchi (2016); Dreyer et al. (2023). In the context of antibody-antigen
interactions, the binding surface of the antibody is termed the paratope, while its corresponding target
region on the antigen is called the epitope, as illustrated in Figure 4.

The objective of antibody co-design is to simultaneously predict the amino acid sequence and 3D
structure of antibody CDRs that optimally bind a given epitope on a target antigen, as illustrated in
Figure 1. We formulate this problem using a dual-graph representation of the binding region. The
first component is an antibody graph Gab = {Vab, Eab}, while the second is an antigen epitope graph
Gae = {Vae, Eae}. The vertices Vab and Vae represent amino acid residues, where each residue
vi is characterized by its amino acid type si and a coordinate matrix Xi ∈ R3×ci encoding the
3D positions of its ci atoms, including both backbone and side chain atoms. Spatial proximities
between residues are captured through edges Eab and Eae constructed using a k-nearest neighbors
(kNN) approach over all atomic positions. The complete graph construction process is detailed in
Appendix D.1. Within this framework, we denote the paratope residues as a subset Vp ⊆ Vab of the
antibody graph, where we specifically focus on CDR-H3 as the paratope region.

Definition B.1. Given partial antibody sequence {si | vi ∈ Vab, vi /∈ Vp} and the target antigen
epitope sequence {sj | vj ∈ Vae} with corresponding structural information Xab and Xae, the goal
of antibody co-design is to predict both the 1D sequence {sk | vk ∈ Vp} of the paratope and 3D
structure {Xk | vk ∈ Vp} of the entire antibody in the context of the antibody-antigen complex.

This formulation defines a joint optimization problem where the model simultaneously predicts
both the amino acid sequence of the antibody paratope and its complete 3D coordinates within the
antibody-antigen binding region. Through this formulation, we aim to harness the expressive power
of equivariant graph neural architectures to capture the intricate spatial and chemical relationships
that govern antibody-antigen interactions, enabling end-to-end structure-based antibody co-design.

C METHOD

In this section, we present Igformer, an end-to-end framework for antibody co-design that introduces
a novel approach to modeling antibody-antigen interactions. At its core, Igformer advances previous
attempts through a sophisticated inter-graph refinement mechanism that combines personalized
propagation with global attention, enabling more accurate modeling of complex interactions within
antibody-antigen binding interfaces. As illustrated in Figure 2, Igformer consists of three key
components: (i) Equivariant Message Passing module, (ii) Inter-graph Refinement module, and (iii)
Iterative Update module. In the following, we will detail the initialization process in Section C.1,
elaborate on the Equivariant Message Passing module in Section C.2, followed by the Inter-Graph
Refinement module in Section C.3, and the Iterative Update module in Section C.4. We then present
the Igformer pipeline in Section C.5 and learning objectives in Section C.6.

C.1 INITIALIZATION

The foundation of Igformer lies in its comprehensive representation scheme that integrates both
biochemical and structural information through embedding and coordinate initialization steps.

Feature initialization. For each residue vi, we construct a dual-component embedding: a residue
embedding Hres

i ∈ Rd that encodes amino acid properties, and a position embedding Hpos
i ∈ Rd

that captures sequential context through distinct indices for antigen, heavy chain, and light chain
regions. These components are combined additively to form the final residue representation: Hi =
Hres

i + Hpos
i , This initialization approach enables the simultaneous processing of amino acid
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properties and their structural context while differentiating between functionally distinct antibody-
antigen complex regions. More details of embedding initialization are provided in Appendix D.2.

Coordinate initialization. Igformer employs a structured coordinate initialization strategy that
combines template-based modeling with precise alignment and normalization procedures. For
the epitope region Vae, we maintain the actual experimental coordinates, while other regions are
initialized using templates (refer to Appendix D.3.1) that provide positions of backbone atoms (N,
CA, C, O). Missing template coordinates are estimated through linear interpolation between the
nearest known template positions along the sequence. We then optimize these initial structures
through rigid-body alignment using the Kabsch algorithm Kabsch (1976), which minimizes structural
discrepancies between the template and known coordinates. Following initialization, we apply a
chain-specific processing pipeline to establish a consistent reference frame. Coordinates of each
chain are centered relative to their respective virtual center of mass, and subsequently normalized to
ensure uniform scale across the complex. This carefully calibrated initialization process provides
a robust foundation for subsequent equivariant message passing and inter-graph refinement stages.
For a comprehensive description of the coordinate initialization and processing procedures, we refer
readers to Appendix D.3.

C.2 EQUIVARIANT MESSAGE PASSING

Given input coordinates X and embeddings H of residues in a graph G, at the l-th layer, the
equivariant message passing (EMP) module updates residue representations and coordinates
H

(l+1)
i ,X

(l+1)
i = EMP

(
H

(l)
i ,X

(l)
i

)
through four sequential steps.

First, we compute multi-level pairwise residue similarities by combining residue and atomic informa-
tion:

∆X
(l)
ij = X

(l)
i −X

(l)
j , simres

ij = ∆X
(l)
ij (∆X

(l)
ij )⊤,

simatom
ij(m,n) =

3∑
c=1

(Xi,m,c −Xj,n,c)(Xi,m,c −Xj,n,c)
⊤,

where m,n ∈ {1, · · · , 14}2 denote different atoms in the residue. The multi-level positional infor-
mation is processed through MLPs and combined into a similarity matrix:

S
(l)
i,j = w · MLP1(sim

res
ij ) + (1− w) · MLP2(sim

atom
ij ).

Next, we update edge features by incorporating node information and similarity scores:

H(l+1)
eij = EdgeMLP

(
H

(l)
i ⊕H

(l)
j ⊕ S

(l)
i,j ⊕H(l)

eij

)
,

where ⊕ denotes concatenation operation. The coordinates are subsequently updated through
weighted aggregation of neighbor differences:

X
(l+1)
i = X

(l)
i +

∑
j∈N (i)

∆X
(l)
ij · CoordMLP(H(l+1)

eij ),

where Ni denotes the neighboring nodes of vi in graph G. Finally, node features are updated by
aggregating neighboring edge information with residual connections:

H
(l+1)
i = H

(l)
i + NodeMLP

H
(l)
i ⊕

∑
j∈N (i)

H(l+1)
eij


This E(3)-equivariant (refer to Definition D.1 in Appendix D.5.1) message passing scheme ensures
that both spatial and biochemical properties are properly captured and updated during the message
passing process.

Theorem C.1. For any transformation T ∈ E(3), we have H
(l+1)
i , T (X

(l+1)
i ) =

EMP
(
H

(l)
i , T (X

(l)
i )

)
, where T (X) := QX + b denotes the E(3) transformation of X .

All proofs of theorems are provided in Appendix D.5.
2Each residue is represented using 14 atoms in 3D space.
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C.3 INTER-GRAPH REFINEMENT

The inter-graph Ginter = (Vp, Vae, Einter) represents interactions in the antibody-antigen binding
interface between antibody paratope residues Vp and antigen epitope residues Vae. The key innovation
of Igformer lies in its sophisticated inter-graph refinement strategy, which combines personalized
propagation with global attention to capture complex antibody-antigen interactions. Our approach
integrates two complementary components: approximate personalized propagation (APP) for preserv-
ing local structural information and simplified graph transformer (SGFormer) for capturing global
dependencies. Next, we elaborate on the graph generation and refinement process.

Approximate Personalized Propagation. We construct intra-graphs Gab and Gae by establishing
connectivity between k-nearest residues based on atomic-level coordinate comparisons, ensuring that
graph connectivity reflects spatial relationships within both antibody and antigen components. A
detailed description of the intra-graph construction process is provided in Appendix D.1.

Given the residue embeddings H(0) updated by EMP in the intra-graph, APP performs iterative
message passing while maintaining a balance between local and global information:

H(j+1) = (1− α) · P̂H(j) + α ·H(0), (1)

where P̂ = D̂−1/2ÂD̂−1/2 denotes the normalized transition matrix in the intra-graph with self-
loops, and α controls the retention of initial node features. This propagation scheme enables
the updated embeddings to capture neighborhood context while preserving crucial local structural
information Klicpera et al. (2019).

Simplified Graph Transformer. Subsequently, we introduce a Simplified Graph Transformer
(SGFormer) component that implements a global attention mechanism to dynamically model complex
interactions between residues across the entire binding interface Vinter = Vp ∪ Vae. Specifically, for
a pair of residues (vi, vj) in the given antibody-antigen binding region, we compute the attention
weight:

aij =
exp

(
H⊤

i WHj

)∑
k∈V exp

(
H⊤

i WHk

) ,
where W is a learnable weight matrix. Residue embeddings are updated through attention-weighted
aggregation:

Hi =
∑
j∈V

aij ·Hj .

This self-attention mechanism allows SGFormer to globally capture interactions between all residues
in the binding region, thereby capturing both local information and long-range dependencies.

Inter-Graph Refinement. To model the binding interface dynamics, we encode bi-directional
interactions between antibody paratope and antigen epitope residues into edge embeddings. For each
residue pair (vi, vj), where vi belongs to the antibody paratope and vj to the antigen epitope. The
updated pair-wise distance distij is:

distij = EdgeMLP (Hi ⊕Hj ,Hj ⊕Hi) .

These learned distances capture the complex chemical and spatial relationships between residues,
enabling dynamic refinement of the inter-graph structure through k-nearest neighbor selection. The
complete inter-graph refinement process is detailed in Appendix D.1.
Remark C.2. The integration of APP and SGFormer enables comprehensive refinement of both
residue and edge representations. APP preserving crucial local structural properties while facilitating
efficient information propagation, and the attention mechanism in SGFormer captures dynamic
residue interactions across the entire binding interface. This dual-approach enables precise modeling
of both local chemical interactions and long-range structural dependencies, which is crucial for
accurate antibody structure prediction, as we will show in our experiments.

C.4 ITERATIVE UPDATE

Our framework implements a sophisticated iterative learning process that incorporates triangle
attention mechanism Jumper et al. (2021) with a dual-EMP module to capture complex interactions
within antibody-antigen binding interfaces. The process begins with the initial embeddings Hfull =
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Hae ∪Hab and extracts the interface-specific representations Hinter = Hae ∪Hp from Hfull. The
corresponding coordinates Xfull = Xae ∪Xab and Xinter = Xae ∪Xp are initialized according
to Appendix D.3. For clarity, we denote Hfull as Hintra and Xfull as Xintra in subsequent
discussions.

Triangle Multiplicative Module. Within the paratope region Vp containing n residues, we construct
a normalized interaction matrix Z ∈ Rn×n to encode pairwise residue relationships for each residue
pair (vi, vj):

Zij = LayerNorm (MLP ([Hi ⊕Hj ])) .

The concatenation operation ⊕ ensures directional sensitivity through its non-commutative nature.
This interaction matrix undergoes iterative refinement through two complementary mechanisms:
triangle multiplicative module and axial attention.

The triangle multiplicative module processes embeddings through learnable normalized projections
to generate pair-wise residue interactions in the paratope:

Hl = WlZ, Hr = WrZ, Iij = (Hl)
⊤
i (Hr)j ,

where Wl and Wr are learnable weight matrices. The resulting pair-wise interactions are then
modulated by a gating mechanism and projected into the embedding space:

fout
triangle(H) = Wo · σ(WgZ) · I,

where σ(·) is the sigmoid function.

Axial Attention. The row-wise axial attention mechanism computes dynamic residue relationships
through a scaled dot-product attention:

fout
att (H) = softmax

(
Q⊤K√

dk

)
· V ,

where residue embeddings in Q = WqH , K = WkH , and V = WvH are generated by
fout
triangle(H), and Wq , Wk, and Wv are learnable parameters. The final paratope outgoing represen-

tation integrates both attention and triangle multiplicative mechanism:

fout(H) = fout
triangle(H) + fout

att (H).

The representations of the paratope region are updated iteratively integrating both outgoing and
incoming representations:

H(k+1) = H(k) + fout(H
(k)) + fin(H

(k)), (2)

where fin(H) represents the ingoing update analogous to the outgoing formulation but adopts
ingoing (column-wise) multiplicative interactions and column-wise attention. This bidirectional
updating process ensures that paratope embedding H captures both pairwise geometric interactions
via ftriangle and dynamic global dependencies via fatt.

After Ks iterations, the diagonal elements of paratope embeddings calculated by Equation 2 are
extracted to generate the final embeddings of paratope:

Hp = MLP
(

diag
(
H(K)

))
, (3)

Dual EMP Module. Next, we employ a dual-scale message-passing framework using two separate
EMP modules to model intra-graph Gintra and inter-graph Ginter interactions:(

H
(t+1)
intra ,X

(t+1)
intra

)
= EMPintra

(
H

(t)
intra,X

(t)
intra

)
,(

H
(t+1)
inter ,X

(t+1)
inter

)
= EMPinter

(
H

(t)
inter,X

(t)
inter

)
.

(4)

At each iteration, we update our graph representations according to Equation 4, and substitute the
paratope embeddings in the intra-graph H

(t+1)
intra using H

(t+1)
inter . On the other hand, coordinates for

intra- and inter-graph are maintained separately. This dual-scale message-passing framework enables
comprehensive modeling of both local residue relationships and global antigen-antibody interactions,
with each scale optimized for its specific context. Finally, residue connections are incorporated in the
updated embeddings for stable learning across different training iterations.
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C.5 IGFORMER PIPELINE

We present the key stages of the Igformer learning pipeline, with detailed training algorithms provided
in Appendix D.6. The process begins with the initialization of residue representations and coordinates.
Following this, the intra-graph is constructed for personalized information propagation, which is then
processed by the SGFormer for inter-graph refinement. The embeddings generated in this process
serve exclusively for inter-graph refinement and are not involved in the representation learning process.
Concurrently, a triangle attention module updates the representation of each residue in the paratope.
Finally, a dual EMP module processes residue representations to generate the final coordinates and
representations, which are then used for downstream structure and sequence prediction tasks.

The following theorem indicates that the coordinates generated by Igformer are E(3)-equivariant and
the residue embeddings are invariant.

Theorem C.3. Let Ĥi, X̂i = Igformer
(
H

(0)
i ,Xi

)
denote the embedding and coordinate

of vi generated by Igformer. For any transformation T ∈ E(3), we have Ĥi, T (X̂i) =

Igformer
(
H

(0)
i , T (Xi)

)
, where T (X) := QX + b denotes the E(3) transformation of X .

C.6 PREDICTION AND LOSS FUNCTION

Sequence Prediction. The i-th position in the amino acid sequence of the paratope is predicted using
its embedding:

si = softmax (MLP (Hi))

Structure Prediction. The 3D structures of paratope are generated by the coordinates X computed
in the last round of Dual EMP Module via Equation 4.

Loss Function. The loss function of Igformer consists of three components:
L = Lseq + Lstruct + Linterface (5)

Here, Lseq is the cross entropy loss that minimizes the dissimilarities between predicted and original
1D sequences. Lstruct minimizes the difference between reconstructed and ground-truth 3D structures.
Linterface optimizes the reconstructed inter-graph. Detailed descriptions of each component are
provided in Appendix D.7.

D SUPPLEMENTARY

D.1 GRAPH CONSTRUCTION

Intra-Graph Construction. The intra-graph construction process integrates both sequence and
structural information from the antibody-antigen complex. We begin by extracting information
from the antigen epitope Gae and antibody Gab, where each residue i serves as a graph node
vi. Each node encapsulates both its amino acid type and 3D coordinate information, providing a
comprehensive representation of its chemical and spatial properties. We formalize the intra-graph
as GIntra = (VIntra, EIntra), where VIntra = Vae ∪ Vab represents the union of antigen epitope residues
Vae and antibody residues Vab. Edge construction follows a distance-based approach, connecting
residues within their respective chains (either epitope or antibody). For each residue vi, we establish
connections to its k-nearest neighbors vj within the same chain based on Euclidean distances between
their spatial coordinates. The shortest distance between two residues is defined as the minimum
distance between any pair of atoms across two residues. This construction ensures that the intra-graph
captures meaningful spatial relationships within both the antigen epitope and antibody domains while
maintaining their distinct molecular contexts.

Inter-Graph Construction The inter-graph construction process integrates both sequence and
structural information from the antibody-antigen binding region. We construct an inter-graph GInter =
(Vp, Vae, EInter) to model critical paratope-epitope interactions between antibody paratope residues
Vp and antigen epitope residues Vae. Edge construction in the inter-graph is based on embedding
similarity between residue pairs. For paratope residues vi ∈ Vp and vj ∈ Vae with embeddings Hi

and Hj , we compute bidirectional interaction features:
zin = Hi ⊕Hj , zout = Hj ⊕Hi.
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Table 6: Well-conserved residue positions used in template generation.
Chain Positions Count

Heavy (H) 8, 15, 23, 41, 44, 50, 52, 98, 100, 102, 104, 118, 119, 121, 126, 127 16
Light (L) 5, 6, 16, 23, 41, 70, 75, 76, 79, 89, 91, 98, 102, 104, 118, 119, 121, 122 18

These concatenated embeddings are processed through a feed-forward neural network (FFN) to
generate interaction scores:

FFN(z) = σ(W2 · σ(W1 · z + b1) + b2), (6)

where W1 ∈ Rd×2d, W2 ∈ Rd×d, and b1, b2 ∈ Rd are learnable parameters, σ is the activation
function. The final pair-wise distance of (vi, vj) combines interactions from both directions:

distij = FFN(zin) + FFN(zout).

The edge set Einter is then constructed by selecting k-nearest residues of each vi ∈ Vp based on
these interaction scores. This construction focuses exclusively on paratope-epitope interactions,
providing a refined inter-graph structure of the binding interface that captures the essential dynamics
of antibody-antigen docking.

D.2 RESIDUE EMBEDDING

Our embedding framework captures comprehensive residue characteristics through two complemen-
tary components: residue-type and positional embeddings. First, we encode residue-type information
through H res

i ∈ Rd, which represents the biochemical properties of amino acid residue vi. This
embedding resides in a matrix of dimensions Nres × d, where Nres = 20 represents the number of
different amino acid types.

To preserve structural context, we implement position-specific embeddings Hpos
i ∈ Rd that encode the

sequential context of residues. This positional encoding maintains distinct indices for antigen, heavy
chain, and light chain segments, enabling the model to differentiate between different components.
The position embedding matrix has dimensions Nseq × dpos, where Nseq = 192 is the maximum
length of the sequence, ensuring consistent positional representation across all residue types while
maintaining chain-specific contexts.

Importantly, different segments of the sequence, such as the antigen, heavy chain, and light chain,
utilize distinct position indices to allow the model to differentiate between these regions.

The final residue representation integrates both biochemical and positional information through a
simple addition:

Hi = H res
i +Hpos

i . (7)

D.3 TEMPLATE-BASED COORDINATES

D.3.1 TEMPLATE GENERATION

The template generation process exploits a fundamental characteristic of antibody structures: the
high conservation within framework regions (FRs). We define a residue as well-conserved when its
amino acid type is maintained across at least 95% of antibodies in the dataset - a threshold optimized
through empirical analysis to balance the number of conserved residues against their structural
variability Kong et al. (2023a). Using this criterion, we identify 16 and 18 well-conserved residues
in the heavy and light chains, respectively. To construct template coordinates X temp, we compute
mean backbone atom coordinates (N, CA, C, O) in the main chains across all antibodies in the
dataset, establishing an initial backbone template {Xr ∈ R3×4|r ∈ Wtemp}, where Wtemp denotes
the positions of well-conserved residues as detailed in Table 6.

D.3.2 COORDINATE INITIALIZATION

Our coordinate initialization strategy employs a template-based approach that preserves actual
coordinates for the epitope region Ve while utilizing template-derived coordinates for paratope
regions requiring prediction.
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Each residue is represented using 14 atoms in 3D space, with coordinates denoted as Xae = {Xi ∈
R3 | vi ∈ Vae} for known positions and X temp = {Xr ∈ R3 | j ∈ Wtemp} for template-derived
positions (refer to Appendix D.3.1).

For residues with missing coordinates in the template, linear interpolation is employed. The missing
coordinate Xk for position k is calculated as follows:

Xk = Xleft +
k − left

right − left
(Xright −Xleft),

where left and right denote indices of nearest known template coordinates. The intersection of these
indices is denoted as Walign = Wtrue ∩Wtemp.

To ensure interpolation remains within valid sequence boundaries, left and right are constrained
as follows: 0 ≤ left < k < right ≤ Nseq, where Nseq is the total length of the original antibody
sequence. This ensures that interpolation remains within the structural constraints of the antibody
sequence while preserving the geometric continuity of the coordinates.

To ensure structural coherence, we align template coordinates with true coordinates by optimizing a
rigid-body transformation for shared indices Walign. The optimal transformation, comprising rotation
matrix Q ∈ R3×3 and translation vector t ∈ R3, is determined by solving the following optimization
problem:

argmin
Q,t

∑
i∈WAlign,j∈Wtemp

|Xi − (QXj + t)|2 , (8)

subject to Q⊤Q = I . After interpolation, we obtain the complete antibody coordinates as

X
′

ab = X temp ∪X interp, (9)
where X interp represents the set of interpolated coordinates for positions that are within the sequence
range but absent from the template. Formally,

X interp = {Xk | k = {0, · · · , Nseq − 1} and k /∈ Wtemp}. (10)
This ensures that interpolation is applied only to residues that are part of the original antibody
sequence but do not have known coordinates in the template. The resulting transformation for
alignment is then applied globally:

Xab = QX
′

ab + t, (11)
This initialization procedure primarily focuses on backbone atoms (N, CA, C, O), with side-chain
atoms initially positioned at their respective CA coordinates, establishing a foundation for subsequent
refinement.

D.3.3 COORDINATE PROCESSING

Following initial coordinate assignment, we implement a comprehensive normalization procedure to
ensure consistent scale and reference frame across the antibody-antigen complex X . For a system
with N total atoms, we first define an indicator function I(i) that distinguishes between antigen and
antibody atoms:

I(i) =
{
1 if vi ∈ Vae

0 if vi ∈ Vab
. (12)

Using this indicator function, we compute chain-specific centers of mass:

Xc =

∑N
i=1 Xi · I(i)∑N

i=1 I(i)
. (13)

The coordinates are then centered relative to their respective chain centers X
′

i = Xi −Xc. Finally,
we apply dimension-specific normalization to ensure consistent scale:

Xi =
X

′

i − µd

σd
,

where µd and σd represent the mean and standard deviation along dimension d across all atoms, with
a target standard deviation of σ = 10. This processing pipeline ensures that all atomic coordinates
are properly scaled and centered within their respective molecular contexts, facilitating subsequent
structural prediction tasks. Finally, we update the global coordinates again based on Equations 12
and 13.
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D.3.4 PARATOPE COORDINATES GENERATION

Our paratope coordinate generation framework implements a structured approach to initialize and
refine binding interface positions. The process begins by anchoring initial paratope coordinates to the
epitope center X0 = Xc where X0 represents the initial paratope coordinates and Xc represents the
coordinates of the epitope center calculated by Equation 13, which are assigned as initial positions
for all atoms in the paratope region. We then introduce controlled structural variations:

ϵi =

{
ϵca for CA atoms
0.1ϵo + ϵca for other atoms

,

where ϵo, ϵca ∼ N (0, 1). This differential noise incorporation ensures that CA atoms exhibit greater
conformational flexibility while maintaining structural coherence for other atoms through correlated,
smaller perturbations. The final paratope coordinates are computed as:

Xp = X0 + ϵi.

Our model maintains two distinct coordinate representations:

Xfull = Xae ∪Xab, (14)

where Xfull represents the complete antibody-antigen complex, with Xae denoting the epitope
coordinates and Xab representing the full antibody structure, including framework and paratope
regions.

Similarly, we define the focused binding interface representation as:

Xinter = Xae ∪Xp, (15)

where Xinter includes the epitope coordinates Xae and the generated paratope coordinates Xp, without
the full antibody framework.

This distinction ensures that the model can separately handle global structural representations Xfull
and the more localized binding interactions Xinter for improved prediction and analysis.

We employ the standardized IMGT/Chothia Chothia et al. (1989); Lefranc et al. (2003) to maintain
structural consistency across antibody chains.This well-established system assigns independent
position indices to each chain while preserving the original residue numbering from PDB structures.
For the antibody heavy chain, the framework regions and CDRs follow specific positional ranges, with
CDR-H1 typically spanning positions 23-35 and CDR-H3 occupying positions 104-118. Similarly, the
light chain maintains its distinct numbering convention, with CDR-L1 typically located at positions
27-38 and CDR-L3 at positions 105-117. This independent numbering approach ensures clear
differentiation between chain segments while facilitating accurate structural analysis and prediction.
To maintain a clear distinction between antibody and antigen components, all antigen residues are
uniformly assigned position 0, allowing the model to effectively distinguish between interacting
molecular components.

D.4 EPITOPE SELECTION

We implement a distance-based approach for epitope selection that identifies the most relevant antigen
residues interacting with the antibody CDR-H3. For each antigen residue vi ∈ Vag, we compute its
minimal distance to any CDR-H3 residue vj :

ˆdist(vi) = min
vj

disti,j ,

From these distances, we select the residues with top-k (typically k = 48) smallest distances to form
the antigen epitope:

Vae = {argmin
k

ˆdist(vi) | ∀vi ∈ Vag}.

This selection process ensures that we focus on the most critical residues involved in antibody-antigen
binding while maintaining computational efficiency. The fixed-size antigen epitope selection provides
a consistent representation of the binding interface, enabling robust structural prediction and analysis.
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D.5 PROOFS

In this section, we present the proofs of theorems in this paper, beginning with formal definitions of
SE(3) equivariance and SE(3) invariance.

D.5.1 PRELIMINARIES

Definition D.1 (E(3)-equivariance and SE(3)-invariance). Let φ : X → Y be a mapping function,
and let T ∈ E(3) denote a rigid transformation in three-dimensional space comprising rotation and
reflection, Q ∈ O(3) and a translation b ∈ R3. The transformation acts on coordinates as:

T (X) := QX + b, Q ∈ O(3), b ∈ R3.

Then:

• φ is E(3)-equivariant, if for any transformation X 7→ Xout = φ(X), we have T (Xout) =
φ
(
T (X)

)
.

• φ is E(3)-invariant if φ
(
T (X)

)
= φ(X) for all T ∈ E(3), i.e. T acts as identity transformation

in the output space.

In our model architecture, 3D coordinates are E(3)-equivariant, meaning they transform consis-
tently with input transformations, while residue embeddings demonstrate E(3)-invariance, remaining
unchanged under rigid transformations.

Notations. Next, we summarize the notations used throughout our analysis.

• Let {(H(l)
i ,X

(l)
i )}ni=1 denote the residue embeddings H(l)

i ∈ Rd and 3D coordinates X(l)
i ∈ R3

at layer l.

• Let H(l)
eij be the edge feature between residues vi and vj at layer l.

• Let T (X) := QX + b denote a rigid transformation in E(3).

Below, we will show that Igformer maintains coordinate equivariance and embedding invariance
under these transformations at each layer, following Definition D.1.

D.5.2 E(3)-EQUIVARIANCE OF THE COORDINATES

We begin by establishing the E(3)-equivariance property of coordinate predictions in the EMP module.
Lemma D.2 (Linear Transformation of Coordinate Differences). For coordinates differences
∆X

(l)
ij := X

(l)
i − X

(l)
j , applying T ∈ E(3) to coordinates: X̃

(l)
i = T (X

(l)
i ) = QX

(l)
i + b,

results in ∆X̃
(l)
ij = Q∆X

(l)
ij .

Proof. By direct substitution:

X̃
(l)
i − X̃

(l)
j = (QX

(l)
i + b)− (QX

(l)
j + b) = Q

(
X

(l)
i −X

(l)
j

)
= Q∆X

(l)
ij .

The translation b cancels, leaving only the rotation Q.

Lemma D.3 (Geometry-Based Operations). Geometric Operations in Igformer, including pairwise
distances ∥Xi −Xj∥, dot products, and dihedral angles, remain invariant under any T ∈ E(3).

Proof. A translation b always cancels in Xi −Xj . A rotation Q ∈ O(3) preserves Euclidean norms
and dot products:∥Qv∥2 = ∥v∥2. Therefore, all geometric operations remain invariant under T .

Theorem D.4 (E(3)-Equivariance of Coordinates in EMP). At layer l, Igformer updates coordinates
through the following sequential operations:

S
(l)
ij = MLP

(
∥∆X

(l)
ij ∥2, . . .

)
, (geometry-based score)

H(l+1)
eij = EdgeMLP

(
H

(l)
i ⊕H

(l)
j ⊕ S

(l)
ij ⊕H(l)

eij

)
,

X
(l+1)
i = X

(l)
i +

∑
j∈N (i)

∆X
(l)
ij · CoordMLP

(
H(l+1)

eij

)
.
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This update rule is E(3)-equivariant on coordinates. Concretely, applying T to input coordinates
{X(l)

i } results in the same transformation T being applied to output coordinates {X(l+1)
i }.

Proof. By Lemma D.3, S(l)
ij and consequently H

(l+1)
eij remain unchanged when input coordinates

are transformed by T . Let w(l+1)
ij := CoordMLP

(
H

(l+1)
eij

)
. Then:

X
(l+1)
i = X

(l)
i +

∑
j∈N (i)

∆X
(l)
ij ·w(l+1)

ij .

Under transformation T : X
(l)
i 7→ QX

(l)
i + b, we have:

X̃
(l+1)
i = X̃

(l)
i +

∑
j∈N (i)

[
X̃

(l)
i − X̃

(l)
j

]
·w(l+1)

ij

(
same w

(l+1)
ij

)
= (QX

(l)
i + b) +

∑
j∈N (i)

[
Q(X

(l)
i −X

(l)
j )

]
·w(l+1)

ij

(
Lemma D.2

)
= QX

(l)
i + b+Q

∑
j∈N (i)

(X
(l)
i −X

(l)
j ) ·w(l+1)

ij

= Q
[
X

(l)
i +

∑
j∈N (i)

∆X
(l)
ij ·w(l+1)

ij

]
+ b

= QX
(l+1)
i + b = T

(
X

(l+1)
i

)
.

Therefore, applying g to input coordinates leads to T
(
X

(l+1)
i

)
in output coordinates. By induction

over all layers, Igformer maintains E(3)-equivariance through its coordinate computation in the EMP
module.

D.5.3 E(3)-INVARIANCE OF THE RESIDUE EMBEDDINGS

We now prove that residue embeddings Hi remain numerically invariant under global rigid transfor-
mation of the input 3D structure.

Lemma D.5 (Base Case for Embedding Invariance). Residue embeddings H
(0)
i are initialized

using rigid independent features like residue identity, positional index, etc., making them inherently
invariant under any transformation T ∈ E(3).
Lemma D.6 (Edge Feature Update Invariance). For edge updates of the form:

H(l+1)
eij = EdgeMLP

(
H

(l)
i ⊕H

(l)
j ⊕ S

(l)
ij ⊕H(l)

eij

)
,

where S
(l)
ij represents geometry operations (distance, dot product, etc.). If H(l)

i ,H
(l)
j are invariant

and S
(l)
ij is unaffected by T (Lemma D.3), then H

(l+1)
eij maintains invariance.

Proof. The EdgeMLP receives numerically identical inputs regardless of coordinate transformation
QX

(l)
i + b, ensuring H

(l+1)
eij remains unchanged.

Theorem D.7 (E(3)-Invariance of Residue Embeddings). Given Igformer’s residue embedding update
rule:

H
(l+1)
i = H

(l)
i + NodeMLP

(
H

(l)
i ⊕

∑
j∈N (i)

H(l+1)
eij

)
,

or its self-attention variant, the embeddings H(l+1)
i remain invariant under any global transformation

T ∈ E(3). By extension, Igformer’s final embeddings Hi maintain E(3)-invariance.

Proof. We prove this theorem through induction: Base Case. By Lemma D.5, initial embeddings
H

(0)
i are independent of 3D coordinates.

Inductive Step. Assume {H(l)
i } is already invariant under T .
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• According to Lemma D.3, any geometry-based scalar S(l)
ij remain unchanged under T .

• According to Lemma D.6, edge features H(l+1)
eij maintain invariance under T .

• Consequently, all inputs to the residue-level update MLP/attention remain unchanged under T .

Therefore, H(l+1)
i maintains invariance under T . By induction across layers, Igformer’s residue

embeddings are E(3)-invariant.

Proof of Theorem C.1. Combining Theorems D.4 and D.7, we show that coordinates in the
EMP module are E(3)-equivariant and embeddings are E(3)-invariant, which finishes the proof of
Theorem C.1.
Lemma D.8. The embeddings updated by inter-graph refinement and triangle multiplicative module
(TMM) modules are invariant.

Proof. The APP and SGFormer components update embeddings through weighted aggregation:
Hi =

∑
j∈V Hj with residue connections. These operations are independent of coordinates Xi.

Given that Hi is invariant under transformation T , the MLP/attention operations preserve E(3)-
invariance during embedding updates.

The Triangle Multiplicative module processes pairwise embeddings Zij = MLP(Hi,Hj) without
direct dependence on coordinates Xi. Since Hi maintains invariance under T , the pairwise features
and subsequent internal operations (row/column gating/attention) on Z preserves E(3)-invariance.
The merging of Z into Hi through MLP/attention operations maintains this invariance property.

D.5.4 PROOF OF THEOREM C.3

Combining Theorem D.4, Theorem D.7, and Lemma D.8, we conclude:
Theorem D.9 (Igformer is E(3)-Equivariant (Coordinates) and E(3)-Invariant (Embeddings)). Let
{H(0)

i , X
(0)
i }i∈V be the initial inputs (node features, coordinates). Suppose Igformer generetes

final outputs as follows: {
H

(final)
i ,X

(final)
i

}
= Igformer

({
H

(0)
i ,X

(0)
i

})
.

Then, for any T ∈ E(3), we have:{
H

(final)
i , T

(
X

(final)
i

)}
= Igformer

({
H

(0)
i , T

(
X

(0)
i

)})
.

Proof. The proof follows by chaining layer-wise properties:

• By Theorem D.4, the coordinate update at each layer maintains E(3)-equivariance. Through
induction across layers, this property extends to the entire coordinate transformations.

• Similarly, Theorem D.7 and Lemma D.8 establish that residue feature update at each layer pre-
serves E(3)-invariance. By induction, this invariance property carries through to the final residue
embeddings.

Therefore, the complete Igformer model satisfies both equivariance and invariance properties as stated
in the theorem.

D.6 ALGORITHMS

The training process iterates three times per batch, with each iteration updating the epitope coordinates
and embeddings, followed by the reconstruction of intra-graph and inter-graph connections. The final
iteration is utilized for loss function calculation. Algorithm 1 shows the pseudo-code of the iterative
updating process in Igformer. Detailed descriptions from Lines 3-8 are provided in Sections C.3-C.4.
In the first iteration (T = 1), we use the initialized embeddings for calculation. For subsequent
iterations (T ∈ {2, 3}), both embeddings and coordinates are updated accordingly. (i) The full
embedding update is given by Hfull = MLP(Hintra) +H

′

full, where H
′

full = {Hae,H
′

ab}. The
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Algorithm 1 Iterative update for antibody-antigen binding interface
Input: Initial embeddings, coordinates, number of iterations T , number of layers t
Output: Updated embeddings and coordinates
1: for T = 1 to 3 do
2: Construct intra-graph and inter-graph according to Appendix D.1 using embeddings and coordinates

calculated
3: for t = 1 to 3 do
4: if t = 1 then
5: Triangle multiplicative update for paratope
6: end if
7: Dual EMP update
8: end for
9: Update the epitope coordinates and embeddings

10: if T = 3 then
11: Calculate training loss
12: end if
13: end for

paratope region is specifically updated using attention weights: H
′

ab = {P ⊙Hp,Hab\p}, where
P = MLP(Hp) assigns different weights to different residues through element-wise multiplication
⊙, while maintaining embeddings of non-paratope regions Hab\p. (ii) The coordinate update follows
a similar strategy, replacing the original epitope coordinates: Xfull = {X ′

ae,Xab}, ensuring
consistent transformation patterns between embedding and coordinate spaces.

D.7 LOSS FUNCTION

Our training objective combines multiple loss terms to ensure accurate prediction of both sequence
and structure.

Sequence Loss. The Sequence Negative Log Likelihood (SNLL) loss evaluates sequence prediction
accuracy for masked positions in CDR regions:

Lseq = − 1

|Vp| · |R|
∑

vi∈Vp

∑
r∈R

yi,r log(softmax(MLP(Zi))r), (16)

where Vp is the set of masked residues in epitope-binding CDRs, Zi is the output embedding of
residue vi, R is the set of all possible residue types, yi,r indicates the ground truth residue type through
one-hot encoding. MLP(Zi) outputs a vector of logits for each residue type and softmax(MLP(Zi))r
gives the predicted probability for each residue type r ∈ R.

Structural Loss. For structural accuracy, we employ a coordinate loss computed over the full
antibody structure Xab:

Lcoord =
1

|Vab|
∑

vi∈Vab

ℓhuber(X
pred
i −X true

i T )

using the Huber loss function:

ℓhuber(x) =

{
0.5x2, if |x| < δ

δ(|x| − 0.5δ), otherwise
.

where T represents the optimal rigid transformation obtained through Kabsch alignment algorithm
Kabsch (1976) using backbone atoms (N, Cα, C, O) of each residue, Xpred

i and X true
i are the predicted

and ground-truth 3D coordinates for residue vi, δ = 1 is the threshold parameter.

To maintain chemical validity, we include a backbone bond loss:

Lbond =
1

|A|
∑
b∈A

ℓhuber(b
pred − btrue)

where A contains all atoms in the antibody, bpred and btrue are the predicted and ground-truth bond
length derived from Xpred and X true, respectively. The final structure loss is the combination of the
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coordinate loss and the backbone bond loss:

Lstruct = Lcoord + Lbond (17)

Interface Loss. The interface loss evaluates the quality of predicted interactions between antibody
paratope and antigen epitope regions using Xinter. This loss comprises two components: a structural
accuracy term and an edge distance prediction term. The structural accuracy loss measures the
deviation of predicted atomic coordinates from their true positions in the paratope region:

Lstruct =
1

|P|
∑
i∈P

ℓhuber(X
pred
k −X true

k ),

where P denotes the set of atoms in the antibody paratope region, and Xpred
k and X true

k denote the
predicted and true 3D coordinates for atom k, respectively. The edge distance prediction loss assesses
the accuracy of predicted residue interactions within the binding interface:

Ledge =
1

|Einter|
∑

(vi,vj)∈Einter

ℓhuber(fθ(hi,hj)− dist∗ij),

where Einter is the set of epitope-paratope residue pairs at the interface with vi ∈ Vae from the epitope
and vj ∈ Vp from the paratope. The network fθ predicts inter-residue distances based on residue
embeddings Hi and Hj as input, dist∗ij is computed directly from coordinates as the minimum
distance between atoms, hi and hj , which are compared against true distances dij∗ computed from
atomic coordinates.

The total interface loss combines these components:

Linterface = Lparatope + Ledge (18)

Final Loss Function. By combining Equations 16-18, the final loss function is calculating following:

Ltotal = Lseq + Lstruct + Linterface. (19)

This comprehensive loss function ensures accurate prediction of both sequence and structure while
maintaining chemical validity and interface quality.

E ADDITIONAL EXPERIMENTAL SETTINGS

E.1 DATASETS

Our antibody dataset preprocessing pipeline leverages the Structural Antibody Database (SAbDab)
snapshot from November 2022, with structures pre-numbered using the IMGT numbering scheme
Lefranc et al. (2003). The IMGT system provides precise residue numbering for antibody structures,
defining specific ranges for framework regions (FR) and complementarity determining regions
(CDRs) in both heavy and light chains. For the heavy chain, these ranges encompass FR-H1 (1-26),
CDR-H1 (27-38), FR-H2 (39-55), CDR-H2 (56-65), FR-H3 (66-104), CDR-H3 (105-117), and
FR-H4 (118-129), with parallel definitions for the light chain regions. This standardized numbering
scheme is crucial for consistent processing and analysis across all antibody structures.

We implement stringent filtering criteria, focusing exclusively on protein and peptide antigens while
ensuring no chain overlap between antibody and antigen components. Other potential antigen types
like small molecules, nucleic acids, or carbohydrates are excluded from our dataset. The validation
process enforces three critical requirements: structural completeness, with verification of conserved
residues (CYS23, CYS104, TRP41) in both chains; correct IMGT numbering across all regions; and
comprehensive atomic coordinate validation, including backbone and sidechain atoms, with a 6.6 Å
contact distance threshold for residue interactions.

The final dataset preprocessing stage involves sequence-based clustering using MMseqs2 with a 40%
identity threshold, particularly focusing on CDR-H3 sequence similarity. This process yields 3,246
training and 365 validation antibodies. The curated SAbDab dataset serves as the foundation for both
the RAbD Dunbar et al. (2013) (60 PDB structures) and the IgFold Ruffolo et al. (2023a) benchmark
dataset (51 structures), ensuring consistent quality and standardization across all experimental
evaluations.
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Table 7: Structure of the EMP module.
Component Layer Structure
Initialization Network Linear(64 → 128), Dropout(0.1)
Radial Feature Network Linear(196 → 128), Post-normalization

EdgeMLP
Input: source features[128] ⊕ target features[128] ⊕ radial features[128]
Linear(384 → 128), SiLU(), Dropout(0.1)
Linear(128 → 128), SiLU(), Dropout(0.1)

CoordMLP Linear(128 → 128), SiLU(), Dropout(0.1)
Linear(128 → 3)

NodeMLP Linear(64 → 128), SiLU(), Dropout(0.1)
Linear(128 → 128), SiLU(), Dropout(0.1)

E.2 IMPLEMENTATION DETAILS

We implement Igformer using PyTorch Paszke et al. (2019) and train the model on a single GeForce
RTX 3090 Ti GPU using the Adam optimizer Kingma (2015). The model training process utilizes a
batch size of 16, running for 150 epochs in task 1 and 300 epochs for tasks 2-4, while preserving the
10 best-performing model checkpoints throughout the training phase of each individual task. The
model architecture employs a 64-dimensional embedding space for antibody feature representation,
14 channels (i.e., 14 atoms) for each residue, and 3 iterations. The graph structure connects each
residue to its 9 nearest neighbors (k = 9). The model incorporates a dropout rate of 0.1 (dropout =
0.1) to enhance generalization. Training proceeds through 3 iterations per batch, with each iteration
updating epitope coordinates and embeddings, followed by reconstruction of intra-graph and inter-
graph connections. The final iteration is used for loss calculation. For structure analysis, the model
defines interacting residues in the antibody-antigen interface using a binding distance threshold of
6.6 Å.

The optimization process employs gradient clipping at 1.0 and implements an adaptive learning rate
schedule. The learning rate decays exponentially from 0.0013 to 0.0001 across the training epochs,
with the decay factor determined as ln(0.0001/0.0013), divided by the total number of training steps,
ensuring a smooth convergence to the target learning rate.

Feature Initiation. Igformer employs two parallel embedding components to construct the initial
residue representation. First, the residue type embedding transforms each amino acid into a 64-
dimensional vector using a learned embedding matrix of size 25 × 64, where 25 accounts for the
20 types of amino acids and special tokens. Each amino acid is mapped to a unique embedding
vector H res

i that captures its chemical and physical properties. The positional information is encoded
through a separate learned embedding matrix of size 192 × 64, which maps each position in the
sequence to a 64-dimensional vector Hpos

i . This enables the model to maintain sequential context
for sequences up to 192 residues in length, allowing differentiation between identical amino acids at
different positions. The final feature representation Hi is computed through element-wise addition of
these two embeddings. This additive combination maintains the 64-dimensional feature space while
integrating both residue identity and positional context, enabling the model to learn position-aware
representations with comprehensive chemical information.

EMP Module. The EMP module iterates three times (3 blocks) and consists of several key com-
ponents: feature initialization, feature similarity network, EdgeMLP, CoordMLP and NodeMLP
with residual connections, as detailed in Table 7. Each layer incorporates dropout Srivastava et al.
(2014) mechanisms after activation functions. The similarity features are normalized after being
mapped from 196 to 128 dimensions, including simres

ij and simatom
ij . The iterative application of

these components ensures efficient updates of both node features and coordinate transformations
while maintaining stable training dynamics through the dropout mechanism. The EdgeMLP processes
concatenated input features of dimension 384, comprising source node features (128), target node
features (128), and similarity features (128). This design enables the model to effectively capture
interactions between residues while preserving both structural and relational information crucial for
antibody representation.

APP and SGFormer. As shown in Table 8, the inter-grpah refinment network consists of two main
components. First, the APP module conducts 16 steps of propagation with α = 0.1, , allocating
90% weight to neighbor-propagated information while retaining 10% of original residue features.
This enables effective information spread across the graph while preserving essential original residue
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Table 8: Structure of the inter-grpah refinement module.
Component Layer Structure
APP Propagation with residue connection (128 → 128)

SGFormer Layer (5 blocks)
Input: Linear(128 → 64)
Query: Linear(64 → 64), Key: Linear(64 → 64), Value: Linear(64 → 64)
LayerNorm, Residual (α = 0.9), Dropout(0.5)

Output Linear(64 → 128)

Table 9: Structure of the triangle module.
Component Layer Structure

Feature Pair MLP Input: features i[128] ⊕ features j[128]
Linear(256 → 256), SiLU(), Dropout(0.1)

Triangle Multiply (outgoing/incoming) Input: Matrix(n× n× 256)
Linear(256 → 256), SiLU(), Linear(256 → 256)

Triangle Attention (outgoing/incoming)
Input: Matrix(n× n× 256)
Query: Linear(256 → 256), Key: Linear(256 → 256), Value: Linear(256 → 256)
LayerNorm()

Dimension Reduction Input: Diagonal(n× 256)
Linear(256 → 128), LayerNorm()

characteristics. The SGFormer component employs 5 single-head attention layers, computing
attention once per layer rather than utilizing multiple attention heads. In its residual connections after
each transformer layer, it uses α = 0.9, emphasizing transformed features (90%) while maintaining
minimal previous layer information (10%). Layer normalization is applied to the 64-dimensional
feature space after each attention computation, working in conjunction with dropout (0.5) to regulate
feature magnitudes and ensure training stability.

Triangle Module. The triangle network consists of two main components, as detailed in Table
9. First, the triangle multiplication module performs feature pair-wise propagation with directed
connections. For each sequence of n residues, it constructs an n× n matrix by concatenating paired
residue features (128-dim) and projecting them to 256-dimensional space via an MLP, establishing
directed connections where Zij ̸= Zji. The triangle attention component uses four sequential
operations: multiply outgoing, multiply incoming, attention outgoing, and attention incoming. Each
operation maintains the n× n× 256 dimensionality while enabling distinct information flows. The
multiply operations use MLPs for feature transformation while preserving the triangle structure,
whereas the attention operations employ single-head self-attention with query/key/value projections
to capture long-range dependencies. The final step extracts diagonal elements and reduces them to
128 dimensions for network compatibility. The implementation incorporates a dropout rate of 0.1 and
SiLU activation functions across all linear projections. Layer normalization is applied after attention
operations, and an additional normalization step in the final dimension reduction. The entire module
operates on a per-sequence basis, processing each unique sequence independently before the features
are reassembled.

Dual EMP Module. The Dual EMP architecture extends the base EMP module by operating on two
distinct graph structures simultaneously. It processes the intra-graph and inter-graph representations,
along with their respective coordinates (Xfull and Xinter), while maintaining shared embeddings
between them. A detailed description of this architecture is provided in Section C.4.

Embedding Distance. As detailed in Table 10, The edge distance MLP computes pairwise distances
between residue embeddings. First, it concatenates pairs of 128-dimensional residue embeddings
into 256-dimensional vectors. These concatenated features are processed through a two-layer MLP
with SiLU activations. The final linear projection produces a scalar value representing the predicted
pairwise distance or interaction strength.

Residue Type Prediction. As shown in Table 10, the residue type prediction MLP converts the learned
128-dimensional residue representations into probability distributions over 20 amino acid classes
through a two-layer MLP with skip connections. The architecture processes features sequentially:
an initial SiLU activation and linear projection preserve the 128-dimensional space, followed by a
second SiLU activation and final linear transformation that maps to 20-dimensional amino acid class
probabilities.
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Table 10: Structure of the edge distance MLP and prediction MLP.
Component Layer Structure

Edge Distance MLP Input: residue i[128] ⊕ residue j[128])
SiLU(), Linear(256 → 128), SiLU(), Linear(128 → 1)

Prediction MLP Input: hidden features[128]
SiLU(), Linear(128 → 128), SiLU(), Linear(128 → 20)

E.3 BASELINES

For the baselines, we adopt the hyperparameters and training procedures from their official releases
since all methods utilize SAbDab to construct training sets of similar scale and distribution. We save
model parameters from the top 10 validation rounds, compute metrics for each model independently,
and report the mean values as final results. State-of-the-art models on each task are included as
competitors.

In Task 1, we evaluate against RosettaAb, an energy-based method using statistical functions Adolf-
Bryfogle et al. (2018); DiffAb, a diffusion-based generative model Luo et al. (2022); MEAN, an
equivariant attention network Kong et al. (2023b); HERN, an end-to-end framework limited to
CDR-H3 Jin et al. (2022a); and dyMEAN, an adaptive multi-channel equivariant network Kong et al.
(2023a).

For Task 4, we compare Igformer against IgFold⇒HDock, IgFold⇒HERN, GT⇒HERN, and
dyMEAN, each employing different docking strategies. IgFold⇒HDock follows a two-stage pipeline
where IgFold first predicts the antibody structure Ruffolo et al. (2023a), and HDock Yan et al.
(2020), using knowledge-based scoring functions, performs docking. IgFold is a specialized version
of AlphaFold tailored for antibody structure prediction, while HDock applies traditional docking
approaches. In contrast, IgFold⇒HERN adopts a similar two-stage approach but replaces HDock
with HERN Jin et al. (2022a), which takes the IgFold-predicted backbone structure as input and
generates docked backbones, followed by Rosetta for side-chain packing Adolf-Bryfogle et al.
(2018). GT⇒HERN further extends this pipeline by using ground truth antibody structures instead
of predicted ones, allowing HERN to dock CDR-H3 along with other regions toward the epitope,
thus providing an upper bound on performance by leveraging perfect structural information. Unlike
these multi-stage pipelines, dyMEAN distinguishes itself as a fully end-to-end approach that directly
models antigen-antibody interactions without requiring separate structure prediction and docking
stages Kong et al. (2023a).

We adopt hyperparameters and training procedures from their official releases, as all methods utilize
SAbDab for training. Specifically, HERN by Jin et al. Jin et al. (2022a) uses a larger hidden size of
256 with four layers and 16 RBF kernels for distance embedding. DiffAb by Luo et al. Luo et al.
(2022) employs a hidden size of 128, a pair feature size of 64, six layers, and 100 diffusion steps.
MEAN and dyMEAN share similar parameters, including an embedding size of 64, a hidden size
of 128, three layers, three iterations, and nine nearest neighbors. dyMEAN introduces an additional
parameter, d = 16, for atom type and position embedding. All baseline models use nine neighbors for
KNN graph construction.

E.4 METRICS

We employ a comprehensive set of metrics to evaluate model performance in both antibody 1D
sequence and 3D structure prediction tasks, encompassing both structural accuracy and sequence
recovery:

• DockQ Basu & Wallner (2016): This metric evaluates antibody-antigen interaction quality, espe-
cially within the paratope-epitope binding region. While the model optimizes paratope-epitope
interactions within a specific cutoff distance during training, its evaluation considers interactions
with the complete antigen structure, ensuring a comprehensive assessment of binding interface
prediction.

• Root Mean Square Deviation (RMSD): This metric measures structural accuracy by calculating
unaligned distances between predicted and actual CA atoms in CDR regions, providing direct
assessment of local structural precision.
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Table 11: Comparison of different paratopes.
Task 1

Paratope TMscore↑ lDDT↑ RMSD↓ DockQ↑
H3 0.9757 0.8650 7.15 0.45
H3 + L3 0.9734 0.8512 8.05 0.41

Task 2
H3 0.9706 0.8195 - 0.4255
H3 + L3 0.9750 0.8311 - 0.4817

Task 3
H3 0.9681 0.7580 - 0.4600
H3 + L3 0.9667 0.7490 - 0.4367

Task 4
H3 0.9730 0.8677 7.88 0.522
H3 + L3 0.9710 0.8631 8.25 0.4931

• TM-score Zhang & Skolnick (2005): This metric assesses global structural similarity between
predicted and reference antibody structures, evaluating the overall quality of structure prediction
across the entire antibody.

• Local Distance Difference Test (lDDT) Mariani et al. (2013): This metric provides an atomic-level
assessment of local structural accuracy by comparing predicted and actual atomic positions across
the entire antibody, offering detailed insights into structural fidelity.

• Amino Acid Recovery (AAR): This metric calculates the fraction of correctly predicted amino
acids across the entire sequence, measuring overall sequence prediction accuracy.

• Contact AAR Ramaraj et al. (2012): This metric specifically evaluates prediction accuracy for
residues in direct contact with the epitope, defined by a 6.6 Å distance threshold, focusing on
binding interface accuracy.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADDITIONAL ABLATION STUDY

Choice of Paratope. We investigate the impact of paratope selection by comparing models using
CDR-H3 alone versus both CDR-H3 and CDR-L3 regions. As shown in Table 11, the choice of
paratope influences model performance across different tasks. For Task 1, using only CDR-H3
achieves superior performance with a TMscore of 0.9757, lDDT of 0.8650, RMSD of 7.15, and
DockQ score of 0.45, compared to 0.9734, 0.8512, 8.05, and 0.41 respectively when including both
CDR-H3 and L3. This trend continues in Task 3, where CDR-H3 alone yields better TMscore (0.9681
vs 0.9667), lDDT (0.7580 vs 0.7490), and DockQ (0.4600 vs 0.4367). Task 4 follows a similar
pattern with improvements across all metrics when using only CDR-H3. Interestingly, Task 2 exhibits
different characteristics, where including both CDR-H3 and CDR-L3 leads to improved performance,
with TMscore increasing from 0.9706 to 0.9750, lDDT from 0.8195 to 0.8311, and DockQ from
0.4255 to 0.4817. These results underscore the importance of task-specific paratope selection for
optimal performance.

Ablation Study on Task 4. We conduct additional experiments to evaluate the individual contributions
of key components in Igformer for complex structure prediction. Table 12 presents the performance
impact of removing each architectural component. Our observations are as follows. Both the triangle
multiplicative module and axial attention prove critical to model performance. The removal of TM
leads to the most significant degradation, with RMSD increasing to 8.12 and DockQ dropping to
0.447, while removing AA results in an RMSD of 8.06 and DockQ of 0.453. Additionally, replacing
the dual EMP architecture with a single message passing framework diminishes performance, with
RMSD rising to 7.99 and DockQ decreasing to 0.452. These systematic evaluations further validate
the essential contribution of each component in Igformer.

F.2 HYPERPARAMETER ANALYSIS

As illustrated in Figure 5, we analyze the impact of learnable weight factor w (refer to Section C.2) on
similarity computation across Tasks 1-4. The DockQ, as a primary performance metric, consistently
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Table 12: Ablation study on complex structure prediction.

Model Generation Docking
TMscore↑ lDDT↑ RMSD↓ DockQ↑

Igformer 0.9730 0.8677 7.88 0.522
- APP 0.9718 0.8603 7.95 0.449
- SGFormer 0.9725 0.8614 7.92 0.453
- TM 0.9709 0.8543 8.12 0.447
- AA 0.9708 0.8565 8.06 0.453
- Dual EMP 0.9725 0.8611 7.99 0.452
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Figure 5: DockQ scores for varying w values across four tasks, with the peak observed at w = 0.2,
emphasizing the importance of geometric distance in similairty matrix computation.

achieves its peak at w = 0.2 across all tasks. This optimal value indicates that atom-level similarity
plays a predominant role in model performance. While both residue-level similarity (parameterized by
w) and atom-level similarity contribute to modeling structural interactions, the optimal performance
at w = 0.2 suggests that emphasizing atomic information (0.8) over residue-level features (0.2)
most effectively captures antibody-antigen interactions. This finding provides crucial guidance for
optimizing similarity matrix parameters in antibody sequence design and structure prediction tasks.

F.3 ADDITIONAL CASE STUDY OF TASK 1

Figure 6 illustrates more antibody structures generated by Igformer in Task 1.
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pdb: 1a14
RMSD: 0.9516
lDDT: 0.8356
DockQ: 0.683

pdb: 1fe8
RMSD: 0.9114
lDDT: 0.8706
DockQ: 0.523

pdb: 1ic7
RMSD: 0.5237
lDDT: 0.9173
DockQ: 0.979

pdb: 1uj3
RMSD: 0.7639
lDDT: 0.8801
DockQ: 0.789

pdb: 4ffv
RMSD: 0.8123
lDDT: 0.8431
DockQ: 0.563

pdb: 5d93
RMSD: 0.7198
lDDT: 0.8866
DockQ: 0.673

Figure 6: Additional antibody structures generated by Igformer.
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