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ABSTRACT

Having fine-grained vaccination data enables authorities to discover and target de-
ficiencies in vaccination endeavors more easily and focused, leading in the best
case to better containment of outbreaks. In many countries there are two factors
that hinder more detailed breakdowns of vaccination data: Firstly, vaccinations
are registered solely by place of vaccination, instead of the actual residency of
the vaccinated person. Additionally, significant proportions of the population in
rural areas travel to neighboring, more urban counties, to receive vaccinations.
For related vaccination efforts for SARS-CoV-2, these factors resulted in very
distorted vaccination numbers, with some counties having theoretical vaccination
rates exceeding 100%. Furthermore, a lack of vaccination registry which records
exact days and vaccine types for each person decreases retractability. It is well
established, though, that for SARS-CoV-2 the effectiveness of vaccinations de-
creases over time. Therefore, exact calculations of actual effectiveness depending
on the day and type of the last vaccination are not possible, either. Our work
presents a two-part approach to tackling this problem and delivering more reliable
county-wide data, using Germany as an example. In the first step, we reverse the
aforementioned effect of vaccination tourism using a flow-based linear program-
ming model. In the second step, we approximate a vaccination registry per county
using daily vaccination data of each county’s health authority. Combining recent
insights in the effectiveness of SARS-CoV-2 vaccines regarding contagiousness
over time, we calculate lower and upper bounds of the current effectiveness of
vaccinations per county via linear programming and show that these are in fact
close to each other.

1 INTRODUCTION

Vaccinations play a crucial role in decreasing global disease spread. This was highlighted with
the recent SARS-CoV-2 pandemic, which caused speedy innovation of a variety of vaccines with
different effectiveness. Many states and their corresponding health authorities thus established in-
frastructure to collect data on their vaccinated doses. Sufficiently tracking the number of shots
administered has several benefits: First, this yields a basis to communicate its effectiveness to the
public more easily. Second, this data enables decision-makers to discover and target deficits in
vaccination endeavors more easily and focused, in the best case leading to better containment of
outbreaks (Mathieu et al., 2021). However, different countries approached this task differently. In
Germany, for instance, the data was collected based on where the vaccination dose was adminis-
tered which may not necessarily be synonymous with the living location for that individual. This
raised the problem that vaccination and therefore immunity rates could not be calculated from the
raw vaccination numbers.
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In this paper, we focused on reversing the effects of vaccination tourism and rebalancing the data
to provide vaccination numbers based on residence. Furthermore, we calculate the immunity pro-
vided by the vaccinations, taking into account the vaccine effectiveness and deliver upper and lower
immunity bounds for each area.

2 METHODS

2.1 COUNTY-WIDE VACCINATION REBALANCING WITH LINEAR OPTIMIZATION

In order to rebalance the county vaccination data to be based on residency instead of vaccination
location, we use the official vaccination data released by the German public health institute, Robert
Koch Institute (RKI) (Koch-Institut, 2022b). We focus on protection levels 1 to 3 here, which are
defined as the first three vaccinations for most used vaccines except the Janssen vaccines which were
counted as a protection level 2 after the first dose was administered.

Taking into account residency records, we limit the residency-based vaccination rate at 100% per
protection level. Furthermore, we use the gravity law of human mobility (Zipf, 1946) and assume
people do not travel far to get vaccinated. The problem motivates modelling with a graph, G =
(V,E), representing all counties as nodes and edges between close counties, defined as the shortest
distance being less than 10 km between all county border points. For every county i ∈ V , let vi
be its amount of vaccinations given by our data for a specific protection level, and let pi be its total
population.

For every edge (i, j) ∈ E from county i to j, we find the number of people x(i,j) that live in
j but got vaccinated in i. Further assuming people only travel to close counties: We transfer for
every edge (i, j) ∈ E all x(i,j) of shots from i to j. Formally, this yields for every county i ∈ V
new vaccination amounts, ṽi(x) := vi +

∑
j:(j,i)∈E x(j,i) −

∑
j:(i,j)∈E x(i,j). Assuming a smooth

distribution between counties, we can make the sum of movements M as small as possible, M(x) :=∑
e∈E xe.

We also assume there is an inherent truth in our data, i.e., a county with a much higher vaccination
rate compared to another county before rebalancing would unlikely have a reverse relation after,
modeled as:

S(x) :=
∑
e∈E

∣∣∣∣ ṽi(x)pj − ṽj(x)pi
pi + pj

∣∣∣∣ , ∀e ∈ E, (1)

S and M evenly act against each other (given the property of equation 1, explained in appendix
A.1.1). Note that the absolute terms in equation 1 are only piece-wise linear convex in x. In order
for our model to be solvable utilizing linear optimization, we substitute every summand in S, Se,
by an additional variable ze. Finally, we want to ensure that any county’s total flow is at most their
original vaccination amount. This restricts a possible ”pass-through” effect of vaccinations across
several counties.

Combining all the above-mentioned clauses, we have the following linear optimization model:

min
x,z

∑
e∈E

ze +
∑
e∈E

xe

s.t.
∑

j:(i,j)∈E

x(i,j) ≤ vi, ∀i ∈ V,

ṽi(x) ≤ pi, ∀i ∈ V,

ze ≥ +Se(x), ∀e ∈ E,

ze ≥ −Se(x), ∀e ∈ E,

x ≥ 0

(2)

In order to keep the dates of the vaccination, we optimize the models for every day independently,
using only the new vaccinations for this day. Additionally, we round the numbers to integers for
each day.
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2.2 INTRA-COUNTY IMMUNITY CALCULATION

It is known that the immunity gained by different SARS-CoV-2 vaccines decays over time (Nord-
ström et al., 2022; Pormohammad et al., 2021; Cohn et al., 2021). Hence, only knowing the vaccina-
tion rate is insufficient to properly represent the vaccination landscape. Therefore, we gather vaccine
effectiveness information from long-term studies and apply them to our rebalanced data , explained
in more detail in the appendix A.1.2. By assuming that most people get all their vaccinations in the
same county, we continue with the results of the rebalanced vaccination counts combined with the
vaccine effectiveness to calculate immunity achieved by vaccines per county.

Assume M is the maximum number of possible vaccinations and D is the number of registered days
in the vaccination data. For each s ∈ {1, 2, . . . ,M} we find the number of people xs−1,s

i,j that got
their s − 1-th shot on day i and their s-th shot on day j. Additionally, for s ∈ {0, 1, . . . ,M}, we
encode with xs,F

i the number of people whose s-th shot, received on day i, was their final shot until
day D. Notice in Germany the special role of Janssen vaccines which are considered second shots,
skipping the first shot. Analogously we introduce x0,J

i,j , xJ,3
i,j , and xJ,F

i,j . For further simplicity we
define J+ 1 = 3 and J− 1 = 0.

Given for each s ∈ {1, 2, . . . ,M, J} functions fs : {1, . . . , D} → [0, 1] that map d to the effec-
tiveness after d days of receiving shot s as the most recent shot, we can calculate the county-wide
effectiveness as

D∑
d=1

∑
s∈{1,...,M,J}

fs(D − d)xs,F
d . (3)

Furthermore, we introduce for s ∈ {0, . . . ,M − 1, J} minimal number of days ∆s that must have
passed between shots s and s+ 1 for each person. That is, we enforce

xs
i,j = 0 for i+∆s > j. (4)

Assume vsi is the number of vaccinations of type s on day i according to the input data. We add for
each day d and vaccination type s two kinds of constraints to assure consistency with our input data
and between consecutive state transitions:

D∑
i=1

xs−1,s
i,d = vsd, and (5)

xs,F
d +

D∑
i=1

xs,s+1
d,i =

D∑
i=1

xs−1,s
i,d (6)

However, it might be impossible to satisfy all constraints perfectly because of errors already existing
in the original data source or introduced by our rebalancing step. To ensure feasibility, we introduce
a slack variable δ that broadens the range of acceptable sums. Note that we do not need the slack for
the highest vaccination state M as there are no further dependencies. Adapting equation 5 we get:

D∑
i=1

xs−1,s
i,d ≥ vsd − δ

D∑
i=1

xs−1,s
i,d ≤ vsd + δ


∀1 ≤ d ≤ D,∀s ∈ {1, . . . ,M − 1} (7)

Notwithstanding this definition, for s = 2 we consider x1,2 + x0,J for the left-hand side summands,
and for s = 3 we consider x2,3 + xJ,3 instead. In order to contain the maximum possible error, we
also introduce a constraint for the sum of vaccinations over all days and a corresponding total slack
δT :

D∑
d=1

D∑
i=1

xs−1,s
i,d ≥

D∑
d=1

vsd − δT

D∑
d=1

D∑
i=1

xs−1,s
i,d ≤

D∑
d=1

vsd + δT


∀s ∈ {1, . . . ,M − 1} (8)
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We choose the slack dynamically by starting with small values and increasing them until our system
is feasible to ensure the smallest possible deviance from our data.

Lastly, for all days i we use the corresponding state-level ratios pi ∈ [0, 1] of used Janssen vaccines
with regard to each county’s amount of second shots and add a respective constraint:

D∑
d=1

xJ,F
d =

D∑
d=1

pd · v2d (9)

Casting everything into a linear optimization model, we attain the lower and upper bounds (formally
described in the appendix equation 10 and 11.

3 RESULTS

3.1 COUNTY-WISE REBALANCING

The lower and upper bounds for the ratio of people in a county with at least a certain protection
level after applying our linear optimization rebalancing method were [61.4%, 95.4%] for the first
protection level, [61.7%, 97.7%] for the second, and [43.5%, 78.4%] for the third. Furthermore,
figure 1 visualizes the rebalancing results. The first protection level maps are very similar and the
third protection level is shown in the appendix figure 2.

(a) Raw vaccination rates (b) Rates after rebalancing
(c) Immunity rate and bounds of
Berlin.

Figure 1: Subplots 1a and 1b show vaccination rates per county on maps of Germany before and
after rebalancing the data, with at least a protection level of 2 on 2022-05-16. Using our rebalanced
data, on subplot 1c, we showcase the bounds of immunity of Berlin as an example. Here, immunity
represents the total estimated protection against infections.

3.2 INTRA-COUNTY IMMUNITY CALCULATIONS

We assume minimal time distances between two shots and the calculated vaccination effectiveness
listed in tables in the appendix B.2. In figure 3a (appendix), we visualize our calculated bounds for
each county and illustrate the distance between the lower and upper bound. The difference between
the bounds is most often around three percentage points. In figure 1c, as an example for Berlin, we
can see in the background the rate of persons exclusively belonging to a protection level and in the
foreground the immunities of our rebalancing method. It is visible that when vaccination numbers
stagnate between September 2021 and December 2021, immunity falls, as expected, and when many
people receive vaccination upgrades in January 2022, immunity increases accordingly.

4 CONCLUSION

We presented a rebalancing method for regional vaccination data. We showed how we used vaccina-
tion effectiveness data from table 1 to obtain an estimated regional vaccination coverage. Addition-
ally, when determining vaccination coverage, we observed that the upper and lower bounds were
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not far apart, reducing the necessity of a vaccination registry for this use case. Overall, we have
created methods for Germany and other countries without vaccination registries to generate more
realistic vaccination data and determine an approximation of vaccination protection per region. Our
approach is easily updatable and adaptable to other countries. Regional immunity scores provide
valuable information to further research and disease modeling as well as aiding officials in making
decisions regarding vaccination efforts, among many other use cases. We believe our approach is
a solution to a crucial need for better spatially resoluted calibration of immunity which in turn can
have a substantial impact on global health.
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A APPENDIX

A.1 METHODS

A.1.1 COUNTY-WISE REBALANCING

Term equation 1 has following property, which gives evidence that S and M will evenly act against
each other: Suppose i, j ∈ V are counties such that the currently estimated residency-based vacci-
nation rate is higher in i than in j that is

ṽj(x)

pj
<

ṽi(x)

pi
.

Then,
d

dx(i,j)
M(x) = 1 = − d

dx(i,j)
S(i,j)(x) = − d

dx(j,i)
S(j,i)(x).

In particular, increasing x(j,i) by δ > 0 decreases both S(i,j)(x) and S(j,i)(x) by δ each, as long as
equation A.1.1 still holds for the new ṽi(x), ṽj(x).
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A.1.2 VACCINE EFFECTIVENESS

Combining a few studies to gather this information, given the lack of sole resource, we primarily use
the Nordström et al. (2022) for Comirnaty, Moderna, and AstraZeneca, supplemented with Cohn
et al. (2021) for Janssen effectiveness. For first-dose vaccinations, we use Pormohammad et al.
(2021) as the baseline effectiveness for 14 days after vaccination. Because there are no long-term
studies for first-dose vaccinations, we assume that effectiveness changes as in Nordström et al.
(2022) after second-dose vaccinations. For third vaccinations, due to lack of data, we assume that
they provide the same effectiveness as second vaccinations, i.e., vaccine protection is renewed during
the third vaccination.

For all following methods, we use an additional dataset for daily used Janssen vaccines at the state
level to differentiate them from other vaccines Koch-Institut (2022b). Because of insufficient data,
we do not distinguish the other vaccines. Instead, we take the average of nationwide used shots
as an approximation Koch-Institut (2022b). Therefore, we rely on the following assumptions: The
ratio of daily Janssen shots at the state level is roughly equal to each county’s ratio of Janssen shots.
Furthermore, the nationwide ratio of each of the non-Janssen vaccines is also constant for every
county.

Using the nationwide vaccine distribution and vaccination effectiveness for given time periods, we
can estimate how effective an average vaccination is for each period. We will use this effectiveness
in combination with the artificial vaccination registers from the following two sections to determine
how high the immunity from vaccination is in a county.

A.1.3 BOUND CALCULATION OF VACCINE EFFECTIVENESS

Formal description of the linear optimization model for calculating the lower bound of effectiveness:

min
x

equation 3

s.t. equation 6, equation 7, equation 8, equation 9, equation 4

x ≥ 0,

(10)

and for the upper bound:

max
x

equation 3

s.t. equation 6, equation 7, equation 8, equation 9, equation 4

x ≥ 0.

(11)

B RESULTS

B.1 COUNTY-WISE REBALANCING

B.2 VACCINE EFFECTIVENESS

This section presents the result of the collected data from section A.1.2. Table 1 lists how effective
a specific vaccine is within a certain number of days for one to three doses. The sources Nordström
et al. (2022); Cohn et al. (2021); Pormohammad et al. (2021) reported that the vaccine effectiveness
wanes over time, and we can observe this behavior in the effectiveness of each vaccine. In contrast
to the other vaccines, this decline is more significant for the Comirnaty and Janssen vaccines.

In table 3, we can see the vaccination distribution for the different vaccines in Germany. Especially
Comirnaty shows high shares and is, therefore, the most common vaccine in Germany. At the same
time, people in Germany receive Moderna more often as the third dose in relation to the first and
second doses.

B.3 BOUND CALCULATION
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(a) Protection level 3 before
any rebalancing

(b) Protection level 3 after
LP-based rebalancing

Figure 2: Maps of Germany showing vaccination rates per county of people with at least a certain
protection level on 2022-05-16. The first row of maps shows vaccination rates before any rebalanc-
ing, while the second row shows rates after applying our rebalancing method.

Protection Vaccine 0 days ≤ 14 days ≤ 31 days ≤ 61 days ≤ 121 days ≤ 181 days
1 AstraZeneca 0 0.44 0.48 0.39 0.17 0.17

Comirnaty 0 0.57 0.54 0.5 0.27 0.14
Moderna 0 0.72 0.69 0.62 0.48 0.45
Janssen 0 0 0 0 0 0

2 AstraZeneca 0.44 0.65 0.69 0.58 0.36 0.36
Comirnaty 0.57 0.92 0.89 0.85 0.52 0.39
Moderna 0.72 0.96 0.93 0.86 0.72 0.69
Janssen 0 0.84 0.81 0.75 0.53 0.13

3 AstraZeneca 0.65 0.65 0.69 0.58 0.36 0.36
Comirnaty 0.92 0.92 0.89 0.85 0.52 0.39
Moderna 0.96 0.96 0.93 0.86 0.72 0.69
Janssen 0.84 0.84 0.81 0.75 0.53 0.13

Table 1: Vaccine effectiveness against SARS-CoV-2 infection up to 181 days after the last vaccine
dose grouped by protection level and vaccine.

Vaccine Protection 1 share Protection 2 share Protection 3 share
AstraZeneca 15.36% 5.48% 0.01%
Comirnaty 76.23% 78.93% 63.31%
Moderna 8.41% 9.85% 36.64%
Janssen 0% 5.74% 0.04%

Table 2: Vaccination distribution in Germany by vaccine and protection level until 2022-05-16. For
the distribution, we consider only the listed vaccines from Table 1.

Vaccine Protection 1 share Protection 2 share Protection 3 share
AstraZeneca 15.36% 5.48% 0.01%
Comirnaty 76.23% 78.93% 63.31%
Moderna 8.41% 9.85% 36.64%
Janssen 0% 5.74% 0.04%

Table 3: Vaccination distribution in Germany by vaccine and protection level until 2022-05-16. For
the distribution, we consider only the listed vaccines from Table 1.
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type min. distance
first to second shot 20 days

second to booster shot 90 days
Janssen to booster shot 90 days

Table 4: The minimal time that needs to have passed for a person to receive their next vaccination.
The numbers used are based on Koch-Institut (2022a).

(a) Each county’s immunity bounds in Germany. (b) Immunity rate and bounds of Berlin.

Figure 3: Using our rebalanced data, the scatter plot of each county’s immunity in Germany is
shown, while on subplot 3b, we showcase the results of Berlin as an example. Here, immunity
represents the total estimated protection against infections.
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