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ABSTRACT

Although recent advances have prompted the prosperity in graph contrastive learn-
ing, the researches on universal principles for model design and desirable properties
of latent representations are still inadequate. From a statistical perspective, this
paper proposes two principles for guidance and constructs a general graph self-
supervised framework. Reformulating data augmentation as a mixture process, the
first one, termed consistency principle, lays stress on exploring and mapping cross-
view common information to consistent and essence-revealing representations. For
the purpose of instantiation, four statistical indicators are employed to estimate
and maximize the correlation between representations from various views, whose
accordant variation trend during training implies the extraction of common con-
tent. With awareness of the insufficiency of a solo consistency principle, suffering
from degenerated and coupled solutions, a decorrelation principle is put forward
to encourage diverse and informative representations. Accordingly, two specific
strategies, performing in representation space and eigen spectral space, respectively,
are propounded to decouple various representation channels. Under two principles,
various combinations of concrete implementations derive a family of methods.
Provably, after decomposition and analysis for the commonly used InfoNCE loss,
we clarify that the approaches based on mutual information maximization implicitly
fulfill the two principles and are covered within our framework. The comparison
experiments with current state-of-the-arts demonstrate the effectiveness and suf-
ficiency of two principles for high-quality graph representations. Furthermore,
visual studies reveal how certain principles affect learned representations.

1 INTRODUCTION

Independent of costly manual annotations, Self-Supervised Learning (SSL) extracts meaningful
information from unlabeled data sources and learns useful representations using a specific proxy task.
Based on various proxy objectives, a series of SSL paradigms have been proposed. As a distinguished
member of the SSL family, contrastive learning has exhibited great prospects and yielded brilliant
results in various fields spanning computer vision (He et al., 2020; Chen et al., 2020; Chen & He,
2021; Grill et al., 2020) and graphs (You et al., 2020; Zhu et al., 2021; Hassani & Khasahmadi, 2020;
Xu et al., 2021). On the basis of the reliance on negative samples, the general contrastive learning
methods can be divided into two families: negative-rely approaches (Chen et al., 2020; He et al.,
2020; You et al., 2020; Hassani & Khasahmadi, 2020) and negative-free approaches (Grill et al., 2020;
Chen & He, 2021; Bielak et al., 2021). The former learns informative representations by pushing
negative pairs away while the latter adopts special strategies (e.g., asymmetric architectures (Grill
et al., 2020)) to prevent collapsed solutions.

As a distinctive characteristic, contrastive learning takes the form of multi-view learning, where
multiple views can be naturally acquired (e.g., image and text (Radford et al., 2021)) or artificially
generated (e.g., distorting the raw data via augmentation (Chen et al., 2020; Zhu et al., 2021)). The
multiple views of a specific instance can be regarded as a data pair sampled from the joint distribution
of various data sources, describing the instance object from different aspects. Under contrastive
learning scheme, the neural models are trained to pull together representations from various views
of the same instance (i.e., positive pairs) while pushing apart those from different instances. This
paradigm is usually explained as estimating the mutual information between two views from an
information theoretic perspective (Xu et al., 2021; Zhu et al., 2021). Some research efforts based on
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information theory have been put into understanding and guiding contrastive learning, such as view
selection (Tian et al., 2020) and contrastive objective design (Tsai et al., 2021).

For multi-view data, the common information across multiple sources is usually essence-revealing and
facilitates various downstream tasks (Tian et al., 2020; Lyu et al., 2022). One of the research topics in
this paper is to train a neural encoder to mine and map the view-invariant common information in
graph data to representation space. Intuitively, if an encoder excels at capturing common information
in various sources, the representations from different views should exhibit high consistency and
correlation. Inspired by this, from a statistical dependence perspective, we propose one principle of
cross-view maximum consistency for contrastive graph representation learning. Under the consistency
principle, neural encoders are encouraged to map common information in multiple sources to
consistent representations, which from various views are highly correlated. This principle naturally
motivates us to search for appropriate statistical indicators to measure cross-view latent correlation in
representation space. Four classical metrics, including Distance Correlation (Székely et al., 2007),
RV-coefficient (Robert & Escoufier, 1976), simple Matrix Correlation (Smilde et al., 2008), and
Hilbert-Schmidt Independence Criterion (Gretton et al., 2005), are thoroughly investigated and
employed to realize the consistency principle. Compared with the notoriously hard estimation of
mutual information, explicitly dependent on the data probability distribution, these indicators can be
readily obtained from the empirical data without the participation of parameterized estimators.

The consistency principle emphasizes the strong statistical correlation between presentations from
various views of the same instance, which potentially ignores the internal state of individual represen-
tation. One consequence is dimensional collapse (Hua et al., 2021; Jing et al., 2022), which severely
hampers the diversity and expressiveness of learned representations, and commonly exists in negative-
free contrastive learning methods. A pioneer work (Jing et al., 2022) blames dimensional collapse on
strong augmentation along feature dimension and implicit regularization. We analyze the cause of
dimensional collapse from the perspective of objective function, and draw the conclusion that the col-
lapsed representations are a shortcut solution under the specific self-supervised objective. Statistically,
the dimensional collapse presents that various representation channels (i.e., dimensions) are tightly
coupled and highly correlated, making the representation vectors only span a lower-dimensional
subspace. Accordingly, another principle of between-channel minimum dependence is proposed
to learn diverse and informative representations by decorrelating various representation channels.
Concretely, we adopt two strategies to realize this principle: the first utilizes statistical metrics to
directly decouple different representation channels, and the second regularizes representations in
eigen spectral space by minishing data distribution differences along various principal directions.

To sum up, we make the following contributions over the peer works:
• We investigate what good representations should be in graph contrastive learning. As a

response, from a statistical perspective, two complementary principles, cross-view maxi-
mum consistency and between-channel minimum dependence, are proposed to mine view-
invariant common information and learn diverse representations.

• To learn augmentation-invariant and consistent representations across views, four statistical
indicators are employed to instantiate the consistency principle and their dynamic behaviors
during training are thoroughly analyzed.

• Two strategies, performing in representation space and eigen spectral space, respectively,
are proposed to achieve diverse representations by decorrelating various channels.

• We provide an explanation for the behavior of negative samples from a decorrelation
perspective and incorporate the negative-rely self-supervised methods into our framework.

• Empirically, extensive experiments demonstrate the sufficiency of two principles for high-
quality graph representations. Ablation studies and visual analysis further reveal the working
mechanism of the two principles and typical phenomena during training.

2 RELATED WORK

2.1 GRAPH CONTRASTIVE LEARNING

Inspired by the prosperity in computer vision field, some research efforts have been devoted to
generalizing contrastive learning to graph data. For most current methods, despite the differences
in view design, network architecture, and contrastive objectives, their core idea is to maximize the
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mutual information between learned representations from various views. Enlightened by the InfoMax
principle (Linsker, 1988), Deep Graph Infomax (DGI) (Veličković et al., 2018) and InfoGraph (Sun
et al., 2020) learn node-level and graph-level representations by maximizing mutual information
between patch-level representations and a graph-level summary vector based on Jenson-Shannon
estimator (Nowozin et al., 2016). Embedding the InfoNCE (Gutmann & Hyvärinen, 2010) loss into
the contrastive framework, GraphCL (You et al., 2020) utilizes various priors to design four types
of graph augmentations and systematically investigates the influences of various combinations of
graph augmentations on downstream tasks. MVGRL (Hassani & Khasahmadi, 2020) employs graph
diffusion (Klicpera et al., 2019) to generate new views and studies the effects of different mutual
information estimators. GRACE (Zhu et al., 2020) and GCA (Zhu et al., 2021) utilize node attribute
masking and edge perturbation to construct multiple augmented views and adopt the InfoNCE loss
as the objective function. From the perspective of information theory, InfoGCL (Xu et al., 2021)
explains how to construct contrastive learning models for particular tasks and datasets. Despite the
diversity, most current works are carried out within the framework of information theory. This paper
attempts to illustrate from a statistical point of view what makes for good graph contrastive learning.

2.2 STATISTICAL CORRELATION

Statistical correlation analysis investigates the degree of dependence between random variables and
presents it with proper indicators. RV-coefficient (Robert & Escoufier, 1976) can be regarded as a
multivariate generalization of the squared Pearson correlation (Benesty et al., 2009) and measure the
linear closeness of two high-dimensional variables, which is broadly applied in the bioinformatics field.
Mutual information (Gutmann & Hyvärinen, 2010) can capture non-linear dependencies between
two high-dimensional variables. Due to the explicit dependence on the probability distribution, it is
intractable to directly obtain mutual information from empirical data. Hilbert-Schmidt Independence
Criterion (Gretton et al., 2005) estimates the correlation between two variables in Reproducing Kernel
Hilbert Space. Based on characteristic function, distance correlation (Székely et al., 2007) constructs
a measurement to describe non-linear dependencies between two high-dimensional variables.

3 TWO PRINCIPLES FOR GRAPH CONTRASTIVE LEARNING

3.1 NOTATIONS AN PRELIMINARIES

Notations. A graph is denoted by G(A,X) ∈ G with node set V = {v1, ..., vN}, where |V| = N
indicates the number of nodes. Each node vi ∈ V has a D-dimensional feature vector xi ∈ RD.
Feature matrix X = [x1, ...,xN ]⊤ ∈ RN×D contains feature information of all nodes within graph
G and adjacency matrix A ∈ RN×N describes the topology connection between nodes.

Graph View Generation. In this paper, multiple views are artificially generated through graph
augmentation. A transformation τ ∈ T : G(A,X) → G′(A′,X′) maps the original graph to an
augmented version, where T denotes the whole augmentation function space. Specifically, the
graph augmentation τ is jointly realized from two aspects of topology structure and feature. In
topology-level, edge removal randomly removes edges of a certain ratio pe from the original graph
structure. In feature-level, for feature matrix X ∈ RN×D, feature masking randomly sets feature
channels of a specific number D · pf to zero, where pf is the masking ratio (Zhu et al., 2020).

Basic Framework. This paper focuses on generating high-quality node-level representations, and
the basic model architecture follows the common practice of previous works. First, two graph
augmentation functions τA and τB are randomly sampled from T , and then two various views
G′
A(A

′
A,X

′
A) = τA(G) and G′

B(A
′
B ,X

′
B) = τB(G) are generated from their respective transforma-

tions. The two augmented versions are fed into a shared neural encoder fθ(·) with learnable param-
eters θ to obtain representations H̃A = [h̃A

1 , ..., h̃
A
N ]⊤ ∈ RN×d and H̃B = [h̃B

1 , ..., h̃
B
N ]⊤ ∈ RN×d.

For the ease of subsequent discussion, H̃A and H̃B are further normalized into HA = [hA
1 , ...,h

A
N ]⊤

and HB = [hB
1 , ...,h

B
N ]⊤ along sample direction so that each representation channel in normalized

representation matrix is subject to a distribution with 0-mean and 1-standard deviation.

3.2 CROSS-VIEW MAXIMUM CONSISTENCY

3.2.1 FORMULATING AUGMENTATION AS A MIXING PROCESS AND CONSISTENCY PRINCIPLE

For an augmentation transformation τ ∈ T , we assume that the augmented view G′ is generated
through a mixing process between the original graph G and a random unknown noise graph Ĝ:
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G′ = τ(G) = g({G, Ĝ}), (1)

where g : G × G → G is an unknown mixing function.

Then, the multi-view generation process can be modeled as

G′
A = τA(G) = g({G, ĜA}), G′

B = τB(G) = g({G, ĜB}). (2)

ĜA and ĜB are considered independent, that is p(ĜA, ĜB) = p(ĜA) · p(ĜB), for τA and τB are
acquired from T separately. We assume that the information within each view G′

A (or G′
B) can be

partitioned into two separated parts:
1) a common (shared) component invariant across (G′

A, G
′
B), which is related to G;

2) an individual (private) component variant across (G′
A, G

′
B), which is relevant to ĜA (or ĜB).

Thus, the interested problem is specified as extracting augmentation-invariant essential information
while discarding view-specific private contents. We stress that our goal is not to recover the original
graph G, but to obtain high-quality and essence-revealing representations, facilitating subsequent
downstream tasks. To this end, we expect that a smooth mapping fθ : G → H can extract and
project the common information from G′ to the representation space H ⊆ Rd. Under such a
mapping, the representations from various views are consistent in characterizing objects, that is, they
should be correlated from each other. We use a d-dimensional random variable HA with distribution
p(HA) to describe the projection results (that is, node representations) from the view G′

A, where the
representation matrix HA ∈ RN×d contains N empirical observations of HA. Symmetrically, the
same setting applies to variable HB and representations HB . The sample pairs,

(hA
1 ,h

B
1 ), . . . , (h

A
N ,h

B
N ) ∈ H ×H, (3)

are acquired from the joint distribution p(HA, HB) of HA and HB , each of which characterizes the
same node from two various views.

To make the representations learned by the encoder fθ can truly reflect the common information
across various views, we propose the following consistency principle:

Principle 1 [Cross-View Maximum Consistency (CVMC)]. The representations from various views
of the same instance should be consistent in describing objects and statistically correlated.

The consistency principle addresses the problem of extracting common information as strengthening
the consistency (or correlation) between variables HA and HB under any augmentation transforma-
tions and can be formulated as

max
fθ

Cor(HA, HB), (4)

where Cor(·) is a statistical indicator measuring consistency or correlation between random variables.

3.2.2 FOUR STATISTICAL INDICATORS

Here, we introduce four statistical indicators to instantiate Cor(·) in Eq. (4). To be formal, two
general variables are first defined for the following statement. We denote PYZ and PY PZ as the
joint distribution and the product of marginal distributions of two variables Y ∈ Y ⊆ Rd1 and
Z ∈ Z ⊆ Rd2 . Several observed samples {(yi, zi)|i = 1, . . . , n} are acquired from the joint
distribution. Y = [y1,y2, . . . ,yn]

⊤ ∈ Rn×d1 and Z = [z1, z2, . . . , zn]
⊤ ∈ Rn×d2 collect the

samples with respect to individual variables.

Hilbert-Schmidt Independence Criterion. Hilbert-Schmidt Independence Criterion (HSIC) (Gret-
ton et al., 2005) measures both linear and nonlinear correlation between two random variables in
reproducing kernel Hilbert space (RKHS). Taking two transformations ϕ : Y → Y ′ and ψ : Z → Z ′,
where Y ′ and Z ′ denote RKHS, HSIC evaluates the cross-covariance operators between the RKHSs
of Y and Z:

HSIC(Y, Z) = ∥EY,Z∼PYZ
[ϕ(Y )ψ(Z)⊤]− EY∼PY

[ϕ(Y )]EZ∼PZ
[ψ(Z)]⊤∥2HS , (5)

where ∥ · ∥2HS denotes the Hilbert-Schmidt norm.

Given finite samples Y and Z, under kernel functions k(·, ·) and l(·, ·), HSIC can be directly estimated:
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HSIC(Y, Z) =
1

(n− 1)2
tr(KJLJ), (6)

where tr(·) denotes the matrix trace, Kij = k(yi,yj) and Lij = l(zi, zj) are the kernel Gram
matrices, and J = I− 1

n11
⊤ ∈ Rn×n is the centering matrix, in which I is the identity matrix and

all elements in 1 ∈ Rn are 1. HSIC(Y, Z) = 0 holds if and only if Y and Z are independent, and
larger values mean more correlation. Without relying on the explicit probability distribution, HSIC is
computationally convenient for empirical estimation.

Distance Correlation. From the perspective of characteristic functions, Distance Correlation
(DC) (Székely et al., 2007) measures both linear and nonlinear association between two arbitrary
dimensional variables. For Y and Z, define

aij = ∥yi − yj∥2, ai· =
1
n

∑n
j=1 aij ,

a·j =
1
n

∑n
i=1 aij , a·· =

1
n2

∑n
i=1

∑n
j=1 aij , Aij = aij − ai· − a·j + a·· .

(7)

Analogously, define bij = ∥zi − zj∥2 and Bij = bij − bi· − b·j + b·· for i, j = 1, 2, . . . , n. The
empirical distance covariance V (Y,Z) is the nonnegative number defined by

V 2(Y,Z) =
1

n2

n∑
i=1

n∑
j=1

AijBij . (8)

Then, the distance correlation DC(Y, Z) is defined by

DC2(Y,Z) =

{
V 2(Y,Z)√

V 2(Y,Y )·V 2(Z,Z)
, V 2(Y, Y ) · V 2(Z,Z) > 0 ,

0, V 2(Y, Y ) · V 2(Z,Z) = 0 .
(9)

Distance correlation satisfies 0 ≤ DC(Y, Z) ≤ 1. DC(Y, Z) = 0 characterizes independence of
Y and Z, and the strength of the correlation between two variables is positively correlated with the
value of distance correlation.

RV-coefficient. RV-coefficient (RV) (Robert & Escoufier, 1976) can evaluate linear correlation
between two arbitrary-dimensional random variables. Given Y and Z, the RV-coefficient between
variables Y and Z is defined as

RV (Y,Z) =
tr(YY⊤ZZ⊤)√

tr[(YY⊤)2] · tr[(ZZ⊤)2]
. (10)

RV-coefficient projects the linear correlation between two variables into the interval [0, 1], and larger
values reflect stronger linear dependence. RV (Y,Z) = 0 stands if and only two variables are linearly
independent from each other.

Matrix Correlation. The simple Matrix Correlation (MC) (Smilde et al., 2008) can convey the
linear association between two equal-dimensional random variables. For Y ∈ Rn×d1 and Z ∈ Rn×d2 ,
if d1 = d2, MC is defined as

MC(Y, Z) =

∣∣∣∣∣ tr(Y⊤Z)√
tr(Y⊤Y) · tr(Z⊤Z)

∣∣∣∣∣ . (11)

where | · | denotes the absolute value. The values of MC drop in the interval [0, 1], and larger values
mirror stronger linear correlation.

Cor(·) in Eq. (4) can be instantiated as one of the above statistical indicators. A summary and
comparison between them are summarized in Table 4 of Appendix K.

3.3 BETWEEN-CHANNEL MINIMUM DEPENDENCE

3.3.1 DIMENSIONAL COLLAPSE AND DECORRELATION PRINCIPLE

Focusing on learning consistent representations across views, the consistency principle imposes
no constraints on the internal state of individual representation, which potentially leads to the
issue of dimensional collapse. As shown in the left of Figure 1, dimensional collapse presents
that various representation channels are coupled with each other and express similar informa-
tion, which weakens expressive ability of the model and reduces diversity of representations.
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Figure 1: Dimensional collapse
and effects of decorrelation in two-
dimensional representation space.
q1 and q2 represent two principal
directions of data, relating to two
eigenvectors of covariance matrix.

Proposition 1. Given a self-supervised objective L, the neural
models tend to find low-rank solutions satisfying the objective
L, unless there are relevant constraints in objective function or
network architecture that can explicitly or implicitly restrain
this tendency.

Proposition 1 regards dimensional collapse as a shortcut optimal
solution, and blames degenerated solutions on the combined ef-
fect of two factors, “lazy” behaviors of neural networks and lack
of relevant constraints avoiding collapse. A detailed discussion
is placed in Appendix A.

To prevent dimensional collapse and learn diverse and informa-
tive graph representations, we propose the following decorrela-
tion principle to guide the design of objective functions:

Principle 2 [Between-Channel Minimum Dependence (BCMD)]. Various representation channels
should be statistically independent from each other.

3.3.2 TWO STRATEGIES

Here, two strategies are proposed to actualize the decorrelation principle.

Direct Channel Decorrelation. We reformulate variables HA and HB as

HA = (H1
A, H

2
A, . . . ,H

d
A), HB = (H1

B , H
2
B , . . . ,H

d
B), (12)

where Hi
A (Hi

B) is a one-dimensional random variable associated with the i-th channel of representa-
tion matrix HA (HB). A natural approach to realize the decorrelation principle is to directly relieve
the statistical dependence between various channels. Our strategy of direct channel decorrelation
(DCD) performs from two aspects of intra-view and inter-view:

Ldcd =
1

d(d− 1)

d∑
i=1

d∑
j=1,j ̸=i

(Cor(Hi
A, H

j
A) + Cor(Hi

B , H
j
B)︸ ︷︷ ︸

intra-view

+Cor(Hi
A, H

j
B)︸ ︷︷ ︸

inter-view

), (13)

where Cor(·) denotes a statistical indicator. For simplicity, we instantiate it as the square of Pearson
correlation coefficient in practice.

Spectral Regularization. One appearance of dimensional collapse is that data points show different
forms of distributions along various principal directions, appearing loose distributions in some
directions (e.g., q1 in the left of Figure 1) with larger variance and presenting tight distributions in
other directions (e.g., q2 in the left of Figure 1) with smaller variance.
Property 1. For covariance matrix ΣH = 1

NH⊤H ∈ Rd×d, which has d eigenvectors
[q1,q2, . . . ,qd] associated with d eigenvalues [λ1, λ2, . . . , λd], the variance of data H along the
k-th principal direction (i.e., the direction of qk) is equal to λk.

Proof. Please refer to Appendix D.

When data distributions along various principal directions take the same forms (i.e., have equal vari-
ances), dimensional collapse disappears naturally. To this end, we put forward a spectral regularization
(SR) strategy to reduce the distribution difference:

Lsr = std(λ(ΣA)) + std(λ(ΣB)), (14)

where ΣA = 1
NH⊤

AHA and ΣB = 1
NH⊤

BHB are covariance matrices, λ(·) denotes all eigenvalues
of a matrix, and std(·) indicates the standard deviation of all eigenvalues. When HA (HB) is
completely decorrelated, the eigenvalues of its covariance matrix are equal. Our strategy of spectral
regularization realizes the decorrelation principle in eigen spectral space, which relaxedly performs
ZCA Whitening (Bell & Sejnowski, 1997) operation by minimizing the objective (14). The differences
and connections between our strategies and ZCA Whitening are discussed in Appendix F.
Theorem 1. For representation matrix H ∈ RN×d, corresponding to a d-dimensional variable H ,
the entropy of H under empirical data H is maximized when H is completely decorrelated.
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Proof. Please refer to Appendix E.

As entropy is a measurement of the amount of information, Theorem 1 indicates that the decorrelation
principle facilitates the extraction of more sufficient common information. From this perspective, the
decorrelation principle can be seen as a complement and enhancement to the consistency principle.
Besides, in conjunction with Theorem 1, Proposition 1 indicates that the training process of neural
network presents a phenomenon of entropy reduction.

3.4 OVERALL FRAMEWORK AND OBJECTIVE FUNCTION

Overall Framework. The overall contrastive learning framework under two principles is as follows

G
τA−−→ G′

A

fθ(·)−−−→ H̃A
Norm−−−−→ HA HB

Norm←−−−− H̃B
fθ(·)←−−− G′

B
τB←−− G ,

CVMC

BCMD
where Norm denotes the normalization operation along sample direction.

Objective Function. The learning objective related to two principles is
L = αLcvmc + βLbcmd, (15)

where α and β are two weighted coefficients, Lbcmd can be instantiated as Ldcd or Lsr, and Lcvmc is
related to Eq. (4). We call Lcvmc consistency term and Lbcmd decorrelation term.

Connection to Mutual Information Maximization. Appendix B explains the connection between
two principles and negative-rely methods based on mutual information maximization.

Relationship with Graph Smoothness. Appendix G demonstrates the relationship between decor-
relation principle and graph smoothness.

Comparison with Two Peer Works. The comparisons with two peer works, Spectral Contrastive
Loss (HaoChen et al., 2021) and VICReg (Bardes et al., 2022), are put in Appendix C.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

To assess our approach, seven widely used benchmark datasets are adopted for experimental study,
including three citation networks Cora, Citeseer and Pubmed (Sen et al., 2008), two co-purchase
networks Amazon-Computers and Amazon-Photo (Shchur et al., 2019), and two co-authorship
network Coauthor-CS and Coauthor-Physics (Shchur et al., 2019). The details of the datasets are
placed in Appendix H. The model is implemented by Graph Convolutional Network (GCN) (Kipf &
Welling, 2016a). The model parameters are initialized via Xavier initialization (Glorot & Bengio,
2010) and trained by Adam optimizer (Kingma & Ba, 2017). The networks are first trained to in a
fully unsupervised manner, and the learned representations are evaluated by a simple linear classifier.

4.2 COMPARISON EXPERIMENTS AND ABLATION STUDIES

Comparison with State-of-the-Art. We compare our framework under two principles with
other state-of-the-art methods on node classification task under the simple linear classifier. The
unsupervised baselines cover DeepWalk (Perozzi et al., 2014), GAE (Kipf & Welling, 2016b),
DGI (Veličković et al., 2018), GMI (Peng et al., 2020), GRACE (Zhu et al., 2020), GCA (Zhu et al.,
2021), G-BT (Bielak et al., 2021) InfoGCL (Xu et al., 2021), CCA-SSG (Zhang et al., 2021) and
MVGRL (Hassani & Khasahmadi, 2020). Besides, some supervised models including multi-layer
perceptron (MLP), C&S (Huang et al., 2021), GCN (Kipf & Welling, 2016a) and GAT (Veličković
et al., 2017) are also adopted as baselines. For our method, we investigate various combinations of
four statistical indicators for consistency principle and two strategies for decorrelation principle. The
experimental results are summarized in Table 1. Regarding ours, the left of “-” denotes the employed
statistical indicator while its right represents the adopted strategy to decouple various channels. The
linear kernel function is applied to realizing HSIC. Overall, three main findings can be observed:

1) Our approach acquires the best performance on six of seven datasets, demonstrating that the
two principles can instruct the model to learn high-quality representations.
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Table 1: Node classification accuracy with standard deviation in percentage on seven datasets. OOM
indicates Out-Of-Memory on a 32GB GPU. The bold font highlights the best results.

Algorithm Cora Citeseer Pubmed Computers Photo CS Physics
MLP 57.8 ± 0.2 54.2 ± 0.1 72.8 ± 0.2 79.81 ± 0.06 86.36 ± 0.08 91.32 ± 0.11 94.21 ± 0.04
GCN 81.5 70.3 79.0 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24 95.47 ± 0.15
Plain Linear + C&S 81.1 ± 0.3 72.1 ± 0.4 78.4 ± 0.2 87.23 ± 0.15 92.95 ± 0.12 93.11 ± 0.15 95.32 ± 0.06

U
ns

up
er

vi
se

d

DeepWalk 68.5 ± 0.5 49.8 ± 0.2 66.2 ± 0.7 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
GAE 72.1 ± 0.5 66.5 ± 0.4 71.8 ± 0.6 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.07
GMI 83.0 ± 0.3 72.4 ± 0.1 79.9 ± 0.2 82.21 ± 0.31 90.68 ± 0.17 OOM OOM
GRACE 80.5 ± 0.3 69.2 ± 0.2 80.1 ± 0.2 86.53 ± 0.28 92.24 ± 0.17 92.98 ± 0.05 95.32 ± 0.03
CCA-SSG 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4 88.74 ± 0.28 93.14 ± 0.14 93.31 ± 0.22 95.38 ± 0.06
GCA 80.7 ± 0.2 69.8 ± 0.4 79.5 ± 0.5 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01 95.68 ± 0.05
G-BT 84.0 ± 0.4 73.0 ± 0.3 80.7 ± 0.4 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17
InfoGCL 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 - - - -
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
MVGRL 83.7 ± 0.6 73.6 ± 0.3 79.9 ± 0.2 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03

DC-DCD (Ours) 83.2 ± 0.5 72.6 ± 0.3 79.1 ± 0.6 88.41 ± 0.32 93.02 ± 0.15 93.58 ± 0.13 95.34 ± 0.09
DC-SR (Ours) 83.6 ± 0.4 72.5 ± 0.4 79.2 ± 0.5 88.49 ± 0.33 93.31 ± 0.13 93.41 ± 0.24 95.50 ± 0.04
RV-DCD (Ours) 83.6 ± 0.4 72.8 ± 0.4 79.4 ± 0.6 88.57 ± 0.28 92.93 ± 0.22 93.53 ± 0.18 95.47 ± 0.02
RV-SR (Ours) 83.2 ± 0.5 72.4 ± 0.5 78.8 ± 0.7 88.49 ± 0.27 92.83 ± 0.19 93.48 ± 0.16 95.46 ± 0.09
HSIC-DCD (Ours) 82.9 ± 0.5 72.5 ± 0.4 79.5 ± 0.4 88.39 ± 0.28 93.04 ± 0.18 93.51 ± 0.22 95.45 ± 0.04
HSIC-SR (Ours) 82.9 ± 0.6 72.2 ± 0.6 79.1 ± 0.5 88.16 ± 0.37 92.87 ± 0.16 93.32 ± 0.31 95.45 ± 0.07
MC-DCD (Ours) 84.5 ± 0.3 73.6 ± 0.3 81.7 ± 0.3 88.70 ± 0.31 93.14 ± 0.15 93.60 ± 0.08 95.42 ± 0.12
MC-SR (Ours) 84.4 ± 0.4 73.5 ± 0.4 81.5 ± 0.4 88.78 ± 0.25 93.09 ± 0.14 93.56 ± 0.11 95.38 ± 0.08

2) Two decorrelation strategies achieve almost the same effect, implying their similar inherence
in driving representations toward diversity.

3) In general, employing matrix correlation (MC) to maximize cross-view consistency makes
the best benefit. One reason is that MC, measuring the linear correlation between two
equal-dimensional variables, places higher requirements on consistency and thus demands
networks to extract more common information.

Table 2: Ablation study on two principles.
“∆” indicates the absence of this term.

Dataset Cora Pubmed CS Physics

DC-∆ 78.8 70.4 91.04 95.22
RV-∆ 75.2 69.8 91.12 95.23
HSIC-∆ 74.9 68.5 91.18 95.17
MC-∆ 79.5 73.8 92.01 95.14

∆-DCD 53.6 48.2 26.63 54.48
∆-SR 52.7 47.7 25.93 57.53

Abalation Studies on Two Principles. We conduct
controlled experiments to assess the impact of individual
principle and the experimental results are presented in
Table 2. Only optimizing the consistency term without
decoupling various channels achieves view-invariant yet
non-informative representations, thus leading to subop-
timal results. Within expectation, only considering the
decorrelation between various dimensions, making the
model learn decoupled yet meaningless representations,
results in poor performance.

4.3 EXPLORATORY EXPERIMENTS ON THE CONSISTENCY PRINCIPLE

Under the principle of cross-view maximum consistency, we attempt to extract and map the common
information from various augmented views to consistent representations by maximizing their sta-
tistical dependencies. The common information among various views is inherent and does not vary
with the statistical indicators. Intuitively, good representations learned under a specific measurement
should accordingly satisfy other indicators. We visualize the training dynamic on Cora and Pubmed
in Figure 2. Concretely, except for the indicator supervising model training, we also show synergistic
changes of other indicators. For mutual information, here, the InfoNCE (Gutmann & Hyvärinen,
2010) is used as mutual information estimator. It can be observed that the curves of various indicators
show a similar trend in each figure. This phenomenon suggests that the consistency principle indeed
guides the model to extract common information and learn consistent representations.

4.4 EXPLORATORY EXPERIMENTS ON THE DECORRELATION PRINCIPLE

This subsection aims at providing empirical supports for Proposition 1 and evaluates the ability of
two proposed objectives to prevent dimensional collapse and learn diverse representations. Figure 3
shows relevant experimental results on Cora and Coauthor-CS, where MC is employed to maximize
cross-view consistency, and more experiments are placed in Appendix I. The left of each subfigure in
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Figure 2: The variation trend of various statistical indicators during the training on Cora and Pubmed
datasets. The top row: Cora; the bottom row: Pubmed. The kernel function of HSIC is Gaussian
kernel. In each figure, the solid line denotes the optimized indicator in the training stage, which is also
bolded in the legend, while the dashed lines describe the coordinated variations of other indicators.
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(a) Cora: MC-∆
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(b) Cora: MC-DCD
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(c) Cora: MC-SR
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(d) CS: MC-∆
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(e) CS: MC-DCD
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(f) CS: MC-SR

Figure 3: The joint changes of two objectives and the evolution of eigenvalues of covariance matrix.
The solid line in the left of each subfigure presents the change of the optimized objective, while the
dashed line describes the corresponding response of another objective.

Figure 3 presents the joint variations of Ldcd and Lsr under various settings, while the right shows
the evolution of eigenvalues of covariance matrix of representations. In the left of Figure 3(a, d), at
the beginning of training, Ldcd and Lsr are small, suggesting that the representations do not fall into
dimensional collapse. Without decorrelation term, both Ldcd and Lsr continuously increase with the
training process, demonstrating the representations gradually tend to dimensional collapsed solution.
Accordingly, the right subfigure shows that the distributions of eigenvalues of covariance matrix
under various epochs present significant differences. The more the iterations, the more uneven the
eigenvalues. These phenomena support Proposition 1. As shown in Figure 3(b, c, e, f), under Ldcd or
Lsr, the tendency for dimensional collapse is suppressed, and eigenvalue distributions under different
epochs become more consistent. In every subfigure, two losses present almost the same trend.

5 CONCLUSION

In this paper, we have concentrated on what makes for good graph representations in self-supervised
learning and proposed two principles to construct a general framework. Statistically, the first
principle requires the representations of various views of the same instance to correlate to each
other while the second one demands the independence between various representation channels. The
theoretical and empirical results demonstrate the rationality and effectiveness of the two principles.
Ablation experiments and visual studies further uncover the working mechanisms of individual
principle. Besides, we analyze the relationship between mutual information maximization and the
two principles, and treat it as an instance under our framework. While our framework allows for a
variety of statistical indicators for instantiation, it is an interesting and promising topic how to choose
the most appropriate metrics for specific tasks and datasets. We believe that our work opens avenues
for designing more effective graph self-supervised learning architectures and objective functions. Our
framework is not just for graph data, and it is left for future work to generalize it to other fields.
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REPRODUCIBILITY STATEMENT

All experiments run on a server with Intel(R) Xeon(R) 6230R CPU @ 2.1GHz and TITAN RTX GPU
in Ubuntu 18.04. For the experiments in Table 1, we adopt the public splits on Cora, Citeser and
Pubmed, and a random 1:1:8 split for training/validation/testing on the other datasets without standard
split. For all unsupervised learning methods, we first train networks to learn node representations
in a fully unsupervised manner and then evaluate quality of the learned representations by training
and testing a simple linear classifier. To make a fair comparison, for the methods without adopting
the same settings as ours, we conduct experiments to get related results based on their official
source code. Our source code is available in an anonymous repository https://github.com/
ICLR2023-ID3781/ICLR2023ID3781.
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A INTERPRETATION AND DISCUSSION OF PROPOSITION 1

For convenience, we restate Proposition 1.

Proposition 1. Given a self-supervised objective L, the neural models tend to find low-rank solutions
satisfying the objective L, unless there are relevant constraints in objective function or network
architecture that can explicitly or implicitly restrain this tendency.

Proposition 1 actually describes the behaviors of neural networks during training under self-supervised
mode. The low-rank solutions mean that the learned representations are redundant and non-
informative, where various channels (i.e., dimensions) are coupled and correlated to each other.
This phenomenon is so-called dimensional collapse, restricting representations to a low-dimensional
subspace, which is shown in Figure 4(a). Proposition 1 blames the dimensional collapse on the “lazy”
behaviors of neural networks, that is, the networks take shortcuts to realize the objective function.
When dimensional collapsed representations can satisfy the objective, the neural model does not
bother to learn decoupled and diverse representations.

According to (Smilde et al., 2008; Székely et al., 2007), as far as distance correlation, RV-coefficient,
and matrix correlation, the measurement of the correlation between two high-dimensional variables
HA and HB can be maximized when they satisfy that

HA = a ·HB , (16)

where a is a non-zero real number. In this circumstance, even if dimensional collapse occurs (e.g., all
channels in a representation matrix are equal), the principle of cross-view maximum consistency can
be still realized as long as two representation matrices satisfy that HA = a ·HB . The consistency
principle makes no requirements for the relationship between various channels, and the employed
statistical indicators do not contain explicit or implicit constraints to prevent low-ran solutions and
dimensional collapse. In this circumstance, Proposition 1 thinks that the model tends to learn simple
shortcut solutions to satisfy the objective, which is accompanied by dimensional collapse. The
empirical studies in subsection 4.4 confirm the rationality of Proposition 1.

Due to the insufficiency of the consistency principle, it is necessary to add additional constraints
to achieve decorrelation between various dimensions. As shown in Figure 4(b), the decorrelation
strategy makes for diverse and decoupled representations.

B CONNECTION TO MUTUAL INFORMATION MAXIMIZATION

Most existing graph contrastive learning methods are based on mutual information maximization
between two views, which explicitly rely on negative samples. The mutual information is defined as
the KL-divergence between the joint probability distribution of two variables and the product of their
marginal probability distributions. Nevertheless, explicit dependence on probability distributions
makes it intractable to directly derive mutual information from empirical samples. Given the
limitations of mutual information estimation, a feasible scheme is to derive lower bounds on mutual
information (Gutmann & Hyvärinen, 2010; Belghazi et al., 2018; Ozair et al., 2019). As the most
common one, the InfoNCE is defined as

LNCE ≜ E
(z,y)∼ppos

{z−
i }M

i=1∼pdata

[
− log

ef(z)
⊤f(y)/τ

ef(z)⊤f(y)/τ +
∑

i e
f(z−

i )⊤f(y)/τ

]
, (17)

where τ > 0 is a temperature hyperparameter, M ∈ Z+ is a fixed number of negative samples,
pdata is the data distribution over RD, and ppos denotes the joint distribution of positive pairs over
RD × RD. f : RD → Sd−1 is an encoder mapping data to l2 normalized representation vectors of
dimension d, where Sd−1 denotes the unit hypersphere. A previous research (Wang & Isola, 2020)
analyzes the InfoNCE loss by decomposing it into two terms: 1) alignment term and 2) uniformity
term.

The alignment term is defined as the expected distance between positive pairs in presentation space:

Lalign ≜ E
(z,y)∼ppos

∥f(z)− f(y)∥α2 , (18)
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(a) dimensional collapse (b) consistency + decorrelation (c) alignment + uniformity

Figure 4: A diagram of dimensional collapse and coping strategies in 2-dimensional space. In
Figure 4(a), the dimensional collapse occurs, and the two dimensions of samples present a clear
correlation. In Figure 4(b), the decorrelation strategy decouples two dimensions and makes for
diverse representations. In Figure 4(c), the uniformity term brings representations to distribute on the
unit hypersphere S1 uniformly.

where α > 0. The alignment term plays a similar role to our consistency term, both of which
attempt to improve closeness between samples from the joint distribution. Eq. (18) directly pulls
two data points closer, which usually requires that z and y belong to the same domain. Differently,
our scheme utilizes statistical indicators to maximize the consistency between representations from
various views of the same instance (i.e., representations from the joint distribution), which allows for
greater flexibility because the statistical indicators can measure the correlation between two variables
with different properties.

The uniformity term is defined as the logarithm of the mean Gaussian potential:

Luniform ≜ E
z,y∼pdata

e−t∥f(z)−f(y)∥2
2 , (19)

where t > 0. As shown in Figure 4(c), the uniformity term attempts to make data points distribute
on the unit hypersphere uniformly by pushing negative samples away from each other. Under the
conditions that D > d − 1 and pdata has bound density, (Wang & Isola, 2020) clarifies that it is
possible to achieve perfect uniformity, where the distribution of f(z) for z ∼ pdata is a uniform
distribution on Sd−1.

Theorem 2. When the learned representations scatter over the unit hypersphere Sd−1 uniformly,
that is, the distribution prep of representation h ∈ Rd is a uniform distribution on Sd−1, the
representations are completely decorrelated and no dimensional collapse occurs.

Proof. We rewrite h as h = (h1, h2, . . . , hd). A feasible proof strategy is to prove that any two
dimensions are linearly independent from each other. Without loss of generality, here, we consider
proving the independence between the first two dimensions. The Pearson correlation coefficient
is adopted as the measurement of correlation. Under the distribution prep, the Person correlation
coefficient between the first two dimensions can be formulated as

ρ =
Eh∼prep

[
(h1 − h̄1)(h2 − h̄2)

]√
Eh∼prep

[
(h1 − h̄1)2

]√
Eh∼prep

[
(h2 − h̄2)2

] , (20)

where h̄1 = Eh∼preph1 and h̄2 = Eh∼preph2. For the representations distribute on the zero-centered
unit hypersphere uniformly, it can be known that h̄1 = h̄2 = 0. To prove ρ = 0, we just need
to confirm that Eh∼prep [h1 · h2] = 0. As shown in Figure 5, the point h′ = (h1, h2) is actually a
projection of h onto the plane spanned by the first two dimensions. We assume that h′ = (h1, h2) is
subject to a distribution p′ on the two-dimensional projection plane. p′ can be formulated as

p′ =

∫ 1

0

p′(r)dr, where p′(r) =
{
p′, ∥h′∥2 = r
0, ∥h′∥2 ̸= r

. (21)
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Figure 5: An illustration of projections in the two-dimensional projection plane. The points on the
circle of a specific radius are subject to a uniform distribution.

Hence, we further have the following formula:

Eh∼prep [h1 · h2]
= Eh′∼p′ [h1 · h2]
= Eh′∼

∫ 1
0
p′(r)dr[h1 · h2]

=

∫ 1

0

[∫
h′∼p′(r)

[h1 · h2] · p′(r)dh′

]
dr

. (22)

For a point h′ = (h1, h2) with ∥h′∥2 = r, whose angle with the axis of the first dimension
is θ, it can be known that h1 = r · cos θ and h2 = r · sin θ. For the representations distribute
on the hypersphere Sd−1 uniformly, on the two-dimensional projection plane, the distribution of
the points on the circle of radius r is also a uniform distribution. Thus, it can be known that∫
h′∼p′(r)

[h1 · h2] · p′(r)dh′ ∝
∫ 2π

0
r2 sin θ cos θdθ. It is obvious that

∫ 2π

0
r2 sin θ cos θdθ is equal

to 0. Naturally, we can know that Eh∼prep [h1 · h2] = 0 in Eq. 22, meaning ρ = 0 in Eq. (20). The
above proof process can be applied to any two dimension. Thus, the representations are completely
decorrelated without dimensional collapse. We complete the proof.

Theorem 2 demonstrates that the uniformity term potentially achieves the effect of decoupling various
dimensions by making the representations scatter uniformly on the unit hypersphere. In this sense, the
uniformity term can be regarded as a concrete implementation of our principle of between-channel
minimum dependence.

The above analysis demonstrates that the two terms obtained by decomposing the InfoNCE loss can
be regarded as the concrete implements of our two principles. The mutual information maximization
can be explained based on the two principles, which can be seen as an instance of our framework.

C COMPARISON WITH TWO PEER WORKS

C.1 COMPARISON WITH SPECTRAL CONTRASTIVE LOSS

Like our proposed spectral regularization, a peer work (HaoChen et al., 2021) also adopts spectral
decomposition to design contrastive loss function. However, our strategy differs from the spectral
contrastive loss in (HaoChen et al., 2021) in many aspects. 1) Operation object. (HaoChen et al.,
2021) first constructs an weighted adjacency matrix for all augmented data samples and performs
spectral decomposition for the normalized adjacency matrix. The object of our spectral regularization
is the covariance matrix of node representations. 2) Focus. Our SR strategy focus on reducing
the differences of various eigenvalues while (HaoChen et al., 2021) concentrates on generating
eigenvectors as embeddings. 3) Purpose. The purpose of our spectral regularization is to mitigate
dimensional collapse and learn diverse representations while (HaoChen et al., 2021) expects to obtain
sample embeddings through spectral decomposition. Besides, their method relies on negative samples
while our approach is negative-free.
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C.2 COMPARISON WITH VICREG

A self-supervised method called VICReg (Bardes et al., 2022) adopts a similar line as ours, that is,
extracting invariant information from two different views and applying specific strategies to prevent
collapsed solutions. However, the following aspects differentiate our work from VICReg. 1) Network
architecture. After representation encoder, VICReg maps the representations into a embedding
space by an expander (i.e., a projection head). The loss is computed in the embedding space. Our
network architecture does not include additional projection heads, and all the loss is computed based
on the node representations. 2) Implementation of invariant information extraction. To extract
invariant information in various views, VICReg applies mean-squared error to the embeddings from
two views, which is a direct method to reduce the Euclidean distances between the embeddings from
various views. Deviating from their strategy, from a statistical perspective, our consistency principle
utilizes statistical indicators to maximize the statistical correlation between the representations from
various views by regarding them as the empirical samples of multi-dimensional variables. The
consistency principle allows for a more flexible choice of statistical indicators. 3) Prevention of
collapsed solutions. To prevent collapsed solutions, VICReg makes the squares of the non-diagonal
elements of the covariance matrix of embeddings trend to 0, which can enhance the diversity of the
representations. Our work proposes to reduce coupling between different representation channels by
minishing their statistical correlation. Accordingly, two specific strategies are proposed: a) directly
reducing the statistical correlation between various channels with specific statistical indicators; b)
regularizing representations in spectral space. The experiments show similar effects of two strategies.

D PROOF OF PROPERTY 1

Here, we provide the proof of Property 1. Figure 6 can help to understand Property 1. For conve-
nience, we restate Property 1:
Property 1. For covariance matrix ΣH = 1

NH⊤H ∈ Rd×d, which has d eigenvectors
[q1,q2, . . . ,qd] associated with d eigenvalues [λ1, λ2, . . . , λd], the variance of data H along the
k-th principal direction (i.e., the direction of qk) is equal to λk.

Proof. For N d-dimensional data points H = [h1, . . . ,hN ]⊤ ∈ RN×d, having been normalized to
0-mean along sample direction (i.e., 1

N

∑N
i=1 hi = 0), its covariance matrix is ΣH = 1

NH⊤H. After
eigendecomposition for ΣH, we can obtain d unit orthogonal eigenvectors [q1, . . . ,qd] associated to
eigenvalues [λ1, . . . , λd], respectively. According to 1

NH⊤Hqk = λkqk, it can be known that

1

N
q⊤
k H

⊤Hqk = λkq
⊤
k qk = λk. (23)

Taking a principal direction qk as explanation, the projection of a sample hi onto this direction is
zi = q⊤

k hi, and the mean of all projections is

z̄ =
1

N

N∑
i=1

zi =
1

N

N∑
i=1

q⊤
k hi = 0. (24)

Thus, along of the principal direction qk, the variance is

1

N

N∑
i=1

(zi − z̄)2

=
1

N

N∑
i=1

q⊤
k hih

⊤
i qk

=
1

N
q⊤
k (

N∑
i=1

hih
⊤
i )qk

=
1

N
q⊤
k H

⊤Hqk

=λk.

(25)
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Figure 6: An illustration helping understanding Property 1.

The above equation demonstrates that the variance of data H along the direction qk is equal to λk.
We conclude the proof.

E PROOF OF THEOREM 1

The formal proof relies on the following property (Ahmed & Gokhale, 1989) of multivariate normal
distribution:
Lemma 1. Assuming a high-dimensional variable X obeys a d-dimensional Gaussian distribution
N (µ,Σ) with mean µ and covariance matrix Σ, the entropy of variable X satisfies that

Ent(X) =
1

2
ln |Σ|+ d

2
(ln 2π + 1), (26)

where Ent(X) is the entropy of variable X and | · | denotes the determinant of a matrix.

For convenience, we restate Theorem 1:

Theorem 1. For representation matrix H ∈ RN×d, corresponding to a d-dimensional variable H ,
the entropy of H under empirical data H is maximized when H is completely decorrelated.

Proof. Assuming the variable H obeys a d-dimensional normal distribution, according to Lemma 1,
the entropy of variable H under empirical data H satisfies

EntH(H) ∝ ln |ΣH|, (27)

where EntH(H) denotes the information entropy of variable H under empirical data H and ΣH =
1
NH⊤H is empirical covariance matrix. For the representation matrix H has been normalized
along sample direction, the diagonal elements of ΣH are all equal to 1. Thus, we can know that
d∑

i=1

λi = tr(ΣH) = d, where λ1, λ2, . . . , λd are d eigenvalues of ΣH and tr(·) denotes matrix trace.

According to the properties of determinant and AM-GM Inequality (Hirschhorn, 2007), we can know
that

|ΣH| =
d∏

i=1

λi ≤
(
λ1 + λ2 + . . .+ λd

d

)d

= 1. (28)

It can be known that |ΣH| achieves the upper bound of 1 when all eigenvalues are equal to 1, meaning
that representation matrix H is completely decorrelated. Meanwhile, according to Eq. (27), the
entropy of variable H under empirical data H reaches a maximum value. We conclude the proof.

F COMPARISON WITH ZCA WHITENING AND TOY EXPERIMENTS

Definition 1 (ZCA Whitening). For input data H ∈ RN×d with N d-dimensional vectors, which has
been normalized to zero-mean along sample direction, ZCA Whitening processes the data as follows:

ZCA(H) = HQΛ− 1
2Q⊤, (29)
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Figure 7: A diagram of ZCA whitening.

(a) Inputs (b) Random projec-
tion

(c) Direct channel
decorrelation

(d) Spectral regular-
ization

(e) ZCA whitening

Figure 8: Visualizations of inputs and outputs of neural networks under various settings. For the
convenience of visualization and comparison, the visualized points have been normalized to 0-mean
and 1-variance. Color is used to reflect the relative positions of points. Best viewed in colors.

where Λ ∈ Rd×d is a diagonal matrix filled with the eigenvalues of Σ = 1
NH⊤H and Q ∈ Rd×d is

the corresponding eigenvectors (i.e., Σ = QΛQ⊤).

ZCA whitening (Bell & Sejnowski, 1997) realizes decorrelation between various channels (i.e.,
dimensions) through matrix transformation. A vivid illustration of ZCA whitening is shown in Figure
7. Although both are aided by spectral properties, different from ZCA whitening, our strategy of
spectral regularization decouples various channels by optimizing neural models under the specific
objective function. Besides, our strategy can regulate the degree of decorrelation by controlling the
objective objection, which can be regarded as a “soft” ZCA whitening.

We conduct some toy experiments to show the effects of ZCA whitening and our strategies. First, we
build a simple neural network with three fully-connected layers. We sample 4,000 data points from a
two-dimensional Gaussian distribution, then construct a data matrix x ∈ R4,000×2, and further apply
a rotation transformation to generate the inputs as shown in Figure 8(a). The input data represent a
strong correlation between the two dimensions. A simple neural network with three fully-connected
layers is built, and the outputs with randomly initialized parameters are shown in Figure 8(b), which
still shows a strong dependency relationship between two dimensions. After applying ZAC whitening
to the results of the random projection (i.e., Figure 8(b)), the visualization in Figure 8(e), appearing as
a circle, demonstrates its great ability of decorrelation. After being trained with our strategies of direct
channel decorrelation and spectral regularization respectively, the network can output decoupled
representations in Figure 8(c) and 8(d).

G RELATIONSHIP BETWEEN DECORRELATION AND SMOOTHNESS

Graph neural networks follow the paradigm of message aggregation, which has a smoothing effect on
node representations and makes neighborhood nodes more similar. A graph usually is build under
the homophily assumption, that is, nodes closely connected on a graph tend to have similar labels.
Therefore, proper smoothing helps to learn good representations (Li et al., 2018). Nevertheless,
over-smoothing makes all node representations collapse together and thus damages representations.
Over-smoothing issue usually occurs in deep graph neural networks (Li et al., 2018). In this paper,
we adopt one or two layers of GCNs as the backbone, so there is no over-smoothing issue.
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(f) DC: Citeseer
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Figure 9: Changes of graph smoothness during training under various decorrelation settings. The
vertical axis represents ω(H,A) in Definition 2. "w/o" denotes no decorrelation, "DCD" indicates
direct channel decorrelation strategy, and "SR" indicates spectral regularization strategy. Here, matrix
correlation is used to instantiate the consistency principle. The top row: matrix correlation; the
bottom row: distance correlation. Best viewed in colors.

Here, we explore the relationship between decorrelation and graph smoothness. To this end, the graph
smoothness is first defined as follows

Definition 2 (Graph Smoothness). For representation matrix H ∈ RN×d on a graph with adjacency
matrix A, the graph smoothness can be measured by

ω(H,A) =

∑
vi∈V

∑
vj∈Nvi

Aij · ∥hi − hj∥22
|E| · d

,

where |E| is the number of edges, hi denotes the representation of node vi, and Nvi collects the
neighbors of node vi. The smaller the value of ω(H,A) is, the higher the graph smoothness is.

Empirically, we explore the relationship between decorrelation and graph smoothness. Concretely,
under various decorrelation settings, we visualize the changes of graph smoothness on various datasets
during training. As shown in Figure 9, with decorrelation operation, as the training process, the
smoothness of the graph tends to improve. In other words, decorrelation principle potentially plays a
smoothing effect on graphs, which makes neighborhood nodes more similar in representation space.

H STATISTICS OF SEVEN DATASETS

The statistics of seven experimental datasets are summarized in Table 3. The details of the datasets
are as follows:

• Cora, Citeseer and Pubmed are three citation networks with nodes corresponding to
documents and edges representing citation relationships. Each node (i.e., document) has a
class label indicating its category and is described by a bag-of-words feature vector.

• Amazon-Computers and Amazon-Photo are two graphs constructed from Amazon, repre-
senting co-purchase relationships between goods. The nodes indicate goods, and an edge is
established between two nodes which are frequently bought together. A sparse bag-of-words
feature about product reviews describes each node.

• Coauthor-CS and Coauthor-Physics are two academic network, where nodes represent
authors and edges denote co-authorship relationships, respectively. Two nodes (i.e., authors)
are linked if they participate in a paper together.
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Table 3: Statistics of the experimental datasets.
Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
Coauthor-Physics 34,493 991,848 8,451 5
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0 20 40 60 80 100
Epochs

0.0

0.4

0.8

1.2

1.6

dc
d

2

10

18

26

34

sr

dcd
sr

0 100 200 300 400 500
Eigenvalue Index

20

15

10

5

0

L
og

 N
or

m
al

iz
ed

 E
ig

en
va

lu
es

Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50

(c) Cora: DC-SR
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(f) CS: DC-SR

Figure 10: The joint changes of two objectives and the evolution of eigenvalues of covariance matrix
with Distance Correlation as the indicator measuring cross-view consistency.
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(a) Cora: RV-∆
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(b) Cora: RV-DCD
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(c) Cora: RV-SR
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(f) CS: RV-SR

Figure 11: The joint changes of two objectives and the evolution of eigenvalues of covariance matrix
with RV-coefficient as the indicator measuring cross-view consistency.

I SUPPLEMENT TO THE EXPERIMENTS IN SUBSECTION 4.4

Here, we provide additional experiments as a complement to Subsection 4.4. Concretely, the same
experiments are conducted on Cora and Coauthor-CS datasets with three other indicators (i.e., DC,
RV, and HSIC) as the measurements of cross-view consistency. The experiments are shown in Figure
10, 11, and 12. The observations and conclusions in Subsection 4.4 can still explain the supplementary
experiments. Overall, under the objectives without relevant constraints for the relations between
various representation channels, the model tends to learn low-rank solutions with redundancy, which
is demonstrated by (a, d) in Figure 3, 10, 11, and 12. Besides, two proposed objectives can effectively
prevent the model from this shortcut solution and have a consistent trend of change in the training.

21



Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Epochs

0.0

0.4

0.8

1.2

1.6

dc
d

2

10

18

26

34

sr

dcd
sr

0 100 200 300 400 500
Eigenvalue Index

20

15

10

5

0

L
og

 N
or

m
al

iz
ed

 E
ig

en
va

lu
es

Epoch 10
Epoch 20
Epoch 30
Epoch 40
Epoch 50

(a) Cora: HSIC-∆
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(b) Cora: HSIC-DCD
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(c) Cora: HSIC-SR
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(d) CS: HSIC-∆

0 10 20 30 40 50
Epochs

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

dc
d

4

10

16

22

28

34

40

46

sr

dcd
sr

0 100 200 300 400 500
Eigenvalue Index

20

15

10

5

0

L
og

 N
or

m
al

iz
ed

 E
ig

en
va

lu
es

Epoch 2
Epoch 5
Epoch 10
Epoch 20
Epoch 50

(e) CS: HSIC-DCD
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(f) CS: HSIC-SR

Figure 12: The joint changes of two objectives and the evolution of eigenvalues of covariance matrix
with HSIC as the indicator measuring cross-view consistency.

J VISUAL STUDIES

J.1 T-SNE VISUAL ANALYSIS

To better understand two principles, a series of t-SNE (Van der Maaten & Hinton, 2008) plots of
the learned representations under different settings are drawn in Figure 13. As shown in Figure
13(m), the raw features are highly overlapping and do not present discriminable clusters. Besides,
its shape in the 2-dimensional space takes on a circle, demonstrating that the two dimensions are
not correlated and reflecting that no dimensional collapse occurs in the original feature space. The
visualizations on the top two rows show that, under the guidance of two principles, the model can
learn meaningful and interpretable representations, which are better gathered according to their real
categories. As shown on the third row, without the decorrelation term, the model can still learn
meaningful representations, whose projections in 2-dimensional space present discernible clusters.
Nevertheless, the two dimensions exhibit a degree of linear correlation, where the gray boxes in the
four figures assist in observing this phenomenon. The appearance in the two dimensional space can
reflect dimensional collapse in the representation space, and the redundancy and correlation between
various dimensions impair the quality of representations. In Figure 13(n, o), without consistency
term, the 2-dimensional t-SNE embeddings take on mussy circular shapes, implying decoupled yet
meaningless representations.

J.2 CORRELATION MATRIX VISUALIZATION

In Figure 14, we visualize the absolute correlation matrices of the learned representations under
various settings on Cora dataset. Concretely, for a representation matrix H ∈ RN×d, which has been
normalized to 0-mean and 1-standard deviation, the absolute correlation matrix is C = | 1NH⊤H| ∈
[0, 1]

d×d, where each element is the absolute value of Pearson correlation coefficient between
two one-dimensional variables (i.e., two channels). As shown on the bottom row of Figure 14,
without decorrelation term, the off-diagonal elements are large, indicating that various channels of
representation matrix are tightly correlated to each other and fail to capture diverse information. This
phenomenon echoes the fifth row of Figure 13 and suggests the occurrence of dimensional collapse.
The visualizations on the top four rows demonstrate that two proposed decorrelation strategies can
effectively prevent dimensional collapse issue and facilitate learning highly disentangled and diverse
representations.

K SUMMARY OF THE STATISTICAL INDICATORS

A summary of the five statistical indicators including mutual information are summarized in Table 4.
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(a) cora: DC-DCD (b) cora: HSIC-
DCD

(c) cora: MC-DCD (d) cor: RV-DCD

(e) cora: DC-SR (f) cora: HSIC-SR (g) cora: MC-SR (h) cora: RV-DCD

(i) cora: DC-∆ (j) cora: HSIC-∆ (k) cora: MC-∆ (l) cora: RV-∆

(m) cora: raw fea-
tures

(n) cora: ∆-DCD (o) cora: ∆-SR

Figure 13: t-SNE visualizations of raw features and learned representations under various settings on
Cora dataset. The colors indicate the categories of the sample points. Best viewed in colors.

Table 4: A summary of five statistical metrics. Tractable: whether statistical indicators can be
obtained directly from empirical data. Equal: whether the dimensions of two variables need to be the
same. Linear/Nonlinear: statistical relationships that can be captured. Range: theoretical value range.
Direction: whether larger values indicate stronger correlation.

Indicator Tractable Equal Linear/Nonlinear Range Direction

MI ✗ ✗ Both [0,+∞) !

HSIC ! ✗ Both [0,+∞) !

DC ! ✗ Both [0, 1] !

RV ! ✗ Linear [0, 1] !

MC ! ! Linear [0, 1] !

L PYTORCH-STYLE PSEUDOCODE

Here, we provide algorithm flow in the form of PyTorch-style pseudocode for four statistical indicators
in subsection 3.2.2, two decorrelation strategies in subsection 3.3.2, and overall workflow.

23



Under review as a conference paper at ICLR 2023

(a) DC-DCD (b) HSIC-DCD (c) MC-DCD (d) RV-DCD

(e) DC-DCD-intra (f) HSIC-DCD-intra (g) MC-DCD-intra (h) RV-DCD-intra

(i) DC-DCD-inter (j) HSIC-DCD-inter (k) MC-DCD-inter (l) RV-DCD-inter

(m) DC-SR (n) HSIC-SR (o) MC-SR (p) RV-SR

(q) DC-∆ (r) HSIC-∆ (s) MC-∆ (t) RV-∆

Figure 14: Visualizations of absolute correlation matrices of representations under various settings
on Cora dataset. The second row shows the effects of intra-view decorrelation of DCD, while the
third row describes inter-view decorrelation of DCD.

L.1 PSEUDOCODE FOR FOUR STATISTICAL INDICATORS

For two representation matrices HA ∈ RN×d and HB ∈ RN×d from views A and B, corresponding
to two variables HA and HB , the calculation process of four statistical indicators are as follows.

Distance Correlation. The empirical evaluation of Distance Correlation (DC) between two vari-
ables is presented in Algorithm 1.

RV-coefficient. The empirical evaluation of RV-coefficient is provided in Algorithm 2.

24



Under review as a conference paper at ICLR 2023

Algorithm 1 PyTorch-style Code for Distance Correlation.
# H_A: representations from view A, shape=[N,d]
# H_B: representations from view B, shape=[N,d]

def DC(H_A, H_B):
dis_matA = torch.sum(H_A * H_A, dim=1, keepdim=True) + torch.sum(H_A * H_A, dim=1, \

keepdim=True).T - 2 * torch.matmul(H_A, H_A.T)
Dis_matA = dis_matA - torch.mean(dis_matA, dim=0, keepdim=True) \

- torch.mean(dis_matA, dim=1, keepdim=True) + torch.mean(dis_matA)
dis_matB = torch.sum(H_B * H_B, dim=1, keepdim=True) + torch.sum(H_B * H_B, dim=1, \

keepdim=True).T - 2 * torch.matmul(H_B, H_B.T)
Dis_matB = dis_matB - torch.mean(dis_matB, dim=0, keepdim=True) \

- torch.mean(dis_matB, dim=1, keepdim=True) + torch.mean(dis_matB)

numer = torch.mean(Dis_matA * Dis_matB)
denom = torch.sqrt(torch.mean(Dis_matA * Dis_matA) * torch.mean(Dis_matB * Dis_matB))
DC_coe = numer / denom
return DC_coe

Algorithm 2 PyTorch-style Code for RV-coefficient.
# H_A: representations from view A, shape=[N,d]
# H_B: representations from view B, shape=[N,d]

def RV(H_A, H_B):
K_A = H_A @ H_A.T
K_B = H_B @ H_B.T
numerator = torch.trace(K_A @ K_B)
denominator = torch.sqrt(torch.trace(K_A @ K_A) * torch.trace(K_B @ K_B))
RV_coe = numerator / denominator
return RV_coe

Matrix Correlation. The empirical evaluation of Matrix Correlation (MC) is presented in Algo-
rithm 3. We expect that two variables have positive correlation, so we do not take the absolute value
for MC in practice.

HSIC. The empirical evaluation of Hilbert-Schmidt Independence Criterion (HSIC) is provided in
Algorithm 4. The function hsic1(H_A, H_B) strictly implements Eq. (6). After expanding the key
step in hsic(H_A, H_B), we can obtain hsic2(H_A, H_B). The results of the two implementations
are completely equivalent, but the latter has higher computational efficiency. In practice, like other
indicators, we normalize HSIC in the form of function HSIC(H_A, H_B)

In the above implementations, all N nodes are used to calculate the empirical estimation of the
statistical indicators. It is permissible to only adopt a subset of all samples for estimation. Besides,
for clarity and ease of understanding, there is a problem of redundant computations in the above
implementations , which can be avoid in practice.

L.2 PSEUDOCODE FOR TWO PROPOSED STRATEGIES FOR DECORRELATION

For two normalized representation matrices HA ∈ RN×d and HB ∈ RN×d, the algorithm flows for
two strategies in subsection 3.3.2 are as follows.

Direct Channel Decorrelation. The specific calculation for Direct Channel Decorrelation is
provided in Algorithm 5.

Spectral Regularization. The specific calculation for Spectral Regularization is provided in Algo-
rithm 6.

Algorithm 3 PyTorch-style Code for Matrix Correlation.
# H_A: representations from view A, shape=[N,d]
# H_B: representations from view B, shape=[N,d]

def MC(H_A, H_B):
numerator = torch.trace(H_A.T @ H_B)
denominator = torch.sqrt(torch.trace(H_A.T @ H_A) * torch.trace(H_B.T @ H_B))
MC_coe = numerator / denominator
return MC_coe
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Algorithm 4 PyTorch-style code for Hilbert-Schmidt Independence Criterion.
# H_A: representations from view A, shape=[N,d]
# H_B: representations from view B, shape=[N,d]

# linear kernel function
def linear_kernel(H_A):

return torch.mm(H_A, H_A.T)

# gaussian kernel function
def gaussian_kernel(H_A, sigma):

# sigma: width parameter
dis_mat = torch.sum(H_A * H_A, dim=1, keepdim=True) + torch.sum(H_A * H_A, dim=1, \

keepdim=True).T - 2 * torch.matmul(H_A, H_A.T)
return torch.exp(- dis_mat / sigma)

def hsic1(H_A, H_B):
# utilize linear kernel
K_A, K_B = linear_kernel(H_A), linear_kernel(H_B)
# utilize linear kernel
# K_A, K_B = gaussian_kernel(H_A, sigma), gaussian_kernel(H_B, sigma)
N = H_A.shape[0]
J = torch.eye(N) - torch.ones(N, N) / N
return torch.trace(K_A @ J @ K_B @ J) / (N - 1) ** 2

def hsic2(H_A, H_B):
# utilize linear kernel
K_A, K_B = linear_kernel(H_A), linear_kernel(H_B)
# utilize linear kernel
# K_A, K_B = gaussian_kernel(H_A, sigma), gaussian_kernel(H_B, sigma)
N = H_A.shape[0]
K_AB = torch.mm(K_A, K_B)
hsic_ceo = torch.trace(K_AB) + torch.mean(K_A) * torch.mean(K_B) * N ** 2 \

- 2 * torch.mean(K_AB) * N
return hsic_ceo / (N - 1) ** 2

def HSIC(H_A, H_B):
# normalize HSIC
numerator = hsic2(H_A, H_B)
denominator = torch.sqrt(hsic2(H_A, H_A) * hsic2(H_B, H_B))
return numerator / denominator

Algorithm 5 PyTorch-style code for Direct Channel Decorrelation.
# H_A: representations from view A, shape=[N,d]
# H_B: representations from view B, shape=[N,d]

def loss_DCD(H_A, H_B):
d = H_A.shape[1] # dimension
N = H_A.shape[0] # number of nodes
M = torch.ones(d, d) - torch.eye(d) # mask matrix

# intra-view correlation matrix
c_A = torch.mm(H_A.T, H_A) / N
c_B = torch.mm(H_B.T, H_B) / N
# inter-view correlation matrix
c_AB = torch.mm(H_A.T, H_B) / N

loss_dcd_intra = (c_A * M).pow(2).sum() + (c_B * M).pow(2).sum()
loss_dcd_inter = (c_AB * M).pow(2).sum()
loss_dcd = loss_dcd_intra + loss_dcd_inter
return loss_dcd / d / (d - 1)

L.3 PSEUDOCODE FOR OVERALL WORKFLOW

The overall workflow under two principles is summarized in Algorithm 7.

M HYPERPARAMETER SENSITIVITY ANALYSIS ON WEIGHTED COEFFICIENTS
α AND β

In this section, we conduct experiments to explore the effects of weighted coefficients α and β of the
consistency term and the decorrelation term in Eq. (15) of the main text. Concretely, we evaluate
the impact of various combinations of α and β on node classification accuracy on Cora dataset. The
experimental results under various settings are presented in Figure 15. It can be found that the good
results benefit from the appropriate values of the two hyperparameters. Actually, what matters is
their ratio α

β . For instance, in Figure 15(a), the performance is always satisfactory when α
β is about 5.
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Algorithm 6 PyTorch-style code for Spectral Regularization.
# H_A: representations from view A, shape=[N,d]
# H_B: representations from view B, shape=[N,d]

def loss_SR(H_A, H_B):
N = H_A.shape[0] # number of nodes

# calculate covariance matrix
c_A = torch.mm(H_A.T, H_A) / N
c_B = torch.mm(H_B.T, H_B) / N

eigvals_A = torch.linalg.eigvals(c_A).float()
std_A = torch.std(eigvals_A)
eigvals_B = torch.linalg.eigvals(c_B).float()
std_B = torch.std(eigvals_B)

loss_sr = std_A + std_B
return loss_sr

Algorithm 7 Overall Workflow under Two Principles
Input: A graph G(A,X) with N nodes, neural encoder fθ, weighted coefficients α and β, augmen-
tation function space T , correlation indicator Cor(·, ·), training epochs T .

1: Initialize fθ;
2: repeat
3: Randomly sample two augmentation functions τA and τB from T ;
4: Generate two augmented views G′

A(A
′
A,X

′
A) = τA(G) and G′

B(A
′
B ,X

′
B) = τB(G);

5: Obtain node representations H̃A = fθ(A
′
A,X

′
A) and H̃B = fθ(A

′
B ,X

′
B);

6: Get normalized representations HA and HB ;
7: Calculate consistency loss Lcvmc based on the given Cor(·, ·);
8: Calculate decorrelation loss Lbcmd according to Eq. (13) or Eq. (14);
9: Obtain the overall objective L = αLcvmc + βLbcmd;

10: Update parameters θ through back propagation;
11: until reaching maximum training steps T
12: Get H = fθ(A,X) for downstream tasks.

Similarly, in Figure 15(e), it can work well when α
β is approximately equal to 200. When applying

our method to a new dataset, we can fix one hyperparameter (e.g., α) and adjust the other one.

N HYPERPARAMETER SENSITIVITY ANALYSIS ON AUGMENTATION
INTENSITY

We study the influences of augmentation intensity on node classification accuracy. Various combi-
nations of feature masking ratio pf and edge removal ratio pe are attempted on Cora and Pubmed
datasets. As shown in Figure 16, the optimal performance is achieved under the best combination
of pe and pf . Besides, when pe and pf are in a proper range, the experimental results are always
competitive, which reflects the robustness of our framework. Besides, we can find that appropriately
strong augmentations (i.e., larger pe and pf ) contribute to better performance for it is helpful to mine
augmentation-invariant information.
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(a) MC-DCD (b) DC-DCD (c) RV-DCD (d) HSIC-DCD

(e) MC-SR (f) DC-SR (g) RV-SR (h) HSIC-SR

Figure 15: Node classification accuracy under various combinations of weighted coefficients α and
β on Cora dataset. In the caption of each subfigure, the left of “-” denotes the employed statistical
indicator while its right represents the adopted decorrelation strategy. DC: Distance Correlation;
RV: RV-coefficient; MC: Matrix Correlation; HSIC: Hilbert-Schmidt Independence Criterion; DCD:
Direct Channel Decorrelation; SR: Spectral Regularization.

(a) Cora (b) Pubmed

Figure 16: Node classification accuracy under various combinations of feature masking ratio pf and
edge removal ratio pe on Cora and Pubmed. When pe = 0 and pf = 0, the experimental results are
52.5 and 47.7 on Cora and Pubmed, which are not displayed for better visualization.

28


	Introduction
	Related Work
	Graph Contrastive Learning
	Statistical Correlation

	Two Principles for Graph Contrastive Learning
	Notations an Preliminaries
	Cross-view Maximum Consistency
	Formulating Augmentation as A Mixing Process and Consistency Principle
	Four Statistical Indicators

	Between-Channel Minimum Dependence
	Dimensional Collapse and Decorrelation Principle
	Two Strategies

	Overall Framework and Objective Function

	Experiments
	Datasets and Experimental Setup
	Comparison Experiments and Ablation Studies
	Exploratory Experiments on the Consistency Principle
	Exploratory Experiments on the Decorrelation Principle

	Conclusion
	Interpretation and Discussion of Proposition 1
	Connection to Mutual Information Maximization
	Comparison with Two Peer Works
	Comparison with Spectral Contrastive Loss
	Comparison with VICReg

	Proof of Property 1
	Proof of Theorem 1
	Comparison with ZCA Whitening and Toy Experiments
	Relationship between Decorrelation and Smoothness
	Statistics of Seven Datasets
	Supplement to the Experiments in Subsection 4.4
	Visual Studies
	t-SNE Visual Analysis
	Correlation Matrix Visualization

	Summary of the Statistical Indicators
	PyTorch-Style Pseudocode
	Pseudocode for Four Statistical Indicators
	Pseudocode for Two Proposed Strategies for Decorrelation
	Pseudocode for Overall Workflow

	Hyperparameter Sensitivity Analysis on Weighted Coefficients  and 
	Hyperparameter Sensitivity Analysis on Augmentation Intensity

