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Abstract

We introduce a statistical framework for evaluating large language models (LLMs)
in two-player games. The model separates premature endings, such as timeouts or
repeated invalid moves, from the conditional outcome of win, draw, or loss. Both
parts share a low-dimensional skill space for models and games, which lets us
capture reliability (avoiding failures) and proficiency (winning valid games). Using
the TextArena dataset (57 models, 30 games, about 38k matches including human
players), we learn skills that can be used to compare similarity between LLMs’
skill profiles, rank models, or predict performance in other tasks such as solving
mathematical problems. In sum, our method turns arena outcomes into a structured
and interpretable map of model reliability and capability.

1 Introduction

As static, single-turn benchmarks approach saturation, the field of large language models (LLMs)
progresses increasingly depending on interactive, multi-turn evaluation that stresses instruction
following, long context management, planning, and strategy. Game-based benchmarks and arenas
provide such settings at scale. TextArena [13] offers a large, extensible collection of single-, two-, and
multi-player text-based games, supports model-vs-model and model-vs-human play, and maintains a
public, real-time leaderboard to track performance.

Standard summaries, such as raw win rates or separate ranks for each game type, still fall short.
Treating each game in isolation ignores the fact that performance across games is often correlated: a
model strong in chess may also show strengths in other strategic settings, though not in exactly the
same way. Capturing these shared dimensions of skill requires going beyond independent per-game
ranks can make the evaluation process more interpretable. Another issue is that invalid moves and
timeouts are usually not given the needed attention. This wastes information, since such failures
reveal important aspects of model behavior. For instance, producing outputs in the correct format,
following instructions precisely, or avoiding hallucinated moves are all critical capabilities, and the
frequency of invalid moves directly signals whether a model is reliable in these respects.

We propose a compact statistical model that breaks down game outcomes into two parts: whether
the match ended prematurely (by timeout or by two invalid moves in a row) and, if it continued,
whether it ended in a win/loss or draw. The two components of our model are linked through a
shared low-dimensional skill space, much like in multidimensional Item Response Theory [22]
model: models are characterized by latent skills, and each type of game outcome reflects a different
combination of these skills. By modeling both valid and invalid outcomes, our framework captures
a broader set of skills than traditional win-loss summaries. This includes not only the abilities
needed to succeed in valid games but also the reliability-related skills required to avoid timeouts or
invalid moves. Parameters are estimated via maximum likelihood and are identifiable up to a rotation,
following conventions from factor models, e.g., in [8]. Applied to TextArena data, the approach
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reveals skill- and game-level patterns that extend the insights provided by current evaluation platforms
and leaderboards.

2 Related work

Statistical modelling of games and matches. The Bradley—Terry (BT) model [2] is the standard
framework for modeling competitive outcomes, with many extensions capturing richer structures.
Examples include position bias or “home effects” [4], team-based models inferring individual skills
[15], and dynamic or Bayesian formulations for longitudinal data [4, 23, 24]. To address intransitivity,
the “Chest-and-Blade” framework uses attack and defense vectors [6, 7], later generalized for
flexibility [11], with related ideas in competitor embeddings [5]. Beyond pairwise skills, extensions
include Bayesian Mallows models for heterogeneous raters [10]. In the LLM setting, BT-type
methods have been applied to Chatbot Arena data [9, 12].

Latent skills of LLMs. Performance correlations across benchmarks suggest LLMs share low-
dimensional latent skills. Ili¢ [16] extract a general “g-factor” from the Open LLM Leaderboard
[1] and GLUE [25], showing it correlates with model size. Using HELM [19], Burnell et al. [3]
identify three interrelated factors that also scale with size, though without a formal scaling law; their
analysis omits training set size and model family, limiting extrapolation. Kipnis et al. [18] apply
unidimensional IRT to six Open LLM Leaderboard benchmarks, finding the primary factor (= 80%
variance explained) aligns with overall leaderboard scores. Finally, Maia Polo et al. [20, 21] show
that leveraging such latent skills can cut evaluation costs by up to 140x.

3 Methodology

We model head-to-head games between two LLMs, 71 (first mover) and ¢5 (second mover), that may
end prematurely via either (i) a timeout or (ii) the player committing two invalid moves in a row
(“two-strike” rule). If neither event occurs, the game proceeds to a valid conclusion with an outcome
of win/draw/loss. Each LLM i has a skill vector §; € R?; game j has parameters detailed below. We
write o(z) = 1/(1 + e~7) for the sigmoid activation function.

3.1 Typed premature termination: timeouts and two-strike invalids
Let Z;, ;,,; denote the outcome random variable for game status, assuming it takes its values in

LR EERNTS LRI CLINT3

“41 timeout”, “io timeout”, “i; two-strike”, “io two-strike”, “valid game”}.
We use a multinomial 10g1st1c (softmax) model with ¢ Vahd game” as the reference class. For each

failure type k € {timeout, two-strike},
P(Zi, i, = “i1,K”)
1 11,12,] ’ — 5. Ao g — T 91
o8 |:P(Zi17i2;j = “valid game”) sk T+ Ak = Va0

log P(Zi, iy, = “i2, k) _
P(Z;, i,,; = “valid game”)

-
k= 7k

Here, )\; 1 € R is a type-specific base log-odds for game j, v, € R links failure type k to skill
(higher along y; ;, reduces that failure), 6; € R captures a first-move position bias for type k. The
position bias reflects the idea that players making more moves face a higher chance of ending the
game prematurely.

3.2 Performance on valid games (win/draw/loss)

LEENT EL T

Let Y;m j € {“invalid game”, “i; wins”, “draw”, “i> wins”}. Consistency with the termination
model is enforced by P(YZMM — “invalid game’ | Zi, i,.; # “valid game”) = 1. Conditional on
validity, we use a paired-comparison model with a draw margin:

P(Y;, 4,5 = “i1 wins” | Z;, ;, ; = “valid game”) = o( i1sin. [3])
P(Yrihimj = “ip wins” | Zihiz’j = “valid game”) = U( l1,12;J 6])

P(Yilyiz,j = “draw” i1,i2,) — “valid game”) =1- U( i1,i2,) 6]) ( - 11 i2,] ﬁ])

with A, 4,5 = cvjT (0;, —0:,) +r; with 3; > 0. Here a; € R selects the skills governing valid-play
performance on game j, ~; is a position-bias term (advantage for moving first if x; > 0), and 3,
is the draw margin (larger 3; = more draws). Swapping 41, i2 flips the sign of A and exchanges
the win probabilities. We fit the model using maximum-likelihood estimation with more details in

Appendix A.
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Figure 1: Cosine similarity between the skill profile of deepseek-r1 and other LLMs, normalized
so that the highest similarity is 1 and the lowest is 0. The plot highlights which models share the most
similar latent skill structure with deepseek-r1.

3.3 Identifiability

The model is over-parameterized. To reduce the overparameterization, we fix the location and scale
of the latent skills. A convenient convention is to center and whiten the skills across models, i.e.,

SRS

These constraints remove the global translation and scale indeterminacies. Even under centering and
whitening, the likelihood is invariant to any common orthogonal rotation R € R%*?: replacing

01’ — RiTgi, Q< ROéj, Yik R’Yj,k

leaves all probabilities (and thus the likelihood) unchanged because they depend only on inner
products 7;,6 #; and a;r (0;, — 0;,). Consequently, parameters are identifiable only up to a rotation
of the d-dimensional skill space. This type of rotational non-identifiability is standard in factor
analysis and multidimensional IRT. In practice, one typically chooses a rotation after fitting the model
to aid interpretation, for example, by applying a criterion such as geomin [17] to align skills with
interpretable axes. The rotation does not change model fit or predictive performance but makes the
latent dimensions easier to describe and compare across datasets.

4 Data analysis

In this section, we present preliminary results using the TextArena dataset, publicly available on
HuggingFace' . The dataset includes 57 language models, ranging from general-purpose to frontier
reasoning models, spanning 30 game types such as chess and other strategy games, with roughly 38k
recorded matches. We filtered out games in which the number is valid games is less than 50 matches,
ending up with 22 game modalities in total. A subset of the matches also involves human players.
When fitting the model, we evaluated the validation loss on a small held-out subset of the data, which
indicated that d = 4 is the optimal choice.

Comparing LLMs’ skill profiles. After fitting our model, we can directly compare the la-
tent skill profiles 6; of different LLMs. A simple approach is to compute the cosine sim-
ilarity between two vectors 6; and 6;;, which measures the degree of alignment between
their skill representations. In Figure 1, we plot these similarities, normalized so that the
maximum value is 1 and the minimum is 0. The figure shows that deepseek-rl is most
closely aligned with deepseek-ri-distill-1lama-70b, deepseek-r1-distill-1lama-8b,
and OpenAl’s ol, suggesting that these models have similar behavior in practical situations.

'nttps://huggingface.co/datasets/the-acorn-ai/textarena-player-game-traces
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Figure 3: Pearson correlations between the TextArena complex instruction-following skill and
skills estimated from one-dimensional IRT models on MATH and IFEval. The results show that
the TextArena skill aligns more strongly with MATH than with IFEval, indicating that complex
instruction-following in games captures reasoning abilities beyond those directly targeted by IFEval.
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tation of the model skills d; based on
the loadings +; ;.. Figure 2 shows the
mean and standard deviation (across
games j) of the rotated loadings for
each skill dimension. A clear struc-
ture emerges: after rotation, “Skill 0”
is strongly associated with avoiding
timeouts, while “Skill 1” is linked to
avoiding invalid moves, that is, follow-
ing complex instructions correctly. In
Figure 4, we use this interpretation to
rank models by their ability to follow
complex instructions. In Figure 5, we
show the loadings «; for all games.
From that figure, we see that each skill can be more or less loaded in some games. For future steps,
we plan to develop ways to interpret these loadings more insightfully.
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Figure 2: Rotated loadings (v; %) averaged across games,
with error bars showing standard deviations. After geomin
rotation, “Skill 0” aligns with avoiding timeouts, while “Skill
17 aligns with avoiding invalid moves (following instruc-
tions).

Correlating TextArena skills with well-known benchmarks. One way to interpret what the latent
skills represent in TextArena is to compare them with skills extracted from established benchmarks.
To do this, we fit one-dimensional IRT models to MATH [14] (for mathematical problem solving)
and IFEval [26] (for instruction following) and estimated skill parameters for the same 57 models.
Figure 3 reports Pearson correlations between the TextArena complex instruction-following skill and
the benchmark-derived skills. Since the model is invariant to translations, the sign of the correlation
is not directly meaningful, as long as the relative alignment is interpreted consistently. We find that
stronger complex instruction-following skills in TextArena correlate positively with higher MATH
skills. Interestingly, the correlation is stronger with MATH than with IFEval, suggesting that what we
label “complex instruction following” in games is more closely tied to mathematical reasoning than
to the narrower instruction-following behaviors measured by IFEval.
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A Estimation via maximum likelihood

M

Let D = (z’ﬁ””, iém),j(m), zZm), Y(m))m=1 be the set of matches, where Y (™) is observed only
when Z(™) = “valid game”. Denote by p z (11,12, j) the softmax probability of each termination
label from the previous subsection, and by py|yia(é1,%2,j) the paired-comparison probabilities
(win/draw/loss) from the valid-play model. The likelihood factorizes per match as

1 (m) (m) (m) () (m) () HZ =
L(®7 F7A7A) = H bz (7/1 sl 7y ] ) 'pY|valid (7,1 sl 5] ) R

m=1

over Z(m) only if valid

where © = 6;, T = {v; 1}, A = {X\; k, 0k, K, B;}, and A = {e; }. Equivalently, the log-likelihood
is

M
ICAWWIESY [logpz (iﬁm),igm),jm))ﬂ{z(m) = valid} 10g Py vara (iﬁm),ig"‘),j(m)) }

m=1
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Figure 4: Model ranking by their instruction-following skill (Skill 1 after rotation). Higher values
indicate a stronger ability to avoid invalid moves and follow complex instructions.
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