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Abstract

We introduce a statistical framework for evaluating large language models (LLMs)1

in two-player games. The model separates premature endings, such as timeouts or2

repeated invalid moves, from the conditional outcome of win, draw, or loss. Both3

parts share a low-dimensional skill space for models and games, which lets us4

capture reliability (avoiding failures) and proficiency (winning valid games). Using5

the TextArena dataset (57 models, 30 games, about 38k matches including human6

players), we learn skills that can be used to compare similarity between LLMs’7

skill profiles, rank models, or predict performance in other tasks such as solving8

mathematical problems. In sum, our method turns arena outcomes into a structured9

and interpretable map of model reliability and capability.10

1 Introduction11

As static, single-turn benchmarks approach saturation, the field of large language models (LLMs)12

progresses increasingly depending on interactive, multi-turn evaluation that stresses instruction13

following, long context management, planning, and strategy. Game-based benchmarks and arenas14

provide such settings at scale. TextArena [13] offers a large, extensible collection of single-, two-, and15

multi-player text-based games, supports model-vs-model and model-vs-human play, and maintains a16

public, real-time leaderboard to track performance.17

Standard summaries, such as raw win rates or separate ranks for each game type, still fall short.18

Treating each game in isolation ignores the fact that performance across games is often correlated: a19

model strong in chess may also show strengths in other strategic settings, though not in exactly the20

same way. Capturing these shared dimensions of skill requires going beyond independent per-game21

ranks can make the evaluation process more interpretable. Another issue is that invalid moves and22

timeouts are usually not given the needed attention. This wastes information, since such failures23

reveal important aspects of model behavior. For instance, producing outputs in the correct format,24

following instructions precisely, or avoiding hallucinated moves are all critical capabilities, and the25

frequency of invalid moves directly signals whether a model is reliable in these respects.26

We propose a compact statistical model that breaks down game outcomes into two parts: whether27

the match ended prematurely (by timeout or by two invalid moves in a row) and, if it continued,28

whether it ended in a win/loss or draw. The two components of our model are linked through a29

shared low-dimensional skill space, much like in multidimensional Item Response Theory [22]30

model: models are characterized by latent skills, and each type of game outcome reflects a different31

combination of these skills. By modeling both valid and invalid outcomes, our framework captures32

a broader set of skills than traditional win-loss summaries. This includes not only the abilities33

needed to succeed in valid games but also the reliability-related skills required to avoid timeouts or34

invalid moves. Parameters are estimated via maximum likelihood and are identifiable up to a rotation,35

following conventions from factor models, e.g., in [8]. Applied to TextArena data, the approach36
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reveals skill- and game-level patterns that extend the insights provided by current evaluation platforms37

and leaderboards.38

2 Related work39

Statistical modelling of games and matches. The Bradley–Terry (BT) model [2] is the standard40

framework for modeling competitive outcomes, with many extensions capturing richer structures.41

Examples include position bias or “home effects” [4], team-based models inferring individual skills42

[15], and dynamic or Bayesian formulations for longitudinal data [4, 23, 24]. To address intransitivity,43

the “Chest-and-Blade” framework uses attack and defense vectors [6, 7], later generalized for44

flexibility [11], with related ideas in competitor embeddings [5]. Beyond pairwise skills, extensions45

include Bayesian Mallows models for heterogeneous raters [10]. In the LLM setting, BT-type46

methods have been applied to Chatbot Arena data [9, 12].47

Latent skills of LLMs. Performance correlations across benchmarks suggest LLMs share low-48

dimensional latent skills. Ilić [16] extract a general “g-factor” from the Open LLM Leaderboard49

[1] and GLUE [25], showing it correlates with model size. Using HELM [19], Burnell et al. [3]50

identify three interrelated factors that also scale with size, though without a formal scaling law; their51

analysis omits training set size and model family, limiting extrapolation. Kipnis et al. [18] apply52

unidimensional IRT to six Open LLM Leaderboard benchmarks, finding the primary factor (≈ 80%53

variance explained) aligns with overall leaderboard scores. Finally, Maia Polo et al. [20, 21] show54

that leveraging such latent skills can cut evaluation costs by up to 140×.55

3 Methodology56

We model head-to-head games between two LLMs, i1 (first mover) and i2 (second mover), that may57

end prematurely via either (i) a timeout or (ii) the player committing two invalid moves in a row58

(“two-strike” rule). If neither event occurs, the game proceeds to a valid conclusion with an outcome59

of win/draw/loss. Each LLM i has a skill vector θi ∈ Rd; game j has parameters detailed below. We60

write σ(x) = 1/(1 + e−x) for the sigmoid activation function.61

3.1 Typed premature termination: timeouts and two-strike invalids62

Let Zi1,i2,j denote the outcome random variable for game status, assuming it takes its values in63 {
“i1 timeout”, “i2 timeout”, “i1 two-strike”, “i2 two-strike”, “valid game”

}
.

We use a multinomial logistic (softmax) model with “valid game” as the reference class. For each64

failure type k ∈ {timeout, two-strike},65

log

[
P(Zi1,i2,j = “i1, k”)

P(Zi1,i2,j = “valid game”)

]
= δj,k + λj,k − γ⊤

j,kθi1 ,

log

[
P(Zi1,i2,j = “i2, k”)

P(Zi1,i2,j = “valid game”)

]
= λj,k − γ⊤

j,kθi2 .

Here, λj,k ∈ R is a type-specific base log-odds for game j, γj,k ∈ Rd links failure type k to skill66

(higher along γj,k reduces that failure), δj,k ∈ R captures a first-move position bias for type k. The67

position bias reflects the idea that players making more moves face a higher chance of ending the68

game prematurely.69

3.2 Performance on valid games (win/draw/loss)70

Let Yi1,i2,j ∈ {“invalid game”, “i1 wins”, “draw”, “i2 wins”}. Consistency with the termination71

model is enforced by P(Yi1,i2,j = “invalid game” | Zi1,i2,j ̸= “valid game”) = 1. Conditional on72

validity, we use a paired-comparison model with a draw margin:73

P(Yi1,i2,j = “i1 wins” | Zi1,i2,j = “valid game”) = σ
(
∆i1,i2,j − βj

)
,

P(Yi1,i2,j = “i2 wins” | Zi1,i2,j = “valid game”) = σ
(
−∆i1,i2,j − βj

)
,

P(Yi1,i2,j = “draw” | Zi1,i2,j = “valid game”) = 1− σ
(
∆i1,i2,j − βj

)
− σ

(
−∆i1,i2,j − βj

)
,

with ∆i1,i2,j = α⊤
j (θi1−θi2)+κj with βj ≥ 0. Here αj ∈ Rd selects the skills governing valid-play74

performance on game j, κj is a position-bias term (advantage for moving first if κj > 0), and βj75

is the draw margin (larger βj ⇒ more draws). Swapping i1, i2 flips the sign of ∆ and exchanges76

the win probabilities. We fit the model using maximum-likelihood estimation with more details in77

Appendix A.78
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Figure 1: Cosine similarity between the skill profile of deepseek-r1 and other LLMs, normalized
so that the highest similarity is 1 and the lowest is 0. The plot highlights which models share the most
similar latent skill structure with deepseek-r1.

3.3 Identifiability79

The model is over-parameterized. To reduce the overparameterization, we fix the location and scale
of the latent skills. A convenient convention is to center and whiten the skills across models, i.e.,

1

n

∑
i

θi = 0,
1

n

∑
i

θiθ
⊤
i = Id.

These constraints remove the global translation and scale indeterminacies. Even under centering and
whitening, the likelihood is invariant to any common orthogonal rotation R ∈ Rd×d: replacing

θi ← R−⊤θi, αj ← Rαj , γj,k ← Rγj,k

leaves all probabilities (and thus the likelihood) unchanged because they depend only on inner80

products γ⊤
j,kθi and α⊤

j (θi1 − θi2). Consequently, parameters are identifiable only up to a rotation81

of the d-dimensional skill space. This type of rotational non-identifiability is standard in factor82

analysis and multidimensional IRT. In practice, one typically chooses a rotation after fitting the model83

to aid interpretation, for example, by applying a criterion such as geomin [17] to align skills with84

interpretable axes. The rotation does not change model fit or predictive performance but makes the85

latent dimensions easier to describe and compare across datasets.86

4 Data analysis87

In this section, we present preliminary results using the TextArena dataset, publicly available on88

HuggingFace1 . The dataset includes 57 language models, ranging from general-purpose to frontier89

reasoning models, spanning 30 game types such as chess and other strategy games, with roughly 38k90

recorded matches. We filtered out games in which the number is valid games is less than 50 matches,91

ending up with 22 game modalities in total. A subset of the matches also involves human players.92

When fitting the model, we evaluated the validation loss on a small held-out subset of the data, which93

indicated that d = 4 is the optimal choice.94

Comparing LLMs’ skill profiles. After fitting our model, we can directly compare the la-95

tent skill profiles θi of different LLMs. A simple approach is to compute the cosine sim-96

ilarity between two vectors θi and θi′ , which measures the degree of alignment between97

their skill representations. In Figure 1, we plot these similarities, normalized so that the98

maximum value is 1 and the minimum is 0. The figure shows that deepseek-r1 is most99

closely aligned with deepseek-r1-distill-llama-70b, deepseek-r1-distill-llama-8b,100

and OpenAI’s o1, suggesting that these models have similar behavior in practical situations.101
1https://huggingface.co/datasets/the-acorn-ai/textarena-player-game-traces
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Figure 3: Pearson correlations between the TextArena complex instruction-following skill and
skills estimated from one-dimensional IRT models on MATH and IFEval. The results show that
the TextArena skill aligns more strongly with MATH than with IFEval, indicating that complex
instruction-following in games captures reasoning abilities beyond those directly targeted by IFEval.

Figure 2: Rotated loadings (γj,k) averaged across games,
with error bars showing standard deviations. After geomin
rotation, “Skill 0” aligns with avoiding timeouts, while “Skill
1” aligns with avoiding invalid moves (following instruc-
tions).

102

Using rotations to find interpretable103

skills and rank models. As described104

in the methodology section, we can105

rotate the skill space using the ge-106

omin criterion to uncover more inter-107

pretable patterns. We perform the ro-108

tation of the model skills θi based on109

the loadings γj,k. Figure 2 shows the110

mean and standard deviation (across111

games j) of the rotated loadings for112

each skill dimension. A clear struc-113

ture emerges: after rotation, “Skill 0”114

is strongly associated with avoiding115

timeouts, while “Skill 1” is linked to116

avoiding invalid moves, that is, follow-117

ing complex instructions correctly. In118

Figure 4, we use this interpretation to119

rank models by their ability to follow120

complex instructions. In Figure 5, we121

show the loadings αj for all games.122

From that figure, we see that each skill can be more or less loaded in some games. For future steps,123

we plan to develop ways to interpret these loadings more insightfully.124

Correlating TextArena skills with well-known benchmarks. One way to interpret what the latent125

skills represent in TextArena is to compare them with skills extracted from established benchmarks.126

To do this, we fit one-dimensional IRT models to MATH [14] (for mathematical problem solving)127

and IFEval [26] (for instruction following) and estimated skill parameters for the same 57 models.128

Figure 3 reports Pearson correlations between the TextArena complex instruction-following skill and129

the benchmark-derived skills. Since the model is invariant to translations, the sign of the correlation130

is not directly meaningful, as long as the relative alignment is interpreted consistently. We find that131

stronger complex instruction-following skills in TextArena correlate positively with higher MATH132

skills. Interestingly, the correlation is stronger with MATH than with IFEval, suggesting that what we133

label “complex instruction following” in games is more closely tied to mathematical reasoning than134

to the narrower instruction-following behaviors measured by IFEval.135
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A Estimation via maximum likelihood205

Let D = (i
(m)
1 , i

(m)
2 , j(m), Z(m), Y (m))

M

m=1 be the set of matches, where Y (m) is observed only206

when Z(m) = “valid game”. Denote by pZ(i1, i2, j) the softmax probability of each termination207

label from the previous subsection, and by pY |valid(i1, i2, j) the paired-comparison probabilities208

(win/draw/loss) from the valid-play model. The likelihood factorizes per match as209

L(Θ,Γ,Λ,∆) =

M∏
m=1

[
pZ

(
i
(m)
1 , i

(m)
2 , j(m)

)
︸ ︷︷ ︸

over Z(m)

· pY |valid

(
i
(m)
1 , i

(m)
2 , j(m)

)1{Z(m)=valid}

︸ ︷︷ ︸
only if valid

]
,

where Θ = θi, Γ = {γj,k}, Λ = {λj,k, δj,k, κj , βj}, and A = {αj}. Equivalently, the log-likelihood210

is211

ℓ(Θ,Γ,Λ, A) =

M∑
m=1

[
log pZ

(
i
(m)
1 , i

(m)
2 , j(m)

)
+1{Z(m) = valid} log pY |valid

(
i
(m)
1 , i

(m)
2 , j(m)

)]
.

B Extra results212

Figure 4: Model ranking by their instruction-following skill (Skill 1 after rotation). Higher values
indicate a stronger ability to avoid invalid moves and follow complex instructions.
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Figure 5: Loadings αj
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