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ABSTRACT

The efficacy of availability poisoning, a method of poisoning data by injecting
imperceptible perturbations to prevent its use in model training, has been a hot
subject of investigation. Previous research suggested that it was difficult to effec-
tively counteract such poisoning attacks. However, the introduction of various
defense methods has challenged this notion. Due to the rapid progress in this field,
the performance of different novel methods cannot be accurately validated due
to variations in experimental setups. To further evaluate the attack and defense
capabilities of these poisoning methods, we have developed a benchmark — AP-
Bench for assessing the efficacy of adversarial poisoning. APBench consists of 9
state-of-the-art availability poisoning attacks, 9 defense algorithms, and 4 conven-
tional data augmentation techniques. We also have set up experiments with varying
different poisoning ratios, and evaluated the attacks on multiple datasets and their
transferability across model architectures. We further conducted a comprehensive
evaluation of 2 additional attacks specifically targeting unsupervised models. Our
results reveal the glaring inadequacy of existing attacks in safeguarding individual
privacy. APBench is open source and available to the deep learning community1.

1 INTRODUCTION

Recent advancements of deep neural networks (DNNs) [21, 37, 15] heavily rely on the abundant
availability of data resources [5, 33, 19]. However, the unauthorized collection of large-scale data
through web scraping for model training has raised concerns regarding data security and privacy.
In response to these concerns, a new paradigm of practical and effective data protection methods
has emerged, known as availability poisoning attacks (APA) [40, 45, 9, 17, 43, 10, 32, 14, 36, 8, 44,
14, 32], or unlearnable example attacks. These poisoning methods inject small perturbations into
images that are typically imperceptible to humans, in order to hinder the model’s ability to learn the
original features of the images. Recently, the field of deep learning has witnessed advancements in
defense strategies [23, 30, 7, 17] that hold the potential to challenge APAs, thereby undermining their
claimed effectiveness and robustness. These defenses reveal the glaring inadequacy of existing APAs
in safeguarding individual privacy in images. Consequently, we anticipate an impending arms race
between attack and defense strategies in the near future.

However, evaluating the performance of these new methods across diverse model architectures and
datasets poses a significant challenge due to variations in experimental settings of recent literatures.
In addition, researchers face the daunting task of staying abreast of the latest methods and assessing
the effectiveness of various competing attack-defense combinations. This could greatly hamper the
development and empirical exploration of novel attack and defense strategies.

To tackle this challenge, we propose the APBench, a benchmark specifically designed for availability
poisoning attacks and defenses. It involves implementing poisoning attack and defense mechanisms
under standardized perturbations and training hyperparameters, in order to ensure fair and repro-
ducible comparative evaluations. APBench comprises a range of availability poisoning attacks and
defense algorithms, and commonly-used data augmentation policies. This comprehensive suite allows
us to evaluate the effectiveness of the poisoning attacks thoroughly.

Our contributions can be summarized as follows:
1Link to follow
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• An open source benchmark for state-of-the-art availability poisoning attacks and defenses,
including 9 supervised and 2 unsupervised poisoning attack methods, 9 defense strategies
and 4 common data augmentation methods.

• We conduct a comprehensive evaluation competing pairs of poisoning attacks and defenses.
• We conducted experiments across 4 publicly available datasets, and also extensively exam-

ined scenarios of partial poisoning, increased perturbations, the transferability of attacks to
4 CNN and 2 ViT models under various defenses, and unsupervised learning. We provide
visual evaluation tools such as t-SNE, Shapley value map and Grad-CAM to qualitatively
analyze the impact of poisoning attacks.

The aim of APBench is to serve as a catalyst for facilitating and promoting future advancements in
both availability poisoning attack and defense methods. By providing a platform for evaluation and
comparison, we aspire to pave the way for the development of future availability poisoning attacks
that can effectively preserve utility and protect privacy.

2 RELATED WORK

2.1 AVAILABILITY POISONING ATTACKS

Availability poisoning attacks (APAs) belong to a category of data poisoning attacks [12] that adds
a small perturbation to images, that is often imperceptible to humans. However, the objective
contrasts with that of traditional data poisoning. The purpose of these perturbations is to protect
individual privacy from deep learning algorithms, preventing DNNs from effectively learning the
features present in the images. The attacker’s goal is to thus render their data unlearnable with
perturbations, hindering the unauthorized trainer from utilizing the data to learn models that can
generalize effectively to the original data distribution. The intent of APAs is therefore benign
rather than malicious as generally assumed of data poisoning attacks. We typically assume that the
attacker publishes (a subset of) the images, which get curated and accurately labeled by the defender
to train on them without consent from the attacker.

Formally, consider a source dataset comprising original examples Dclean = {(x1, y1), . . . , (xn, yn)}
where xi ∈ X denotes an input image and yi ∈ Y represents its label. The objective of the attacker is
thus to construct a set of availability perturbations δ, such that models trained on the set of availability
poisoned examples Dpoi(δ) = {(x+ δx, y) | (x, y) ∈ Dclean} are expected to perform poorly when
evaluated on a test set Dtest sampled from the distribution S:

max
δ

E(xi,yi)∼Dtest [L(fθ?(δ)(xi), yi)], s.t. θ?(δ) = argmin
θ

E(x̂i,yi)∼Dpoi(δ) L(fθ(x̂i), yi), (1)

where L denotes the loss function, usually the softmax cross-entropy loss. In order to limit the impact
on the original utility of images, the perturbation δi is generally constrained within a small ε-ball of
`p distance.

To enforce a small perturbation budget, recent methods typically constrain their perturbations within
a small `p-ball of ε radius, where typically p ∈ {0, 2,∞}. DeepConfuse (DC) [8] proposes to use
autoencoders to generate training-phase adversarial perturbations. Neural tangent generalization
attacks (NTGA) [45] approximates the target model as a Gaussian process [18] using the generalized
neural tangent kernel, and solves a bi-level optimization for perturbations. Error-minimizing attacks
(EM) [17] minimizes the training error of the perturbed images relative to their original labels
on the target model, creating shortcuts for the data to become “unlearnable” by the target model.
Building upon EM, robust error-minimizing attacks (REM) [10] use adversarially trained models
to generate perturbations in order to counter defense with adversarial training. Hypocritical [40]
also generates error-minimizing perturbations similar to EM, but instead uses a pretrained surrogate
model. Targeted adversarial poisoning (TAP) [9], inspired by [26], found adversarial examples could
be used for availability poisoning. In contrast to the above approaches, indiscriminate poisoning
(UCL) [14] and transferable unlearnable examples (TUE) [32] instead consider availability poisoning
for unsupervised learning. On the other hand, `2 and `0 perturbation-based poisoning methods
do not require a surrogate model. They achieve poisoning by searching for certain triggering
patterns to create shortcuts in the network. Besides the above `∞-bounded methods, Linear-separable
poisoning (LSP) [44] and Autoregressive Poisoning (AR) [36] both prescribe perturbations within
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an `2 perturbation budget. Specifically, LSP generates randomly initialized linearly separable color
block perturbations, while AR fills the starting rows and columns of each channel with Gaussian noise
and uses an autoregressive process to fill the remaining pixels, generating random noise perturbations.
One Pixel Shortcut [43] (OPS), as an `0-bounded poisoning method, perturbs only a single pixel
in the training image to achieve strong poisoning in terms of usability. Figure 1 provides visual
examples of these attacks.

Clean

DC NTGA HYPOEM REM TAP LSP AR OPS

Figure 1: Visualizations of unlearnable CIFAR-10 images with corresponding perturbations. Pertur-
bations are normalized for visualization.

2.2 AVAILABILITY POISONING DEFENSES

The goal of the defender is to successfully train a model with good generalization abilities (e.g., test
accuracies on natural unseen images) on protected data. Generally, the defender can control the
training algorithm, and only have access to a training data set with data poisoned either partially
or fully. The objective of the defender is thus to find a novel training algorithm g(Dpoi) that trains
models to generalize well to the original data distribution:

mingE(xi,yi)∼Dtest [L(fθ?(xi), yi)], s.t. θ? = g(Dpoi). (2)

Notably, if the method employs the standard training loss but performs novel image transformations
h, then g can be further specialized as follows:

g(Dpoi) = argminθ E(x̂i,yi)∼Dpoi(δ) L(fθ(h(x̂i)), yi). (3)

Currently, defense methods against perturbative availability poisoning can be mainly classified into
two categories: preprocessing and training-phase defenses. Data preprocessing methods preprocess
the training images to eliminate the poisoning perturbations prior to training. Image shortcuts
squeezing (ISS) [23] consists of simple countermeasures based on image compression, including
grayscale transformation, JPEG compression, or bit-depth reduction (BDR) to perform poison
removal. Recently, AVATAR [7] leverages the method proposed in DiffPure [28] to employ diffusion
models to disrupt deliberate perturbations while preserving semantics in the training images. On the
other hand, training-phase defense algorithms apply specific modifications to the training phase to
defense against availability attacks. Adversarial training has long been considered the most effective
defense mechanism [17, 10] against such attacks. Recent report [35] finds that peak accuracy can
be reached early in the training of availability poisons, and thus early stopping can be an effective
mean of training-phase defense. Adversarial augmentations [30] sample multiple augmentations
on one image, and train models on the maximum loss of all augmented images to prevent learning
from poisoning shortcuts. For referential baselines, APBench also includes commonly used data
augmentation techniques such as Gaussian blur, random crop and flip (standard training), CutOut [6],
CutMix [46], and MixUp [47], and show their (limited) effect in mitigating availability poisons.

2.3 RELATED BENCHMARKS

Availability poisoning is closely connected to the domains of adversarial and backdoor attack
and defense algorithms. Adversarial attacks primarily aim to deceive models with adversarial
perturbations during inference to induce misclassifications. There are several libraries and benchmarks
available for evaluating adversarial attack and defense techniques, such as Foolbox [31], AdvBox [13],
and RobustBench [4].
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Backdoor or data poisoning [3] attacks focus on injecting backdoor triggers into the training algo-
rithm or data respectively, causing trained models to misclassify images containing these triggers
while maintaining or minimally impacting clean accuracy. In contrast to APAs, such attacks intro-
duce hidden behaviors into the model that can be triggered by specific inputs, often for malicious
purposes. Benchmark libraries specifically designed for backdoor attacks and defenses include Tro-
janZoo [29], Backdoorbench [42], and Backdoorbox [22]. Moreover, [38, 11] introduce benchmarks
and frameworks for data poisoning attacks.

However, there is currently a lack and an urgent need of a dedicated and comprehensive benchmark
that standardizes and evaluates availability poisoning attack and defense strategies. To the best of our
knowledge, APBench is the first benchmark that fulfills this purpose. It offers an extensive library of
recent attacks and defenses, explores various perspectives, including the impact of poisoning rates
and model architectures, as well as attack transferability. We hope that APBench can make significant
contributions to the community and foster the development of future availability attacks for effective
privacy protection.

3 A UNIFIED AVAILABILITY POISONING BENCHMARK

As shown in Figure 2, APBench consists of three main components: (a) The availability poisoning
attack module. This library includes a set of representative availability poisoning attacks that can
generate unlearnable versions of a given clean dataset. (b) The poisoning defense module. This
module integrates a suite of state-of-the-art defenses that can effectively mitigate the unlearning
effect and restore clean accuracies to a certain extent. (c) The evaluation module. This module can
efficiently analyze the performance of various availability poisoning attack methods using accuracy
metrics and visual analysis strategies.
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Figure 2: The overall system design of APBench.

We built an extensible codebase as the foundation of APBench. In the attack module, we provide a
total of 9 availability poisoning attacks of 3 different perturbation types (`p) for supervised learning,
and 2 attacks for unsupervised learning. For each availability poisoning attack method, we can
generate their respective poisoned datasets. This module also allows us to further expand to different
perturbations budgets, poisoning ratios, and easily extend to future poisoning methods. Using the
poisoned datasets generated by the attack module, we can evaluate defenses through the defense
module. The goal of this module is to ensure that models trained on unlearnable datasets can still
generalize well on clean data. The defense module primarily achieves poisoning mitigation through
data preprocessing or training-phase defenses. Finally, the evaluation module computes the accuracy
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Table 1: Availability poisoning attack algorithms implemented in APBench. “Type” and “Budget”
respectively denotes the type of perturbation and its budget. “Mode” denotes the training mode, where
“S” and “U” and respectively mean supervised and unsupervised training. “No surrogate” denotes
whether the attack requires access to a surrogate model for perturbation generation. “Class-wise” and
“Sample-wise” indicate if the attack supports class-wise and sample-wise perturbation generation.
“Stealthy” denotes whether the attack is stealthy to human.

Attack Method Type Budget Mode No surrogate Class-wise Sample-wise Stealthy

DC [8]

`∞ 8/255

S X X
NTGA [45] S X X
HYPO [40] S X X
EM [17] S X X X
REM [10] S X X X
TAP [9] S X X
UCL [14] U X X X
TUE [32] U X X

LSP [44]
`2

1.30 S X � X
AR [36] 1.00 S X � X X

OPS [43] `0 1 S X X

Table 2: Availability poisoning defense algorithms implemented in APBench.

Defense Method Type Time Cost Description

Standard

Data augmentations

Low Random image cropping and flipping
CutOut [6] Low Random image erasing
MixUp [47] Low Random image blending
CutMix [46] Low Random image cutting and stitching

Gaussian (used in [23])

Data preprocessing

Low Image blurring with a Gaussian kernel
BDR (used in [23]) Low Image bit-depth reduction
Gray (used in [23]) Low Image grayscale transformation
JPEG (used in [23]) Low Image compression
AVATAR [7] High Image corruption and restoration

Early stopping [35]

Training-phase defense

Low Finding peak validation accuracy
UEraser-Lite [30] Low Stronger data augmentations
UEraser-Max [30] High Adversarial augmentations
AT [25] High Adversarial training

metrics of different attacks and defense combinations, and can also perform qualitative visual analyses
to help understand the characteristics of the datasets.

Our benchmark currently includes 9 supervised and 2 unsupervised availability poisoning attacks, 9
defense algorithms, and 4 traditional image augmentation methods. In Table 1 and Table 2, we provide
a brief summary of the properties of attack and defense algorithms. More detailed descriptions for
each algorithm are provided in Appendix B.

4 EVALUATIONS

Datasets We evaluated our benchmark on 4 commonly used datasets (CIFAR-10 [20], CIFAR-
100 [20], SVHN [27], and an ImageNet [5] subset) and 5 mainstream models (ResNet-18 [15],
ResNet-50 [15], MobileNetV2 [34], and DenseNet-121 [16]). To ensure a fair comparison between
attack and defense methods, we used only the basic version of training for each model. Appendix A
summarizes the specifications of the datasets and the test accuracies achievable through standard
training on clean training data, and further describes the detail specifications of each dataset.

Attacks and defenses We evaluated combinations of availability poisoning attacks and defense
methods introduced in Section 3. Moreover, we explored 5 different data poisoning rates and 5
different models. In addition, We also explore two availability poisonings for unsupervised learning
(UCL [14] and TUE [32]) and evaluate them on the recently proposed defenses (Gray, JPEG, Early

5



Under review as a conference paper at ICLR 2024

stopping (ES), UEraser-Lite [30], and AVATAR [7]). The implementation details of all algorithms
and additional results can be found in Appendix B.

Types of Threat Models We can classify adversarial attacks based on three distinct availability
poisoning threat models: `∞-bounded attacks (DC, NTGA, EM, REM, TAP, and HYPO); `2-bounded
attacks (LSP and AR); an `0-bounded attack (OPS). Given that `0 perturbations resist disruption
from image preprocessing or augmentations and remain unaffected by `∞ adversarial training, the
`0-bounded OPS attack demonstrates robustness against a plethora of defenses. Conversely, in
terms of stealthiness, the `0 attacks are less subtle than their `∞ and `2 counterparts, as illustrated
in Figure 1. Perturbations bounded by both `∞ and `2 are comparable w.r.t. the degree of visual
stealthiness and effectiveness. Importantly, the two `2-bounded attacks (LSP and AR) do not require
surrogate model training, and are thus more efficient in the unlearnable examples synthesis.

Training settings We trained the CIAFR-10, CIFAR-100 and ImageNet-subset models for 200
epochs and the SVHN models for 100 epochs. We used the stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and a learning rate of 0.1 by default. As for unsupervised learning,
all experiments are trained for 500 epochs with the SGD optimizer. The learning rate is 0.5 for
SimCLR [1] and 0.3 for MoCo-v2 [2]. Please note that we generate sample-wise perturbations for all
availability poisoning attacks. Specific settings for each defense method may have slight differences,
and detailed information can be found in the Appendix C.

Standard Scenario To start, we consider a common scenario where both the surrogate model and
target model are ResNet-18, and the poisoning rate is set to 100%. We first evaluate the performance
of the supervised poisoning methods against 4 state-of-the-art defense mechanisms and 4 commonly
used data augmentation strategies. Table 3 presents the evaluation results on CIFAR-10 from our
benchmark. It is evident that the conventional data augmentation methods appear to be ineffective
against all poisoning methods. Yet, even simple image compression methods (BDR, grayscale, and
JPEG corruption from ISS [23]) demonstrate a notable effect in mitigating the poisoning attacks, but
fails to achieve high clean accuracy. Despite requiring more computational cost or additional resources
(pretrained diffusion models for AVATAR), methods such as UEraser-Max [30] and AVATAR [7],
generally surpass the image compression methods from ISS in terms of effectiveness. While AVATAR
is inferior to UEraser-Max in gaining accuracy, it decouples the defense into an independent data
sanitization phase, allowing it to be directly used in all existing training scenarios. While the early
stopping (ES) method can be somewhat effective as a defense, is not usually considered a good one.
mainly due to the fact that the peak accuracy of the availability poisoning is not ideal. Adversarial
training appears effective but in many cases is outperformed by even a simple JPEG compression, it
also fails notably against OPS, as the `∞ perturbation budget cannot mitigate `0 threats. We further
conduct experiments on the CIFAR-100, SVHN, and ImageNet-subset datasets, and the results are
shown in Table 4.

Our findings indicate that perturbations constrained by traditional `p norms are ineffective against
adversarial augmentation (UEraser-Max), and image restoration by pretrained diffusion models
(AVATAR), as they break free from the assumption of `p constraints. Even simple image compression
techniques (JPEG, Grayscale, and BDR) can effectively remove the effect of perturbations. At this
stage, availability poisoning attacks that rely on `p-bounded perturbations may not be as effective as
initially suggested by the relevant attacks.

4.1 CHALLENGING SCENARIOS

To further investigate the effectiveness and robustness of availability poisoning attacks and defenses,
we conducted evaluations in more challenging scenarios. We considered partial poisoning scenarios,
larger perturbation poisoning, and the attack transferability to different models.

Partial poisoning In realistic scenarios, it is difficult for an attacker to achieve modification of the
entire dataset. We thus investigate the impact of poisoning rate on the performance of availability
poisoning. Figure 3 presents the results on CIFAR-10 and ResNet-18, w.r.t. each poisoning rate for
attack-defense pairs, where each subplot corresponds to a specific poisoning attack method. We
explore four different poisoning rates (20%, 40%, 60%, 80%).

Privacy protection under partial poisoning As can be seen in Figure 3, the test accuracy of the
model in the case of partial poisoning is only slightly lower than that in the case of a completely
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Table 3: Test accuracies (%) of models trained on poisoned CIFAR-10 datasets. The model trained
on a clean CIFAR-10 dataset attains an accuracy of 94.32%.

Method Standard CutOut CutMix MixUp Gaussian BDR Gray JPEG ES U-Max AVATAR AT

DC 15.19 19.94 17.91 25.07 16.10 67.73 85.55 83.57 26.08 92.17 82.10 76.85
EM 20.78 18.79 22.28 31.14 14.71 37.94 92.03 80.72 25.39 93.61 75.62 82.51
REM 17.47 21.96 26.22 43.07 21.80 58.60 92.27 85.44 31.32 92.43 82.42 77.46
HYPO 70.38 69.04 67.12 74.25 62.17 74.82 63.35 85.21 70.52 88.44 85.94 81.49
NTGA 22.76 13.78 12.91 20.59 19.95 59.32 70.41 68.72 28.19 86.78 86.22 69.70
TAP 6.27 9.88 14.21 15.46 7.88 70.75 11.01 84.08 39.54 79.05 87.75 79.92

LSP 13.06 14.96 17.69 18.77 18.61 53.86 64.70 80.14 29.10 92.83 76.90 81.38
AR 11.74 10.95 12.60 14.15 13.83 36.14 35.17 84.75 44.29 90.12 88.60 81.15

OPS 14.69 52.98 64.72 49.27 13.38 37.32 19.88 78.48 38.20 77.99 66.16 14.95

Table 4: Test accuracies (%) on poisoned CIFAR-100, SVHN and ImageNet-subset datasets.

Dataset Method Standard CutOut CutMix MixUp Gaussian BDR Gray JPEG ES U-Max

CIFAR-100

EM 3.03 4.15 3.98 6.46 2.99 34.10 59.14 58.71 7.06 68.81
REM 3.73 4.00 3.71 10.90 3.59 29.16 57.47 55.60 10.99 67.72
LSP 2.56 2.33 4.52 4.86 1.71 27.12 39.45 52.82 9.52 68.31
AR 1.87 1.63 3.17 2.35 2.62 31.15 16.13 54.73 26.58 55.95

SVHN

EM 10.33 13.38 10.77 12.79 8.82 36.65 65.66 86.14 13.47 90.24
REM 14.02 18.92 9.55 19.56 7.54 42.52 19.59 90.58 19.61 88.26
LSP 12.16 12.98 8.17 18.86 7.15 26.67 16.90 84.06 12.91 90.64
AR 19.23 14.92 6.71 13.52 7.75 39.24 10.00 92.46 89.32 90.07

ImageNet-100
EM 2.94 4.05 4.73 4.15 3.15 6.45 12.20 31.73 8.80 44.07
REM 3.66 4.13 4.78 3.94 4.28 4.03 3.95 40.98 17.19 42.14
LSP 38.52 40.56 29.78 7.85 42.68 26.58 25.18 36.83 39.52 63.28
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Figure 3: The efficacy in test accuracies (%, vertical axes) of defenses (No defense, Grayscale, JPEG,
and UEraser-Max) against different partial poisoning attacks including EM (a), REM (b), LSP (c),
and AR (d) with poisoning ratios (horizontal axes) ranging from 20% to 80%.

clean dataset. This raises the following question: Are APAs effective in protecting only a portion
of the training data? To answer, we introduce poisoning perturbations with APAs to a varying
portion of the training data, and investigate how well the models learn the origin features that exist
in the poisoned images for different poisoning rates. For this, Figure 4 evaluates and compares the
mean losses of the unlearnable images used during training (“Unlearnable”), the origin images of
the unlearnable part (“Clean”), and for reference, the mean losses of images unseen by the model
from the test set (“Test”), and “Train” means the loss of the clean part of the training set. We find
that the losses on the original images of the unlearnable part is similar to that of the test set, or even
lower. This suggests that the availability poisoning perturbations can reasonably protect the
private data against undefended learning. For a similar comparison of accuracies, please refer to
Appendix C.1.

Larger perturbations We increased the magnitude of perturbations in availability poisoning attacks
to further evaluate the performance of attacks and defenses. Table 5 presents the results of availability
poisoning with larger perturbations on CIFAR-10. Due to such significant perturbations, their
stealthiness is further reduced, making it challenging to carry out such attacks in realistic scenarios.
However, larger perturbations indeed have a more pronounced impact on suppressing defense
performance, leading to significant accuracy losses for all defense methods. There exists a trade-off
between perturbation magnitude and accuracy recovery. Considering that at larger perturbations,
availability poisoning is dramatically less stealthy, and some defense methods are still effective, it is
not recommended to use larger perturbations.
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Figure 4: The mean losses (vertical axes) indicate that original features in unlearnable examples are
not learned by the model. All evaluations consider partial poisoning scenarios (poisoning rates from
20% to 80%, horizontal axes). Note that “Unlearnable” and “Original” respectively denote the set of
unlearnable examples, and their original clean variants, “Train” means the loss of the clean part of
the training set. and “Unseen” denote images from the test set unobserved during model training.

Table 5: Test accuracies (%) on poisoned CIFAR-10 datasets with increased perturbations.

Method Budget No defense Gray JPEG ES U-Max AT

EM `∞ = 16/255 18.74 76.76 55.96 27.39 88.09 77.82
REM `∞ = 16/255 19.80 83.65 80.07 33.07 80.36 75.64

LSP `2 = 1.74 15.83 37.60 42.83 27.30 87.20 77.92
AR `2 = 1.50 11.20 26.10 78.24 20.96 68.42 70.14

Table 6: Clean test accuracies of different CIFAR-10 target models, where attacks are oblivious to the
model architectures. Note that AR and LSP are surrogate-free, and for EM and REM the surrogate
model is ResNet-18.

Model Clean Method No defense Gray JPEG ES U-Max AVATAR

ResNet-50 94.47
EM 14.41 83.40 76.88 26.69 85.89 77.64
REM 16.26 87.26 75.79 31.37 92.69 83.68
LSP 19.23 68.94 73.24 32.73 93.08 76.47
AR 11.83 27.51 80.24 28.66 81.40 86.39

SENet-18 94.83
EM 13.60 86.03 79.35 16.35 83.27 74.22
REM 20.99 84.50 78.92 22.85 93.17 84.37
LSP 18.54 65.06 76.51 26.38 92.53 75.19
AR 13.68 34.26 79.29 37.04 75.06 84.37

MobileNetV2 94.62
EM 15.62 77.21 70.96 16.71 82.71 75.62
REM 20.83 80.81 72.27 21.92 91.03 82.77
LSP 16.82 61.07 72.03 28.12 92.10 76.81
AR 13.36 28.54 68.14 39.45 73.40 81.63

DenseNet-121 95.08
EM 13.89 82.49 78.42 15.68 82.37 76.69
REM 21.45 85.47 78.42 22.35 93.09 83.04
LSP 18.94 67.95 74.90 26.86 93.47 78.22
AR 13.43 25.51 81.12 36.51 82.36 89.92

ViT-small 84.66
EM 21.47 80.42 72.64 30.91 74.29 54.84
REM 32.17 79.65 74.92 43.07 83.27 73.57
LSP 29.06 59.34 68.07 32.69 87.01 66.74
AR 25.04 38.90 74.77 45.54 63.90 78.64

CaiT-small 71.96
EM 17.01 64.76 63.75 39.69 63.37 41.94
REM 26.11 65.05 66.43 47.39 72.05 62.53
LSP 25.08 63.06 57.15 37.95 70.92 51.39
AR 68.63 66.27 69.30 67.41 70.04 62.77

Attack transferability across models In real-world scenarios, availability poisoning attackers can
only manipulate the data and do not have access to specific details of the defender. Therefore, we
conducted experiments on different model architectures. It is worth noting that all surrogate-based
attack methods are considered using ResNet-18. The results are shown in Table 6. It is evident that
all surrogate-based and -free poisoning methods exhibit strong transferability, while the three recently
proposed defenses also achieve successful defense across different model architectures. The only
exception is the AR method, which fails against CaiT-small.
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Table 7: Test accuracies (%) of adaptive poison-
ing with EM on ResNet-18.

Method Standard Gray JPEG U-Max

EM + Gray 19.48 21.64 78.39 90.52
EM + JPEG 20.67 90.29 76.25 93.22
EM + UEraser 35.24 88.62 80.46 89.55

Table 8: Test accuracies (%) of adaptive poison-
ing with REM on ResNet-18.

Method Standard Gray JPEG U-Max

REM + Gray 16.70 56.33 82.47 91.37
REM + JPEG 19.45 91.71 75.84 92.53
REM + UEraser 21.61 89.26 77.51 91.84

Adaptive poisoning We evaluated strong adaptive poisons against various defenses using two
poisoning methods, EM [17] and REM [10]. We assume that the defenders can be adapted to three
defenses (Gray, JPEG, and UEraser), by using the attack in the perturbation generation process.
From Tables 7 and 8, it can be seen that adaptive poisoning significantly affects the performance of
the Gray defense, but has less effect on JPEG and UEraser.

Unsupervised learning We evaluated the availability poisoning attacks targeting unsupervised models
on CIFAR-10. We considered two popular unsupervised learning frameworks: SimCLR [1] and
MoCo-v2 [2]. All defense methods were applied before the data augmentation process, which means
they were applied to preprocessed images before undergoing different data augmentations. Therefore,
we only applied UEraser-Lite as a data preprocessing method. The results of all experiments are
shown in Table 9.

Table 9: Performance of availability poisoning attacks and defense on different unsupervised learning
algorithms and datasets. Note that “U-Lite” denotes UEraser-Lite.

Algorithm Method No Defense Gray JPEG U-Lite AVATAR

SimCLR UCL 47.25 46.91 66.76 68.42 83.22
TUE 57.10 56.37 67.54 66.59 84.24

MoCo-v2 UCL 53.78 53.34 65.44 72.13 83.08
TUE 66.73 64.95 67.28 74.82 82.48

Visual analyses We provide visualization tools (Grad-CAM [39] and Shapley value maps [24]) to
facilitate the analysis and understanding of availability poisoning attacks. We also use t-SNE [41]
to visualize the availability poisons (Figure 7). Although t-SNE cannot accurately represent high-
dimensional spaces, it aids in the global visualization of feature representations, allowing us to observe
specific characteristics of availability poisons. For additional discussions on the visualizations, please
refer to Appendix C.3.

Future outlook Future research directions on APAs should explore methods that enhance the
resilience of perturbations. One approach to consider is the development of generalizable attacks,
which can simultaneously target the DNNs being trained, diffusion models for image restoration, and
remain robust against traditional or color distortions, among others. On the other hand, semantic-
based perturbations offer an alternative strategy, as such modifications to images can be challenging
to remove by defenses.

5 CONCLUSIONS

We have established the first comprehensive and up-to-date benchmark for the field of availability
poisoning, covering a diverse range of availability poisoning attacks and state-of-the-art defense
algorithms. We have conducted effective evaluations and analyses of different combinations of attacks
and defenses, as well as additional challenging scenarios. Through this new benchmark, our primary
objective is to provide researchers with a clearer understanding of the current progress in the field
of availability poisoning attacks and defenses. We hope it can enable rapid comparisons between
existing methods and new approaches, while also inspiring fresh ideas through our comprehensive
benchmark and analysis tools. We believe that our benchmark will contribute to the advancement of
availability poisoning research and the development of more effective methods to safeguard privacy.
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6 REPRODUCIBILITY STATEMENT

We provide an open-source implementation of all attacks and defenses in the supplementary material.
Following the README file, users can run all experiments on their own device to reproduce the
results shown in paper.

7 ETHICS STATEMENT

Similar to many other technologies, the implementation of availability poisoning algorithms can
be used by users for both beneficial and malicious purposes. We understand that these poisoning
attack methods were originally proposed to protect privacy, but they can also be used to generate
maliciously data to introduce model backdoors. The benchmark aims to promote an understanding of
various availability poisoning attacks and defense methods, as well as encourage the development of
new algorithms in this field. It is also important for us to raise awareness of the false sense of security
provided by availability poisoning attacks. However, we emphasize that the use of these algorithms
and evaluation results should comply with ethical guidelines and legal regulations. We encourage
users to be aware of the potential risks of the technology and take appropriate measures to ensure its
beneficial use for both society and individuals.
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Aleksander Mądry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):1563–1580, 2022.

[13] Dou Goodman, Hao Xin, Wang Yang, Wu Yuesheng, Xiong Junfeng, and Zhang Huan. Ad-
vbox: a toolbox to generate adversarial examples that fool neural networks. arXiv preprint
arXiv:2001.05574, 2020.

[14] Hao He, Kaiwen Zha, and Dina Katabi. Indiscriminate poisoning attacks on unsupervised
contrastive learning. In International Conference on Learning Representations, 2023.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[17] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearn-
able examples: Making personal data unexploitable. In International Conference on Learning
Representations, 2021.

[18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[19] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8110–8119, 2020.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[22] Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. BackdoorBox: A Python
toolbox for backdoor learning. 2023.

[23] Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Image shortcut squeezing: Countering
perturbative availability poisons with compression. In International conference on machine
learning, 2023.

[24] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[26] Preetum Nakkiran. A discussion of’adversarial examples are not bugs, they are features’:
Adversarial examples are just bugs, too. Distill, 4(8):e00019–5, 2019.

[27] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[28] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. In International conference on machine learning,
2022.

[29] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng, and Ting
Wang. Trojanzoo: Everything you ever wanted to know about neural backdoors (but were afraid
to ask). arXiv preprint, 2020.

11



Under review as a conference paper at ICLR 2024

[30] Tianrui Qin, Xitong Gao, Juanjuan Zhao, Kejiang Ye, and Cheng-Zhong Xu. Learning the
unlearnable: Adversarial augmentations suppress unlearnable example attacks. arXiv preprint
arXiv:2303.15127, 2023.

[31] Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox native:
Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch,
tensorflow, and jax. Journal of Open Source Software, 5(53):2607, 2020.

[32] Jie Ren, Han Xu, Yuxuan Wan, Xingjun Ma, Lichao Sun, and Jiliang Tang. Transferable
unlearnable examples. In International Conference on Learning Representations, 2023.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[35] Pedro Sandoval-Segura, Vasu Singla, Liam Fowl, Jonas Geiping, Micah Goldblum, David
Jacobs, and Tom Goldstein. Poisons that are learned faster are more effective. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 198–205, 2022.

[36] Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, and
David Jacobs. Autoregressive perturbations for data poisoning. Advances in Neural Information
Processing Systems, 35:27374–27386, 2022.

[37] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[38] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. Just
how toxic is data poisoning? a unified benchmark for backdoor and data poisoning attacks. In
International Conference on Machine Learning, pages 9389–9398. PMLR, 2021.

[39] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on computer vision,
pages 618–626, 2017.

[40] Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry:
Preventing delusive adversaries with adversarial training. Advances in Neural Information
Processing Systems, 34:16209–16225, 2021.

[41] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[42] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao
Shen. Backdoorbench: A comprehensive benchmark of backdoor learning. Advances in Neural
Information Processing Systems, 35:10546–10559, 2022.

[43] Shutong Wu, Sizhe Chen, Cihang Xie, and Xiaolin Huang. One-pixel shortcut: on the learning
preference of deep neural networks. In International Conference on Learning Representations,
2023.

[44] Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create
shortcuts. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 2367–2376, 2022.

[45] Chia-Hung Yuan and Shan-Hung Wu. Neural tangent generalization attacks. In International
Conference on Machine Learning, pages 12230–12240. PMLR, 2021.

[46] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. CutMix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,
2019.

12



Under review as a conference paper at ICLR 2024

[47] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. MixUp: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.

13



Under review as a conference paper at ICLR 2024

A DATASETS

Table 10 summarizes the specifications of datasets and the respective test accuracies of typical training
on ResNet-18 architectures.

Table 10: Dataset specifications and the respective test accuracies on ResNet-18.

Datasets #Classes Training / Test Size Image Dimensions Clean Accuracy (%)

CIFAR-10 [20] 10 50,000 / 10,000 32×32×3 94.32
CIFAR-100 [20] 100 50,000 / 10,000 32×32×3 75.36
SVHN [27] 10 73,257 / 26,032 32×32×3 96.03
ImageNet-subset [5] 100 20,000 / 4,000 224×224×3 64.18

B IMPLEMENTATION DETAILS

In addition to the discussion of properties of the availability poisoning attacks and defenses presented
in Tables 1 and 2, here, we provide a high-level description of the attack and defense algorithms
implemented in APBench.

Attacks:

• Deep Confuse (DC) [8]: DC is proposed as a novel approach to manipulating classifiers by
modifying the training data. Its key idea involves employing an autoencoder-like network to
capture the training trajectory of the target model and adversarially perturbing the training
data.

• Error-minimizing attack (EM) [17]: EM trains a surrogate model by minimizing the error
of images relative to their original labels, generating perturbations that minimize the errors
and thus render the perturbed images unlearnable. The authors of EM introduce the threat
model of availability poisoning attacks, highlighting their role as a mechanism for privacy
protection.

• Neural tangent generalization attack (NTGA) [45]: NTGA simulates the training dy-
namics of a generalized deep neural network using a Gaussian process and leverages this
surrogate to find better local optima with improved transferability.

• Hypocritical (HYPO) [40]: HYPO, similar to EM, generates images that minimize errors
relative to their true labels using a pre-trained model.

• Targeted adversarial poisoning (TAP) [9]: TAP achieves availability poisoning by gener-
ating targeted adversarial examples of non-ground-truth labels of pre-trained models.

• Robust error-minimizing attacks (REM) [10]: REM improves the poisoning effect of
availability poisoning by replacing the training process of the surrogate model with adver-
sarial training.

• Linear-separable poisoning (LSP) [44]: LSP generates randomly initialized linearly
separable color block perturbations, enabling effective availability poisoning attacks without
requiring surrogate models or excessive computational overhead.

• Autoregressive Poisoning (AR) [36]: AR, similar to LSP, does not require additional
surrogate models. It fills the initial rows and columns of each channel with Gaussian noise
and uses an autoregressive process to fill the remaining pixels, generating random noise
perturbations.

• One-Pixel-Shortcut (OPS) [43]: OPS is a targeted availability poisoning attack that perturbs
only one pixel of an image, generating an effective availability poisoning attack against
traditional adversarial training methods.

• Indiscriminate poisoning (UCL) [14]: UCL considers generating unlearnable examples for
unsupervised learning by minimizing the CL loss (e.g., the InfoNCE loss) in the unsupervised
learning setting.
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• Transferable unlearnable examples (TUE) [32]: TUE discovers that UCL is effective
only in unsupervised learning, while its performance significantly deteriorates in supervised
learning. Therefore, TUE is proposed that simultaneously targets both supervised and
unsupervised learning. Different to UCL, it additionally embeds linear separable poisons
into unsupervised unlearnable examples using the class-wise separability discriminant.

Defenses:

• Adversarial training (AT) [25]: AT is a widely-recognized effective approach against
availability poisoning. Small adversarial perturbations are applied to the training images
during training, in order to improve the robustness of the model against perturbations.

• Image Shortcut Squeezing (ISS) [23]: ISS uses traditional image compression techniques
such as grayscale transformation, bit-depth reduction (BDR), and JPEG compression, as
defenses against availability poisoning.

• Early stopping (ES) [35]: Early stopping can quickly achieve peak accuracy on availability
poisons, but due to the difference in behavior of various poisons, it fails to achieve favorable
defense results.

• Adversarial augmentations (UEraser) [30]: UEraser-Lite uses an effective augmentation
pipeline to suppress availability poisoning shortcuts. UEraser-Max further improves the
defense against availability poisoning through adversarial augmentations.

• AVATAR [7]: Following DiffPure [28], AVATAR cleans the images of the unlearnable
perturbations with diffusion models.

C EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

Table 11 presents the default hyperparameters for all availability poisoning attacks implemented in
APBench.

C.1 PARTIAL POISONING

In addition to the discussion on partial poisoning in Section 4, we provide the results in terms of
accuracies in Figure 5.
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Figure 5: The accuracies (%, vertical axes) indicate that original features in unlearnable examples are
not learned by the model. All evaluations consider partial poisoning scenarios (poisoning rates from
20% to 80%, horizontal axes). Note that “Unlearnable” and “Original” respectively denote the set of
unlearnable examples, and their original clean variants, and “Unseen” denote images from the test set
unobserved during model training.

C.2 TEST ROBUSTNESS

Table 14 additionally compared the test accuracy of the PGD-20 adversarial examples on CIFAR-
10 with a perturbation budget of 8/255. Note that all experiments considered both the white-box
scenario, and black-box transferability from a different initialization, and the step size is set to 2/255.
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Table 11: Default hyperparameter settings of attack methods.

Methods Hyperparameter Settings

DC Perturbation `∞ = 8/255
Pre-trained model Official pretrained

NTGA Perturbation `∞ = 8/255
Poisoned dataset Official pretrained CIFAR-10 CNN (best)

EM

Perturbation `∞ = 8/255
Perturbation type Sample-wise
Stopping error rate 0.01
Learning rate 0.1
Batch size 128
Optimizer SGD

HYPO Perturbation `∞ = 8/255
Step size `∞ = 0.8/255

TAP Perturbation `∞ = 8/255

REM

Perturbation `∞ = 8/255
Perturbation type Sample-wise
Stopping error rate 0.01
Learning rate 0.1
Batch size 128
Optimizer SGD
Adversarial training perturbation `∞ = 4/255

LSP Perturbation `2 = 1.30 (Project from `∞ = 6/255)
Patch size 8 for CIFAR-10/100 and SVHN; 32 for ImageNet

AR Perturbation `2 = 1.00
Default hyperparameters Follows official code

OPS
Perturbation `0 = 1
Perturbation type Sample-wise
Default hyperparameters Follows official code

UCL Perturbation `∞ = 8/255
Poisoned dataset Official pretrained CP-S of UCL

TUE Perturbation `∞ = 8/255
Poisoned dataset Official pretrained

C.3 VISUALIZATIONS

Grad-CAM and Shapley visualizations Gradient-weighted class activation mapping (Grad-
CAM) [39] and Shapley value map [24] are commonly used image analysis tools that visualize
the contributions of different pixels in an image to the model’s predictions. From the Shapley value
map and Grad-CAM visualizations (Figure 6), we can observe discernible changes in activation
features in the poisoned model relative to the clean model. AVATAR showed activation features most
similar to the clean model compared to other defense mechanisms, as it aims to restore the original
features while disrupting the availability poisoning perturbations. Contrarily, models applying the
other defense strategies typically have different activation features than clean models. This discrep-
ancy implies that image preprocessing or augmentations may modify the inherent feature extraction
from the original images instead of restoring them.

T-SNE visualizations Figure 8 shows the t-SNE visualization Figure 7 of the models’ feature
representations on the clean test set for CIFAR-10. Notably, models without defenses struggle to
create coherent class clusters, although there exist spatial variations in class frequency. Conversely,
models equipped with defenses display a feature distribution akin to the clean baseline. Models with
higher clean accuracies often exhibit better separated clusters.

C.4 ADDITIONAL RESULTS

Finally, Table 15 shows the detailed test accuracies of models trained on poisoned CIFAR-10 datasets,
including an error range of 3 independent runs for each experiment.
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Table 12: Default training hyperparameter settings.

Datasets Hyperparameter Settings

CIFAR-10/-100

Optimizer SGD
Momentum 0.9
Weight-decay 0.0005
Batch size 128
Standard Augmentations Random crop, random horizontal flip
Training epochs 50
Initial learning rate 0.1
Learning rate schedule Epochs per decay: 100, decay factor: 0.5

SVHN

Optimizer SGD
Momentum 0.9
Weight-decay 0.0005
Batch size 128
Standard augmentations None
Training epochs 40
Initial learning rate 0.1
Learning rate schedule Epochs per decay: 100, decay factor: 0.5

ImageNet-100

Optimizer SGD
Momentum 0.9
Weight-decay 0.0005
Batch size 256
Standard augmentations Random crop, horizontal flip, and color jitter
Training epochs 100
Initial learning rate 0.1
Learning rate schedule Epochs per decay: 100, decay factor: 0.5

Table 13: Default hyperparameter settings of defenses.

Methods Hyperparameter Settings

Adversarial training [25]

Perturbation `∞ = 8/255
Steps size `∞ = 2/255
PGD steps 10
Training epochs 200

CutOut [6] / CutMix [46] / MixUp [47] Training epochs 200

Gaussian [23]
Kernel size 3
Standard deviation 0.1
Training epochs 200

JPEG [23] Quality 10
Training epochs 200

BDR [23] Number of bits 2
Training epochs 200

UEraser-Lite [30]
PlasmaBrightness / PlasmaContrast p = 0.5
ChannelShuffle p = 0.5
Training epochs 200

UEraser-Max [30]

PlasmaBrightness / PlasmaContrast p = 0.5
ChannelShuffle p = 0.5
Number of Repeats K 5
Training epochs 300

AVATAR [7]

Diffusion sampler Score-SDE
Starting step / Total diffusion steps 60 / 1000
Pre-trained model Official pretrained
Training epochs 200

D LIMITATIONS

APBench has mainly focused on providing algorithms and evaluations related to image data. However,
such availability poisoning methods may also be applicable to text, speech, or video domains. In
the future, we plan to expand APBench to include more domains, aiming to establish a more
comprehensive and valuable benchmark for personal privacy protection against deep learning.
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Table 14: Test accuracies (%) on CIFAR-10 PGD-20 adversarial examples.

Type Method Standard Gray JPEG U-Max AVATAR AT

Black-box

EM 16.83 19.77 73.85 71.43 20.07 69.77
REM 22.53 19.16 73.70 80.46 17.36 70.74
LSP 14.29 24.34 67.01 80.40 15.42 71.39
AR 15.82 16.55 75.21 76.97 16.84 68.81

White-box

EM 0.00 0.00 3.74 1.37 0.00 28.60
REM 0.00 0.00 3.35 3.11 0.00 32.52
LSP 0.00 0.00 0.39 3.83 0.00 34.45
AR 0.00 0.00 2.59 2.83 0.00 32.04

EM

LSP

REM

AR

Clean No-defense ISS U-max AVATAR Clean No-defense ISS U-max AVATAR

Grad-CAM Shapley value map

Figure 6: Grad-CAM and Shapley value map visualizations of regions contributed to model decision
under different attack methods and defense methods with ResNet-18. (Left) Grad-CAM visualizations
of EM and LSP attacks. (Right) Shapley value map visualizations of REM and AR attacks.

E ATTACK AND DEFENSE BASELINES

APBench is open source, and the source code will be made available upon publication. Table 16
provides the licenses of the derived implementations of the original algorithms and datasets.
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TAP

OPS

No defense ISS UEraser-max AVATAR

Figure 7: The t-SNE visualization of the models’ feature representations on the clean test set. Note
that without defenses, the feature representations of the poisoned models are mostly scrambled as the
models struggle to learn useful features.

Clean

EM/No defense EM/ISS EM/UEraser EM/AVATAR

REM/No defense REM/ISS REM/UEraser REM/AVATAR

LSP/No defense LSP/ISS LSP/UEraser LSP/AVATAR

AR/No defense AR/ISS AR/UEraser AR/AVATAR

Figure 8: The t-SNE visualization of the models’ feature representations on the clean test set under
additional attacks for CIFAR-10. “UEraser” denotes “UEraser-Max”.
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Table 16: Licenses of the datasets and codebases used in this paper.

Name License URL

PyTorch BSD GitHub: pytorch/pytorch
DC — GitHub: kingfengji/DeepConfuse
NTGA Apache-2.0 GitHub: lionelmessi6410/ntga
EM MIT GitHub: HanxunH/Unlearnable-Examples
HYPO MIT GitHub: TLMichael/Delusive-Adversary
TAP MIT GitHub: lhfowl/adversarial_poisons
REM MIT GitHub: fshp971/robust-unlearnable-examples
LSP — GitHub: dayu11/Availability-Attacks-Create-Shortcuts
AR MIT GitHub: psandovalsegura/autoregressive-poisoning
OPS Apache-2.0 GitHub: cychomatica/One-Pixel-Shotcut
UCL MIT GitHub: kaiwenzha/contrastive-poisoning
TUE — GitHub: renjie3/TUE
ISS — GitHub: liuzrcc/ImageShortcutSqueezing
DiffPure NVIDIA GitHub: NVlabs/DiffPure
CIFAR-10 — https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR-100 — https://www.cs.toronto.edu/~kriz/cifar.html
SVHN — http://ufldl.stanford.edu/housenumbers
ImageNet-100 — GitHub: TerryLoveMl/ImageNet-100-datasets
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