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Abstract

Analytical reasoning is an essential and chal-001
lenging task that requires a system to analyze002
a scenario involving a set of particular circum-003
stances and perform reasoning over it to make004
conclusions. However, current neural models005
with implicit reasoning ability struggle to solve006
this task. In this paper, we study the challenge007
of analytical reasoning of text and collect a new008
dataset consisting of questions from the Law009
School Admission Test from 1991 to 2016. We010
analyze what knowledge understanding and rea-011
soning abilities are required to do well on this012
task, and present an approach dubbed ARM.013
It extracts knowledge such as participants and014
facts from the context. Such knowledge are015
applied to an inference engine to deduce legit-016
imate solutions for drawing conclusions. In017
our experiments, we find that ubiquitous pre-018
trained models struggle to deal with this task as019
their performance is close to random guess. Re-020
sults show that ARM outperforms pre-trained021
models significantly. Moreover, we demon-022
strate that ARM has better explicit interpretable023
reasoning ability. 1024

1 Introduction025

Transformer-based pre-trained language models in-026

cluding BERT (Devlin et al., 2018), GPT-2 (Rad-027

ford et al., 2019) and RoBERTa (Liu et al., 2019)028

have achieved state-of-the-art performance on a va-029

riety of NLP tasks. However, they still struggle030

to perform deep reasoning beyond shallow-level031

semantic understanding of literal clues. For ex-032

ample, Talmor et al. (2020) show that pre-trained033

models fail completely on half of eight reasoning034

tasks that require symbolic operations. We hope to035

challenge current systems and take a step further036

towards analytical reasoning.037

Analytical reasoning assesses the ability of sys-038

tems to understand the knowledge, including partic-039

ipants, facts and literal rules mentioned in the con-040

1All our data and codes will be released upon acceptance.

Passage
The Mom & Pop liquor store employs five cashiers-
Adams, Bates, Cox, Drake, and Edwards- each of whom 
works alone on exactly one day, Monday through Friday
Adams will work only on Tuesday or Thursday. 
Bates will not work on Monday or Wednesday. 
Cox works on Friday. 
Drake and Edwards do not work on consecutive days. 
Question
Which one of the following is a possible work schedule?
Options
𝐴 Edwards, Bates, Adams, Drake, Cox
𝐵  Drake, Adams, Bates, Edwards, Cox
𝐶 Edwards, Adams, Cox, Bates, Drake 
𝐷 Edwards, Adams, Drake, Bates, Cox
𝐸 Drake, Edwards, Bates, Adams, Cox

Answer: 𝐷
Reasoning Process of Humans:
From the passage, we first understand conditions (i.e., 
participants and positions) and comprehend rules and 
facts. Then, we check each option to see whether it satisfy 
all the rules and select the most plausible one. 

[Grouping Game] Passage：
Seven directors -A, B, C, D, E, F, and G- serves on 
the X committee or the Y committee.

Question：
If D and F both serve on the X committee, Fact
then which one of the following could be true?
Options：
A. A and C both serve on the X committee. 

B. A and E both serve on the Y committee.

C. B and G both serve on the X committee.

D. C and E both serve on the Y committee. √
E. G and E both serve on the X committee.

Rules to Logical Expressions
R-1: 𝐴 𝑜𝑛 𝑋 → 𝐵 𝑜𝑛 𝑌
R-2: 𝐶 𝑜𝑛 𝑋 → 𝐷 𝑜𝑛 𝑌 & 𝐸 𝑜𝑛 𝑌
R-3: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺
R-4: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴
R-5: 𝐺 𝑜𝑛 𝑋 → 𝐵 𝑜𝑛 𝑋

Fact
𝐷 𝑜𝑛 𝑋 & 𝐹 𝑜𝑛 𝑋

If A serves on X, then B serves on Y. R-1
If C serves on X, then D and E serve on Y. R-2
F serves on a different committee with G. R-3
E serves on a different committee with A. R-4
If G serves on X, so does B. R-5 Rules

Participants
𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺

Positions
𝑋, 𝑌

𝐶 𝑜𝑛 𝑋 & 𝐷 𝑜𝑛 𝑋  confict with R-2

 𝐴 𝑜𝑛 𝑌 & 𝐸 𝑜𝑛 𝑌  confict with R-4

 𝐺 𝑜𝑛 𝑋 & 𝐹 𝑜𝑛 𝑋  confict with R-3

 𝐺 𝑜𝑛 𝑋 & 𝐹 𝑜𝑛 𝑋  confict with R-3

Figure 1: An example of the required reasoning process
to do well on the AR task. The input is a passage, a
question and multiple options, and the output is the most
plausible answer.

text, perform reasoning over the extracted knowl- 041

edge, and make conclusions. In this paper, we 042

study the challenge of analytical reasoning (AR). 043

We collect a new dataset AR-LSAT from the Law 044

School Admission Test2 (LSAT) from 1991 to 2016 045

to facilitate research on analytical reasoning. An 046

example of analytical reasoning in LSAT is given 047

in Figure 1, whose task is to separate participants 048

(i.e., A,B, etc.) into two positions (i.e., X committee 049

and Y committee) under certain constraints. We can 050

see that solving the problem requires a system to 051

understand the knowledge in the context including 052

participants, positions, rules expressed in natural 053

language (e.g., “If G serves on X, so does B") and 054

facts (e.g., “D and F both serve on the X commit- 055

tee"). Then, it needs to deduct logical expressions 056

2https://en.wikipedia.org/wiki/Law_
School_Admission_Test
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(e.g., “G on X → B on X") from the rules, and057

draw inference before making conclusions.058

In this paper, we analyze the knowledge under-059

standing and reasoning ability required for solving060

this task and present Analytical Reasoning Ma-061

chine (ARM), a framework that can comprehend062

the context and perform reasoning for making a063

conclusion. It extracts participants, rules and facts064

described in the context of text. Each literal rule is065

mapped into an executable logical constraint func-066

tion, which assesses whether a solution satisfies067

a particular rule. With such logical-level under-068

standing, ARM is capable of deducing a group of069

legitimate solutions for the question and select the070

most plausible option as the answer.071

Experiments show that pre-trained models strug-072

gle to learn this task, which indicates that this task073

is very challenging for current models as it requires074

the complex reasoning ability far beyond implicit075

reasoning over the literal clues. Our system out-076

performs pre-trained models significantly. Further077

analysis demonstrates that our system has better078

interpretability. The contributions are threefold.079

• We collect a new dataset AR-LSAT to facili-080

tate research on analytical reasoning.081

• We present a reasoning framework that can082

comprehend the context and perform explicit083

interpretable reasoning to draw conclusion.084

• Experiments indicate that this task is challeng-085

ing and our system outperforms pre-trained086

models significantly.087

2 Related Works088

There is an increasing trend on machine reason-089

ing research in recent years. The reasoning ability090

investigated are partitioned into several major as-091

pects, including (1) logical reasoning; (2) common-092

sense reasoning; (3) mathematical reasoning and093

(4) multi-hop reasoning.094

Logical Reasoning The task of Natural Lan-095

guage Inference (NLI) (Dagan et al., 2005; Bow-096

man et al., 2015; Wang et al., 2018; Williams et al.,097

2018; Welleck et al., 2018; Khot et al., 2018; Nie098

et al., 2019; Bhagavatula et al., 2019; Liu et al.,099

2020a) requires the models to detect the logical en-100

tailment relationship of two sentences. There have101

been Machine Reading Comprehension (MRC)102

datasets (Rajpurkar et al., 2016; Welbl et al., 2017;103

Yang et al., 2018a; Huang et al., 2019b) that ex-104

amine the ability of logical reasoning. LogiQA105

(Liu et al., 2020b) and ReClor (Yu et al., 2020) are 106

sourced from examination in realistic scenario and 107

examine a range of logical reasoning skills. 108

Commonsense Reasoning There are many re- 109

cent benchmarks that assess the commonsense rea- 110

soning capabilities from different aspects, like so- 111

cial (Rashkin et al., 2018), physics (Talmor et al., 112

2018; Zellers et al., 2019), or temporal (Zhou 113

et al., 2019) aspects. There exist several MRC 114

datasets that require commonsense knowledge (Os- 115

termann et al., 2018; Zhang et al., 2018; Huang 116

et al., 2019a). 117

Mathematical Reasoning There are many exist- 118

ing datasets (Kushman et al., 2014; Hosseini et al., 119

2014; Koncel-Kedziorski et al., 2015; Clark et al., 120

2016; Ling et al., 2017) that focus on mathematical 121

word problems. Ling et al. (2017) builds a dataset 122

that encourages generating answer rationales be- 123

yond simply selecting the correct answer. DROP 124

(Dua et al., 2019) is a benchmark MRC dataset 125

requiring mathematical reasoning. Saxton et al. 126

(2019) focuses on algebraic generalization. 127

Multi-hop Reasoning Multi-hop reasoning over 128

textual data (Talmor and Berant, 2018; Welbl et al., 129

2018; Yang et al., 2018b; Inoue et al., 2020) re- 130

quires a model to reason over multiple paragraphs 131

before making prediction. 132

To the best of our knowledge, there has not an 133

existing benchmark dataset that completely focuses 134

on the analytical reasoning over textual data. We 135

introduce a new dataset to fill this gap and to foster 136

research on this area. 137

3 Task and Dataset 138

In this section, we describe the task of analytical 139

reasoning and introduce the dataset AR-LSAT we 140

collected from the Law School Admission Test. 141

3.1 Task: Analytical Reasoning of Text 142

Taking a passage, a question, and multiple options 143

as the input, a system is required to select the 144

most plausible answer as the output. Each passage 145

describes a reasoning game belonging to various 146

types, including three dominant types: ordering 147

games, grouping games, and assignment games, 148

which are described as follows and examples are 149

given in Figures 1 and 2: 150

• Ordering games are to order participants 151

based on given facts and rules. 152
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[Ordering Game] Passage
A professor must determine the order in which five of her students -
Fernando, Ginny, Hakim, Juanita, and Kevin- will perform in a recital. 
Ginny perform earlier than Fernando. R-1
Kevin perform earlier than Hakim and Juanita. R-2
Hakim perform either immediately before or immediately 
after Fernando. R-3

Rules to Logical Expressions
R-1: 𝑃𝑜𝑠. 𝑜𝑓 𝐺𝑖𝑛𝑛𝑦 𝑃𝑜𝑠. 𝑜𝑓 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜
R-2: 𝑃𝑜𝑠. 𝑜𝑓 𝐾𝑒𝑣𝑖𝑛 𝑃𝑜𝑠. 𝑜𝑓 𝐻𝑎𝑘𝑖𝑚  &

𝑃𝑜𝑠. 𝑜𝑓 𝐾𝑒𝑣𝑖𝑛 𝑃𝑜𝑠. 𝑜𝑓 𝐽𝑢𝑎𝑛𝑖𝑡𝑎
R-3: 𝑃𝑜𝑠. 𝑜𝑓 𝐻𝑎𝑘𝑖𝑚 𝑃𝑜𝑠. 𝑜𝑓 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜 1 |

   𝑃𝑜𝑠. 𝑜𝑓 𝐻𝑎𝑘𝑖𝑚 𝑃𝑜𝑠. 𝑜𝑓 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜 1
Fact
Uncertain

Positions
1 , 2 , 3 , 4 , 5

Participants
𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜, 𝐺𝑖𝑛𝑛𝑦, 𝐻𝑎𝑘𝑖𝑚, 𝐽𝑢𝑎𝑛𝑖𝑡𝑎, 𝐾𝑒𝑣𝑖𝑛

Options
A. Ginny, Fernando, Hakim, Kevin, Juanita ×R-2
B. Ginny, Juanita, Kevin, Hakim, Fernando ×R-2
C. Ginny, Kevin, Hakim, Juanita, Fernando ×R-3
D. Kevin, Ginny, Juanita, Fernando, Hakim√
E. Kevin, Juanita, Fernando, Hakim, Ginny ×R-1

Question
Which one of the following could be the order the students perform?

[Assignment Game] Passage
Five cashiers-Adams, Bates, Cox, Drake, and Edwards-each of 
whom works alone on exactly one day, Monday through Friday
Adams will work only on Tuesday or Thursday.  R-1
Bates will not work on Monday or Wednesday.   R-2
Cox works on Friday.   F-1
Edwards don’t work next to Drake R-3
.

Rules to Logical Expressions
R-1: 𝐴𝑑𝑎𝑚𝑠 𝑜𝑛 𝑇𝑢𝑒𝑠. | 𝐴𝑑𝑎𝑚𝑠 𝑜𝑛 𝑇ℎ𝑢𝑟.
R-2: 𝐵𝑎𝑡𝑒𝑠 𝑜𝑛 𝑀𝑜𝑛.  𝐵𝑎𝑡𝑒𝑠 𝑜𝑛 𝑊𝑒𝑑.  
R-3: 𝑃𝑜𝑠. 𝑜𝑓 𝐸𝑑𝑤𝑎𝑟𝑑𝑠 𝑃𝑜𝑠. 𝑜𝑓 𝐷𝑟𝑎𝑘𝑒 1

Positions
𝑀𝑜𝑛. , 𝑇𝑢𝑒𝑠. , 𝑊𝑒𝑑. , 𝑇ℎ𝑢𝑟. , 𝐹𝑟𝑖. 

Participants
𝐴𝑑𝑎𝑚𝑠, 𝐵𝑎𝑡𝑒𝑠, 𝐶𝑜𝑥, 𝐷𝑟𝑎𝑘𝑒, 𝐸𝑑𝑤𝑎𝑟𝑑𝑠

Options
A. Edwards, Bates, Adams, Drake, Cox ×R-1
B. Drake, Adams, Bates, Edwards, Cox ×R-2
C. Edwards, Adams, Cox, Bates, Drake ×F-1
D. Edwards, Adams, Drake, Bates, Cox √
E. Drake, Edwards, Bates, Adams, Cox ×R-3

Question
Which one of the following is a possible work schedule?

Fact
𝐶𝑜𝑥 𝑜𝑛 𝐹𝑟𝑖.

Figure 2: Examples of ordering game and assignment game in AR task. Facts and Rules are highlighted in orange
and blue, respectively. Example of grouping game is shown in Figure 1. × indicates conflict.

• Grouping games are to separate participants153

into groups with given facts and rules.154

• Assignment games are to assign characteris-155

tics to the participants with given rules, like156

assigning schedules for people.157

3.2 Dataset: AR-LSAT158

We collect data from nearly 90 LSAT exams from159

1991 to 2016 and select questions from the analyti-160

cal reasoning part to construct the dataset, dubbed161

AR-LSAT. Each exam in LSAT consists of 101162

questions, 24 of which are AR questions. We fi-163

nally leave up the questions with 5 answer options.164

The statistics are shown in Table 1. We manually165

categorize and analyze question types in AR-LSAT166

according to different reasoning types, and describe167

the detailed descriptions and corresponding exam-168

ples in the Appendix D.

Number of questions 2,046
Average length of passages 99.3
Average length of questions 19.1
Average length of answers 6
Number of options 5
Ratio of ordering game 42.5%
Ratio of grouping game 38.75%
Ratio of assignment game 18.75%

Table 1: Data statistics of AR-LSAT dataset.
169

3.3 Baseline: Pre-trained Model170

Pre-trained Transformer (Vaswani et al., 2017)171

based language models achieved impressive per-172

formance on a wide variety of tasks. There173

are several representative pre-trained models, like174

BERT (Devlin et al., 2018), XLNet (Yang et al.,175

2019), RoBERTa (Liu et al., 2019), and AL-176

BERT (Lan et al., 2019). We employ these177

powerful pre-trained models as our baselines af- 178

ter being fine-tuned on our dataset. Specifi- 179

cally, we take the concatenated sequence X = 180

{[CLS], passage, [SEP ], question, option} as 181

the input, where [CLS] is the ending special to- 182

ken and [SEP ] is used to split two types of input. 183

The final hidden vector at [CLS] is taken for clas- 184

sification. However, we find that these models 185

struggle to deal with this task as their performances 186

are close to random guess. For example, RoBERTa 187

achieves 23.1% accuracy on the test set. 188

3.4 Challenges 189

In this part, we point out the reasoning ability re- 190

quired for solving AR questions, and put forward 191

the challenges that systems should face. 192

As we can observe from the examples in Fig- 193

ure 1 and Figure 2, AR questions test a range of 194

reasoning skills: 195

1) Comprehending the knowledge including par- 196

ticipants of events, facts, and rules described 197

in the context. 198

2) Extracting machine-understandable logical 199

functions (expressions) from the rules. For 200

example, the rule “If A serves on X, then B 201

serves on Y." needs to be transferred as logi- 202

cal expression “A on X → B on Y", 203

3) Making deductions to derive legitimate solu- 204

tions that satisfy extracted logical functions. 205

4) Selecting the answer that satisfies all the rules 206

with the deducted legitimate solutions. In the 207

examples, a system should eliminate options 208

that conflict with rules and select the option 209

that accords with legitimate solutions. 210
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𝟒. 𝐀𝐧𝐬𝐰𝐞𝐫 𝐒𝐞𝐥𝐞𝐜𝐭𝐢𝐨𝐧

Passage
Seven directors -A, B, C, D, E, F, and G- serves on 
the X committee or the Y committee.
If A serves on the X, then B serves on the Y.
If C serves on the X, then D and E serve on the Y.
F serves on a different committee with G.
E serves on a different committee with A.
If G serves on the X, so does B.
question
If D and F both serve on the X committee,
then which one of the following could be true?

Participant A, B, C, D, E, F, G

Position X, Y

Facts D and F both serve on X 

Rules If A serves on the X, then B serves on Y 
If C serves on the X, then D and E 
serve on the Y.
F serves on a different committee with G.
E serves on a different committee with A.
If G serves on the X, so does B.

𝑓 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐴, 𝑋 , 𝑇𝑜 𝐵, 𝑌
𝑓 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐶, 𝑋 , 𝑇𝑜 𝐷, 𝑌 ; 𝑇𝑜 𝐸, 𝑌
𝑓 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝐹, 𝐺
𝑓 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝐸, 𝐴
𝑓 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐺, 𝑋 , 𝑇𝑜 𝐵, 𝑋

𝑎

𝑎 𝑎 𝑎

𝑓 𝑓 𝑓

𝑓 𝑓 𝑓

…

𝑓 𝑓

𝑎 𝑎… 𝐥𝐞𝐠𝐢𝐭𝐢𝐦𝐚𝐭𝐞 𝐚𝐬𝐬𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬

𝟑. 𝐋𝐞𝐠𝐢𝐭𝐢𝐦𝐚𝐭𝐞 𝐀𝐬𝐬𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬 𝐃𝐞𝐝𝐮𝐜𝐭𝐢𝐨𝐧A B C D E F G

X - - - T - T -

Y - - - F - F -

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐚𝐬𝐬𝐢𝐠𝐧𝐦𝐞𝐧𝐭 𝐚𝟎

𝟏. 𝐀𝐫𝐠𝐮𝐦𝐞𝐧𝐭𝐬 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧
𝐎𝐩𝐭𝐢𝐨𝐧𝐬

𝟐. 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧

𝐴𝑛𝑠𝑤𝑒𝑟

𝐏𝐚𝐬𝐬𝐚𝐠𝐞 𝐚𝐧𝐝 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧

Figure 3: An overview of our approach. The original example is given in Figure 1. It extracts arguments from the
context (§ 4.1). Then it extracts constraint functions based on rules (§ 4.3). Afterwards, it conducts deduction to
find legitimate assignments (§ 4.4). Lastly, it matches the options and legitimate assignments for prediction (§ 4.5).

Therefore, this task requires the machine to per-211

form explicit complex reasoning, far beyond just212

understanding the literal clues presented in the text.213

4 Approach214

We describe how our system, the Analytical Rea-215

soning Machine (ARM), comprehends the knowl-216

edge, performs reasoning over the knowledge, and217

makes conclusions. Figure 3 gives an overview of218

our approach. Our system operates in four steps:219

(1) extracting the participants, positions, facts and220

rules from the passage and the hypothesis of the221

question (§ 4.1); (2) interpreting rules into a set of222

logical constraint functions defined in § 4.2, whose223

arguments are selected from participants and posi-224

tions (§ 4.3); (3) reasoning with the logical func-225

tions and finally generating a group of legitimate226

assignments (solutions) that satisfy all the rules227

(§ 4.4); (4) selecting the most plausible option by228

matching the legitimate assignments and options229

(§ 4.5). ARM sheds a light on the logical-level230

reasoning procedure for analytical reasoning and231

each procedure can be further developed for both232

performance and expandability.233

4.1 Arguments Extraction234

In order to understand the context and formalize the235

problem, the first step is to extract the participants,236

positions, facts and rules expressed in natural237

language from the passage and hypothesis of the238

question. An assignment represents a solution that239

assigns participants to positions. An assignment of240

participants is represented as a table, whose rows241

and columns represent participants and positions,242

respectively. Each grid represents whether a par-243

ticipant is assigned to a position, and has the value244

of three possible states: (True,False,Unknown).245

The rules describe the constraints of assignments246

while the facts describe certain assignments. There-247

fore, we take the sentences that mention specific 248

assignments (e.g., A on X) as facts and the other 249

sentences as rules. Facts represent initial assign- 250

ments to the grids of the assignment table and the 251

default state is noted with Unknown. We take the 252

example in Figure 1 as a running example to show 253

the extracted participants, positions, facts and rules 254

from the context. 255

Specifically, we extract the entities from the lead- 256

ing sentence of the passage with a neural Named 257

Entity Recognition (NER) model (Peters et al., 258

2017) and group the extracted entities into partici- 259

pants or positions. We parse groups of entities that 260

appear together in the leading sentence of the pas- 261

sage as groups of participants or positions, where 262

participants always appear before positions. For 263

the ordering game, positions can not be directly 264

extracted, so we take them as the order (e.g., first, 265

second) of participants. 266

4.2 Constraint Function Definition 267

We introduce a set of predefined logical functions, 268

which encode constraints expressed in the literal 269

rules and check if an assignment satisfies these 270

constraints. These functions are the foundation of 271

the reasoning process. 272

The logical functions include three basic types: 273

(1) relational function; (2) compositional func- 274

tion; (3) counting function. A fragment of the 275

predefined functions is shown in Table 2. A func- 276

tion consists of arguments and a executor to check 277

whether an assignment satisfies the constraint func- 278

tion. The detailed definition of each function is 279

listed in Appendix B. 280

Relational Function The relational functions 281

represent the constraints of the relationship be- 282

tween two participants or a participant and a posi- 283

tion. The arguments of relational function involve 284

participant or position. For example, the function 285
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Before(Ginny, Fernando) indicates that Ginny286

should be in the position before Fernando in the287

ordering game. To(A,X) indicates that participant288

A should be assigned to position X .289

Compositional Function A compositional func-290

tion expresses the relationship between two sets of291

functions, like the conditional rule (if-then rule)292

and the if-and-only-if rule. The arguments of293

compositional functions involve two sets of sub-294

functions. For example, the rule “If A serves on the295

X, then B serves on the Y." should be expressed as296

IfThen({To(A,X)}, {To(B, Y )}).297

Counting Function The counting functions fo-298

cus on the calculation problem of participants un-299

der specific constraints. The arguments of counting300

functions involve a participant and a number. For301

example, LastPos(A, 3) checks whether the partic-302

ipant A is assigned to the last 3 positions.303

The input of a function executor is an assignment304

and the output is a Bool value indicates whether the305

assignment satisfies the constraint.306

4.3 Function Extraction307

Based on the extracted arguments, we parse the308

rules expressed in natural language into a set of309

constraint logical functions that can check whether310

an assignment satisfy the rules.311

One straightforward way is to design a symbolic312

parsing method. We define an API set to include313

roughly 20 types of functions like Before, After, To,314

IfThen and realize their executors. For each func-315

tion, we follow NSM (Liang et al., 2016) that uses316

trigger words to match a potential function. For317

example, the function Before can be triggered by318

words “before" and “earlier". All the functions and319

trigger words are listed in Appendix B. To extract320

potential arguments from a given rule, we match321

the participants, positions, and number from the322

text. If a function is recognized by a trigger word,323

we select its arguments from all the potential argu-324

ments according to their relative positions to the325

trigger word. The relational and counting functions326

can be constituted into compositional functions327

based on grammar patterns. For example, for the328

grammar pattern “If P, then Q", Each function is329

grouped into the function set F1 if it occurs in P,330

or the function set F2 if it occurs in Q. F1 and F2331

are taken as the arguments of the function IfThen.332

Furthermore, to handle the uncertain cases and333

improve the coverage of extracted functions, we334

build a neural semantic parsing model based on a 335

pre-trained language model RoBERTa (Liu et al., 336

2019). It takes the sentence and two parsed ar- 337

guments in the sentence as the input and predicts 338

their potential function type (“Null" if no function 339

exists). Specifically, following Xu et al. (2020), 340

we modify the sentence by adding a special to- 341

ken “@” before and after the first argument, and a 342

special token “#" before and after the second argu- 343

ment. Then, we encode the modified sentence X 344

with RoBERTa to obtain contextual representations 345

H = RoBERTa(X). for tokens. Afterwards, we 346

take the representation of the first “@” and “#” for 347

classification. 348

f = argmax(classifier([H@;H#])) (1) 349

where [;] denotes concatenation, and the classifier 350

is a linear layer followed by a softmax function. 351

Since there is no annotated data of corresponding 352

logical functions, we need to construct the training 353

data automatically. The training data consist of 354

(1) positive instances: all the {input: (rule, argu- 355

ments); label: function} pairs that extracted by the 356

symbolic parsing method from the training set; (2) 357

negative instances: the same number of instances 358

that have arguments with no function related. 359

Afterwards, we extract a set of constraint func- 360

tions with the combination of symbolic and neural 361

parsing methods. These functions are utilized for 362

reasoning process introduced in the following part. 363

4.4 Legitimate Assignments Deduction 364

Given the extracted logical constraint functions and 365

the initial assignment table, we conduct reasoning 366

to find the legitimate assignments that satisfy all 367

the constraints. The process is formulated into a 368

tree-based reasoning algorithm. As shown in Fig- 369

ure 4, each node in a tree corresponds to a table 370

assignment and each edge indicates a constraint 371

function. A node v with path {e0, e1, ..., ei} from 372

the root indicates that its assignment satisfies con- 373

straint functions {f0, f1, ..., fi}. Suppose we have 374

n constraint functions, we need to find all the leaf 375

nodes with depth n. These leaf nodes satisfy all the 376

functions and thus become legitimate assignments. 377

Therefore, we introduce how to construct the 378

complete reasoning tree by the following steps: 379

1) Firstly, we start with the root, which is the cer- 380

tain initial assignment decided by facts. For 381

the function f0, we generate all possible as- 382

signments related to newly added arguments 383
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Type Function Args Description

Relational
Functions

Before/After participant1
participant2

Whether participant1 is in the
position before/after participant2.

Same/Different Whether participant1 is in the
same/different position with participant2.

To participant1
position1

Whether participant1 is assigned
to position1.

Compositional
Functions IfThen function set F1

function set F2

If functions in F1 satisfied,
then functions in F2 satisfied.

Counting
Functions FirstPos/LastPos participant1,

number m
Whether participant1 is assigned
to the first/last m positions.

Table 2: A fragment of the logical constraint function definition.

(2) 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 
𝒕𝒐 𝒇𝒊𝒏𝒅 𝒄𝒐𝒏𝒇𝒍𝒊𝒄𝒕

A B C D E F G

X - - - T - T -

Y - - - F - F -

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑎

𝑓 𝐼𝑓𝑇ℎ𝑒𝑛 𝑇𝑜 𝐴, 𝑋 , 𝑇𝑜 𝐵, 𝑌

(1) 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆 
𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 

𝒂𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕𝒔

A B C D E F G

X T F - T - T -

Y F T - F - F -

A B C D E F G

X F T - T - T -

Y T F - F - F -

A B C D E F G

X F F - T - T -

Y T T - F - F -

A B C D E F G

X T T - T - T -

Y F F - F - F -

𝑎

𝑎

𝑎

𝑎

𝑎

𝑓𝑓 𝑓

𝑎 𝑎 𝑎

Conflict with 𝑓

𝑎

𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑻𝒓𝒆𝒆 𝑬𝒙𝒕𝒆𝒏𝒔𝒊𝒐𝒏

𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇𝟎

𝐷𝑒𝑝𝑡ℎ 1

Figure 4: An example of the reasoning process. Newly
added participants in f0 are highlighted. (1) and (2)
conducted recursively until depth = n. (T/F/−) =
(True/False/Unknown)

in f0. As shown in the example in Figure 4,384

for the function IfThen(To(A,X),To(B, Y )),385

we generate all possible assignments related386

to the new participants A and B.387

2) We execute f0 to find all the legitimate388

assignments that satisfy f0 as a group of389

children of the root. In the same exam-390

ple, we keep the assignments that meets391

IfThen(To(A,X),To(B, Y )).392

3) Then we select each child as a new root and393

select function f1 for further extension of the394

reasoning tree.395

These processes are recursively conducted until396

depth n, which means that all the functions are397

used to construct the reasoning tree. The procedure398

is summarized into pseudo-code in Appendix A.399

It is worth mentioning that although both our al-400

gorithm and forward-chaining algorithm deduce401

new facts based on rules. However, forward- 402

chaining algorithm struggles to do this task be- 403

cause it assumes that all the assignments are al- 404

ready known to the systems while the assignments 405

are always unknown before the deduction steps. 406

Therefore, this algorithm has advantages of per- 407

forming explicit interpretable reasoning over the 408

extracted functions and handling uncertain assign- 409

ments. Moreover, the tree-based manner reduces 410

the computational complexity. 411

4.5 Answer Selection 412

Previous steps understand the passage and the ques- 413

tion. In this part, we introduce how to analyze the 414

options, and match the options with the deducted 415

legitimate assignments beyond word-level for mak- 416

ing a final prediction. Specifically, we can derive 417

two types of information from an option: 418

1) Assignment-based option indicates a table 419

assignment. For example, “A and C both 420

serve on the X committee" can be interpreted 421

as a assignment in the table: {(A,X) = 422

True; (C,X) = True}. For this type, we 423

match the parsed option assignment with all 424

the legitimate assignments and calculate an 425

assignment-based matching score. 426

2) Function-based option indicates an option 427

representing a constraint function, like “The 428

sedan is serviced earlier in the week than the 429

roadster", which can be parsed into the func- 430

tion “Before(sedan, roadster)". We execute 431

the option-based function on the legitimate 432

assignments to find the satisfiable option and 433

calculate a function-based matching score. 434

These two types of scores are combined for making 435

a conclusion. The question types and score calcu- 436

lating methods are summarized in the Appendix C. 437

438
5 Experiments 439

We make experiments on the AR-LSAT dataset 440

and evaluate our system with label accuracy. The 441
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data split is (train/dev./test) = (1, 585/231/230)442

We first compare our system with powerful neural443

baselines and conduct analysis. Moreover, case444

study illustrates the reasoning process of our sys-445

tem by an explicit example. Lastly, we make error446

analysis to point out challenges in this task.447

5.1 Model Comparison448

Baseline Models We take various powerful neu-449

ral models, including RNN-based models (i.e.,450

LSTM) and powerful Transformer-based pre-451

trained language models (i.e, BERT (Devlin et al.,452

2018), XLNet (Yang et al., 2019), RoBERTa (Liu453

et al., 2019), and the recent ALBERT (Lan et al.,454

2019)) as the baselines of our dataset and investi-455

gate their performance. The implementation details456

of these baselines are given in Appendix D.457

Human Performance Since the dataset is based458

on a test designed for undergraduate students, we459

select nearly 100 instances in the AR-LSAT dataset460

and ask 10 undergraduate college students majoring461

in literature, commerce and law to answer these462

questions. We take their averaged performance as463

human performance and report it in Table 3.464

Methods
Dev.
Acc (%)

Test
Acc (%)

Human Performance - 59.7%
Random Guess 20.0% 20.0%
LSTM 22.5% 20.9%
BERT 23.4% 21.4%
XLNet 23.8% 22.5%
RoBERTa 24.2% 23.1%
ALBERT 24.4% 23.0%
ARM 34.2% 30.9%

Table 3: Performance on the AR-LSAT dataset. Our
model is abbreviated as ARM.

Results and Analysis In Table 3, we compare465

our system (ARM) with baselines and human per-466

formance on the development and test set. As467

shown in Table 1, our model with context un-468

derstanding and explicit reasoning process signif-469

icantly outperforms RNN-based models and pre-470

trained language models with 34.2% accuracy on471

the development set and 30.9% accuracy on the test472

set. Results indicate that context understanding and473

reasoning are essential for this task.474

Moreover, we observe that the RNN-based mod-475

els and pre-trained models struggle to do well on476

this task, and achieve close performance with ran-477

dom guess. It is also noticed that the performance 478

of both our system and baselines are still far from 479

human performance, leaving significant opportuni- 480

ties for further exploration. 481

5.2 Model Analysis 482

In this part, we further analyze the performance 483

and variance of components of our system. To eval- 484

uate the performance of arguments extraction, we 485

manually annotate the correct participants and posi- 486

tions in the development set as labels and calculate 487

the accuracy and recall of our condition extraction 488

method and report the results in Table 4. Moreover,

Acc. (%) Recall (%)
Participants 96.17 92.88
Positions 84.42 85.79

Table 4: Performance of extraction of participants and
positions on the development set.

489
we eliminate the neural semantic parsing method to 490

evaluate its importance and extract functions by the 491

symbolic parsing method. The results are shown in

Methods
Dev.
Acc (%)

Test
Acc (%)

ARM 34.2% 30.9%
ARM (w/o neural func.) 32.4% 30.2%

Table 5: Ablation of the the neural semantic parser.
492

Table 5. Eliminating neural semantic parsing yields 493

no significant compromise in performance. This 494

observation indicates that the neural semantic pars- 495

ing model can improve performance by improving 496

coverage of the functions and the symbolic parsing 497

method can also provide reliable performance. 498

5.3 Case Study 499

We present a case study in Figure 5 to illustrate 500

the reasoning process of our system with inter- 501

pretable results. Our system extracts correct argu- 502

ments from the context, and interprets the rules into 503

logical constraint functions. Afterwards, we per- 504

form deduction to find legitimate solutions. Lastly, 505

our system matches the options with the legitimate 506

solutions and calculates a score for each option. 507

Option A achieves the highest score because it ac- 508

cords with legitimate assignments. This analysis 509

demonstrates that our system has better explict in- 510

terpretable reasoning ability. 511
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Passage: A professor must determine the order in which five of her students — Fernando, Ginny, Hakim, Juanita, and Kevin — will perform in an upcoming 
piano recital. Each student performs one piece, and no two performances overlap. The following constraints apply: Ginny must perform earlier than Fernando. 
Kevin must perform earlier than Hakim and Juanita. Hakim must perform either immediately before or immediately after Fernando.
Question:  If Juanita performs earlier than Ginny, then which one of the following could be true?
Options: 𝐴  Fernando performs fourth. √ 𝐵  Ginny performs second.  𝐶  Hakim performs third. 𝐷  Juanita performs third.  𝐸  Kevin performs second

Participants & Positions Fernando, Ginny, Hakim, Juanita, Kevin first, second, third, fourth, fifth

Rules &
Functions

(1) Ginny must perform earlier than Fernando. 
(2) Kevin must perform earlier than Hakim and Juanita. 
(3) Hakim must perform either immediately before or 

immediately after Fernando.
(4) Juanita performs earlier than Ginny

1 𝐵𝑒𝑓𝑜𝑟𝑒 𝐺𝑖𝑛𝑛𝑦, 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜
2 𝐴𝑛𝑑 𝐵𝑒𝑓𝑜𝑟𝑒 𝐾𝑒𝑣𝑖𝑛, 𝐻𝑎𝑘𝑖𝑚 , 𝐵𝑒𝑓𝑜𝑟𝑒 𝐾𝑒𝑣𝑖𝑛, 𝐽𝑢𝑎𝑛𝑖𝑡𝑎
3 𝑂𝑟 𝑁𝑒𝑥𝑡 𝐻𝑎𝑘𝑖𝑚, 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜 , 𝐿𝑎𝑠𝑡 𝐻𝑎𝑘𝑖𝑚, 𝐹𝑒𝑟𝑛𝑎𝑛𝑑𝑜
4 𝐵𝑒𝑓𝑜𝑟𝑒 𝐽𝑢𝑎𝑛𝑖𝑡𝑎, 𝐺𝑖𝑛𝑛𝑦

Legal Assignments

Option Scores 𝑨  𝟏 𝐵  1 𝐶  1 𝐷  1 𝐸  1

𝟏𝒔𝒕 𝟐𝒏𝒅 𝟑𝒓𝒅 𝟒𝒕𝒉 𝟓𝒕𝒉

Fernando F F F T F

Ginny F F T F F

Hakim F F F F T

Juanita F T F F F

Kevin T F F F F

𝟏𝒔𝒕 𝟐𝒏𝒅 𝟑𝒓𝒅 𝟒𝒕𝒉 𝟓𝒕𝒉

Fernando F F F F T

Ginny F F T F F

Hakim F F F T F

Juanita F T F F F

Kevin T F F F F

Figure 5: A case study on the AR-LSAT dataset. Our system correctly extracts participants, positions, and rules
from the context. Afterwards, it interprets rules into logical functions. After deduction, our system finds legitimate
assignments and makes the correct prediction. Rules are highlighted in blue.

5.4 Error Analysis512

We randomly select 50 wrongly predicted instances513

from the dev. set and summarize the error types.514

The dominant error type is that some rules with515

complex semantics are not covered by current con-516

straint logical function set. For example, given a517

rule “Each crew member does at least one task dur-518

ing the installation." , we should map “At least" to519

function AtLeastNum. The second type of errors is520

caused by failing to extract correct participants or521

positions by the NER model and predefined match-522

ing pattern. The third error type is caused by the523

lack of basic commonsense knowledge, which is524

required for understanding the concept in the rules.525

For example, when a passage mentioned “Six en-526

tertainers should be scheduled at 9:00 A.M., 2:00527

P.M., etc" and the rule is “Some participants should528

be scheduled in the morning.", the system fails to529

match the morning with a specific time zone.530

5.5 Discussion531

We would like to further highlight important direc-532

tions to facilitate research on analytical reasoning.533

One of the major challenges lies in deep un-534

derstanding of the knowledge in the context, like535

parsing the rules into logically equivalent symbolic536

functions. Deriving machine-understandable func-537

tions from natural language is an essential step538

towards deeper understanding and reasoning. Al-539

though supervised semantic parsing has achieved540

promising progress in recent years, obtaining com-541

plete human-annotated logical functions is imprac-542

tical for this task. Therefore, further study can543

focus on function extraction with limited amount 544

of annotated functions. 545

Furthermore, a better inference engine built upon 546

logical functions is also essential because AR ques- 547

tions require deeper reasoning abilities far beyond 548

just understanding the literal clues. Standard sym- 549

bolic systems like expert systems can provide ex- 550

plicit reasoning, but they are difficult to deal with 551

uncertainty in data. Although neural-based meth- 552

ods are more flexible at dealing with uncertainty, 553

they still struggle to perform interpretable and ex- 554

plicit reasoning. It is promising to better integrate 555

neural and symbolic systems to improve this task 556

with deeper reasoning ability. 557

6 Conclusion 558

In this paper, we study the challenging task of ana- 559

lytical reasoning and introduce a dataset AR-LSAT 560

to facilitate research on analytical reasoning. We 561

analyze the knowledge understanding and reason- 562

ing ability required for this task and present a sys- 563

tem, Analytical Reasoning Machine (ARM), which 564

can comprehend the knowledge, including partic- 565

ipants, facts and rules mentioned in the context 566

and extract logically equivalent logical functions 567

from the rules. Afterwards, it performs deep rea- 568

soning to find all the legitimate solutions to the 569

problem posed and finally makes a prediction. Ex- 570

periments show that our system outperforms strong 571

Transformer-based baselines, which indicates that 572

knowledge understanding and deep reasoning is 573

essential for this task. Results show that this task is 574

very challenging for current neural-based models. 575
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Require: A set of constraint functions F = {f0, f1, ..., fn}
and an initial assignment a0

0: function CONSTRUCTTREE(node,functions,depth,n)
0: if depth == n then:
0: return
0: end if
0: function = functions[depth]
0: old_pars = node.participants
0: old_assign = node.assignment
0: new_pars = find_new_participant(function, old_pars)
0: all_assign = gen_all_assign(old_assign, new_pars)
0: satisfied = find_satisfied(all_assign, function)
0: depth = depth+1
0: children = update_notes(node, satisfied, new_pars)
0: for child in children do
0: CONSTRUCTTREE(child, functions, depth, n)
0: end for
0: end function
0: root = Node(a0)
0: depth = 0
0: n = length of F
0: complete_tree = CONSTRUCTTREE(root, F , depth, n)
0: legitimate = nodes in complete_tree with depth n
0: return legitimate =0

B Function Definition791

In this part, we present the detailed description and792

trigger words for each logical constraint functions793

in Table 8.794

C Question Type795

In this part, we list common question types in the796

AR-LSAT datasets and their ratio in Table 6 and797

give examples in Table 7. We further introduce798

how we calculate a score for dominant question799

type with a group of legitimate assignments.800

1) Must be true/false: this question type needs801

to select answer that must be true in all the as-802

signments. We match all the assignments with803

the option. If one option accords/conflicts804

with one assignment, the single matching805

score will be 1/-1, otherwise the score will806

be 0. We then calculate the sum of all the807

matching scores as the final score.808

2) Could be true/false: this question type needs809

to select answer that could be true in one of810

the legitimate assignments. We match all the811

assignments with the option. If one option812

accords/conflicts with one assignment, the sin-813

gle matching score will be 1/-1, otherwise the814

score will be 0. We then calculate the maxi-815

mum matching scores as the final score. The816

Acceptable solution question type also use this817

method to calculate score.818

3) Maximum number of participants in a po- 819

sition: this question type needs to calculate 820

the maximum possible number of participants 821

in a specified position (group). We calculate 822

the maximum number of participants in all the 823

legetimate assignments and calculate the abso- 824

lute difference with the number in the option 825

as the final score. 826

4) Find the earliest position of a participant: 827

this question type needs to calculate the earli- 828

est possible position of a specific participant. 829

We calculate the index of the earliest position 830

of the participant in all the legitimate assign- 831

ments and calculate the absolute difference 832

with the number in the option as the final 833

score. 834

5) Count the number of possible positions that 835

a participant can be assigned in: for this 836

question type, we count all the non-repetitive 837

assignments of the specific participant and cal- 838

culate the absolute difference with the number 839

in the option as the final score. 840

D Baseline Models 841

D.1 Descriptions 842

• LSTM (Gers et al., 1999) is a classical RNN- 843

based model. We apply Bi-LSTM with 844

GloVE (Pennington et al., 2014) embedding. 845

• BERT (Devlin et al., 2018) is a transformer- 846

based model pre-trained on BooksCorpus and 847

Wikipedia with two unsupervised learning 848

task: Masked LM and Nest Sentence Predic- 849

tion. 850

• XLNet (Yang et al., 2019) is also a 851

transformer-based model, pre-trained on 852

BooksCorpus, Wikipedia, Giga5, ClueWeb 853

2012-B and Common Crawl with Permuta- 854

tion Language Modeling. 855

• RoBERTa (Liu et al., 2019) is a transformer- 856

based model with the same model structure as 857

BERT but trained on a larger corpus and on a 858

different training setting. 859

• ALBERT (Lan et al., 2019) is a most recent 860

transformer-based pre-trained model. AL- 861

BERT uses parameter-reduction techniques 862

that support large-scale configurations. 863
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Question Type Description
Acceptable solution (15.6%) identify a feasible solution that can satisfy all the rules
Complete list (3.5%) identify a complete and accurate list of participants under given condition
Could be true/false (26.8%) select answer that could be true/false under given condition
Must be true/false (26.4%) select answer that must be true/false under given condition
Negation (14.7%) questions that contain negation
Substitution (4.3%) identify a new rule that can substitute one of the old rules for the desiring result
Condition for determined solution (3.5%) identify a new rule so that the feasible solution is determined
Calculation (3%) calculate possible participants in a group
Earliest/latest position (1.3%) identify the earliest/latest position that a specific participant can be assigned to
Maximum/minimum members (1.3%) identify the possible maximum/minimum number of participants in a specific group

Table 6: The ratio and description of each question type in the test set of the AR-LSAT dataset.

Question Type Example
Acceptable solution Which one of the following could be the schedule of the students’ reports?

Complete list Which one of the following could be a complete and accurate list of
the books placed on the bottom shelf?

Could be true/false with condition If Himalayans are not featured on day 7. which one of the following could be true?
Must be true/false with condition If Theresa tests G on the second day. then which one of the following must be true?
Negation P CANNOT be performed at?

Substitution
Which one of the following. if substituted for the condition that Waite’s audition
must take place earlier than the two recorded auditions.
would have the same effect in determining the order of the auditions?

Condition for unique solution The assignment of parking spaces to each of the new employees is fully and uniquely
determined if which one of the following is true?

Calculation How many of the students are there who could be the one assigned to 1921?

Earliest/latest position If Zircon performs in an earlier slot than Yardsign. which one of the following
is the earliest slot in which Wellspring could perform?

Maximum/minimum members What is the minimum number of solos in which Wayne performs a traditional piece?

Table 7: The examples of question types in the AR-LSAT dataset.

D.2 Implementation Details864

For all the baselines, we employ cross-entropy loss865

as the loss function and select AdamW as the opti-866

mizer for model training/ fine-tuning. These base-867

lines add a simple classification layer on the top of868

them and take the the last hidden state as the input.869

For all the Transformer-based models, we employ870

base model as the backbone.871
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Type Function Arguments Description Trigger Words

Relational
Functions

Before

participant 1
participant 2

whether participant 1 is in the
position before participant 2

before, above,
precede, earlier

After
whether participant 1 is in the
position after participant 2

after, larger, higher
bigger, older

Last
whether participant 1 is in the
last position of participant 2

immediately before,
last

Next
whether participant 1 is next
to participant 2

immediately after,
next

Adjacent
whether participant 1 is
neighboring to participant 2

neighboring,
adjacent

Different
whether participant 1 in the different
position with participant 2

different

Same
whether the first participant in the same
position with the second participant

same, also

BeforeEqual
whether participant 1 before
or equals to the position of participant 2

no later

AfterEqual
whether participant 1 after or equals
to the position of participant 2

no earlier

To
participant
position

Whether the participant is
assigned to the position

to, on, give, in

Compos.
Functions

IfThen

function set 1
function set 2

If rules in rule set 1 satisfied,
then rules in rule set 2 satisfied

If... then, If ... , ...

IFF
Rules in rule set 1 satisfied if and
only if rules in rule set 2 satisfied

if and only if

And
Rules in rule set 1 satisfied and
rules in the rule set 2 satisfied

and

Or
Rules in rule set 1 satisfied or
rules in rule set 2 satisfied

or

Unless
Rules in rule set 1 satisfied unless
rules in rule set 2 satisfied

unless

Neither
Neither rules in rule set 1 satisfied
nor rules in rule set 2 satisfied

Neither ... nor ...

Counting
Functions

FirstPos participant
number

Whether the participant is in the
last (number) positions

one of the
last (number)

LastPos
Whether the participant is in the
first (number) positions

one of the
first (number)

Table 8: Detailed function descriptions and corresponding trigger words
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