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Abstract

Equivariance builds known symmetries into neu-
ral networks, often improving generalization.
However, equivariant networks cannot break self-
symmetries present in any given input. This
poses an important problem: (1) for prediction
tasks on symmetric domains, and (2) for gener-
ative models, which must break symmetries in
order to reconstruct from highly symmetric latent
spaces. Thus, equivariant networks are fundamen-
tally limited when applied to these contexts. To
remedy this, we present a comprehensive, proba-
bilistic framework for symmetry-breaking, based
on a novel decomposition of equivariant distri-
butions. Concretely, this decomposition yields a
practical method for breaking symmetries in any
equivariant network via randomized canonicaliza-
tion, while retaining the inductive bias of symme-
try. We experimentally show that our framework
improves the performance of group-equivariant
methods in modeling lattice spin systems and au-
toencoding graphs.

1. Introduction
Even in seemingly symmetric domains, there are functions
that equivariant networks simply cannot represent. Consider
the problem of one-shot prediction of one molecular three-
dimensional graph from another, such as a dichlorobenzene
molecule from benzene (pictured on the right and left of
Fig. 1). Such tasks are relevant in generative modeling of
atomic systems (Satorras et al., 2021; Xie et al., 2021) and
molecular editing (Liu et al., 2024), for example. Since
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we are working in 3D space, rotation equivariance is a
natural choice—intuitively, rotating the benzene molecule
should only affect the rotation of the dichlorobenzene, not
the molecule itself. While this approach seems reasonable,
a strange problem arises. Since benzene has sixfold rota-
tional symmetry, an equivariant model is unable to output
dichlorobenzene, which is not rotationally symmetric. This
is a fundamental limitation of equivariant models: when
the input is self-symmetric, they cannot break that self-
symmetry in the output, as noted by e.g. Smidt et al. (2021).

Self-symmetry arises in a variety of applications, often
with more complex groups—e.g. non-trivial graph automor-
phisms, spin models on symmetric domains, or rotationally
self-symmetric point-clouds (Fig. 3). Also noteworthy is the
case of generative models and autoencoders that reconstruct
from a latent space: by virtue of being embedded in a sim-
ple, low-dimensional space, a latent representation often has
greater self-symmetry than the input itself. An equivariant
decoder must then map the more symmetric latent space to
the less symmetric data space, which is just as impossible
as predicting dichlorobenzene from benzene. One could dis-
card symmetry structure entirely, but this loses the benefits
of equivariance on asymmetric inputs. The question is thus:
how can we retain the inductive bias of symmetry, while
resolving the difficulty posed by self-symmetric inputs?

We examine this question from a probabilistic perspective.
Extending the results of Bloem-Reddy & Teh (2020) on
probabilistic symmetries, we derive a method that allows us
to provably represent any equivariant conditional distribu-
tion (Section 2). For this, we rely on an external source of
randomness, coming from a canonicalization function (Kaba
et al., 2023) which has been appropriately randomized. Our
theory suggests a simple modification to existing equivari-
ant models allowing them to break symmetries (Section 3),
which we validate experimentally (Fig. 2; Section 4). Using
our framework, we also show that some recently proposed
approaches to symmetry breaking (Kaba & Ravanbakhsh,
2023; Xie & Smidt, 2024) can be modified to represent any
equivariant conditional distribution.

2. Representation of Equivariant Distributions
Probabilistic symmetry Bloem-Reddy & Teh (2020) jus-
tify the use of equivariant models by showing that, if G
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Figure 1. When the input x is rotated, an equivariant distribution
Y |X = x rotates. The distribution thus has (at least) the same self-
symmetry as x. Individual samples may break this self-symmetry.

acts on X freely1 and the distribution of a random X ∈ X
is G-invariant, then Y |X is conditionally equivariant2 if
and only if there exists a function f : X × (0, 1) → Y
equivariant in x (i.e. f(gx, ϵ) = gf(x, ϵ)) such that

Y
a.s.
= f(X, ϵ), ϵ ∼ Unif(0, 1) ⊥ X. (1)

We thus have a functional representation of the equivariant
distribution, in the sense that it is expressed as a determinis-
tic function of random inputs.

Symmetry breaking The requirement of a free action is
a strong one, and amounts to having no input with self-
symmetries. For general group actions, we are confronted
with Curie’s principle (Smidt et al., 2021), which states
that Gx ⊆ Gf(x) when f is equivariant. The equivari-
ance of f therefore means that for any possible values of
x and ϵ, the output sample f(x, ϵ) will have at least the
self-symmetry of x. But in a general probabilistic system,
Curie’s principle only holds at the level of distributions.
That is, if Y |X is equivariant and gx = x, then Y |X = x is
sampled from a distribution of which g is a self-symmetry:
P (Y ∈ A|X = x) = P (gY ∈ A|X = x). Nonetheless, a
sample of Y need not have any such symmetry (see right
panel of Fig. 1). This is what physicists call spontaneous
symmetry breaking (Beekman et al., 2019).

Randomized canonicalization (the inversion kernel) One
way to understand why the representation Eq. (1) is limited
to free group actions is that it relies on the existence of an
equivariant canonicalization function (Kaba et al., 2023).
Such functions do not exist when G does not act freely.3

Definition 2.1. An orbit representative map γ : X → X
1This means that the self-symmetry group, given by the stabi-

lizer Gx := {g ∈ G : gx = x}, of any x ∈ X is trivial.
2P (Y ∈ A|X = x) = P (gY ∈ A|gX = x)
3Suppose τ : X → G is equivariant. For any h ∈ Gx,

hτ(x) = τ(hx) = τ(x) and thus h = id.

is a G-invariant function such that γ(x) ∈ [x] for all x. A
canonicalization function τ : X → G is a function such
that x 7→ τ(x)−1x is an orbit representative map.

The lack of an equivariant canonicalization has been ap-
proached from various related angles: a notion of relaxed
equivariance (Kaba & Ravanbakhsh, 2023); generalizing
frames (Puny et al., 2022) to be weakly equivariant (Dym
et al., 2024); generalizing canonicalization to output more
than a single orbit representative (Ma et al., 2024). In proba-
bility theory, this problem has been addressed via the inver-
sion kernel (Kallenberg, 2011). Intuitively, it is the uniform
distribution over all ways to canonicalize x.
Definition 2.2. Let γ : X → X be an orbit representative
map. The inversion kernel evaluated at x is Unif(gGγ(x)),
where g ∈ G is such that gγ(x) = x.

Armed with these preliminaries, we state our main theorem.
It proves the existence of a decomposition of any equivari-
ant Y |X in terms of X , noise ϵ, and additional randomness
coming from the inversion kernel, which explicitly captures
symmetry breaking. We also derive two functional repre-
sentations of symmetry generalizing Bloem-Reddy & Teh
(2020, Theorem 9).
Theorem 2.3 (Randomized canonicalization). Y |X is
equivariant iff

Y
a.s.
= g̃ϕ(γ(X), ϵ)

a.s.
= g̃ϕ(g̃−1X, ϵ) (2)

for some function ϕ : X × (0, 1) → Y , independent noise
ϵ ∼ Unif(0, 1), and g̃|X distributed according to the inver-
sion kernel for some orbit representative map γ.

The proof (Appendix G.1) follows closely that of Bloem-
Reddy and Teh, which bootstraps deterministic symmetry
from a canonicalizer to that of Y |X . We analogously boot-
strap the distributional symmetry of g̃|X to that of a model
g̃ϕ(g̃−1X, ϵ) for Y , where ϕ is an arbitrary function.
Corollary 2.4 (Joint equivariance). Y |X is equivariant iff
Y

a.s.
= f(X, g̃, ϵ) for a function f : X × G × (0, 1) →

Y jointly equivariant in its first two inputs, noise ϵ ∼
Unif(0, 1), and g̃|X is distributed according to some in-
version kernel.

Intuitively, our result decomposes the randomness in Y |X
into symmetry breaking and independent noise. The next
functional representation is in terms of relaxed equivariance
(Kaba & Ravanbakhsh, 2023).
Definition 2.5. A function f : X → Y is relaxed equivari-
ant if for any x ∈ X and g ∈ G, we have hf(x) = f(gx)
for some h ∈ gGx.
Corollary 2.6 (Relaxed equivariance). Y |X is equivariant
iff Y a.s.

= gXf(X, ϵ) for some f : X × (0, 1) → Y relaxed
equivariant in its first input, with gX ∼ Unif(GX), and
ϵ ∼ Unif(0, 1) independent of X and gX .
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We justify these symmetry breaking perspectives in Appen-
dices I and J, showing generalization advantages of distribu-
tional and relaxed equivariant models.

3. Proposed Method
Following Corollary 2.4 and as shown in Fig. 4, we propose
to represent equivariant conditionals using an equivariant
neural network f , and pass in (x, g̃) as input (and ϵ, if so
desired). This approach can be used whenever the number
of input channels to f is flexible. Namely, for any “bias”
vector v ∈ V (whereG acts on V ), we use the concatenation
x⊕(g̃v) as input to f ; the equivariance of (x, g) 7→ x⊕(gv)
is clear. The vector v can be fixed, or a learnable parameter;
it can also be a matrix, with columns for channels. As shown
in the next proposition, if Gv is trivial, our method is fully
expressive. (See Appendix H for examples, including when
v is a matrix.)

Proposition 3.1. Let f : X×G→ Y be any function jointly
equivariant in its arguments, i.e. f(hx, hg) = h · f(x, g). If
v ∈ V has trivial stabilizer, then there exists an equivariant
function f0 : X × [v] → Y such that f(x, g) = f0(x⊕ gv).

A priori, our method requires sampling g̃ ∼ Unif(gGγ(X))
for some choice of orbit representatives γ. In some cases,
one can define a procedure “by hand”: for permutation
groups one can use ranking with random tie breaking (e.g.
by adding very small noise). Another method for doing
so is to generalize a proposal of Kaba et al. (2023) for
building relaxed equivariant canonicalizers. For any en-
ergy function E : X → R, consider the set S(x) =
argming∈GE(g−1x). Note that if g∗ ∈ S(x), then
g∗Gx ⊆ S(x). If E is “non-degenerate” in the sense that
g∗Gx = S(x), i.e. a unique element γ(x) ∈ [x] minimizes
the energy, then S(x) = gGγ(x) where gγ(x) = x. That is,
we can sample g̃ by sampling uniformly from the minimizer
of a non-degenerate energy function, which may be learned
as a neural network. For small groups, one may calculate
the minimizer directly (or on a fine enough grid). For larger
groups, one may optimize the energy by SGD.

Depending on the context, one may also not care about
actually getting a uniform sample from gGγ(x) (i.e. having
distributional equivariance of g̃). One case is a prediction
task with a group-invariant loss function, where the different
ways to break symmetry will result in the same loss value.
Then, one may simply use an existing deterministic (relaxed
equivariant) canonicalizer to obtain g̃.

3.1. Symmetry breaking with noise injection

Adding noise to inputs is a commonly used heuristic for
symmetry breaking (Satorras et al., 2021; Sato et al., 2021;
Abboud et al., 2021; Zhao et al., 2024). This involves using
a functional model similar to that of Corollary 2.4, but with

an arbitrary noise variable Z replacing g̃. It is natural to ask
whether this simple heuristic can also represent any equiv-
ariant distribution. We show that under some conditions,
noise injection can indeed be used to break symmetries and
represent any equivariant Y |X .

Proposition 3.2 (Noise injection). Let X,Y, Z be random
variables in X ,Y,Z respectively, each space acted on by
G. The following are equivalent: (1) G acts on Z freely
(up to a set of probability zero) and Z|X is equivariant; (2)
Y |X is equivariant iff there exists f : X ×Z × (0, 1) → Y
jointly equivariant in X and Z such that Y a.s.

= f(X,Z, ϵ)
for noise ϵ ∼ Unif(0, 1).

This result implies that one may sample g̃ instead from a
general equivariant distribution on G, and still obtain an
equivariant Y |X .4 Moreover, for many groups of interest,
such as Sn and O(n), simply sampling Z from an isotropic
Gaussian satisfies the requirements. However, this method
introduces more noise than is necessary into the learning pro-
cess, while the inversion kernel is “minimal” (Appendix C).
It is thus likely beneficial to judiciously choose Z|X .

The result above also allows us to draw formal connections
to the recently proposed symmetry breaking sets (SBS) of
Xie & Smidt (2024) (Appendix D). In short, our method
generalizes SBS while offering certain advantages: theo-
retically, it enables sampling from the smallest possible
“set” (via the inversion kernel), and practically, it is easy to
implement via any existing canonicalization method.

4. Experiments
4.1. Predicting ground-states of Ising models

Ising models serve as prototypical examples of physical sys-
tems that exhibit symmetry breaking, making them natural
candidates to evaluate our framework. Consider a square
grid Λ with periodic boundary conditions and a configura-
tion σ ∈ {−1, 1}Λ specifying a spin at each site. The Hamil-
tonianH(σ) = −

∑
i,j J

x
ijσiσj −

∑
i,j J

y
ijσiσj −

∑
i hjσj

assigns an energy to each configuration, where the hori-
zontal interaction Jx

ij ̸= 0 only if i and j are horizontal
neighbors and similarly for the vertical Jy

ij .

We consider unsupervised training of neural networks to ob-
tain ground states of the Ising model given the Hamiltonian
(Hu et al., 2017; Carrasquilla & Melko, 2017), i.e. configura-
tions of non-zero probability of the equivariant distribution
P (σ|Jx, Jy, h) ∝ exp(−H(σ)/T ) in the T → 0 limit
(configurations of minimal energy). This simple problem is
of high interest, as brute force optimization scales exponen-

4In fact, the stochastic optimization of energy proposed above
is akin to Langevin sampling from p(g|x) ∝ exp(−E(g−1x)/T ).
When T > 0 we sample from a general equivariant distribution on
G, and we recover the exact case when T → 0.
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tially in the number of lattice sites. Monte-Carlo simulation
is possible, but does not benefit from the generalization
power of neural networks across different Hamiltonians.

Denoting the set of possible Hamiltonian parameters as
J , we train a neural network ϕ : J → [0, 1]

Λ to output
the probability that each spin is up. (See Appendix E for
details.) Despite the apparent symmetry of the setup, an
equivariant network indeed cannot reliably obtain samples
of ground states. This is because while the Hamiltonian is
invariant under the automorphism group p4m of the square
grid (as a function of both spins and parameters), i.e. H(g ·
Jx, g ·Jy, g ·h, g ·σ) = H(Jx, Jy, h, σ), ground-states can
in general have less self-symmetry.

We use as baselines: a p4m-equivariant G-CNN (Cohen
& Welling, 2016; Weiler & Cesa, 2019), a non-equivariant
MLP trained with data augmentation sampled from p4m,
and adding noise ϵ ∼ N (0, 1) to the input of the G-CNN
to break symmetry. As we only care about predicting single
a ground state, and ground states are symmetrically related,
for our method we use a deterministic canonicalizer (see
Appendix E) to obtain g̃ (and drop ϵ). We can directly use
the average energy over the test set as an evaluation met-
ric. Reaching the ground truth value would guarantee that
network outputs the true ground-state for each Hamiltonian.
The proposed method achieves lower energy than all
the alternatives (Table 2, Appendix E). A more in-depth
understanding of their shortcomings can be obtained from
the predicted phase diagrams (Fig. 2).

Figure 2. Phase diagrams predicted by the different methods (best
viewed in color). For each configuration predicted by the neural
network on a test set Hamiltonian, we compute the values of the
three order parameters: the ferromagnetic phase (red), the antifer-
romagnetic phase (green), and the stripes phase (blue). Brighter
colors are associated with larger values of the order parameter and
black to the disordered phase. As shown, only symmetry-breaking
enables recovery of the correct phase diagram.

4.2. Graph Autoencoder

Autoencoders with symmetric latent spaces pose a problem
for equivariant models. One example explored in Satorras
et al. (2021) is autoencoding graphs using a node-wise latent
space Z = Rn×f , where n is the number of nodes and f is
the feature dimension. From an Sn-equivariant embedding
in Z , the graph is decoded equivariantly; the presence of
an edge between nodes with latents zi and zj is a function
of ∥zi − zj∥. If A is the adjacency matrix of the graph,
its self-symmetries are GA = {g ∈ Sn : gAgT = A}.
However, there may not even exist an embedding z ∈ Z
such that GA = Gz (see Appendix F for details), which by
Curie’s principle results in an “overly symmetric” embed-
ding with GA ⊊ Gz (Satorras et al., 2021, Figure 3) when
any equivariant encoder is used.

We consider reconstructing Erdős-Rényi random graphs
with edge probability 0.25, using the data from Satorras
et al. (2021) and a standard message-passing architecture
as the encoder. To break symmetries using our method,
we truncate Laplacian positional encodings to the fourth
largest singular values, P ∈ Rn×4, then apply a learn-
able dimensionality reduction w ∈ R4 to obtain the vector
v = Pw ∈ Rn. The symmetry breaking input g̃v is obtained
by sorting v, letting the sorting algorithm break ties. As
baselines, we consider no symmetry breaking (no SB), ran-
domly initialized node features (noise), randomly sampling
g̃ from Sn (uniform), and passing in P directly (Laplacian).
Breaking symmetries via our method achieves the lowest
error (Table 1).

Table 1. Cross-entropy loss and reconstruction error

Method BCE % Error Parameters
No SB 28.5 9.7 88,017
Noise 21.9 6.4 88,017
Uniform 17.7 5.0 88,890
Laplacian 18.7 5.3 88,017
L+canon (ours) 10.8 2.8 88,890

5. Conclusion
By considering symmetry breaking from a probabilistic per-
spective, we derive a framework which is both theoretically
grounded, and flexible and effective in practice. The exper-
iments presented here focus on cases where deterministic
symmetry breaking suffices. We leave evaluation of full dis-
tributional models of equivariant Y |X to future iterations
of this work. In addition to further empirical testing, work
remains to sample g̃ in practice for general groups—e.g. test-
ing our proposal of using energy-based modeling—and in
exploring the tradeoff between structured symmetry break-
ing and noise injection. Additionally, it remains to address
partial symmetry breaking, as treated for example by Xie &
Smidt (2024).

4



Improving Equivariant Networks with Probabilistic Symmetry Breaking

References
Abboud, R., Ceylan, İ. İ., Grohe, M., and Lukasiewicz, T.

The surprising power of graph neural networks with ran-
dom node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence
(IJCAI), 2021.

Beekman, A. J., Rademaker, L., and van Wezel, J. An
introduction to spontaneous symmetry breaking. Sci-
Post Phys. Lect. Notes, pp. 11, 2019. doi: 10.21468/
SciPostPhysLectNotes.11. URL https://scipost.
org/10.21468/SciPostPhysLectNotes.11.

Bloem-Reddy, B. and Teh, Y. Probabilistic symmetries and
invariant neural networks. Journal of Machine Learning
Research, 21(90):1–61, 2020. URL http://jmlr.
org/papers/v21/19-322.html.

Carrasquilla, J. and Melko, R. G. Machine learning phases
of matter. Nature Physics, 13(5):431–434, 2017. doi:
10.1038/nphys4035. URL https://doi.org/10.
1038/nphys4035.

Chiu, K. and Bloem-Reddy, B. Non-parametric hypothesis
tests for distributional group symmetry, 2023.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999, 2016.

Dym, N., Lawrence, H., and Siegel, J. W. Equivariant
frames and the impossibility of continuous canonicaliza-
tion. arXiv preprint arXiv:2402.16077, 2024.

Elesedy, B. Symmetry and Generalisation in Machine
Learning. Ph.D. Thesis, University of Oxford, 2023.
URL https://bryn.ai/assets/phd-thesis.
pdf.

Elesedy, B. and Zaidi, S. Provably strict generalisation
benefit for equivariant models. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 2959–2969. PMLR, 18–
24 Jul 2021. URL https://proceedings.mlr.
press/v139/elesedy21a.html.

Hu, W., Singh, R. R., and Scalettar, R. T. Discovering
phases, phase transitions, and crossovers through unsuper-
vised machine learning: A critical examination. Physical
Review E, 95(6):062122, 2017.

Kaba, S.-O. and Ravanbakhsh, S. Symmetry breaking and
equivariant neural networks. In Symmetry and Geometry
in Neural Representations Workshop, NeurIPS, 2023.

Kaba, S.-O., Mondal, A. K., Zhang, Y., Bengio, Y., and
Ravanbakhsh, S. Equivariance with learned canonicaliza-
tion functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Kallenberg, O. Invariant palm and related disintegra-
tions via skew factorization. Probability Theory and
Related Fields, 149:279–301, 2011. URL https:
//api.semanticscholar.org/CorpusID:
121316040.

Kallenberg, O. Foundations of Modern Proba-
bility. Springer International Publishing, Cham,
2021. ISBN 978-3-030-61871-1. doi: 10.1007/
978-3-030-61871-1 9. URL https://doi.org/10.
1007/978-3-030-61871-1_9.

Lim, D., Robinson, J., Jegelka, S., Lipman, Y., and Maron,
H. Expressive sign equivariant networks for spectral
geometric learning. In ICLR 2023 Workshop on Physics
for Machine Learning, 2023.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Liu, S., Wang, C., Lu, J., Nie, W., Wang, H., Li, Z.,
Zhou, B., and Tang, J. Unsupervised discovery of
steerable factors when graph deep generative models
are entangled. Transactions on Machine Learning Re-
search, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=wyU3Q4gahM.

Ma, G., Wang, Y., Lim, D., Jegelka, S., and Wang, Y. A can-
onization perspective on invariant and equivariant learn-
ing, 2024.

Mondal, A. K., Panigrahi, S. S., Kaba, O., Mudumba, S. R.,
and Ravanbakhsh, S. Equivariant adaptation of large
pretrained models. In Oh, A., Neumann, T., Globerson,
A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems,
volume 36, pp. 50293–50309. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
9d5856318032ef3630cb580f4e24f823-Paper-Conference.
pdf.

Puny, O., Atzmon, M., Smith, E. J., Misra, I., Grover,
A., Ben-Hamu, H., and Lipman, Y. Frame averag-
ing for invariant and equivariant network design. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=zIUyj55nXR.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In Proceedings of

5

https://scipost.org/10.21468/SciPostPhysLectNotes.11
https://scipost.org/10.21468/SciPostPhysLectNotes.11
http://jmlr.org/papers/v21/19-322.html
http://jmlr.org/papers/v21/19-322.html
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://bryn.ai/assets/phd-thesis.pdf
https://bryn.ai/assets/phd-thesis.pdf
https://proceedings.mlr.press/v139/elesedy21a.html
https://proceedings.mlr.press/v139/elesedy21a.html
https://api.semanticscholar.org/CorpusID:121316040
https://api.semanticscholar.org/CorpusID:121316040
https://api.semanticscholar.org/CorpusID:121316040
https://doi.org/10.1007/978-3-030-61871-1_9
https://doi.org/10.1007/978-3-030-61871-1_9
https://openreview.net/forum?id=wyU3Q4gahM
https://openreview.net/forum?id=wyU3Q4gahM
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d5856318032ef3630cb580f4e24f823-Paper-Conference.pdf
https://openreview.net/forum?id=zIUyj55nXR
https://openreview.net/forum?id=zIUyj55nXR


Improving Equivariant Networks with Probabilistic Symmetry Breaking

the 2021 SIAM international conference on data mining
(SDM), pp. 333–341. SIAM, 2021.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equiv-
ariant graph neural networks. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 9323–9332. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/satorras21a.html.

Smidt, T. E., Geiger, M., and Miller, B. K. Find-
ing symmetry breaking order parameters with eu-
clidean neural networks. Phys. Rev. Research, 3:
L012002, Jan 2021. doi: 10.1103/PhysRevResearch.
3.L012002. URL https://link.aps.org/doi/
10.1103/PhysRevResearch.3.L012002.

Srinivasan, B. and Ribeiro, B. On the equivalence between
positional node embeddings and structural graph rep-
resentations. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=SJxzFySKwH.

Vignac, C. and Frossard, P. Top-n: Equivariant set
and graph generation without exchangeability. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=-Gk_IPJWvk.

Wang, R., Hofgard, E., Gao, H., Walters, R., and Smidt,
T. E. Discovering symmetry breaking in physical systems
with relaxed group convolution, 2024.

Weiler, M. and Cesa, G. General e (2)-equivariant steerable
cnns. Advances in neural information processing systems,
32, 2019.

Xie, T., Fu, X., Ganea, O.-E., Barzilay, R., and Jaakkola,
T. Crystal diffusion variational autoencoder for periodic
material generation. arXiv preprint arXiv:2110.06197,
2021.

Xie, Y. and Smidt, T. Equivariant symmetry breaking sets.
arXiv preprint arXiv:2402.02681, 2024.

Yan, Q., Liang, Z., Song, Y., Liao, R., and Wang, L.
Swingnn: Rethinking permutation invariance in diffusion
models for graph generation, 2023.

Zhang, Y., Zhang, D. W., Lacoste-Julien, S., Burghouts,
G. J., and Snoek, C. G. M. Multiset-equivariant set
prediction with approximate implicit differentiation. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=5K7RRqZEjoS.

Zhao, L., Ding, X., and Akoglu, L. Pard: Permutation-
invariant autoregressive diffusion for graph generation,
2024.

6

https://proceedings.mlr.press/v139/satorras21a.html
https://proceedings.mlr.press/v139/satorras21a.html
https://link.aps.org/doi/10.1103/PhysRevResearch.3.L012002
https://link.aps.org/doi/10.1103/PhysRevResearch.3.L012002
https://openreview.net/forum?id=SJxzFySKwH
https://openreview.net/forum?id=SJxzFySKwH
https://openreview.net/forum?id=-Gk_IPJWvk
https://openreview.net/forum?id=-Gk_IPJWvk
https://openreview.net/forum?id=5K7RRqZEjoS
https://openreview.net/forum?id=5K7RRqZEjoS


Improving Equivariant Networks with Probabilistic Symmetry Breaking

Appendices

A. Supplemental Figures

Embedding

Network
SO(3)

Encoder
Sn

Decoder
Sn

Network
SO(3)

1 2

34

Figure 3. Example applications that require symmetry breaking.

x
Canonicalization

Method
g̃ ∈ {0∘, 60∘, …, 300∘} Equivariant

Network f

ϵ p = 1
6

⋮

p = 1
6

Figure 4. Illustration of our symmetry-breaking method. Here, a die indicates randomness, which is used in the canonicalization method
to sample g̃, and optionally as another input to the equivariant network f to capture randomness unrelated to symmetry-breaking.

B. Related work
The problems posed by symmetric inputs in equivariant learning have been noticed in several domains.

In the context of graph representation learning, Srinivasan & Ribeiro (2020) showed that isomorphic structures in graphs
must be assigned the same structural representations by equivariant functions. It has been seen in different applications,
including generative modelling on graphs (Liu et al., 2019; Satorras et al., 2021; Yan et al., 2023; Zhao et al., 2024) and link
prediction (Lim et al., 2023), that this is limiting. Our results formally justify that the symmetry of graph representations can
be broken while still preserving distributional symmetry.

Similar issues arise for prediction and generation tasks on sets. Zhang et al. (2022) offered a characterization of this problem.
First, equivariant functions are limited in processing multisets - sets with self-symmetries. Second, equivariant functions
cannot decode from an invariant latent space to a set. They introduce a notion of multiset equivariance of which relaxed
equivariance is a generalization. Vignac & Frossard (2022) also introduces a generalization of equivariance to address the
problem of set generation, which our results encompass.

Other studies have focused on this problem in the context of machine learning for modelling physical systems. Smidt
et al. (2021) have first formulated the preservation of symmetry in equivariant neural networks as an analogue to Curie’s
principle and have proposed to use gradients of equivariant neural networks to identify cases for which symmetry breaking
is necessary. Kaba et al. (2023) has identified that for prediction tasks on crystal structures, symmetry breaking can be
necessary and has proposed a method based on positional encodings. Wang et al. (2024) propose a flexible method for
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implementing and interpreting symmetry breaking based on relaxed group convolutions. This notion can be seen as a form
of approximate equivariance and is not related to the relaxed equivariance described earlier.

C. The inversion kernel injects minimal noise
We argue that using g̃|X in place of independent Z ∈ Z introduces the least amount of noise possible into the functional
representation of Proposition 3.2. We will measure “amount of noise” by conditional entropy, assuming G is finite for ease
of exposition. Z is a disjoint union of orbits. Since entropy is additive, it is minimized if Z is restricted to a single orbit,
which assuming G acts freely is isomorphic to G itself. We thus consider Z as a G-valued random variable.

First notice that if Z is independent of X , then it must be uniform on G to be equivariant. It is easy to show the uniform
distribution maximizes entropy. To see inversion kernels minimize it, let g ∈ G be such that P (Z = g|X = x) = p. If Z|X
is equivariant, then for any h ∈ Gx we have P (Z = hg|X = x) = p. Thus the support of Z|X = x is at least the size of
Gx. Entropy will again be minimized if Z|X = x indeed has a support of this size. This is exactly the case when Z|X is in
fact distributed like g̃|X , according to an inversion kernel.

D. Connection to equivariant symmetry breaking sets
Inspired by the idea that symmetry breaking arises from missing information, Xie & Smidt (2024) introduce the notion of
symmetry breaking sets (SBS). Fixing an input x and some group action, they define a symmetry breaking set B(x) as a
Gx-dependent set on which Gx freely. Elements b ∈ B(x) can then be fed into an equivariant function f(x, b) together
with the input x, in order to get outputs unconstrained by Curie’s principle. The authors propose sampling the elements
b ∈ B(x) uniformly, in order to be able to represent all possible outputs. Xie and Smidt also emphasize the desideratum
that the set B(x) transform equivariantly with x. An equivariant symmetry breaking set (ESBS) is thus a Gx-dependent set
B(x) such that for all x ∈ X and g ∈ G, we have B(gx) = gB(x) and Gx acting freely on B(x). Finally they define an
ideal ESBS as one in which there is only one element per possible output (i.e. |B(x)| = |Gx|), which they argue should
make the task of learning f easier. Xie and Smidt show an ideal ESBS may not always exist, deriving a somewhat technical
characterization of when it does.

Our work allows us to analyze ESBS through a probabilistic lens. First, our results on noise injection demonstrate that
uniformly sampling from an ESBS allows one to represent any equivariant distribution, if one also adds an independent
ϵ ∼ Unif(0, 1) to the input, f(x, b, ϵ). Additionally, in our methods, g̃ plays the role of a “symmetry breaking element”
similar to the elements of an ESBS. In fact, the coset gGγ(X) from which g̃ is sampled would satisfy the definition of ideal
ESBS, except for the fact that it depends on X through more than just its stabilizer. We may thus view the requirement that
B(x) depend on x only through Gx—which makes it so that an ideal ESBS may not exist—as being overly restrictive.

E. Ising model experimental details
E.1. Ground state of the anisotropic Ising model

We present here an analytical derivation of the Ising model ground states. This is used to obtain the ground-truth values for
the average energy in Table 2 and the ground-truth phase diagram in Fig. 2.

The Hamiltonian of the anisotropic Ising model we consider is given by

H(σ) = −
∑
i,j

Jxσiσj −
∑
i,j

Jyσiσj −
∑
i

hσj (3)

We can re-express the Hamiltonian using the variables bxij , b
y
ij = [σi, σj ] ∈ {[1, 1] , [1,−1] , [−1, 1] , [−1,−1]} taking values

on the horizontal and vertical interaction edges instead of the lattice sites. The variable encodes the value of the spins i and
j adjacent to the bond. For convenience, we will write bij as a one-hot vector, with

bα
ij =


[1, 0, 0, 0] if bαij = [1, 1]

[0, 1, 0, 0] if bαij = [1,−1]

[0, 0, 1, 0] if bαij = [−1, 1]

[0, 0, 0, 1] if bαij = [−1,−1]

(4)
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In terms of these variables, the Hamiltonian becomes

H(b) = −
∑
i,j


Jx

−Jx

−Jx

Jx

bx
ij −

∑
i,j


Jy

−Jy

−Jy

Jy

by
ij −

∑
i,j

1

2


h
0
0
−h

(
by
ij + bx

ij

)
(5)

For the change of variables to correspond to a valid spin configuration, we additionally need to satisfy the constraints
bij,0 = bij′,0 and bi′j,1 = bij,1 for any i, i′, j, j′. Any configuration of variables satisfying such constraint will be an element
of the feasible set B.

Finding the ground state therefore corresponds to the optimization problem argminb∈BH(b).

Since the form of the Hamiltonian Eq. (6) is a simple sum of non-interacting terms, we first directly minimize to find the
ground-states without considering the constraint. We will then verify that the minimum lies in the feasible set B.

We first re-write the Hamiltonian in the following way

H(b) = −
∑
i,j


Jx + h/2

−Jx

−Jx

Jx − h/2

bx
ij −

∑
i,j


Jy + h/2

−Jy

−Jy

Jy − h/2

by
ij (6)

We can then minimize each term independently to obtain the solution

bα
ij =


[1, 0, 0, 0] if Jα ≥ −h

4 , h ≥ 0

[0, 1, 0, 0] or [0, 0, 1, 0] if Jα ≤ − 1
4 |h|

[0, 0, 0, 1] if Jα ≥ h
4 , h ≤ 0

(7)

where α ∈ {x, y}. Without loss of generality we consider h ≥ 0. This leaves us with four possibilities.

1. Jx ≥ −h
4 , J

y ≥ −h
4 : The ground states is given by bα

ij = [1, 0, 0, 0], which is in B and corresponds to the
ferromagnetic (FM) phase (see Fig. 5a).

2. Jx ≤ −h
4 , J

y ≤ −h
4 : Feasible ground states consists of alternating between bα

ij = [0, 1, 0, 0] and bα
ij = [0, 0, 1, 0].

This is indeed in B and corresponds to the antiferromagnetic (AFM) phase (see Fig. 5b).

3. Jx ≥ −h
4 , J

y ≤ −h
4 : Feasible ground states consists of having bx

ij = [1, 0, 0, 0] and alternating between by
ij =

[0, 1, 0, 0] and by
ij = [0, 0, 1, 0]. This is indeed in B and corresponds to the y stripes phase (Sy) (see Fig. 5c).

4. Jx ≤ −h
4 , J

y ≥ −h
4 : This is the same as above but with stripes in the x direction.

(a) Ferromagnetic phase (b) Antiferromagnetic phase (c) Stripes phase

Figure 5. Illustration of the different ground-states of the anisotropic Ising model
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We can see that the different ground-states are associated with specific types of orders. The type of order of an arbitrary spin
configuration σ, which is in a sense its closeness to the respective ground-states, can be quantified via order parameters
(Beekman et al., 2019).

The order parameters are given by

OFM =
1

N

∑
i

σi OAFM =
1

N

∑
i

(−1)
ix+iy

σi OSy =
1

N

∑
i

(−1)
iy
σi (8)

where ix and iy are respectively the x and y positions of a spin σi. The order parameters take the value 1 if and only if σ is
the associated ground-state. In addition, OFM +OAFM +OSy ≤ 1, which means that the orders are mutually exclusive. This
allows us to draw meaningful phase diagrams like the ones in Fig. 2.

E.2. Hamiltonian encoding

For the encoding of the Hamiltonian interaction parameters as input to neural networks, a graph representation would be
possible, with interaction parameters Jij encoded as edge attributes and external field values as node attributes (see Fig. 6a).
However, this choice would make it much more challenging to use the p4m symmetry of the Hamiltonian. We therefore
leverage the structure of the lattice and adopt an image representation, which is complete and unique (see Fig. 6b). We can
then conveniently use G-CNNs and MLPs as prediction networks.

(a) Graph encoding (b) Image encoding

Figure 6. Data structures for the encoding of the Hamiltonian interaction parameters. Jx is represented in blue, Jy in yellow and the
external field in green. The lattice sites of the spins are represented with black dots. In the image, gray pixels corresponding to the holes
between edges, are set to 0.

Through the neural network, we always preserve the size of the image. At the output of the network, we obtain a spin
configuration by indexing the image over pixels corresponding to lattice sites (with black dots on figure Fig. 6b). The energy
is then computed over the lattice sites.

E.3. Energy results

Table 2. Test set energies of predicted configurations

Method Average energy Parameters
G-CNN -0.73 397K
MLP + aug. -1.24 3.2M
G-CNN + noise -1.29 399K
G-CNN + SB (Ours) -1.47 468K
Ground truth -1.60 -

10
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E.4. Training setup

Unsupervised training is performed by having the neural network ϕ : J → [0, 1]
Λ output the probability that each

spin is up by applying a softmax on the last layer; symmetry breaking elements are computed through a deterministic
canonicalization given by a G-CNN as in Kaba et al. (2023). We use the EquiAdapt library (Mondal et al., 2023) to
implement the canonicalization. While training, we then compute the expectation value of the spin at each site and treat this
as the configuration, using the Hamiltonian as a loss function. At evaluation, we sample a spin value for each site using the
probability output from the neural network.

We define a training set of Hamiltonian parameters as Jx = −1 and sampling Jy ∼ Unif (−3, 3), h ∼ Unif (0, 2), with
parameters constant over the lattice. The training set is of size 1000. For the validation and test sets, we use 10, 000 regularly
sampled Hamiltonian parameter values in the same range.

F. Graph autoencoder details
As discussed in the main body, autoencoders with “very symmetric” latent spaces pose a problem for equivariant models. In
the graph auto-encoding setup of Satorras et al. (2021), self-symmetry of a graph with adjacency matrix A arises in the form
of its automorphism group, {g ∈ Sn : gAgT = A}. For example, the square graph A in Figure 3 has C4 automorphism
group. When using a permutation-equivariant encoder e, e(A) must therefore also have at least C4 symmetry. Even though
the goal of the permutation-equivariant decoder d is to satisfy d(e(A)) = A, which would not seem to explicitly require
symmetry-breaking, there is a subtle problem: the choice of latent space Z . Precisely, Z does not contain any node-wise
featurization with precisely C4-symmetry: if {z1, . . . , z4} ∈ Z have C4-symmetry, this implies that z1 = · · · = z4.5 More
abstractly, there exist graphs A, with stabilizer (automorphism group) GA, such that there is no Z ∈ Z with GZ = GA;
only GA ⊊ GZ . Thus, for these graphs, any equivariant encoder will produce an “overly self-symmetric” latent embedding.
To reconstruct A, we must therefore break the latent-space symmetry induced by the equivariant encoder.6

In our experiments, we follow the setup of Satorras et al. (2021) and break symmetries at the input. Satorras et al. (2021)
suggest doing this with random noise as initial node features. However, this breaks all permutational symmetry, not just the
graph’s automorphism group. In contrast, our method is still equivariant to permutations of nodes that are automorphically
equivalent. More precisely, we use Laplacian positional encodings to break symmetries of the input graph. Although it is
unknown whether detecting graph automorphisms is NP-hard in general, we expect this heuristic to do a reasonable job of
interpolating between breaking all permutation symmetry, and falling victim to Curie’s principle.

We also include some additional baselines in Table 3, none of which work as well as our proposed method. In both this table
and in the main body, % Error is the same metric as used in Satorras et al. (2021).

Table 3. Cross-entropy loss and reconstruction error

Method BCE % Error Number of parameters
Both Laplacian canonicalization and noise injection 12 3.0 88,885
Break symmetry with Laplacian canonicalization, just 1 channel 25.0 6.8 88,239

G. Proofs
The main theorem and its corollaries hold for any G acting properly on X , which includes compact groups and actions on
Riemannian manifolds by isometries. For more details, including the relationship of proper actions to needed measurability
conditions, we refer the reader to Chiu & Bloem-Reddy (2023).

G.1. Proof of Theorem 2.3

Proof. Y |X is equivariant if and only if (Chiu & Bloem-Reddy, 2023, Theorem 3)

(g̃, X) ⊥ g̃−1Y | γ(X) (9)

5The possible stabilizers of Z , the latent space of node-wise featurizations, is groups of the form Si1×. . . Sik , where i1+· · ·+ik = n.
6Of course, one could also use a different latent space, such as a latent space of matrices. However, this may defeat the purpose of

learning an expressive, dimensionality-reduced latent space.
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where g̃|X is distributed according to the inversion kernel associated to γ. By conditional noise outsourcing (Kallenberg,
2021, Proposition 8.20) this is equivalent to there existing a measurable function ϕ : X × (0, 1) → Y such that

g̃−1Y
a.s.
= ϕ(γ(X), ϵ) (10)

where ϵ ∼ Unif(0, 1) is independent of (g̃, X). Rearranging and noting g̃γ(X)
a.s.
= X gives the result.

G.2. Proof of Corollary 2.4

Proof. The forward implication is clear, letting f(x, g, ϵ) = gϕ(g−1x, ϵ) with ϕ given in the previous theorem. On the other
hand consider a function f : X ×G× (0, 1) such that hf(x, g, ϵ) = f(hx, hg, ϵ), and suppose Y a.s.

= f(X, g̃, ϵ). Write g̃x
for a random variable sampled from the inversion kernel conditioned on X = x, independently from ϵ ∼ Unif(0, 1). For
any x ∈ X and h ∈ G we have

P (hY ∈ B|hX = x) = P
(
hY ∈ B|X = h−1x

)
= P

(
hf(h−1x, g̃h−1x, ϵ) ∈ B

)
. (11)

By the equivariance of the inversion kernel, g̃h−1x
d
= h−1g̃x. Applying first this fact and then the equivariance of f we

obtain

P (hY ∈ B|hX = x) = P
(
hf(h−1x, h−1g̃x, ϵ) ∈ B

)
= P (f(x, g̃x, ϵ) ∈ B) = P (Y ∈ B|X = x). (12)

Note that for this direction, we only needed the equivariance of the distribution g̃|X , not its restriction to a specific coset.

G.3. Proof of Corollary 2.6

Proof. Given ϕ from the previous theorem, let f be a relaxed equivariant function such that f(γ(x), ϵ) = ϕ(γ(x), ϵ) (which
we can always do; see Appendix J). Then we have

Y
a.s.
= g̃ϕ(γ(X), ϵ) = g̃f(γ(X), ϵ) = g̃h−1f(X, ϵ) (13)

for some h ∈ G (depending on the construction of f ) such that hγ(X) = X . But g̃ ∼ Unif(hGγ(X)) and hGγ(X)h−1 =
GX , so g̃h−1 ∼ Unif(GX).

Suppose on the other hand Y a.s.
= gXf(X, ϵ) for a relaxed equivariant f . Write gx for a uniform random element of Gx

independent of ϵ ∼ Unif(0, 1). We then have

P (hY ∈ B|hX = x) = P
(
hY ∈ B|X = h−1x

)
= P

(
hgh−1xf(h

−1x, ϵ) ∈ B
)
. (14)

Since gh−1x
d
= h−1gxh,

P
(
hY ∈ B|X = h−1x

)
= P

(
gxhf(h

−1x, ϵ) ∈ B
)
. (15)

By the relaxed equivariance of f , for some k−1 ∈ h−1Gx, the above is equal to

P
(
gxhk

−1f(x, ϵ) ∈ B
)
. (16)

Noting that hk−1 ∈ Gx, we have gx
d
= gxhk

−1 and thus

P (hY ∈ B|hX = x) = P (Y ∈ B|X = x). (17)

(The invariance of the distribution of gX |X is used here, though what is strictly needed is equality in distribution of
hgh−1xk

−1 and gx.)

G.4. Proof of Proposition 3.1

Proof. Consider any jointly equivariant f : X × G → Y , and suppose v ∈ V has trivial stabilizer. We may let
f0(x⊕ u) = f(x, g) where g is the unique group element such that gv = u.

12
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G.5. Proof of Proposition 3.2

We decompose the forward and reverse implications in the following four statements:

1. If the action ofG on Z is free except for a measure zero subset, then equivariance of Y |X implies that Y a.s.
= f(X,Z, ϵ)

for an appropriate f and ϵ. Note that equivariance of Z|X is not needed here.

2. If the action of G on Z is free except for a measure zero subset and Z|X is equivariant, then Y a.s.
= f(X,Z, ϵ) implies

equivariance of Y |X .

3. If the action of G on X ×Z is not free except for a measure zero subset, then Y a.s.
= f (X,Z, ϵ) is not equivalent to

equivariance of Y |X

4. If Z|X is not equivariant, then Y a.s.
= f (X,Z, ϵ) is not equivalent to equivariance of Y |X

Proof of 1. Let g̃|X be a group element distributed according to the inversion kernel. Reusing arguments from our main
results we show there exists a map t : X × Z × (0, 1) → G equivariant in the first two inputs such that g̃ a.s.

= t(X,Z, η)

where η ∼ Unif(0, 1) is random noise independent of X and Z. By Corollary 2.4 Y a.s.
= f0(X, t(X,Z, η), ϵ0) for a jointly

equivariant f0. The unit interval and unit square both being standard probability spaces, there exists a measure preserving
bijection ϵ↔ (η, ϵ0). We thus define f(X,Z, ϵ) = f0(X, t(X,Z, η), ϵ0).

To show the existence of t, one repeats the proof of Theorem 2.3 and Corollary 2.4, but applying Chiu & Bloem-Reddy
(2023, Theorem 3) in the special case of an essentially free action. In particular, since (X,Z) has trivial stabilizer almost
surely,

g̃−1Y ⊥ (X,Z) | γ(X,Z), (18)

where γ(X,Z) = (γ(X), Z) (with a slight abuse of notation). The rest of the proof is identical to that of the forward
direction of Corollary 2.4.

Proof of 2. The proof is identical to that of the reverse direction of Corollary 2.4.

Proof of 3. Suppose G does not act on Z essentially freely. Suppose Y |X is equivariant and there is symmetry breaking
with non-zero probability, i.e. P (GX,Z ̸⊆ GY ) > 0. (Such examples are not hard to construct.) Suppose for the sake of
contraction that also Y a.s.

= f (X,Z, ϵ) with some f and ϵ as usual. Curie’s principle gives the contradiction: GX,Z ⊆ GY

at any realization of ϵ.

Proof of 4. We consider non-equivariant Z|X; concretely, suppose Z is constant z ∈ Z , and that there exists g ∈ G such
that gz ̸= z. Let f : X × Z × (0, 1) → Y be the jointly equivariant function f(x, z, ϵ) = x⊕ z (so Y = X × Z). Then if
Y

a.s.
= f(X, z, ϵ),

P (gY = y|gX = x) = P
(
gf(X, z, ϵ) = y|X = g−1x

)
= 1{x⊕ gz = y} (19)

̸=1{x⊕ z = y} = P (Y = y|X = x). (20)

That is, Y |X is not equivariant.

H. Breaking symmetry in different groups
In this appendix, we show how to learn symmetry breaking biases v ∈ V (such that Gv is trivial) for different groups. For
any group G, the first basic requirement is for the group to act faithfully on V . We then want to choose V such that we can
initialize v ∈ V and obtain Gv with probability 1 (with the assumption that v is initialized by sampling from an absolutely
continuous distribution).

13
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H.1. Permutation groups

For permutation groups such as Sn and p4m (the symmetry group of an image grid), the group admits a faithful representation
that maps to permutation matrices acting on Rn. We can therefore choose V = Rn.

In this case, it suffices that all the elements of a symmetry breaking bias v are different. This is captured by the following
proposition.

Proposition H.1. Let G act faithfully by permutation on Rn and v ∈ Rn be such that vi ̸= vj for any i ̸= j. Then Gv is
trivial. In addition, the set of v not satisfying this condition is of measure zero with respect to the Lebesgue measure.

Proof. The proof of the first part of the proposition is trivial. For any g ∈ G, (gv)i = vg−1(i) Since the group action is
faithful, for any g ∈ G except the identity, there is an i ∈ [n] such that g−1 (i) ̸= i. For this i, vg−1(i) ̸= vi, therefore Gv is
trivial.

The second part follows the same ideas as Proposition 3 of (Kaba & Ravanbakhsh, 2023). Consider an hyperplane in Rn,
defined as Hij = {v ∈ Rn | vi = vj}. Any v not satisfying the condition is an element of S = ∪n

i ̸=jHij . An hyperplane
Hij defines an (n− 1)-dimensional space in Rn. Any subspace of Rn of dimension strictly less than n is of measure zero.
The countable union of such subspaces S is also of measure zero.

H.2. Subgroups of the general linear group

We also consider groups that admit faithful representations as subgroups of GL(n), such as O (n) for point clouds and
atomic systems. In this case, we can choose the symmetry breaking bias to be n linearly independent vectors, so that
V = Rn×n.

Proposition H.2. Let G ⊆ GL(n) and V = Rn×n. Assume G acts on V as a product of faithful actions, e.g. gv 7→[
gv1, . . . , gvn

]
, where vi is the i-th column vector of v. If the vectors

[
v1, . . . , vn

]
are linearly independent, then Gv is

trivial. In addition, the set of v such that this condition is not satisfied is of measure zero with respect to the Lebesgue
measure.

Proof. For the first part, we can identify the action of the group and matrix multiplication gv. For any g ∈ Gv, it must be
that gv = v. Since the columns of v are linearly independent, v is invertible. We therefore have gvv−1 = vv−1, which
implies g = I .

For the second part, the idea is similar to the proof of Proposition H.1 above. If two columns of v are not linearly independent,
it implies that v is element of a subspace Hij =

{
v ∈ Rn×n | ∃a ∈ R s.t. vi = avj

}
for some i and j. This is a subspace of

measure zero since it is of dimension n2 − n+ 1. The union of all such subspaces S = ∪n
i̸=jHij is also of measure zero

since it is countable.

I. Generalization benefits of equivariant conditional distributions
Here, we are interested in describing the generalization benefits of using equivariant conditional distributions, when
the ground truth distribution Y |X is equivariant. The general outline, which we will fill in below, follows the work
of Elesedy & Zaidi (2021) and its straightforward generalization in Elesedy (2023). We similarly assume that X has a
G-invariant distribution, that Y |X is equivariant, and the group is compact.7 Then, considering a Hilbert space of conditional
distributions (or rather, their unnormalized counterparts), one can show that the equivariant ones form a subspace. The
generalization benefits of assuming equivariance can then be expressed in terms of the projection operator onto that subspace.

In order to follow the program above, we will treat conditional distributions as equivariant functions f : X → P(Y).
Furthermore, in order to work in a Hilbert space, we restrict ourselves to distributions with a square integrable density
with respect to some measure dy on Y . We assume the measure is invariant under G—the canonical example being Y a
finite-dimensional Euclidean space with Lebesgue measure and G acting orthogonally. Then, we define P(Y) ⊂ L2(Y) by

P(Y) =

{
ψ : Y → R s.t. ψ(·) ≥ 0,

∫
y∈Y

ψ(y) dy = 1,

∫
y∈Y

ψ(y)2 dy <∞
}

(21)

7Our previous results held in the more general case of proper group actions.
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We will treat densities p(y|x) as members of the Hilbert space H = L2(X , L2(Y),P), where the data distribution P on X is
G-invariant. The inner product between functions f1, f2 ∈ H is

⟨f1, f2⟩ =
∫
X
⟨f1(x), f2(x)⟩ P(dx) =

∫
X

∫
Y
f1(y|x)f2(y|x) dy P(dx),

where for simplicity we use the notation f(y|x) = (f(x))(y) for even those f ∈ H which are not probability densities.

G acts on functions ψ ∈ L2(Y)—and thus on P(Y)—by

(g · ψ)(y) = ψ(g−1y).

By the assumption of the G-invariance of dy, the inner product on L2(Y) is invariant: ⟨ψ1, ψ2⟩ = ⟨gψ1, gψ2⟩. Standard
arguments from Elesedy (2023, Lemma 3.1) then show that the Reynolds operator R : H → H given by8

(Rf)(x) =
∫
G

g−1f(gx) λ(dg) (22)

(Rf)(y|x) =
∫
G

f(gy|gx) λ(dg) (23)

is in fact the orthogonal projection onto the subspace of equivariant functions—i.e. those f ∈ H such that f(g−1y|x) =
f(y|gx). For the Reynolds operator to be useful to us, it remains to check that it sends normalized conditional densities
p(y|x) to normalized conditional densities (which will then be equivariant). But this is clear:∫

Y
(Rp)(y|x) dy =

∫
Y

∫
G

p(gy|gx) λ(dg) dy =

∫
G

∫
Y
p(gy|gx) dy λ(dg) = 1, (24)

where at the end we used the invariance of dy, and the fact that p(y|x) and λ are normalized.

We then consider risk under the L2(Y) loss. The generalization gap between two conditionals p1, p2 ∈ H

∆(p1, p2) = R(p1)−R(p2) (25)

where R is the risk as measured against the ground truth conditional p∗,

R(p) =

∫
X
||p(x)− p∗(x)||2L2(Y ) P(dx) =

∫
X

∫
Y
(p(y|x)− p∗(y|x))2 dy P(dx). (26)

We can rewrite that risk as

R(p) = ||p− p∗||2H = ||p||2H − 2⟨p, p∗⟩H + ||p∗||2H. (27)

(We subsequently drop the subscripts for conciseness.) The generalization gap between an arbitrary p ∈ H and its equivariant
projection p̄ = Rp is then given in terms of the orthogonal component p⊥ = p− p̄:

∆(p, p̄) = ||p− p∗||2 − ||p̄− p∗||2 (28)

= ||p̄+ p⊥ − p∗||2 − ||p̄− p∗||2 (29)

= ||p̄− p∗||2 + ||p⊥||2 − ||p̄− p∗||2 = ||p⊥||2 (30)

where one gets to the the last line by using the orthogonality of p⊥ and p̄, p∗ ∈ HG.

J. Generalization benefits of relaxed equivariance
We begin by expressing relaxed equivariance more formally, in terms of choices of coset representatives. We then show
that relaxed equivariant functions which make the same such choices form a subspace, allowing the orthogonal projection
arguments of Elesedy & Zaidi (2021) to be generalized. Furthermore we show that this projection decomposes across
different orbit types (defined below—loosely, the kinds of stabilizers appearing in the data).

We obtain generalization benefits of relaxed equivariant models much in the same way as for equivariant models, where the
improvement now depends on the frequency of the different stabilizers appearing in the data.

8Recall that we use λ to denote the (normalized) Haar measure on G.
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J.1. Construction of non-trivial relaxed equivariant functions

Recall our that our definition of a relaxed equivariant function f : X → Y is one such that for any x ∈ X and g ∈ G, there
is a h ∈ gGx such that

hf(x) = f(gx). (31)

This definition is implicit, in the sense that it says nothing about how h is chosen. It is not even clear a priori that
(non-equivariant) relaxed equivariant functions exist.

Kaba & Ravanbakhsh (2023, Lemma 9) show that for a fixed choice of orbit representative x0 (which we prefer here to
γ(x) for clarity), one can extend a choice of coset representatives {σ(gGx0

) : g ∈ G} from cosets of Gx0
to the entire orbit:

σ(gGx) for any x ∈ [x0]. The goal is that if some function f is “relaxed equivariant” only on x0, in the sense that

σ(gGx0)f(x0) = f(gx0) ∀g ∈ G, (32)

then in fact for any x ∈ Gx0 we have the same:

σ(gGx)f(x) = f(gx) ∀g ∈ G. (33)

An arbitrary choice of coset representatives σ(gGx0
) for a single x0 is extended to the entire orbit by defining

σ(gGx) := σ(ghGx0
)σ(Gx0

)σ(hGx0
)−1 (34)

for every x = hx0. To see σ is indeed well defined, note that if x = h′x0 (where we think of h′ ̸= h), then h′Gx0
= hGx0

and gh′Gx0 = ghGx0 , and thus the right hand side above remains unchanged; additionally, if gGx = kGx then k = gs
for some s ∈ Gx and we have that σ(khGx0) = σ(gshGx0) = σ(ghGx0). Furthermore, this definition is consistent in the
sense that for x = x0 it recovers σ(gGx) = σ(gGx0).

Proposition J.1 (c.f. Lemma 9 of Kaba & Ravanbakhsh (2023)). If f is relaxed equivariant at x0, for any x = hx0, we have

σ(gGx)f(x) = f(gx) ∀g ∈ G. (33 revisited)

Proof. We expand first by the assumed relaxed equivariance at x0 (32),

f(gx) = f(ghx0) (35)
= σ(ghGx0)f(x0). (36)

We then use the observation that σ(Gx0
) must fix f(x0) to write

f(gx) = σ(ghGx0
)σ(Gx0

)f(x0). (37)

Using (32) again to write f(x0) as σ(hGx0
)−1f(hx0), we finally have

f(gx) = σ(ghGx0)σ(Gx0)σ(hGx0)
−1f(hx0) (38)

:= σ(gGx)f(x), (39)

by our definition (34).

Remark J.2. By Curie’s principle, the initial choice of coset representatives for x0 cannot be fully arbitrary. For all
g ∈ Gx0 ,

σ(Gx0
)f(x0) = σ(gGx0

)f(x0) = f(gx0) = f(x0), (40)

that is, σ(Gx0
) ∈ Gf(x0). One can satisfy this constraint trivially by letting the representative of the stabilizer be the identity:

σ(Gx0
) = id. This corresponds to “full symmetry breaking,” i.e. no symmetry of the input x0 is enforced on the output

f(x0), and σ(Gx) = id for all x. Any other choice leads to “partial symmetry breaking.” Of course, σ(Gx0
) can only

generate a one-generator subgroup of Gf(x0). Thus, we cannot impose that f have more complex partial symmetry breaking
only by enforcing (32).
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J.2. A Reynolds operator for relaxed equivariance

We restrict ourselves to the setting of a compact group G, with Haar measure λ, and identity stabilizer representatives
σ(Gx) = id. We define a generalized Reynolds operator by

(Rf)(x) :=
∫
G

σ(gGx)
−1f(gx) λ(dg) =

∫
G

σ(g−1Ggx)f(gx) λ(dg) (41)

Suppose our input data X comes from a G-invariant distribution P(dx) on X and that G acts orthogonally on Y , and
consider the Hilbert space H = L2((X ,P),Y). We prove below that R an orthogonal projection onto the subspace of
H consisting of relaxed equivariant functions corresponding to a certain choice of coset representatives σ(gGx). (When
referring to relaxed equivariant functions we will mean these in particular.) After showing it is well-defined as a map
H → H, we prove its image consists of relaxed equivariant functions; then that is it a projection, and indeed and orthogonal
one.

To see R : H → H, we mimic the proof of Elesedy & Zaidi (2021, Proposition 23):

||Rf ||2 = EX

[∣∣∣∣∣∣∣∣∫
G

σ(gGX)−1f(gX)λ(dg)

∣∣∣∣∣∣∣∣2
]

≤ EX

[∫
G

∣∣∣∣σ(gGX)−1f(gX)
∣∣∣∣2 λ(dg)] by Jensen’s inequality

= EX

[∫
G

||f(gX)||2 λ(dg)
]

by orthogonality

= EX

[
||f(X)||2

]
invariance of λ

= ||f ||2 <∞.

We proceed.

Proposition J.3. The generalized Reynolds operator maps functions to relaxed equivariant functions.

The proof of the above relies on the following identities.

Lemma J.4. Suppose σ(Gx0) = id (“full symmetry breaking”). Then σ(Gx) = id for all x ∈ [x0], and for any g, h ∈ G
and x ∈ [x0] we have

σ(ghGx) = σ(gGhx)σ(hGx) (42)

σ(gGx)
−1 = σ(g−1Ggx). (43)

Proof. Nothing more than definition chasing. Letting x = kx0, on the left hand side we have

σ(ghGx) := σ(ghkGx0
)σ(kGx0

)−1, (44)

and on the right (since hx = hkx0),

σ(gGhx)σ(hGx) := σ(ghkGx0
)σ(hkGx0

)−1σ(hkGx0
)σ(kGx0

)−1, (45)

so the two are equal. The second identity is the first noting σ(g−1Ggx)σ(gGx) = σ(Gx) = id.

Proof of Proposition. For any h ∈ G and x ∈ Gx0 , we have

(Rf)(hx) :=
∫
G

σ(g−1Gghx)f(ghx) λ(dg) (46)

=

∫
G

σ(hg−1Ggx)f(gx) λ(dg), (47)
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using the invariance of λ when applying a right shift by h−1 to g. But (42) gives us

σ(hg−1Ggx) = σ(hGx)σ(g
−1Ggx). (48)

Therefore,

(Rf)(hx) = σ(hGx)

∫
G

σ(g−1Ggx)f(gx) λ(dg) = σ(hGx) · (Rf)(x). (49)

Remark J.5. It turns out the construction above outputs relaxed equivariant functions without assuming λ is a Haar measure
(though this assumption is necessary later in order to show R is an orthogonal projection). In particular, one can define for
any function f and point x the function fx : gx 7→ σ(gGx)f(x), which “spreads” the value f(x) along the orbit of x in
an equivariant way. It is relaxed equivariant. Noticing that fgx(x) := σ(g−1Ggx)f(gx), the map taking x to

∫
G
fgx(x)dg

defines Rf for any measure on G, which is relaxed equivariant as the integral of relaxed equivariant functions.

To check that R is a (not necessarily orthogonal) projection, it suffices to show that if f is already relaxed equivariant
for some choice of σ (as defined above), then Rf = f . In this case, by definition of relaxed equivariance, we have that
f(gx) = σ(gGx)f(x). Therefore,∫

G

σ(gGx)
−1f(gx) λ(dg) =

∫
G

σ(gGx)
−1σ(gGx)f(x) λ(dg) =

∫
G

f(x) λ(dg) = f(x),

and (Rf)(x) = f(x). Note the invariance of λ was not used. Finally, to show R is an orthogonal projection:

⟨Rf1, f2⟩ =
∫
X

〈∫
G

σ(gGx)
−1f1(gx) λ(dg), f2(x)

〉
P(dx)

=

∫
X

〈∫
G

σ(g−1Ggx)f1(gx) λ(dg), f2(x)

〉
P(dx)

=

∫
X

∫
G

〈
σ(g−1Ggx)f1(gx), f2(x)

〉
λ(dg) P(dx)

=

∫
G

∫
X

〈
σ(g−1Gx)f1(x), f2(g

−1x)
〉

P(dx) λ(dg) by invariance of P(dx)

=

∫
G

∫
X

〈
f1(x), σ(gGg−1x)f2(g

−1x)
〉

P(dx) λ(dg)by orthogonality and Eq. (42)

=

∫
G

∫
X

〈
f1(x), σ(g

−1Ggx)f2(gx)
〉

P(dx) λ(dg) by λ(g) = λ(g−1) for unimodular groups

=

∫
X

〈
f1(z),

∫
G

σ(g−1Ggx)f2(gx) λ(dg)

〉
P(dx)

=

∫
X
⟨f1(x),Rf2(x)⟩

= ⟨f1,Rf2⟩.

J.3. Orbit type decomposition of relaxed equivariance

The moral of this section is that relaxed equivariance looks almost like equivariance in the usual sense, conditioned on
the orbit type (see below). We will illustrate the sense in which the (generalized) Reynolds operator can be considered
independently per orbit type. We then move on to show that—similarly to the orthogonal decomposition of functions
into a relaxed equivariant part and its complement—relaxed equivariant functions decompose orthogonally into functions
supported on each orbit type.

Definition J.6. The stabilizer Gx transforms under conjugation; that is Ggx = gGxg
−1. Its orbit under conjugation is thus

the set of stabilizers [Gx] = {Ggx : g ∈ G}, known as the orbit type of x.
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Under general conditions, for a compact group G acting on X there are countably many orbit types. Suppose we index
these by (non-conjugate) subgroups Hs ≤ G, s ∈ N. Then any x has a stabilizer Gx in one of the classes thus indexed:
Gx ∈ [Hs] for some s ∈ N. We will assume orbit representatives x0 are chosen such that each Gx0 = Hs for some s ∈ N

The reason we say relaxed equivariance looks almost like equivariance is that symmetrization occurs only with respect to
coset representatives:9

(Rf)(x) = 1

|G|
∑
g∈G

σ(gGx)
−1f(gx)

=
1

|G|
∑
g∈G

σ(gGx)
−1f(σ(gGx)x)

=
|Gx|
|G|

∑
gGx∈G/Gx

σ(gGx)
−1f(σ(gGx)x)

=
1

[x]

∑
g∈σ(G/Gx)

g−1f(gx).

The normalizer is re-expressed by the orbit-stabilizer theorem, showing it does not depend on Gx, only on the orbit type of
x. However, the set of representatives σ(G/Gx) generally depends not only on the orbit type, but on the stabilizer Gx itself.
But for some k ∈ G and the orbit representative x0, we have x = kx0 and Gx0

= Hs, and thus

(Rf)(x) = (Rf)(kx0)
= σ(kGx0

) · (Rf)(x0)

= σ(kHs) ·

 |Hs|
|G|

∑
gHs∈σ(G/Hs)

σ(gHs)
−1f ◦ σ(gHs)

 (x0)

Using the above we see the space S of relaxed equivariant functions decomposes as the direct sum

S =
⊕
s∈N

Ss

where

Ss := {f : Gx ̸∈ [Hs] ⇒ f(x) = 0, σ(gGx)f(x) = f(gx)}
= {f : Gx ̸∈ [Hs] ⇒ f(x) = 0, gf(x) = f(gx) ∀g ∈ σ(G/Hs)}

To show this, it suffices to note

(Rf)(x) =
∑
s∈N

(Rsf)(x)

where one can show

(Rsf)(x) := 1{Gx ∈ [Hs]}(Rf)(x)

= 1{Gx ∈ [Hs]} · σ(kHs) ·

 |Hs|
|G|

∑
g∈σ(G/Hs)

g−1f ◦ g

 (x0)

are mutually orthogonal projections onto each respective Ss. In particular, this follows from R being an orthogonal
projection and the fact that 1{Gx ∈ [Hs]} is G-invariant as a function of x.

The point is that when x is a random point drawn from a G-invariant distribution, k and x0 will be independent random
variables, by an appropriate “disintegration” of the measure. It turns out we can condition on orbit type—that is, on

9For simplicity of exposition, where there would usually appear integrals over Haar measure we will write sums over group elements;
the results generalize from finite to compact groups.
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Gx ∈ [Hs]. Note that conditioned on orbit type, x still has an invariant distribution. Now consider the individual terms,
conditionally on Hs. The term σ(kHs) is chosen uniformly at random from the coset representatives, independent of x0.
The point x0 is a random orbit representative among those with stabilizer Hs. The term in the middle is just a constant map,
obtained by symmetrizing f on the coset representatives of Hs.

J.4. Generalization gap for relaxed equivariant ground truth

We write f̄ = Rf and f⊥ = f − f̄ . Below, we appeal to the standard fact that for the generalization gap is ||f⊥||2 (Elesedy
& Zaidi, 2021); one can follow our proof for the case of densities in Appendix I.

To express the generalization gap, it is helpful to assume that we have a consistent choice of representatives σ(gGx) across
all orbits, which only depend Gx—that is, we can write σ(gH) for the representative of any gGx when Gx = H . Then
the generalization gap can be written by conditioning on the stabilizer being any given subgroup H ≤ G. For simplicity,
consider again a finite G. Then,

∆(f, f̄) = E
[
E
[
||f(X)− f̄(X)||2|GX = H

]]
=

∑
H≤G

P(GX = H)E


∣∣∣∣∣∣
∣∣∣∣∣∣f(X)− |H|

|G|
∑

g∈σ(G/H)

g−1f(gX)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

| GX = H


Intuitively, this says the generalization gap is measured by, on average over different possible stabilizers, how far away f is
from being symmetrized with respect to the coset representatives for a given stabilizer. Another way to see this is to note the
interaction term in ||f(X)− f̄(X)||2 = ||f(X)||2 − 2⟨f(X), f̄(X)⟩+ ||f̄(X)||2 (i.e. the inner product) is

|H|
|G|

∑
g∈σ(G/H)

⟨f(X), g−1f(gX)⟩ = |H|
|G|

∑
g∈σ(G/H)

⟨gf(X), f(gX)⟩ (50)

by the orthogonality of the G action on Y , and thus measures the alignment between gf(X) = f(gX).
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