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Abstract
K-nearest neighbors (KNN) classification plays
a significant role in various applications due to
its interpretability. The accuracy of KNN classi-
fication relies heavily on large amounts of high-
quality data, which are often distributed among
different parties and contain sensitive informa-
tion. Dozens of privacy-preserving frameworks
have been proposed for performing KNN classifi-
cation with data from different parties while pre-
serving data privacy. However, existing privacy-
preserving frameworks for KNN classification
demonstrate communication inefficiency in the
online phase due to two main issues: (1) They
suffer from huge communication size for secure
Euclidean square distance computations. (2) They
require numerous communication rounds to se-
lect the k nearest neighbors. In this paper, we
present Kona, an efficient privacy-preserving
framework for KNN classification. We resolve
the above communication issues by (1) designing
novel Euclidean triples, which eliminate the on-
line communication for secure Euclidean square
distance computations, (2) proposing a divide-
and-conquer bubble protocol, which significantly
reduces communication rounds for selecting the k
nearest neighbors. Experimental results on eight
real-world datasets demonstrate that Kona sig-
nificantly outperforms the state-of-the-art frame-
work by 1.1× ∼ 3121.2× in communication size,
19.1× ∼ 5783.2× in communication rounds, and
1.1× ∼ 232.6× in runtime.

1. Introduction
As a fundamental machine-learning technique, K-nearest
neighbors (KNN) classification (Mucherino et al., 2009;
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Kataria & Singh, 2013) has drawn significant attention for
its interpretability. The intuitive nature of KNN classifi-
cation, which makes predictions based on the similarity
of samples, allows users to easily understand and trust its
outcomes, fostering its widespread adoption across diverse
domains. For instance, in medical diagnosis, KNN can as-
sist in identifying diseases based on patient data (Ali et al.,
2020; Wang et al., 2020), while in recommendation systems,
it can tailor suggestions to user preferences (Adeniyi et al.,
2016; Singh et al., 2020).

The accuracy of KNN classification heavily relies on large
amounts of high-quality data. However, in practical sce-
narios, high-quality data are usually distributed across dif-
ferent parties, and cannot be directly aggregated due to
the sensitive nature of the data and regulatory restrictions.
For instance, patient records are usually distributed across
different hospitals or clinics and cannot be directly aggre-
gated due to strict privacy regulations (e.g. GDPR (Voigt
& Von dem Bussche, 2017)). As a result, collecting suffi-
cient high-quality data to obtain accurate KNN classification
faces significant challenges.

To address the need for aggregating sufficient high-quality
data to perform accurate KNN classification, numerous
privacy-preserving frameworks (Sun & Yang, 2020; Li et al.,
2023; Wu et al., 2019; Wong et al., 2009; Cui et al., 2020;
Liu et al., 2019) for KNN classification have been proposed.
These frameworks typically employ multi-party computa-
tion (MPC) techniques, such as secret sharing or homomor-
phic encryption, to keep the sensitive data private throughout
KNN classification. Therefore, these frameworks can utilize
data from different parties to improve the accuracy of KNN
classification while preserving data privacy, which broadens
the applicability of KNN in real-world scenarios.

Despite the potential of these privacy-preserving frame-
works for KNN classification, they still suffer from sig-
nificant online communication inefficiency, which impedes
their practical deployment. The online communication in-
efficiency arises from two primary issues: (1) Existing
frameworks suffer from huge communication size for se-
cure Euclidean square distance computations. Euclidean
square distance is a commonly used metric to measure the
similarity between samples in KNN classification. For a
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dataset containing n samples, performing a KNN classifi-
cation requires computing the Euclidean square distance n
times. Existing frameworks, such as (Li et al., 2023; Liu
et al., 2019; Sun & Yang, 2020), necessitate communicat-
ing secret shares or encrypted elements for each distance
computation, which makes these frameworks inefficient, es-
pecially for large-scale datasets. (2) Existing frameworks
suffer from numerous communication rounds for k nearest
neighbors selection. Selecting the k nearest neighbors is
a critical step during KNN classification. Existing frame-
works, such as (Li et al., 2023; Liu et al., 2019), employ
sequential bubble protocols to select the k nearest neigh-
bors, which requires O(kn) communication rounds. The
numerous communication rounds make these frameworks
extremely inefficient, especially in wide-area network envi-
ronments.

Table 1. Online communication complexity comparison between
Kona and the state-of-the-art framework SecKNN (Li et al., 2023).
Here, n is the number of samples, m is the number of attributes,
and k is the number of neighbors used in the KNN classification.

Kona SecKNN

Euclidean Square
Distance Computation

Size 0 O(nm)
Rounds 0 O(1)

K-nearest
Neighbor Selection

Size O(kn) O(kn)
Rounds O(k log n) O(kn)

Total Size O(kn) O(nm+ kn)
Rounds O(k log n) O(kn)

In this paper, we present Kona, an efficient privacy-
preserving framework for KNN classification. We resolve
the aforementioned communication issues through two op-
timizations: (1) We propose novel Euclidean triples that
enable secure Euclidean square distance computations with-
out any online communication. We observe that although
existing frameworks leverage random vectors (e.g. random
pairs (Li et al., 2023)) generated in the offline phase to
reduce the online communication size, these vectors are
not fully compatible with Euclidean square distance com-
putations. Inspired by the input-independent but function-
dependent technique (Ben-Efraim et al., 2019), we tailor our
Euclidean triples specifically for Euclidean square distance
computations. This design eliminates online communication
and does not introduce additional offline communication
overhead compared to the state-of-the-art framework (Li
et al., 2023). (2) We present a divide-and-conquer bubble
protocol to significantly reduce the communication rounds
required to select the k nearest neighbors. We observe that
the sequential bubble protocol incurs numerous communi-
cation rounds because secure comparisons are performed
one by one. However, secure comparisons are largely in-
dependent of each other. Thus, our divide-and-conquer
bubble protocol performs most secure comparisons in par-
allel, reducing the communication rounds from O(kn) to

O(k log n). These two optimizations significantly enhance
the efficiency of Kona, making Kona a promising solution
for large-scale and real-world applications.

We summarize the main contributions in Kona as follows:

• We design novel Euclidean triples that enable secure
Euclidean square distance computations without any
online communication.

• We present a divide-and-conquer bubble protocol to sig-
nificantly reduce the communication rounds required
for selecting the k nearest neighbors.

As is shown in Table 1, our proposed framework Kona sig-
nificantly reduces both online communication size and com-
munication rounds compared to the state-of-the-art frame-
work, SecKNN (Li et al., 2023). Specifically, in terms of
Euclidean square distance computation, Kona does not re-
quire any online communication, while SecKNN requires
O(nm) communication size. In terms of k-nearest neigh-
bor selection, Kona requires only O(k log n) communica-
tion rounds, while SecKNN requires O(kn) communication
rounds. In terms of total communication overhead for KNN
classification, Kona achieves reductions in both communi-
cation size and rounds compared to SecKNN.

To further demonstrate the efficiency of Kona 1, we com-
pare the performance of Kona against SecKNN with eight
real-world datasets, which encompass various domains and
data characteristics. The experimental results demonstrate
that Kona significantly outperforms SecKNN by 1.1× ∼
3121.2× in communication size, 19.1× ∼ 5783.2× in com-
munication rounds, and 1.1× ∼ 232.6× in runtime. These
results show that Kona is much more practical and scalable
for real-world privacy-preserving KNN classification tasks.

2. Preliminaries
2.1. K-Nearest Neighbors Classification

KNN classification is a non-parametric, instance-based
learning method that infers the class of a new sample by
examining its similarity to known samples. Specifically,
as is shown in Algorithm 1, KNN classification inputs a
dataset of n samples, each with m attributes and an asso-
ciated class label, and a new sample a⃗ to be classified, an
integer k representing the number of neighbors. To classify
a⃗, KNN classification first computes the distance between a⃗
and every sample x⃗i in the dataset (Line 1-5). It then selects
the k samples closest to a⃗, known as its k nearest neighbors
(Line 6). Finally, it assigns the class label to a⃗ based on
the majority vote among these k neighbors (Line 7). This

1We have open-sourced the implementation of Kona at
https://github.com/FudanMPL/Garnet/tree/kona.
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straightforward approach makes KNN both conceptually
simple and highly interpretable.

In this paper, we measure the similarity between samples by
employing the Euclidean square distance, which is widely
used in previous studies (Sun & Yang, 2020; Li et al., 2023;
Liu et al., 2019) and is an intuitive metric that is easy to
implement and interpret.

Algorithm 1 KNN-classify({x⃗i, yi}n−1
i=0 , a⃗, k)

Input: A dataset of n labeled samples {x⃗i, yi}n−1
i=0 , where x⃗i is

an m-dimensional attribute vector and yi is its class label;
a new attribute vector a⃗ to be classified; and an integer k
representing the number of neighbors.

Output: A predicted label b for a⃗.
1: Initialize an empty array dis.
2: for i = 0 to n− 1 do
3: Compute the Euclidean square distance d(⃗a, x⃗i).
4: Append (d(⃗a, x⃗i), yi) to dis.
5: end for
6: Select the k smallest entries from dis and their corresponding

labels to form the k nearest neighbors.
7: Let b be the majority label among the k nearest neighbors.
8: Return b.

2.2. Multi-Party Computation

MPC enables multiple parties to cooperatively compute
a function while keeping their input data private. There
are several technical routes of MPC, which include homo-
morphic encryption-based protocols (Dulek et al., 2016),
garbled circuit-based protocols (Ciampi et al., 2021), and
secret sharing-based protocols (Ben-Or et al., 2019). In
this paper, we employ the two-party additive secret sharing
(ASS) (Demmler et al., 2015) and the two-party masked
secret sharing (MSS) (Ben-Efraim et al., 2019) as the foun-
dational techniques of Kona.

Additive Secret Sharing: To share a secret x to two com-
putation parties (Pa, Pb) by using ASS, two random values
JxKa and JxKb are drawn from a ring Z2h of size 2h, such
that x = JxKa + JxKb(mod 2h). Then JxKa is distributed to
Pa, and JxKb is distributed to Pb. To reconstruct x to a user,
each Pi (i ∈ {a, b}) sends JxKi to the user. Then, the user
computes x = JxKa + JxKb(mod 2h).

Throughout this paper, we use the notation JxK to indicate
that x is shared to the two computation parties by using ASS.
Besides, we omit “(mod 2h)” in the following sections for
simplicity, since all computations are performed on Z2h .

Let c be a constant value, JxK and JyK be two additive secret-
shared values. In this paper, we leverage the following
basic operations, whose implementation is detailed in the
literature (Demmler et al., 2015), of ASS.

• Constant Addition: JzK = JxK + c, such that z =

x+ c.

• Constant Multiplication: JzK = JxK ∗ c, such that
z = x ∗ c.

• Share Addition: JzK = JxK+JyK, such that z = x+y.

• Share Multiplication: JzK = JxK ∗ JyK, such that
z = x ∗ y.

• Share Comparison: JzK = (JxK < JyK), such that
z = 1 if x < y, otherwise z = 0.

• Share Equality Check: JzK = (JxK == JyK), such
that z = 1 if x == y, otherwise z = 0.

Masked Secret Sharing: A secret x is said to be shared to
two parties Pa and Pb by MSS if Pa holds a pair (U, JuKa)
and Pb holds a pair (U, JuKb), where x = U − JuKa − JuKb.

Throughout this paper, we use the notation ⟨x⟩ to indicate
that x is shared to the two computation parties Pa and Pb

by using MSS, i.e. ⟨x⟩ = (U, JuK).

3. Design of Kona
3.1. Overview

Architecture. As is shown in Figure 1, the architecture of
Kona consists of an arbitrary number of data owners (each
one denoted as DO), an arbitrary number of users (each one
denoted as UR), and two computation parties (denoted as Pa

and Pb). Each DO (e.g. a hospital) holds a dataset, such as a
small set of patient records, and would like to provide KNN
classification services with its dataset. Besides, because an
individual DO’s dataset is often too limited to yield accurate
KNN classification results, multiple DOs seek to collaborate
while preserving the privacy of their dataset. Meanwhile,
each UR holds its own sensitive data, such as an unlabeled
medical record, and seeks a KNN classification result while
keeping its data private. Pa and Pb hold no sensitive data but
provide computation resources. Note that the computation
parties can also be played by DO or UR if DO or UR has
enough computation resources.

Workflow. The workflow of Kona consists of a one-time
dataset-share stage, and a KNN-classify stage. In the one-
time dataset-share stage, each DO secret shares its dataset to
Pa and Pb by using MSS. In the KNN-classify stage, each
UR first secret shares its sensitive data to Pa and Pb using
MSS. And then Pa and Pb securely compute the classifica-
tion result for the sensitive data with our proposed protocols,
and send the ASS shares of the classification result to UR
for reconstruction.

Security Model. Kona operates under a semi-honest secu-
rity model with a dishonest majority. In other words, both
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Figure 1. Architecture of Kona.

parties will correctly execute our proposed protocols, yet at-
tempt to infer additional information about the other party’s
data or the users’ data. Besides, the parties are assumed not
to collude. Additionally, we assume each DO will correctly
provide its dataset and each UR will correctly provide its
sensitive data.

Data Representation. We assume the DOs hold horizon-
tally distributed datasets, i.e. their datasets contain the same
attributes but different samples. Each sample in the datasets
is represented by an attribute vector x⃗ of size m and a label
y. Besides, the sensitive data held by each UR is also repre-
sented by an attribute vector a⃗ of size m. We further discuss
how to handle vertically distributed datasets in Section 5.

3.2. Dataset Share Stage

As is shown in Protocol 1, the DatasetShare protocol inputs
DO’s dataset {x⃗i, yi}n−1

i=0 , and outputs secret-shared datasets
to Pa and Pb. DO first uses ASS to share each label yi to
Pa and Pb (Line 1). Then, for each feature vector x⃗i, DO
uses MSS to share it (Line 2-7). Here, we use MSS to share
the attribute vectors rather than ASS, because our proposed
Euclidean square distance computation protocol relies on it.

For simplicity and readability, the DatasetShare protocol
considers only one DO. Extending this protocol to support
multiple DOs is straightforward: simply execute the pro-
tocols independently for each additional DO. Then, let Pa

and Pb merge secret-shared datasets from the DOs to get a
whole dataset.

3.3. KNN Classify Stage

As is shown in Protocol 2, the KNN-classify protocol in-
puts a sample vector a⃗ from UR, and inputs secret-shared
attribute vectors, secret-shared labels, and Euclidean triples
(introduced in Section 3.4) from Pa and Pb. It outputs the
predicted label b to UR.

Protocol 1: DatasetShare
Input: DO inputs n samples {x⃗i, yi}n−1

i=0 .
Output: {⟨x⃗i⟩ = (U⃗i, Ju⃗iK), JyiK}n−1

i=0

1: DO shares {yi}n−1
i=0 by using ASS, so that the parties

hold {JyiK}n−1
i=0 .

2: for i = 0 to n− 1 in parallel do
3: Pa randomly samples Ju⃗iKa, and Pb randomly

samples Ju⃗iKb.
4: Pa sends Ju⃗iKa to DO, and Pb sends Ju⃗iKb to DO.
5: DO computes U⃗i = x⃗i + Ju⃗iKa + Ju⃗iKb.
6: DO sends U⃗i to Pa and Pb, such that Pa holds

⟨x⃗i⟩a = (U⃗i, Ju⃗iKa) and Pb holds ⟨x⃗i⟩b =

(U⃗i, Ju⃗iKb).
7: end for

In the protocol, UR first shares the sample vector a⃗ by MSS
(Line 1-3). Then Pa and Pb leverage the Euclidean triples to
efficiently perform Euclidean square distance computation
without incurring online communication overhead (Line 4-
6). Once all distances are computed, Pa and Pb apply our
proposed DQBubble protocol (shown in protocol 4) to select
the k nearest neighbors, i.e. move the k nearest neighbors
to the front of the vectors (Line 7-9). Finally, Pa and Pb

obtain the predicted label JbK by calling the LabelCompute
protocol (shown in Appendix B.1), and then send JbKa and
JbKb to UR for reconstructing b (Line 10-12).

Protocol 2: KNN-classify
Input: UR inputs a sample a⃗. Pa and Pb inputs
{⟨x⃗i⟩ = (U⃗i, Ju⃗iK), JyiK}n−1

i=0 , and Euclidean triples
{Ju⃗iK}n−1

i=0 , Jv⃗K, {JwiK}n−1
i=0 , where wi = (u⃗i − v⃗)2.

Output: UR obtains the predicted label b.

1: Pa sends Jv⃗Ka to UR, and Pb sends Jv⃗Kb to UR.
2: UR computes V⃗ = a⃗+ Jv⃗Ka + Jv⃗Kb.
3: UR sends V⃗ to Pa and Pb, such that Pa holds ⟨⃗a⟩a =

(V⃗ , Jv⃗Ka) and Pb holds ⟨⃗a⟩b = (V⃗ , Jv⃗Kb).
4: for i = 0 to n− 1 do
5: JdiK = EuclideanDistance(⟨x⃗⟩, ⟨⃗a⟩).
6: end for
7: for j = 0 to k − 1 do
8: {JdiK}n−1

i=j , {JyiK}
n−1
i=j = DQBubble

({JdiK}n−1
i=j , {JyiK}n−1

i=j ).
9: end for

10: JbK = LabelCompute({JyiK}k−1
i=0 ).

11: Pa sends JbKa to UR, and Pb sends JbKb to UR,.
12: UR computes b = JbKa + JbKb.

3.4. Euclidean Square Distance Computation Protocol

Issue of Existing Methods. Existing methods incur large
communication size during the online phase of secure Eu-
clidean square distance computations, because they require
communicating encrypted elements or secret shares for each
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distance computation. For example, the method proposed by
Sun and Yang (Sun & Yang, 2020) employs homomorphic
encryption to securely compute Euclidean square distance
and requires communicating two encrypted vectors for each
distance computation. Though the method proposed by Li
et al. (Li et al., 2023) leverages ASS shares of random pairs
({r, r2}) generated in the offline phase to reduce the online
communication size, this method still requires communicat-
ing a secret-shared vector for each distance computation,
because the random pairs are not fully compatible with
Euclidean square distance computations.

Main Idea. To accelerate the online phase of secure Eu-
clidean square distance computation, we introduce a novel
Euclidean triple, which is inspired by the input-independent
but function-dependent technique (Ben-Efraim et al., 2019)
(generate randomness tailored to a specific function before
actual inputs to the function are known). Specifically, an Eu-
clidean triple consists of two secret-shared vectors Ju⃗K and
Jv⃗K, and a secret-shared scalar JwK, where each element of
u⃗ and v⃗ is randomly sampled from Z2h , and w = (u⃗− v⃗)2.
Leveraging this triple, we can compute the ASS shares of
Euclidean square distance d = (x⃗ − a⃗)2 without online
communication. Let U⃗ = x⃗+ u⃗ and V⃗ = a⃗+ v⃗. We have:

d = (x⃗− a⃗)2 = ((U⃗ − u⃗)− (V⃗ − v⃗))2

= (U⃗ − V⃗ )2 − 2(U⃗ − V⃗ )(u⃗− v⃗) + (u⃗− v⃗)2

= (U⃗ − V⃗ )2 − 2(U⃗ − V⃗ )(Ju⃗Ka − Jv⃗Ka)

− 2(U⃗ − V⃗ )(Ju⃗Kb − Jv⃗Kb)) + JwKa + JwKb

Since U⃗ has been obtained in the dataset-share stage, Jv⃗K
has been obtained from UR (Line 3 in Protocol 2), and
the Euclidean triples can be generated in the offline phase,
Pa and Pb can locally compute their ASS shares of d by
JdKa = (U⃗ − V⃗ )2 − 2(U⃗ − V⃗ )(Ju⃗Ka − Jv⃗Ka) + JwKa, and
JdKb = −2(U⃗ − V⃗ )(Ju⃗Kb − Jv⃗Kb) + JwKb.

As is shown in Protocol 3, the EuclideanDistance protocol
inputs the masked secret-shared two vectors ⟨x⃗⟩ = (U⃗ , Ju⃗K)
and ⟨⃗a⟩ = (V⃗ , Jv⃗K), as well as a additive secret-shared value
JwK, where w = (u⃗ − v⃗)2, and outputs an additive secret-
shared value JdK, where d = (x⃗ − a⃗)2. By leveraging the
Euclidean triples, both Pa and Pb independently compute
their respective shares of the distance, which significantly
reduces communication overhead for secure computation
for Euclidean square distance.

Generation of Euclidean Triples. The Euclidean triples
can be generated in the offline phase either by a trusted
third party (e.g. a trusted execution environment) or by
using a generation protocol based on homomorphic encryp-
tion. Note that the communication overhead for generating
Euclidean triples based on homomorphic encryption is the
same as the cost of generating ASS shares of random pairs in

Protocol 3: EuclideanDistance
Input: ⟨x⃗⟩ = (U⃗ , JuK), ⟨⃗a⟩ = (V⃗ , JvK), and JwK, where
w = (u⃗− v⃗)2.
Output: JdK, where d = (x⃗− a⃗)2.

1: Pa computes JdKa = (U⃗ − V⃗ )2−2(U⃗ − V⃗ )(Ju⃗Ka−
Jv⃗Ka) + JwKa.

2: Pb computes JdKb = −2(U⃗ − V⃗ )(Ju⃗Kb − Jv⃗Kb) +
JwKb.

the baseline (Li et al., 2023) based on homomorphic encryp-
tion. We present the generation protocol in Appendix B.3
and the communication analysis in Appendix F.

3.5. Divide-and-Conquer Bubble Protocol

Issue of Existing Methods. Existing methods (Li et al.,
2023; Liu et al., 2019) require a large number of communi-
cation rounds to select the nearest neighbors because they
rely on sequential bubble protocols. In these protocols, the
nearest neighbor is selected by comparing pairs of elements
from the end of the distance list to the front, and swapping
elements whenever a smaller value appears behind a larger
one. Since these comparisons are performed sequentially,
selecting the nearest neighbor in a list of size l demands
O(l) communication rounds. This high round complex-
ity severely impacts performance, particularly in wide-area
network environments.

Protocol 4: DQBubble
Input: {JdiK}l−1

i=0, {JyiK}l−1
i=0.

Output: {JdiK}l−1
i=0, {JyiK}l−1

i=0, where d0 is the smallest
element in {di}l−1

i=0, and each yi remains paired with its
original di.

1: while l > 1 do
2: mid = ⌊ l

2
⌋.

3: for g = 0 to mid− 1 in parallel do
4: JdgK, Jy′

gK, Jdg+midK, Jy′
g+midK =

CompareSwap(JdgK, Jy′
gK, Jdg+midK, Jy′

g+midK)
5: end for
6: if l is odd then
7: Jd0K, Jy′

0K, Jdl−1K, Jy′
l−1K =

CompareSwap(Jd0K, Jy′
0K, Jdl−1K, Jy′

l−1K)
8: end if
9: l = ⌊ l

2
⌋

10: end while

Main Idea. To reduce the communication rounds needed
to select the nearest neighbor, we present a novel bubble
protocol based on a divide-and-conquer strategy. Rather
than comparing adjacent elements one by one, our protocol
partitions the list into pairs and performs secure comparisons
in parallel. Specifically, at each iteration, the list is split
into multiple pairs, and each pair of elements is compared
and swapped if a smaller value appears behind a larger
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one. This process then continues on the candidate minimum
elements, until there is only one element. With our proposed
bubble protocol, although the communication size remains
unchanged, the communication rounds required to select the
nearest neighbor are reduced to O(log l).

As is shown in Protocol 4, the DQBubble protocol inputs
two additive secret-shared lists of size l: {JdiK}l−1

i=0 and
{JyiK}l−1

i=0. It synchronously reorders both the distance list
and the label list so that d0 becomes the smallest distance in
{di}l−1

i=0, meanwhile, each label remains paired with its orig-
inal distance. The protocol proceeds in O(log l) iterations,
where each iteration “bubbles” the smallest distance and its
corresponding label to the front half of the lists. At each it-
eration, a CompareSwap protocol (shown in Appendix B.2)
is performed for each pair of positions

(
g, g+ ⌊ l

2⌋
)

to swap
the smaller distance and its associated label to the lower
index (Line 2-5). If l is odd, the last element Jdl−1K is also
compared and potentially swapped with Jd0K (Line 6-8).
After completing these pairwise comparisons, l is updated
to ⌊ l

2⌋ (Line 9), and the above procedure repeats until l ≤ 1.

4. Evaluation
4.1. Experiment Setting

Implementation: We implement Kona in C++, and use
function secret sharing (Boyle et al., 2015) to improve the
secure comparison operations for fair comparison with the
baseline (Li et al., 2023). Each party in Kona is simulated
by a separate process with one thread. Besides, We perform
the computation of Kona on the ring Z264 .

Experiment Environment: We conduct experiments on a
Linux server equipped with a 32-core 2.4 GHz Intel Xeon
CPU and 128GB of RAM. Note that, since each party in
Kona is simulated by a separate process with one thread,
Kona uses at most two cores during the classification pro-
cess. As for the network setting, we apply the tc tool2 to
simulate two network settings: one is the WAN setting with
a bandwidth of 40 megabit per second (Mbps) and 40ms
round-trip time (RTT). The other is the LAN setting with
1024 Mbps and sub-millisecond RTT.

Datasets: As is shown in Table 2, we use eight real-world
datasets from UCI repository (Kelly et al., 2023).

4.2. Accuracy Evaluation

Baseline: For accuracy evaluation, we adopt the plain-
text KNN algorithm in scikit-learn (Pedregosa et al.,
2011), which is a famous open-sourced machine learning
library implemented in Python, as the baseline.

2https://man7.org/linux/man-pages/man8/tc.
8.html

Table 2. Detailed information of employed datasets. ‘#Label’
means the number of label types. Note that we remove the samples
without labels from the original datasets.

Dataset #Sample (n) #Attribute (m) #Label

Toxicity 120 1203 2
Iris 150 4 3

Arcene 200 10000 2
PEMS-SF 440 137710 3
RNA-seq 800 20532 5
Spambase 4601 57 2

Mnist 70000 784 10
Dota2 Games 102944 115 2

Dataset Split: We split each dataset in Table 2 into a train-
ing set and a test set with a ratio of 8 : 2.

Hyperparameter k: We set the hyperparameter k to 5, a
commonly used value in KNN-related literature (Li et al.,
2023; Zhu et al., 2022; Xu & Klabjan, 2021).

As is shown in Table 3, Kona achieves the same accuracy
as scikit-learn across all the datasets. This is because
our proposed protocol merely transforms the computation
from the plaintext domain to the ciphertext domain without
altering the underlying computational semantics.

Table 3. Accuracy of Kona vs. scikit-learn on eight real-
world datasets.

Dataset Kona scikit-learn

Toxicity 0.5714 0.5714
Iris 0.9667 0.9667

Arcene 0.9250 0.9250
PEMS-SF 0.7386 0.7386
RNA-seq 1.0 1.0
Spambase 0.9011 0.9011

Mnist 0.9722 0.9722
Dota2 Games 0.5300 0.5300

4.3. Efficiency Evaluation

Baseline: For efficiency evaluation, we adopt SecKNN (Li
et al., 2023) as the baseline. SecKNN is the most recent
state-of-the-art secure KNN framework, which supports
multiple data owners and relies on function secret shar-
ing (Boyle et al., 2015) to improve efficiency. As the code
of SecKNN is not publicly available, we implement it in
C++ and perform the computation on the ring Z264 .

Dataset Split: We randomly select one sample from each
dataset in Table 2 as the query and use all the remaining
samples as the training set.

Hyperparameter k: We first fix the hyperparameter k = 5
to demonstrate the efficiency improvement of Kona com-
pared to SecKNN across all the datasets in Table 2. Sub-
sequently, we evaluate the effect of varying k on Kona’s
efficiency using the Arcene dataset.
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Table 4. Online runtime (second), communication size (MB), and communication rounds of Kona vs. SecKNN (Li et al., 2023) with
k = 5.

Framework Dataset
Toxicity Iris Arcene PEMS-SF RNA-seq Spambase Mnist Dota2 Games

Communication Size Kona
0.12

(28.25×)
0.10

(1.10×)
0.14

(228.07×)
0.31

(3121.25×)
0.57

(462.07×)
3.31

(2.26×)
50.39

(18.42×)
74.11

(3.55×)
SecKNN 3.39 0.11 31.93 967.59 263.38 7.50 928.46 263.53

Communication Round Kona
88

(19.10×)
88

(26.71×)
88

(22.40×)
98

(44.61×)
108

(73.89×)
138

(333.19×)
178

(3932.42×)
178

(5783.21×)
SecKNN 1681 1471 1972 4372 7981 45981 699971 1029412

Runtime in WAN Kona
2.11

(16.58×)
2.09

(14.36×)
2.22

(20.57×)
3.02

(79.16×)
3.24

(66.39×)
6.94

(135.22×)
63.05

(229.31×)
90.54

(232.60×)
SecKNN 34.99 30.02 45.68 239.09 215.12 938.46 14458.60 21060.40

Runtime in LAN Kona
0.14

(1.28×)
0.13

(1.15×)
0.17

(2.94×)
0.50

(11.36×)
0.66

(3.13×)
3.54

(1.21×)
54.02

(1.26×)
79.15

(1.18×)
SecKNN 0.18 0.15 0.50 5.68 2.07 4.29 68.54 94.04

As is shown in Table 4, we can conclude as follows:

• In terms of communication overhead, Kona significantly
reduces both the communication size and communica-
tion rounds. Specifically, Kona reduces communica-
tion size by 1.10× (Iris) up to 3121.25× (PEMS-SF),
and reduces communication rounds by 19.10× (Toxicity)
to 5783.21× (Dota2 Games). Notably, Kona provides
greater benefits in reducing communication rounds as the
number of samples increases, and greater benefits in re-
ducing communication size as the number of attributes
increases. These empirical results align with the analytical
complexity results in Table 1, underscoring the effective-
ness of the two communication optimization strategies
employed by Kona.

• In terms of runtime in the WAN setting, Kona achieves
14.36× to 232.60× speedups compared to SecKNN,
where the performance bottleneck lies in communica-
tion, with particularly large gains on large datasets like
Mnist (229.31×) and Dota2 Games (232.60×). Espe-
cially, Kona requires only about 90s to obtain a classi-
fication result with the dataset Dota2 Games, which is a
moderate-sized dataset in the real world. These results
confirm that Kona should be well-suited for real-world
scenarios, where network bandwidth is usually limited
and RTT is usually long.

• Even in the LAN setting, where the performance bottle-
neck lies in both computation and communication, Kona
remains up to 11.36× faster on PEMS-SF. These results
demonstrate that the optimizations of Kona should also
be useful for scenarios featuring high bandwidth and low
latency.

As is shown in Table 5, we can conclude as follows: Al-
though the performance gains of Kona gradually decrease
as k increases, the performance gains remain consistently
significant even at large k values. For example, at k = 100,

Kona still achieves a 13.15× reduction in communication
size, a 19.18× reduction in communication rounds, and a
16.02× speedup in WAN runtime. These results indicate
that the optimizations employed by Kona remain robust
and effective across varying k value settings.

4.4. Ablation Evaluation

In order to further show the effectiveness of the two op-
timizations in Kona, we implement the two optimiza-
tions of Kona into SecKNN (Li et al., 2023). We name
SecKNNwith the optimization based on Euclidean triples as
SecKNN-Triples, and SecKNN with the optimization
based on the DQBubble protocol as SecKNN-DQBubble.
We compare the communication size, communication
rounds, and online runtime, of these two frameworks and
the original SecKNN with k = 5.

As is shown in Figure 2, we can conclude as follows:

• SecKNN-Triples significantly reduces the communi-
cation size across all datasets (1.10× to 3064.94×), and
significantly reduces runtime in both WAN and LAN set-
tings (1.00× to 10.16×), especially for high-dimension
datasets (e.g. PEMS-SF). These results confirm that the
optimization with Euclidean triples can significantly en-
hance efficiency over diverse network settings, and should
be much more useful for high-dimensional datasets.

• SecKNN-DQBubble significantly reduces communica-
tion rounds (16.16× to 5688.51×) without introducing
additional communication size, and significantly reduces
runtime in the WAN setting (1.62× to 164.56×). These
results confirm that the optimization with the DQBubble
protocol can effectively accelerate secure k-NN selection
in the WAN settings.

Note that we do not include accuracy comparisons in the
ablation evaluation because both of our optimizations have
no impact on the classification accuracy. As is shown in
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Table 5. Online runtime (second), communication size (MB), and communication rounds of Kona vs. SecKNN (Li et al., 2023) for
varying k on the Arcene dataset.

Framework k
1 2 5 10 20 40 60 80 100

Communication Size Kona
0.03

(1062.00×)
0.06

(531.00×)
0.14

(228.07×)
0.28

(114.71×)
0.56

(57.58×)
1.12

(29.41×)
1.64

(20.40×)
2.14

(15.87×)
2.62

(13.15×)
SecKNN 31.86 31.88 31.93 32.12 32.40 32.94 33.46 33.98 34.46

Communication Round Kona
19

(21.05×)
37

(21.51×)
88

(22.40×)
171

(22.76×)
333

(22.76×)
655

(21.92×)
975

(20.86×)
1279

(19.95×)
1559

(19.18×)
SecKNN 400 796 1972 3892 7582 14362 20342 25522 29902

Runtime in WAN Kona
0.43

(31.32×)
0.87

(24.90×)
2.22

(20.57×)
4.13

(20.54×)
8.08

(20.80×)
15.97

(18.73×)
23.81

(18.02×)
31.44

(17.03×)
38.58

(16.02×)
SecKNN 13.47 21.67 45.68 84.85 168.07 299.14 429.06 535.71 618.31

Runtime in LAN Kona
0.04

(8.5×)
0.07

(5.28×)
0.17

(2.94×)
0.33

(2.06×)
0.65

(1.66×)
1.34

(1.43×)
2.12

(1.35×)
2.94

(1.29×)
3.78

(1.26×)
SecKNN 0.34 0.37 0.50 0.68 1.08 1.92 2.87 3.79 4.76

Table 3, Kona consistently achieves identical accuracy to
scikit-learn across all datasets when both optimiza-
tions are applied. Since the two optimizations are inde-
pendent of each other, the frameworks with only one opti-
mization (SecKNN-Triples and SecKNN-DQBubble)
should still achieve identical accuracy to scikit-learn.

5. Discussion
Security Issue of Existing Top-k Protocol. We note that
the existing shuffle-based top-k protocol (Hou et al., 2023)
can be employed to select the k nearest neighbors. How-
ever, this protocol may leak private information because it
cannot always produce indistinguishable execution views
for different distance lists. This security issue is discussed
in detail in Appendix D.

Vertical Distributed Datasets. Kona can be extended to
support vertically distributed datasets by performing private
set intersection (Chen et al., 2017; Kolesnikov et al., 2017)
among the DOs. Specifically, if the DOs have vertically par-
titioned datasets, they first use a private set intersection to
identify the intersection samples of their datasets. Each DO
then shares the attributes of these intersection samples with
Pa and Pb. Finally, Pa and Pb combine secret-shared at-
tributes into a complete dataset. With this complete dataset,
Pa and Pb can directly apply the privacy-preserving KNN
classification protocols presented in this paper.

Extension to More Computation Parties. Kona can be
extended to support more computation parties. Specifically,
the divide-and-conquer bubble protocol relies on a secure
compare-and-swap operation, which can be realized under
multi-party ASS protocols such as those in (Damgård et al.,
2012). Furthermore, our Euclidean square distance compu-
tation protocol can also be adapted to multi-party settings,
which is shown in Appendix C.

Adaptation to Other Distance Metrics. The optimizations
in Kona can be adapted to save communication overhead

for other distance metrics. Concretely, first, our proposed
divide-and-conquer bubble protocol makes no assumption
on the distance metrics. Thus, it can be applied to any
distance metric. Besides, our proposed Euclidean triple opti-
mization can be applied to other distance metrics with minor
adaptations. That is because the core idea of our optimiza-
tion is to use the input-independent but function-dependent
technique (correlated randomness) to reduce online com-
munication, and this idea can apply to any distance metric.
For example, for cosine similarity ( x⃗·⃗a

∥x⃗∥∥a⃗∥ ), whose main
communication bottleneck lies in secure dot product com-
putations (x⃗ · a⃗, x⃗ · x⃗ in ∥x⃗∥, and a⃗ · a⃗ in ∥a⃗∥), we can adapt
our Euclidean triple to be a dot triple, which comprises two
secret-shared vectors and their dot products. By leveraging
the dot triple, all secure dot product computations in cosine
similarity can be executed without online communication.
For Hamming distance, which is usually used in binary data,
the Euclidean triple can be directly applied in the binary
domain because (x − a)2 equals the mismatch indicator.
Thus, the sum of squared differences immediately gives the
Hamming distance for binary vectors.

Future work: In the future, we will extend Kona to support
more security models, such as the security model that de-
fends against malicious parties, and more distance metrics.

6. Related Work
Over the last decade, many privacy-preserving frame-
works (Li et al., 2023; Liu et al., 2019; Sun & Yang, 2020;
Rong et al., 2016; Wu et al., 2019; Li et al., 2015; Saman-
thula et al., 2015; Elmehdwi et al., 2014) for KNN classifica-
tion or query have been proposed. These frameworks can be
broadly divided into two categories, based on whether they
reveal private information during the classification or query
process. The first category (Sun & Yang, 2020; Rong et al.,
2016; Wu et al., 2019) reveals some private information to
speed up the KNN protocols. For example, the framework
proposed by Sun and Yang (Sun & Yang, 2020) reveals
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Figure 2. Online Runtime (seconds), communication size (MBs), and communication rounds of SecKNN (Li et al., 2023),
SecKNN-Triples, and SecKNN-DQBubble with k = 5.

which samples are the k nearest neighbors to the data owner,
and the framework proposed by Rong et al. (Rong et al.,
2016) reveals the indices of the k nearest neighbors. Al-
though the revealed information accelerates the neighbor
selection procedure, the information may be exploited to
infer the sensitive data. Consequently, frameworks in this
category should not be suitable for scenarios where the data
owners’ and users’ data must be strictly protected.

The second category of frameworks (Liu et al., 2019; Cui
et al., 2020; Li et al., 2015; 2023; Elmehdwi et al., 2014;
Samanthula et al., 2015; Zheng et al., 2024), on the other
hand, does not reveal private information during the clas-
sification or query process and can be further divided into
two subtypes based on how many data owners they can sup-
port. (1) Single data owner: Some frameworks (Elmehdwi
et al., 2014; Samanthula et al., 2015; Zheng et al., 2024; Cui
et al., 2020) can support only one data owner. For example,
Elmehdwi et al. (Elmehdwi et al., 2014) employ Paillier
homomorphic encryption to realize KNN queries with only
one data owner, while Samanthula et al. (Samanthula et al.,
2015) extend this approach to support KNN classification.
Since these frameworks can only support one data owner,
they cannot improve the accuracy of KNN classification by
leveraging the data from different data owners. (2) Multi-
ple data owners: The other frameworks (Li et al., 2015; Liu
et al., 2019; Li et al., 2023) can support multiple data owners.
However, these frameworks usually suffer from computa-
tion or communication inefficiency. Specifically, Li et al. (Li
et al., 2015) propose an outsourcing framework, which can
support multiple data owners. However, this framework suf-
fers from huge computation overhead since it requires O(n)
homomorphic operations to compute distance. In contrast,

Liu et al. (Liu et al., 2019) use secret sharing to improve
efficiency over homomorphic encryption-based methods,
and Li et al.(Li et al., 2023) further reduce communication
rounds by integrating function secret sharing. However,
these two frameworks require communicating secret shares
for each distance computation and incur substantial com-
munication rounds to perform k-nearest neighbor selection,
which leads to huge communication overhead.

Our Advantages. Our proposed framework, Kona, does
not reveal private information beyond what can be inferred
from the classification result. Besides, Kona supports lever-
aging data from multiple data owners to improve the ac-
curacy of KNN classification, and meanwhile significantly
reduces the communication overhead compared to the state-
of-the-art framework.

7. Conclusion
In this paper, we propose Kona, an efficient privacy-
preservation framework for KNN classification, and op-
timize the communication overhead from two-fold: (1) We
design novel Euclidean triples to eliminate the online com-
munication for secure Euclidean square distance computa-
tions. (2) We propose a divide-and-conquer bubble protocol
to significantly reduce communication rounds for selecting
the k nearest neighbors. Experimental results on eight real-
world datasets demonstrate that Kona significantly outper-
forms the state-of-the-art framework by 1.1× ∼ 3121.2× in
communication size, 19.1× ∼ 5783.2× in communication
rounds, and 1.1× ∼ 232.6× in runtime.
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A. Notations
We show the notations used in this paper in Table 6.

Table 6. Notations used in this paper

Notation Description

n Number of samples in the dataset
m Number of attributes per sample
k Number of nearest neighbors
x⃗i Attribute vector of the i-th sample
yi Class label of the i-th sample
a⃗ A sample vector

JxK Additive secret share of x
⟨x⟩ Masked secret share of x
DO A data owner
UR A query user

Pa and Pb The computation parties

B. Remain Protocols for KNN Classification
B.1. Label Computation

We follow the method proposed by Li et al, (Li et al., 2023)
to compute the most common label among the k-nearest
neighbors.

As is shown in Protocol 5, the LabelCompute protocol inputs
a list of additive secret-shared labels {JyiK}k−1

i=0 , and outputs
a single additive secret-shared label JbK, where b is the most
common label among {yi}k−1

i=0 . In this protocol, Pa and
Pb first compute the occurrence times for each label (Line
1–6), which results in a counter JcntiK for each JyiK. Pa and
Pb then apply the DQBubble ′ protocol to reorder both the
counters {JcntiK} and their associated labels {JyiK} so that
the label with the highest count is moved to index 0 (Line
7). Note that DQBubble ′ is a variant of DQBubble to move
the maximum value (instead of the minimum value) to the
front. Finally, Pa and Pb set JbK = Jy0K (Line 8).

Protocol 5: LabelCompute

Input: {JyiK}k−1
i=0 .

Output: JbK, where b is the most common label in
{yi}k−1

i=0 .

1: for i = 0 to k − 1 in parallel do
2: JcntiK = J0K.
3: for j = 0 to k − 1 in parallel do
4: JcntiK = JcntiK + (JyjK == JyiK).
5: end for
6: end for
7: {JcntiK}k−1

i=0 , {JyiK}
k−1
i=0 = DQBubble ′

({JcntiK}k−1
i=0 , {JyiK}

k−1
i=0 ).

8: JbK = Jy0K.

B.2. Compare and Swap

As is shown in Protocol 6, the CompareSwap protocol in-
puts four additive secret-shared values Ja0K, Jb0K, Ja1K, Jb1K,
and outputs four updated additive secret-shared values
Ja′0K, Jb′0K, Ja′1K, Jb′1K. If Ja0K < Ja1K, the outputs remain in
the same order; otherwise, the protocol swaps them. First,
Pa and Pb perform a secure comparison JcompK = (Ja0K <
Ja1K) to determine which of the two values is smaller (Line
1). Next, Pa and Pb update the shares of a and b based on
JcompK. If JcompK = 1, indicating Ja0K < Ja1K, then
Ja′0K = Ja0K and Ja′1K = Ja1K; otherwise, the two are
swapped (Line 2-3). The same logic applies to Jb0K and
Jb1K (Line 4-5).

Protocol 6: CompareSwap
Input: Ja0K, Jb0K, Ja1K, Jb1K.
Output: Ja′

0K, Jb′0K, Ja′
1K, Jb′1K, such that a′

0 = a0,
b′0 = b0, a′

1 = a1 and b′1 = b1 if a0 < a1, else a′
0 = a1,

b′0 = b1, a′
1 = a0 and b′1 = b0.

1: JcompK = Ja0K < Ja1K.
2: Ja′

0K = Ja0K ∗ JcompK + (1− JcompK) ∗ Ja1K.
3: Ja′

1K = Ja0K + Ja1K − Ja′
0K.

4: Jb′0K = Jb0K ∗ JcompK + (1− JcompK) ∗ Jb1K.
5: Jb′1K = Jb0K + Jb1K − Jb′0K.

B.3. Euclidean Triples Generation

Note that Pa and Pb have obtained {JuiK}n−1
i=0 in the dataset-

share stage. As long as DO’s dataset remains unchanged,
these values do not need to be regenerated. Consequently,
producing new Euclidean triples only requires generating
an additive secret-shared vector Jv⃗K and computing the cor-
responding {JwiK}n−1

i=0 . This approach reduces computa-
tion and communication overhead for generating Euclidean
triples, especially for scenarios where the dataset is stable.

As is shown in Protocol 7, the EuclideanTriples protocol
inputs additive secret-shared vectors {Ju⃗iK}n−1

i=0 , and out-
puts additive secret-shared Euclidean triples {Ju⃗iK}n−1

i=0 ,
Jv⃗K, and {JwiK}n−1

i=0 , where wi = (u⃗i − v⃗)2. To begin,
Pa and Pb each sample their share of v⃗ (Line 1). Since
wi = (u⃗i − v⃗)2 = [(JuiKa − JvKa) + (JuiKb − JvKb)]2,
the computation expands into three terms: (JuiKa − JvKa)2,
(JuiKb− JvKb)2, and the cross term 2(JuiKa− JvKa)(JuiKb−
JvKb). Here, (JuiKa−JvKa)2 can be locally computed by Pa,
and (JuiKb − JvKb)2 can be locally computed by Pb. The
primary challenge is to securely compute the cross term.
To achieve this, Pa encrypts (JuiKa − JvKa) and sends the
ciphertext to Pb (Line 3-4). Then Pb uses homomorphic
operations to compute 2(JuiKa − JvKa)(JuiKb − JvKb) un-
der encryption, adds a random mask ri, and returns the
masked result to Pa (Line 5-6). After decrypting, Pa

obtains the masked cross term and computes JwiK0 =
(JuiKa−JvKa)2+2(JuiKa−JvKa)(JuiKb−JvKb)+ri, while
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Pb computes JwiKb = (JuiKb − JvKb)2 − ri (Line 7-8).

Note that the communication overhead of this protocol is
the same as the cost of generating ASS shares of random
pairs in the baseline (Li et al., 2023) based on homomorphic
encryption (see Appendix F),.

Protocol 7: EuclideanTriples

Input: {Ju⃗iK}n−1
i=0 .

Output: Euclidean triples {Ju⃗iK}n−1
i=0 , Jv⃗K, {JwiK}n−1

i=0 ,
where wi = (u⃗i − v⃗)2.

1: Pa randomly samples Jv⃗Ka, and Pb randomly sam-
ples Jv⃗Kb.

2: for i = 0 to n− 1 in parallel do
3: Pa locally computes tmpi = Ju⃗iKa − Jv⃗Ka.
4: Pa uses its private key to encrypt tmpi to get

Enc(tmpi), and sends Enc(tmpi) to Pb.
5: Pb randomly samples ri and computes

Enc(tmp2 i) = 2 ∗ Enc(tmpi)(Ju⃗iKb −
Jv⃗Kb) + ri.

6: Pb sends Enc(tmp2 i) to Pa.
7: Pa decrypts Enc(tmp2 i) to get tmp2 i.
8: Pa computes JwiKa = (Ju⃗iKa − Jv⃗Ka)2 + tmp2 i,

and Pb computes JwiKb = (Ju⃗iKb − Jv⃗Kb)2 + ri.
9: end for

C. Euclidean Square Distance Computation
for More Parties

In this section, we present the protocols to compute Eu-
clidean square distance in multiple parties. Here, we assume
the number of parties is N . The parties are defined as P0 to
PN−1. JxK represents x is additive secret shared among N
parties, i.e. each Pi holds JxKi, where x =

∑
JxKi.

As is shown in Protocol 8, the NPartyEuclideanDistance
protocol securely computes the Euclidean square distance
in an N -party setting. This protocol inputs masked secret-
shared vectors ⟨x⃗⟩ = (U⃗ , Ju⃗K), ⟨⃗a⟩ = (V⃗ , Jv⃗K), and the
additive secret-shared scalar JwK, where w = (u⃗ − v⃗)2,
and outputs the additive secret-shared square distance JdK
(d = (x− a)2). In this protocol, party Pa locally computes
JdKa = (U⃗ − V⃗ )2 − 2(U⃗ − V⃗ )(Ju⃗Ka − Jv⃗Ka) + JwKa (Line
1), while each other party Pj for j ∈ [1,N − 1] computes
JdKj = −2(U⃗− V⃗ )(Ju⃗Kj−Jv⃗Kj)+JwKj (Line 2). Note that∑N−1

j=0 JdKj = (U⃗− V⃗ )2−2∗(U⃗− V⃗ )(u⃗− v⃗)+(u⃗− v⃗)2 =

((U⃗ − u⃗) − (V⃗ − v⃗)2 = (x⃗ − a⃗)2, thus completing the
secure Euclidean square distance computation in a multi-
party setting.

As is shown in Protocol 9, the NPartyEuclideanTriples
protocol generates Euclidean triples in an N -party set-
ting. This protocol inputs additive secret-shareed vec-
tors {Ju⃗iK}n−1

i=0 , and outputs additive secret-shared Eu-
clidean triples ({Ju⃗iK}n−1

i=0 , Jv⃗K, and {JwiK}n−1
i=0 , where

Protocol 8: NPartyEuclideanDistance

Input: ⟨x⃗⟩ = (U⃗ , JuK), ⟨⃗a⟩ = (V⃗ , JvK), and JwK, where
w = (u⃗− v⃗)2.
Output: JdK, where d = (x⃗− a⃗)2.

1: Pa computes JdKa = (U⃗ − V⃗ )2−2(U⃗ − V⃗ )(Ju⃗Ka−
Jv⃗Ka) + JwKa.

2: Pj computes JdKi = −2(U⃗ − V⃗ )(Ju⃗Kj − Jv⃗Kj) +
JwKj for j ∈ [1,N − 1].

wi = (u⃗i − v⃗)2). Each party Pj first samples a random
vector Jv⃗Kj (Line 1). Then, for each q ∈ [0, n − 1], party
Pq computes a local partial square JwiKq = (Ju⃗iKq − Jv⃗Kq)2
(Line 3-5). The main challenge lies in securely computing
the cross term 2(Ju⃗iKq − Jv⃗Kq)(Ju⃗iKp − Jv⃗Kp) for all pairs
of parties (Pq, Pp) (q ∈ [0,N − 1], p ∈ [q+1,N − 1]). To
achieve this, Pq locally computes tmpiq = (Ju⃗iKq − Jv⃗Kq)
and encrypts it using its private key, obtaining Enc(tmpiq)
(Line 7-8). It then sends Enc(tmpiq) to Pp, which homo-
morphically computes 2 ∗ Enc(tmpiq)(Ju⃗iKp − Jv⃗Kp) and
adds a random mask riqp (Line 10-12). The result is then
sent to Pq, and Pq decrypts it to obtain tmp2 iqp and incor-
porates tmp2 iqp into JwiKq (Line 13-14). And Pp updates
JwiKp by subtracting riqp (Line 15).

Protocol 9: NPartyEuclideanTriples

Input: {Ju⃗iK}n−1
i=0 .

Output: Euclidean triples {Ju⃗iK}n−1
i=0 , Jv⃗K, {JwiK}n−1

i=0 ,
where wi = (u⃗i − v⃗)2.

1: Pj randomly samples Jv⃗Kj for j ∈ [0,N − 1].
2: for i = 0 to n− 1 in parallel do
3: for q = 0 to N − 1 in parallel do
4: Pq locally computes JwiKq = (Ju⃗iKq − Jv⃗Kq)2.
5: end for
6: for q = 0 to N − 1 in parallel do
7: Pq locally computes tmpiq = Ju⃗iKq − Jv⃗Kq .
8: Pq uses its private key to encrypt tmpiq to get

Enc(tmpiq).
9: for p = q + 1 to N − 1 in parallel do

10: Pq sends Enc(tmpiq) to Pp.
11: Pp randomly samples riqp and computes

Enc(tmp2 iqp) = 2∗Enc(tmpiqp)(Ju⃗iKb−
Jv⃗Kb) + riqp.

12: Pp sends Enc(tmp2 iqp) to Pq .
13: Pq decrypts Enc(tmp2 iqp) to get tmp2 iqp.
14: Pq computes JwiKq = JwiKq + tmp2 iqp.
15: Pp computes JwiKp = JwiKp − riqp.
16: end for
17: end for
18: end for
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D. Security Issue in Existing Top-K Protocol
In this section, we discuss the security issue in the existing
shuffle-based top-k protocol (Hou et al., 2023).

As is shown in Protocol 10, the Top-K protocol inputs an
additive secret-shared list of n distances {JdiK}n−1

i=0 , and
outputs k additive secret-shared distances {Jd′iK}

k−1
i=0 that

correspond to the k minimum values. To begin with, Pa and
Pb shuffles the input list {JdiK}n−1

i=0 using a secure shuffle
protocol (Chase et al., 2020) (Line 1). Then, Pa and Pb

recursively partition the shuffled list into a left subset SL and
a right subset SR using a pivot element JpivotK = Jx0K (Line
2-12). For each JxiK, a secure comparison JxiK < JpivotK
is performed (Line 7). Then, Pa and Pb reveal JbiK (the
comparison bit) to place JxiK into either SL or SR (Line
9-13). The protocol proceeds recursively: if K ′ = |SL|
equals K, SL itself is returned (Line 16-17); if K ′ < K,
then elements from SR must also be included (Line 18-19);
if K ′ > K, the algorithm recurses on SL to select only K
elements (Line 20-21).

The Top-K protocol is insecure because it cannot always
produce the same views for different distance lists. Consider
two distance lists: where all distances are identical versus
where the distances vary. An adversary (such as Pa) observ-
ing the protocol execution can distinguish between these
two lists. Specifically, if all distances are identical, when
comparing each di with the pivot, the comparison always re-
turns ‘false’. Consequently, the subset SR is always empty.
If the distances are not equal, the comparisons would yield a
mix of true and false results, thus splitting the elements into
distinct subsets SL and SR at every pivot. The resulting par-
tition pattern would differ significantly from the case where
all distances are identical. Thus, by observing the partition
pattern, the adversary can distinguish between these two
lists.

E. Security Analysis
We analyze the security of our protocols using the univer-
sal composability (UC) theorem (UC-secure protocols can
be composed arbitrarily without compromising overall se-
curity) and the standard real/ideal world paradigm. We
consider the two computation parties Pa and Pb, the data
owner (DO), and the user (UR) involved in Kona are semi-
honest. Besides, we assume that Pa and Pb will not collude
with each other. In other words, we assume there exists
an adversary who can corrupt DO, UR, and one of the two
computation parties, and follows the protocols but attempts
to learn additional information from the protocol transcripts.
Our goal is to show that our proposed protocols reveal no
information beyond what can be deduced from the intended
outputs to the adversary.

For each protocol, we first define an ideal functionality

Protocol 10: Top-K

Input: {JdiK}n−1
i=0 .

Output: {Jd′iK}k−1
i=0 with {d′i}k−1

i=0 being the K
minimum values of {di}n−1

i=0 .

1: {Jd′iK}n−1
i=0 = Shuffle({JdiK}n−1

i=0 ).
2: {Jd′iK}k−1

i=0 = select({Jd′iK}n−1
i=0 ,K).

3: Function select({JxiK}l−1
i=0,K):

4: JpivotK := Jx0K
5: SL := {}, SR := {JpivotK}
6: For i := 1 to l − 1
7: {JbiK} = JxiK < JpivotK
8: Pa and Pb reveal JbiK and get bi.
9: if bi = 0

10: SL := SL ∪ {JxiK}
11: else
12: SR := SR ∪ {JxiK}
13: end if
14: End For
15: K′ = sizeof(SL).
16: if K′ == K
17: return SL

18: if K′ < K
19: return SL ∪ select(SR,K −K′)
20: if K′ > K
21: return select(SL,K)
22: End Function

capturing the inputs and outputs as follows.

• FDatasetShare: FDatasetShare receives the dataset {(x⃗i, yi)}
from DO and provides MSS shares of attributes and
ASS shares of labels to Pa and Pb.

• FKNN-classify: FKNN-classify receives MSS shares of at-
tributes, ASS shares of labels, Euclidean triples from
Pa and Pb, and a sample a⃗ from UR, and provides the
classification label b to UR.

• FEuclideanDistance: FEuclideanDistance receives MSS shares
of two vectors from Pa and Pb, and provides ASS
shares of their Euclidean square distance to Pa and Pb.

• FDQBubble: FDQBubble receives ASS shares of a distance
list and a label list from Pa and Pb and provides the
ASS shares of an updated distance list and an updated
label list to Pa and Pb, where the smallest distance at
the front and each label remains paired with its original
distance.

• FLabelCompute: FLabelCompute receives ASS shares of la-
bels from Pa and Pb, and provides the ASS shares of
the label that occurs most frequently to Pa and Pb.

• FCompareSwap: FCompareSwap receives ASS shares of two
pairs (a0, b0) and (a1, b1) from Pa and Pb, and pro-
vides ASS shares of the new pairs (a′0, b

′
0) and (a′1, b

′
1)

to Pa and Pb, where the output pairs are ordered
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such that if a0 < a1, then (a′0, b
′
0) = (a0, b0) and

(a′1, b
′
1) = (a1, b1); otherwise, (a′0, b

′
0) = (a1, b1) and

(a′1, b
′
1) = (a0, b0).

• FEuclideanTriples: FEuclideanTriples receives ASS shares of
{u⃗i}n−1

i=0 from Pa and Pb, and provides ASS shares of
v⃗ and {wi}n−1

i=0 to Pa and Pb, where wi = (u⃗i − v⃗)2.

We then prove the security of the protocols by using the
UC theorem or constructing a simulator S that interacts
with the ideal functionalities and produces a simulated view
indistinguishable from the adversary’s view in the real pro-
tocol execution. In all descriptions below, unless otherwise
specified, i ranges from 0 to n− 1.

DatasetShare (Protocol 1). In this protocol, DO first sends
JyiKa to Pa, and sends JyiKb to Pb. DO receives random
shares Ju⃗iKa and Ju⃗iKb from Pa and Pb, and directly sends
Ui = xi+Ju⃗iKa+Ju⃗iKb to Pa and Pb. Because the adversary
can corrupt DO and one of Pa and Pb in this protocol. We
provide the simulations for the following three cases:

Case 1: The adversary corrupts DO. S proceeds as follows:

1. S receives the raw dataset {x⃗i, yi} from FDatasetShare.

2. S locally generates random values Ju⃗iKa (as if receives
from Pa) and Ju⃗iKb (as if receives from Pb).

Case 2: The adversary corrupts Pa. S proceeds as follows:

1. S locally generates random values JyiKa and Ui (as if
receives from DO).

Case 3: The adversary corrupts DO and Pa: S proceeds as
follows:

1. S receives the raw dataset {x⃗i, yi} from FDatasetShare.

2. S locally generates random value Ju⃗iKb (as if receives
from Pb).

Because the protocols are symmetric, the simulations for
the cases where the adversary corrupts Pb follow similarly.

In all the above cases, from the adversary’s perspective,
the values it receives in the real protocol are identical in
distribution to the values it receives in the ideal world. Con-
sequently, the DatasetShare protocol is secure against the
adversary who can corrupt DO, UR, and one of Pa and Pb.

KNN-classify (Protocol 2). In this protocol, the steps shown
in Line 4 to Line 10 totally rely on sub-protocols, which are
proven secure below. Hence, these steps are secure under
the UC theorem. Except for these steps, Pa sends JvKa to
UR, and Pb sends JvKb to UR (Line 1). Then, UR computes

V⃗ = a⃗+ JvKa + JvKb, and sends V⃗ to Pa and Pb (Line 2-3).
Finally, Pa sends JbKa to UR, and sends JbKb to UR (Line
11). Because the adversary can corrupt UR and one of Pa

and Pb in this protocol. We provide the simulations for the
following three cases:

Case 1: The adversary corrupts UR. S proceeds as follows:

1. S receives the raw sample a⃗ from FKNN-Classify.

2. S locally generates random values JvKa (as if receives
from Pa) and JvKb (as if receives from Pb).

3. S receives the final predicted label b from FKNN-Classify,
and local generated random values JbKa (as if receives
from Pa) and JbKb (as if receives from Pb), where JbKa+
JbKb = b.

Case 2: The adversary corrupts Pa. S proceeds as follows:

1. S locally generates random value V⃗ (as if receives
from UR).

Case 3: The adversary corrupts UR and Pa: S proceeds as
follows:

1. S receives the raw sample a⃗ from FKNN-Classify.

2. S locally generates random values JvKb (as if receives
from Pb).

3. S receives the final predicted label b from FKNN-Classify,
and local generated random values JbKa and JbKb (as if
receives from Pb), where JbKa + JbKb = b.

In all the above cases, from the adversary’s perspective,
the values it receives in the real protocol are identical in
distribution to the values it receives in the ideal world. Con-
sequently, the KNN-classify protocol is secure against the
adversary who can corrupt DO, UR, and one of Pa and Pb.

EuclideanDistance (Protocol 3). In this protocol, Pa lo-
cally computes JdKa = (U⃗−V⃗ )2−2(U⃗−V⃗ )(Ju⃗Ka−Jv⃗Ka)+
JwKa, and Pb computes JdKb = −2(U⃗ − V⃗ )(Ju⃗Kb − Jv⃗Kb) +
JwKb. In the case of Pa being corrupted. S proceeds as
follows:

1. S receives U⃗ , JuKa, V⃗ , JvKa, and JwK, where w =
(u⃗− v⃗)2. from FEuclideanDistance.

2. S locally computes JdKa = (U⃗ − V⃗ )2 − 2(U⃗ −
V⃗ )(Ju⃗Ka − Jv⃗Ka) + JwKa.

DQBubble (Protocol 4). This protocol totally relies on the
composition of CompareSwap protocol, which is proven
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secure below. Hence, this protocol is secure under the UC
theorem.

LabelCompute (Protocol 5). This protocol totally relies on
the composition of the secure equality test and DQBubble’
protocol, which is proven secure. Hence, this protocol is
secure under the UC theorem.

CompareSwap (Protocol 6). This protocol totally relies
on the composition of secure comparison and secure mul-
tiplication. Hence, this protocol is secure under the UC
theorem.

EuclideanTriples (Protocol 7). In this protocol, Pa sends
Enc(tmpi) to Pb (Line 4), and Pb sends Enc(tmp2 i) to
Pa. In the case of Pa being corrupted. S randomly generate
Enc(tmp2 i) (as if received from Pb). In the case of Pb

being corrupted. S randomly generate Enc(tmpi) (as if
received from Pa). In all the above cases, from the adver-
sary’s perspective, the values it receives in the real protocol
are identical in distribution to the values it receives in the
ideal world. Consequently, the EuclideanTriples protocol is
secure against the adversary who can corrupt DO, UR, and
one of Pa and Pb.

F. Communication Analysis
In this section, we first analyze the communication overhead
of each protocol in Kona, then compare the communication
overhead for generating Euclidean triples and generating
ASS shares of random pairs (Li et al., 2023). We assume
that each of the basic operations described in Section 2.2
has an O(1) communication size and can be completed in
O(1) communication rounds.

• DatasetShare (Protocol 1): In this protocol, DO shares n
samples of dimension m by MSS, and shares n label
by ASS. Hence, the total communication overhead is
O(n ∗ m) communication size in O(1) communication
rounds.

• KNN-classify (Protocol 2): In this protocol, UR shares
a new sample a⃗ by MSS and then receives the final la-
bel. Besides, the EuclideanDistance protocol involves
no online communication, executing the DQBubble pro-
tocol k times requires exchanging O(n) secret-shared
values in O(k log n) communication rounds, and the La-
belCompute protocol requires O(k2) communication size
in O(log k) communication rounds. . Since k is usually
a small constant, the total communication overhead is
O(n) communication size in O(k log n) communication
rounds.

• EuclideanDistance (Protocol 3): In this protocol, Pa and
Pb compute locally. Hence, the communication overhead
of this protocol is zero.

• DQBubble (Protocol 4): In this protocol, Pa and Pb select
the smallest element in a list of size l in O(log l) iterations.
In each iteration, the size of the list is halved, and Pa and
Pb compare and swap each pair in parallel. Therefore, the
communication overhead is O(l) communication size in
O(log l) communication rounds.

• LabelCompute (Protocol 5): In this protocol, Pa and
Pb compute the occurrence count for each label through
parallel comparisons and additions. Specifically, for each
of the k labels, Pa and Pb compare against all others,
resulting in k2 operations that can be performed in paral-
lel. This phase incurs an overall communication overhead
of O(k2) communication size in O(1) communication
rounds. Subsequently, Pa and Pb invoke the DQBubble’
protocol on the list of k counters and associated labels to
reorder them such that the label with the highest count is
positioned at the front. The DQBubble’ protocol requires
O(k) communication size in O(log k) rounds. Therefore,
by combining both phases, the total communication over-
head is O(k2) in O(log k) communication rounds.

• CompareSwap (Protocol 6): In this protocol, Pa and
Pb securely compare two additive secret-shared values
Ja0K and Ja1K and swap them if Ja0K > Ja1K. Hence, the
communication overhead is O(1) communication size in
O(1) communication rounds.

• EuclideanTriples (Protocol 7): This protocol is executed
in the offline phase to generate Euclidean triples. In this
protocol, Pa and Pb communicate O(nm) encrypted el-
ements. Hence, the total communication overhead is
O(λnm) communication size in 2 communication rounds,
where λ is the computation security parameter employed
in homomorphic encryption.

Protocol 11: RandomPair
Output: Random pair Jr⃗K, Jr⃗′K, where r⃗′[j] = r⃗[j]2.

1: Pa randomly samples Jr⃗Ka, and Pb randomly samples
Jr⃗Kb.

2: for j = 0 to m− 1 in parallel do
3: Pa uses its private key to encrypt Jr⃗[j]Ka to get

Enc(Jr⃗[j]Ka), and sends Enc(Jr⃗[j]Ka) to Pb.
4: Pb randomly samples tj and computes

Enc(tmpj ) = 2 ∗ Enc(Jr⃗[j]Ka) ∗ Jr⃗[j]Kb + t.
5: Pb sends Enc(tmpj ) to Pa.
6: Pa decrypts Enc(tmpj ) to get tmpj .
7: Pa computes Jr⃗′[j]Ka = Jr⃗[j]K2a + tmpj , and Pb

computes Jr⃗′[j]Kb = Jr⃗[j]K2b − tj .
8: end for

Euclidean Triples vs. Random Pairs (Li et al., 2023).:
The communication overhead of EuclideanTriples is the
same as the cost of generating ASS shares of random pairs
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in SecKNN (Li et al., 2023) based on homomorphic encryp-
tion. To securely compute the Euclidean square distance be-
tween two vectors x⃗ and a⃗, each of dimension m, SecKNN
requires generating ASS shares of a pair of random vector
{r⃗, r⃗′}, each one of m dimension. As is shown in Proto-
col 11, generating ASS shares of a random pair based on
homomorphic encryption requires O(λm) communication
size in 2 communication rounds. Hence, to generate ASS
shares of n random pairs to perform one KNN classification,
SecKNN also requires O(λnm) communication size in 2
communication rounds.
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