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ABSTRACT

Model-editing techniques using task arithmetic have rapidly gained attention.
Through task arithmetic, simply through arithmetic operations on the weights of
pre-trained and fine-tuned models create desired models, such as multi-task mod-
els, models in which specific tasks are unsolvable, or domain-transferred models.
However, task arithmetic faces challenges, such as poor reproducibility and the
high cost associated with adjusting coefficients in the arithmetic operations on
model parameters, which have limited its practical success. In this paper, we
present three key contributions in the context of task addition and task negation
within task arithmetic. First, we propose a new metric called τJp which is based
on the product of the task vector (τ ) and the Jacobian of the pre-trained model with
respect to its weights. We show that τJp has a causal relationship with the inter-
ference that occurs from arithmetic operations. Second, we show that introducing
regularization to minimize τJp significantly mitigates interference between task
inference, which leads to the elimination of coefficient tuning and improved accu-
racy on each task. Third, in the context of incremental learning, we demonstrate
that our τJp regularization achieves more robust performance in environments
where access to future tasks is unavailable, thus validating the scalability of the
approach. Finally, we demonstrate that the τJp regularizer further reinforces the
performance of task arithmetic by leveraging publicly available fine-tuned mod-
els, offering practical benefits for real-world applications. Our code is available at
https://github.com/katoro8989/tau-Jp_Task_Arithmetic

1 INTRODUCTION

While there is a growing demand for foundational models in recent machine learning trends, the high
computational costs associated with their training (Zhou et al., 2023; Kaplan et al., 2020; Villalobos
et al., 2022) remain a significant barrier to broader practical use. To address this, model-editing tech-
niques using task arithmetic (Ilharco et al., 2023) have rapidly gained attention in the fields of deep
learning (Yadav et al., 2023; Davari & Belilovsky, 2023; Yu et al., 2024; Tang et al., 2023b; Ortiz-
Jimenez et al., 2023). Task arithmetic offers a significant advantage over traditional approaches
by enabling the efficient creation of edited models without the need for additional training, simply
through arithmetic operations on the weights of pre-trained and fine-tuned models. Specifically, task
arithmetic enables three operations: the creation of a single model capable of handling multiple tasks
(task addition), a model that selectively reduces the performance for a specific task (task negation),
and a model capable of handling tasks not explicitly included in the training data (task analogies).
These are realized by basic operations such as scalar multiplication, addition, and subtraction.

However, task arithmetic faces challenges, such as low reproducibility and the high cost associated
with adjusting coefficients in the arithmetic operations on model parameters, which have limited its
practical success (see Table 1 and Table 2). In addition, there is still limited theoretical understand-
ing of why and how these techniques work (Ortiz-Jimenez et al., 2023). Ortiz-Jimenez et al. (2023)
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demonstrated in their experimental setup for task addition and task negation that the degree of inter-
ference between task inference can be quantified using a metric called the weight disentanglement
error. They also observed that linearizing the model by the neural tangent kernel (NTK) (Jacot et al.,
2018) approximation reduced the weight disentanglement error. However, while their study provides
important insights into the conditions for successful task arithmetic, its scope is limited to indirect
explanations and approaches to improvement.

Ensuring high reproducibility and minimizing computational costs while avoiding task interference
is essential for the practical application of task arithmetic. To address these challenges, we shed
light on the product of task vectors τ and the Jacobian matrix of the model function with respect
to its parameters. In particular, we investigate the relationship between this product and weight
disentanglement, drawing insights from the NTK regime and model linearization (Jacot et al., 2018;
Ortiz-Jimenez et al., 2023). We introduce a novel metric, τJp, and theoretically demonstrate that it
has a causal link to weight disentanglement. Based on this insight, we introduce the regularization
to minimize τJp and acquire task vectors with small interference between tasks. Moreover, we
demonstrate the effectiveness of the τJp regularizer in scenarios where future tasks to be learned
remain unknown or inaccessible. This is a critical requirement for scaling task arithmetic to more
complex and realistic environments. We further explore improving task arithmetic performance by
applying τJp regularization to the continual training of existing fine-tuned models. Our results show
that this approach is effective even for publicly available fine-tuned models, providing practical
advantages for real-world applications.

In this paper, we present three key contributions in the context of task addition and task negation
within task arithmetic.

• We propose a new metric, τJp (τ -Jacobian product), which can be shown to have a causal
relationship with weight disentanglement. We show that τJp tends to be inversely corre-
lated with normalized accuracy, i.e., the metric of performance variation from accuracy
before task arithmetic (Section 3).

• By introducing regularization during fine-tuning to minimize τJp, we significantly reduce
the interference between task predictions, thereby greatly reducing the need for coefficient
adjustments (Section 4.1 and Section 4.2).

• We demonstrate that the regularization of τJp is effective in two practical scenarios: i) when
future tasks to be learned are unknown, or ii) when using publicly available fine-tuned mod-
els. Our regularization method demonstrates both scalability and practical applicability.
(Section 4.3).

We believe that these contributions will facilitate the practical application of model-editing tech-
niques using task arithmetic.

2 BACKGROUND

Notation. Let θ ∈ Rp represent the weights of a neural network f : X → Y , where X ⊆ Rd and
Y ⊆ Rc are the input and output spaces with dimensionalities d and c, respectively. The parameter
θ has dimensionality p, representing the total number of model parameters. Additionally, let θ0
represent the pre-trained weights and θ⋆ represent the fine-tuned weights. Let T denote the set of
all possible task indices. Define T ⊆ T as the subset of task indices used. For each task t ∈ T , the
corresponding dataset Dt = {(xti , yti)}

|Dt|
i=1 is defined, where xti ∈ X and yti ∈ Y . For a task t,

fine-tuning is conducted by minimizing the loss function 1
|Dt|

∑|Dt|
i=1 L(f(xti ; θ), yti), starting from

θ0, and yielding the fine-tuned weights θ⋆t .

2.1 MODEL EDITING VIA TASK ARITHMETIC

Task arithmetic (Ilharco et al., 2023) represents the difference between the weights of a fine-tuned
model and those of a pre-trained model — specifically, τ = θ⋆−θ0 — as a task vector. By perform-
ing arithmetic operations, such as the addition or subtraction of multiple task vectors, and adding the
result to the pre-trained weights θ0, the model can be effectively edited. Two key methods1 lever-

1By task arithmetic, we refer to the definition provided in Equation (1) of Ortiz-Jimenez et al. (2023). This
definition does not account for task analogies, which were proposed as the third approach in Ilharco et al.
(2023). Therefore, we excluded task analogies in this work.
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aging task vectors for model editing have gained recognition in the field. Task addition creates a
multi-task model by summing task vectors obtained from various tasks and then adding this sum to
the weights of a pre-trained model. Task negation suppresses or erases the abilities and properties
only learned from a specific task by subtracting the corresponding task vector from the pre-trained
model’s weights. For instance, it can be used to forget toxic behaviors or biases learned during
training.

2.2 WEIGHT DISENTANGLEMENT

Ortiz-Jimenez et al. (2023) introduced the concept of weight disentanglement to measure the de-
gree of interference between task vectors in task arithmetic. Weight disentanglement is satisfied if
the following condition holds:

f

(
x; θ0 +

∑
t∈T

αtτt

)
=
∑
t∈T

f(x; θ0 + αtτt)1(x ∈ Dt) + f(x; θ0)1

(
x /∈

⋃
t∈T

Dt

)
(1)

The above equation implies that when performing task arithmetic using all task vectors within T ,
the model will produce the same output as when using only the task vector τt for a given task t, and
for tasks outside of T , the model will produce the same output as the pre-trained model. To assess
weight disentanglement between two tasks, weight disentanglement error was proposed.

ξ (α1, α2) =

2∑
t=1

Ex∼µt
[dist (f (x; θ0 + αtτt) , f (x; θ0 + α1τ1 + α2τ2))] (2)

where dist(·, ·) measures the distance between two models’ vector outputs. For classification tasks,
it checks whether the predicted labels from the two models, ŷ1 and ŷ2, match, i.e., dist(ŷ1, ŷ2) =
1(ŷ1 ̸= ŷ2). This error captures the difference in output distributions when task vectors are ap-
plied individually or jointly to a pre-trained model, reflecting the interference between task vectors
in function space. Ideally, in task arithmetic, each task vector would independently influence the
model’s output, resulting in the error being small.

2.3 NEURAL TANGENT KERNEL

The Neural Tangent Kernel (NTK) (Jacot et al., 2018) is a kernel that linearizes the learning dynam-
ics of infinite-width neural networks. In infinite-width networks, parameter updates during training
become infinitesimally small, which allows the following first-order Taylor approximation to hold:

f(x; θ) ≈ f(x; θ0) + (θ − θ0)
⊤∇θf(x; θ0). (3)

This approximation is valid in a regime commonly referred to as the NTK regime, or tangent space,
where the relationship between the parameter space and function space becomes linearized. Recent
studies have observed that fine-tuning large pre-trained neural networks often operates within the
NTK regime, as the parameter changes during fine-tuning remain sufficiently small (Malladi et al.,
2023; Ren et al., 2023). In contrast, it has also been reported that in practice, the fine-tuning of
finite-width models does not always result in perfectly linear behavior, and fine-tuning can exhibit
non-linear characteristics (Ortiz-Jimenez et al., 2023).

2.4 TASK ARITHMETIC IN THE NTK REGIME

In task arithmetic, linear operations in the weight space of neural networks translate directly to
changes in the function space, which can be explained by the following NTK approximation:

f(x; θ0 +
∑
t∈T

αtτt) ≈ f(x; θ0) +
∑
t∈T

(αtτt)
⊤∇θf(x; θ0). (4)

For all t ∈ T , τt denotes the task vector for task t, defined as τt = θ⋆t − θ0, and αt ∈ R. In simple
terms, in the NTK regime, the linearity of operations on task vectors is preserved in the model’s
output, leading to linear effects on performance.

In practice, it has been reported that explicitly enforcing fine-tuning within the NTK regime im-
proves task arithmetic (Ortiz-Jimenez et al., 2023; Tang et al., 2023b). Ortiz-Jimenez et al. (2023);
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Tang et al. (2023b) demonstrated that fine-tuning within the NTK regime lowers weight disentangle-
ment error and improves the performance of task addition and negation. One linearization method
proposed by Ortiz-Jimenez et al. (2023) is to fine-tune linearized models flin(x, θ) within their NTK
regime when creating task vectors, which is formulated as follows:

flin(x, θ) = f(x, θ0) + τ⊤∇θf(x, θ0) (5)

However, it remains unclear why linearizing the model suppresses weight disentanglement error
and how this enhancement, in turn, improves task arithmetic. These questions have not yet been
fully addressed from a theoretical standpoint. We focus on the term τ⊤∇θf(x; θ0) in the NTK
approximation and aim to provide a theoretical explanation. Building on this theoretical foundation,
we propose a novel method to enhance task arithmetic.

3 CAUSAL IMPACT OF THE τ -JACOBIAN PRODUCT ON WEIGHT
DISENTANGLEMENT

We theoretically explain weight disentanglement in the NTK regime and propose the τ -Jacobian
product as the underlying mechanism that drives weight disentanglement. We also experimentally
validate the relationship between the τ -Jacobian product and model interference.

3.1 WEIGHT DISENTANGLEMENT IN THE NTK REGIME

In this section, we provide a theoretical explanation of the relationship between weight disentan-
glement and the task vector Jacobian product in the NTK regime. For simplicity, we consider task
arithmetic involving two tasks, A and B. In the NTK regime, the model’s output can be approximated
as follows:

f(x, θ0 + αAτA + αBτB) ≈ f(x, θ0) + αAτ
⊤
A∇θf(x, θ0) + αBτ

⊤
B∇θf(x, θ0) (6)

with αA, αB ∈ R. In this case, for inputs xA and xB from tasks A and B, achiev-
ing a weight disentanglement error of 0 in Eq. (2) is equivalent to satisfying the condi-
tions f (xA; θ0 + αAτA + αBτB) = f (xA; θ0 + αAτA) and f (xB ; θ0 + αAτA + αBτB) =
f (xB ; θ0 + αBτB) for any αA and αB , which leads to Eq. (7) below.

f(xA, θ0 + αAτA + αBτB) ≈ f(xA, θ0) + αAτ
⊤
A∇θf(xA, θ0) + 0 ≈ f(xA, θ0 + αAτA),

f(xB , θ0 + αAτA + αBτB) ≈ f(xB , θ0) + 0+ αBτ
⊤
B∇θf(xB , θ0) ≈ f(xB , θ0 + αBτB).

(7)

Eq. (7) implies that the weight disentanglement error is 0 when the task vectors satisfy the following
conditions:

τ⊤A∇θf(xB , θ0) = 0,

τ⊤B∇θf(xA, θ0) = 0.
(8)

These conditions imply that the task vector for a given task is orthogonal to the Jacobian of the pre-
trained model, with respect to its parameters θ0, on the other task. In other words, linearizing the
model alone does not guarantee weight disentanglement; it is also necessary to satisfy the conditions
in Eq. (8), as demonstrated theoretically.

We propose the following τ -Jacobian product (τJp) as a measure of how well the condition in Eq. (8)
is satisfied between two tasks:

τJp =
1

2

(
||τ⊤A∇θf(xB , θ0)||2 + ||τ⊤B∇θf(xA, θ0)||2

)
. (9)

The τJp is the mean squared norm of the product between a task vector and the gradient of the
pre-trained model with respect to its weights on the other dataset, averaged across both datasets.
According to the condition Eq. (8), a smaller τJp is desirable.

3.2 RELATIONSHIP BETWEEN τ -JACOBIAN PRODUCT AND INTERFERENCE

As demonstrated in Section 3.1, a smaller τJp improves weight disentanglement and reduces inter-
ference between task vectors. In this section, we experimentally show that minimizing τJp effec-
tively mitigates task vector interference.
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Figure 1: Visualization of weight disentanglement in ViT-B-32 with respect to τJp. The upper row
illustrates the linearized model without regularization, while the lower row presents the model with
our proposed regularization. Overall, it is observed that when τJp is large, weight disentanglement
becomes sensitive to the coefficients. As τJp increases, weight disentanglement shows greater ro-
bustness to variations in the coefficients. Furthermore, our proposed regularization enhances this
robustness with respect to the coefficients. The red cross at the center represents the pre-trained
model, and the red box indicates the typical coefficient search range in task arithmetic.

In the experiments, linearized fine-tuning (FT) (Ortiz-Jimenez et al., 2023) of different pre-trained
Vision Transformers (ViTs) (Dosovitskiy et al., 2021) under the same conditions as in Ilharco et al.
(2022); Ortiz-Jimenez et al. (2023) was conducted with CLIP (Radford et al., 2021) on eight image
tasks. Specifically, the eight tasks are Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), Eu-
roSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), RESISC45
(Cheng et al., 2017), SUN397 (Xiao et al., 2016), and SVHN (Netzer et al., 2011).

First, we investigated the relationship between τJp and weight disentanglement. Figure 1 visualizes
weight disentanglement alongside τJp. In the top row showing Linear FT, we can see that when τJp
is large, the blue area becomes more prominent, indicating that the weight disentanglement error
is more sensitive to each coefficient and interference is not being prevented. As τJp decreases, the
error tends to become more robust to changes in the coefficients.

Next, we focus on the actual performance of task arithmetic. We analyzed the correlation between
normalized accuracy and τJp, presenting the resulting scatter plot in Figure 2. Each data point rep-
resents a model trained by performing task addition on two out of the eight image tasks. Normalized
accuracy is defined as the accuracy of each task after applying task arithmetic relative to its accuracy
before task arithmetic, which is set to 1.0. Across all model scales, we observed a consistent trend
where task pairs with smaller τJp values tend to exhibit higher normalized accuracy.

4 ENHANCING TASK ARITHMETIC BY MITIGATING INTERFERENCE
BETWEEN TASKS

4.1 τ -JACOBIAN PRODUCT FOR REGULARIZATION

As demonstrated in Section 3, to prevent interference between task vectors in task arithmetic and
to improve performance, it is necessary not only to linearize the model but also to keep τJp small
simultaneously. Building on these theoretical and empirical insights, we propose a novel method to
enhance task arithmetic. Specifically, we introduce regularization during fine-tuning that encourages
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Figure 2: Visualization of the relationship between τJp and normalized accuracy. Each point rep-
resents a pair of tasks from the set of eight tasks, yielding

(
8
2

)
combinations, i.e., 28 in total. We

observed a correlation, where smaller τJp values are associated with higher normalized accuracy.
The blue dots represent the results from traditional linearized task addition, while the orange stars
denote the results using task vectors obtained through our proposed regularization. A significant
difference in τJp values between the two approaches is evident, indicating that our proposed regu-
larization reduces τJp and improves task addition performance.

τJp to be small — that is, we promote learning to occur in a subspace where τ is orthogonal to the
Jacobian of the pre-trained model, with respect to θ0, for different tasks.

Inspired by this requirement, we propose the following τJp-based regularized loss function:

LτJp(flin(x; θ), y) = L(flin(x; θ), y) + λ
∑

t∈Torth

||(θ − θ0)
⊤∇θflin(xt, θ0)||2 (10)

where Torth denotes the set containing indices of other tasks for which we aim to suppress interfer-
ence. Our objective is to ensure that θ⋆ − θ0 is orthogonal to all ∇θf(xt, θ0) for t ∈ Torth ; that
is, we add the L2 norm of their product as a regularization term. The hyperparameter λ adjusts the
strength of the regularization. It is important to note that, for the computation of the regularization
terms, only the input data for each sample in Torth is required, and labels are not necessary.

However, in practical applications, when there are numerous tasks in Torth where interference needs
to be reduced, calculating penalties for all tasks at each iteration results in significant memory and
computational overhead. To address this, we propose the following more efficient implementation:

L̂
(i)
τJp(flin(x; θ), y) = L(flin(x; θ), y) + λ||(θ − θ0)

⊤∇θflin(x(i mod |Torth|), θ0)||
2 (11)

where i denotes the iteration number, and at each iteration, the task for which the penalty is cal-
culated is rotated within Torth (specifically, ( i mod |Torth| )). With this approach, it is sufficient to
calculate the penalty for one task per iteration, ensuring scalability with respect to the size of Torth.
In Appendix C, we conducted a comparison between the loss functions in Eq. (10) and Eq. (11)
using ViT-B-32. Although the latter exhibited a slightly lower capacity to reduce interference be-
tween task vectors, it significantly improved computational efficiency. Moreover, the performance
difference was not statistically significant. Therefore, for the remainder of the experiments, we will
adopt L̂τJp in Eq. (11).

4.2 ENHANCEMENT THROUGH τ -JACOBIAN PRODUCT REGULARIZATION

Settings. We conducted experiments to compare linearized fine-tuning with the regularization in
L̂τJp, standard fine-tuning (Non-lin. FT), and fine-tuning with only linearization (Linear FT), as well
as recent task arithmetic methods such as Ties-Merging (Yadav et al., 2023) and AdaMerging (Yang
et al., 2024), in both task addition and negation scenarios.

For vision tasks, the experimental setup for task addition followed the methodology described in
Section 3.2. In task negation, we introduced a control task, ImageNet (Deng et al., 2009), to maintain
performance during negation.

For NLP tasks, we followed experimental configurations consistent with Ilharco et al. (2023).
Task addition experiments used four selected tasks (MRPC, RTE, CoLA, SST-2) from the GLUE
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Table 1: Results of task addition using the eight tasks presented in Section 3.2. In the “Task vector
coef.” column, the method of determining the task vector coefficients is presented. “1.0” indicates
that all coefficients were fixed at 1.0, without any coefficient adjustment.

Our method demonstrates significant performance improvements, particularly in reducing tuning
costs by eliminating the need for extensive coefficient adjustments.

Method Task vector coef. ViT-B-32 ViT-B-16 ViT-L-14
Abs. (↑) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑)

Pre-trained - 47.3 - 54.5 - 65.1 -
Indivisual - 89.9 - 92.2 - 93.7 -
MTL - 87.8 - 90.8 - 92.6 -

Non-lin. FT (Ilharco et al., 2023) 1.0 19.9 20.5 19.1 19.7 37.6 39.0
Grid-searched 70.4 78.0 75.5 81.5 84.0 89.3

Linear FT (Ortiz-Jimenez et al., 2023) 1.0 55.4 61.7 58.2 63.6 80.5 86.7
Grid-searched 74.3 85.0 78.7 87.6 85.8 92.8

Ties-Merging (Yadav et al., 2023) 1.0 74.2 84.8 78.6 87.6 85.0 91.9
Grid-searched 74.2 84.8 78.6 87.6 85.0 91.9

AdaMerging (Yang et al., 2024)2 Trained3 80.1 88.5 84.9 92.1 90.8 96.4

Ours 1.0 84.2 97.2 87.5 98.4 90.8 99.0
Grid-searched 84.5 97.6 87.6 98.5 90.8 99.0

Table 2: Results of task negation using the eight tasks presented in Section 3.2. We report the
minimum accuracy on the target tasks while maintaining 95% of the pretrained model’s accuracy
on control tasks (note: results in (·) are reference values where control task performance did not
exceed 95% of the pretrained model’s accuracy). The results show that our method achieves better
forgetting of target tasks while preserving higher performance on control tasks compared to existing
methods.

Method Task vector coef. ViT-B-32 ViT-B-16 ViT-L-14
Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑)

Pre-trained - 47.3 66.7 54.5 69.3 65.1 77.3

Non-lin. FT (Ilharco et al., 2023) 1.0 (10.9) (44.7) (10.8) (51.6) (15.2) (68.6)
Grid-searched 24.0 60.7 20.3 64.7 18.4 72.4

Linear FT (Ortiz-Jimenez et al., 2023) 1.0 (6.3) (57.2) (5.4) (62.2) (3.0) (67.9)
Grid-searched 11.8 60.6 8.8 65.0 8.3 72.2

Ties-Merging (Yadav et al., 2023) 1.0 21.8 61.6 24.3 67.0 26.6 74.4
Grid-searched 21.8 61.7 24.3 67.0 26.6 74.4

Ours 1.0 11.8 62.5 11.8 67.8 15.1 75.1
Grid-searched 6.7 60.8 4.7 66.0 3.7 73.0

benchmark (Wang et al., 2019), while task negation focused on mitigating model toxicity in text
generation. Specifically, we extracted instances with toxicity scores above 0.8 from Civil Com-
ments (Borkan et al., 2019), performed causal language modeling on this data to obtain task vectors,
and subtracted these vectors from the pre-trained model. Text toxicity was measured using Detox-
ify (Hanu & Unitary team, 2020), with perplexity on WikiText-103 (Merity et al., 2016) used as a
control metric. The models used were T5-small (Raffel et al., 2023) for task addition and GPT-2
small (Radford et al., 2019) for task negation.

Further details on the fine-tuning settings can be found in Appendix B.

Results on Vision Tasks. Table 1 shows that our method consistently outperforms existing ap-
proaches and achieves notable improvements in both average absolute (Abs.) and normalized
(Norm.) performance, regardless of whether task vector coefficients are grid-searched. Even with-
out coefficient adjustment, our approach performs better than prior methods while reducing the cost
of tuning the inference-time hyperparameter. Notably, for ViT-L-14, our method yields the same
results with and without coefficient adjustment, indicating that αt = 1.0 is optimal, and achieve a
normalized accuracy of 99%. This shows that performance is barely degraded by the addition of
task vectors.

Next, examining the task negation results presented in Table 2, we observe that although our method
without task vector coefficient adjustment does not achieve sufficient forgetting of the target task

2In our hardware environment, the memory capacity was insufficient, so we report the results as presented
by Yang et al. (2024). The experiments were conducted under the same experimental settings, except for the
hardware conditions.

3AdaMerging trains the coefficients of task vectors as trainable parameters using a general optimizer (e.g.,
Adam).
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Table 3: The results of task addition using T5-small on four GLUE tasks (MRPC, RTE, CoLA, SST-
2) are shown, with task vector coefficients grid-searched for all methods. Our proposed approach
consistently outperforms existing methods across all tasks.

Method MRPC RTE CoLA SST-2 Avg.
Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑) Abs. (↑) Norm. (↑)

Pre-trained 31.8 - 5.0 - 7.3 - 32.3 - 19.1 -
Indivisual 93.5 - 93.7 - 76.8 - 94.6 - 89.7 -
Non-lin. FT (Ilharco et al., 2023) 76.7 82.0 78.1 83.3 75.8 98.7 66.0 69.8 74.2 83.5
Linear FT (Ortiz-Jimenez et al., 2023) 79.1 89.8 81.3 89.0 74.0 96.4 57.6 61.3 73.0 84.1
Ties-Merging (Yadav et al., 2023) 73.2 95.4 79.0 84.9 60.1 68.2 69.7 73.9 70.5 80.6
Ours 79.1 87.5 82.8 90.6 76.5 99.6 92.5 98.5 82.7 94.0

Table 4: The results of task negation for mitigating toxicity in text generation using GPT-2 are pre-
sented. Task vector coefficients were grid-searched, and the largest coefficient that kept perplexity
within 0.5 of the pre-trained model’s value on WikiText-103 was selected. Our method successfully
reduces toxicity, as measured by two toxicity metrics, while preserving the general linguistic capa-
bilities of the pre-trained model.

Method Toxic generation rate (↓) Average toxic score (↓) WikiText-103 perplexity (↑)
Pre-trained 1.3 0.03 29.4
Non-lin. FT (Ilharco et al., 2023) 1.1 0.02 29.7
Linear FT (Ortiz-Jimenez et al., 2023) 0.9 0.02 29.6
Ties-Merging (Yadav et al., 2023) 1.0 0.02 29.6
Ours 0.4 0.01 29.9

(Targ.), it significantly outperforms existing methods in preserving the performance on the control
tasks (Cont.). Conversely, with coefficient adjustment, our method greatly enhances the forgetting
of the target task, while still surpassing existing methods in preserving control task performance
across all cases.

We clarify why the method without coefficient adjustment (with αt = 1.0) was effective for task
addition but not for task negation. As detailed in Appendix A, in the ideal case where τJp is zero (no
interference), the optimal coefficient αt for task addition is 1.0. Conversely, for task negation, the
optimal αt should be infinitely large in this ideal scenario. However, in realistic situations where τJp
is not zero and interference exists, there is no well-defined theoretical optimal coefficient for task
negation. This makes the fixed coefficient method with αt = 1.0 insufficient to induce adequate
forgetting, necessitating coefficient adjustment.

Finally, to verify whether our regularization effectively improves weight disentanglement, we
present the lower row of Figure 1. Compared to the upper row, which shows the linearized model
without regularization, it is evident that weight disentanglement is significantly enhanced, indicating
that sensitivity to coefficients has been mitigated.

Results on NLP Tasks. The results of task addition on the GLUE benchmark are shown in Table 3,
where task vector coefficients were grid-searched. Our proposed method consistently outperforms
other approaches across all tasks, with superior average performance. Notably, for the SST-2 task,
performance degrades significantly (normalized accuracy: 61.3) without regularization, likely due
to interference from the CoLA task vector, as both are single-sentence tasks. Applying our proposed
regularization substantially mitigates this issue, achieving a normalized accuracy of 98.5.

The results of task negation to mitigate toxicity in text generation are presented in Table 4, with task
vector coefficients also grid-searched. Our method achieves the greatest reduction in toxicity while
maintaining perplexity within 0.5 points of the pre-trained model.

Results using fixed coefficients of 1.0 without adjustment are presented in Appendix E.6.

4.3 SCALABLE REGULARIZATION IN PRACTICAL APPLICATIONS

First, in situations where tasks are introduced incrementally, similar to incremental learning, we
demonstrate that comparable performance can be achieved by applying regularization exclusively to
previously learned tasks(Section 4.3.1). Then, we demonstrate that simply adding a few additional
steps of regularization-based training to existing linearized task vectors yields significant improve-
ments (Section 4.3.2).
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4.3.1 INCREMENTAL ADDITION

Table 5: Comparison of original regularization
and the incremental regularization in task addition
on ViT-B-32

Method Abs. (↑) Norm. (↑)

No reg. (Linear FT) 74.3 85.0
Incremental reg. (Ours) 83.6 96.5
Full reg. (Ours) 84.5 97.6

In practical applications, scalability to new
tasks is critical. Here, we consider a scenario of
incremental task addition within the previously
discussed eight-task task addition framework.
Specifically, when training on a task t ∈ T ,
future tasks are not taken into account, and reg-
ularization is applied only with respect to past
tasks, i.e., ( Torth = {1, 2, . . . , t− 1} ).

Table 5 presents a comparison of task addition on ViT-B-32 using three approaches: applying regu-
larization to all tasks (Full reg.), applying regularization incrementally (Incremental reg.), and Linear
FT (No reg.). The results show that applying regularization to all tasks leads to the highest perfor-
mance and helps to prevent task interference, consistent with theoretical expectations. However, the
incremental regularization approach also demonstrates substantial improvement over the existing
unregularized method, indicating that our approach is highly scalable to new tasks.

4.3.2 PENALIZATION ON A EXISTING TASK VECTOR
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Figure 3: Regularization-based additional training
for task addition between EuroSAT and SVHN,
using ViT-B-32, where interference was particu-
larly severe.

We also examine the effect of applying our
regularization-based learning in addition to the
task vectors already created by other users, as
shown in Figure 3. The horizontal axis rep-
resents the number of steps in the additional
training, starting from the initial point, which is
the task vector obtained via Linear FT. The left
vertical axis (blue) shows the normalized accu-
racy during task addition, while the right verti-
cal axis (red) represents τJp. It can be observed
that both metrics improve sharply within the
first 100 steps, with normalized accuracy ex-
ceeding 99%. Subsequently, the improvement
is more gradual. This indicates that even when
a linearized task vector already exists, a small
amount of additional training with our regular-
ization can significantly enhance performance.

5 RELATED WORK

The attempt to merge and average the parameters of multiple neural networks originates from the
work of Utans (1996). In recent years, various methods have been proposed for large-scale neural
networks with numerous parameters, aimed at manipulating their properties or enhancing perfor-
mance through addition and subtraction in the parameter space. For example, by merging a language
model specialized in medical knowledge with one specialized in legal knowledge, it would be pos-
sible to develop a model capable of solving tasks related to medical litigation. Among the various
methods for realizing the integration of models and their knowledge, many are related to task arith-
metic, including task analogies, as well as model merging. One of the simplest approaches to model
merging involves taking the parameters of multiple models fine-tuned from the same pre-trained
model and computing their simple average (Wortsman et al., 2022a; Choshen et al., 2022). Building
on this, various extensions have been proposed. For instance, Don-Yehiya et al. (2023) presents a
framework for the distributed fine-tuning and fusion of multiple models. Ramé et al. (2023) adopts a
strategy where the same pre-trained model is fine-tuned using diverse auxiliary tasks, and the param-
eters of these fine-tuned models are fused. This approach aims to maximize the diversity of model
parameters and thereby improve generalization performance. Jolicoeur-Martineau et al. (2024) pro-
poses a method in which model merging is performed periodically during the fine-tuning process
to ensure that the parameters of individual models do not deviate too far from the population mean.
Muqeeth et al. (2023) introduces a technique in the context of Mixture-of-Experts (MoE), where a
merged expert is created by computing the weighted average of parameters across multiple expert
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networks. Other approaches such as linearly interpolating between the pre-trained model and the
fine-tuned model, rather than merging parameters of fine-tuned models, have also been explored (Il-
harco et al., 2022; Wortsman et al., 2022b).

On the other hand, in the integration of models via model merging or task arithmetic, interference
among the parameters of multiple models or task vectors can arise, and various methods have been
proposed to mitigate such conflicts. For instance, several methodologies utilize masking operations
on task vectors (Tang et al., 2023a; Wang et al., 2024a; Huang et al., 2024), while others involve
trimming or scaling techniques (Yadav et al., 2023; Davari & Belilovsky, 2023; Yu et al., 2024),
or leverage model linearization (Tang et al., 2023b; Ortiz-Jimenez et al., 2023). Additionally, in
incremental learning (Wang et al., 2024b), Huang et al. (2021) and Wang et al. (2023) introduced
regularization techniques aimed at minimizing task interference during the training of multiple tasks
on the same neural network. These methods ensure that the subspaces in the parameter space asso-
ciated with each task remain orthogonal and disentangled.

Theoretical and analytical studies on the effectiveness of model merging and task arithmetic include
research based on analyses of the loss landscape (Entezari et al., 2022; Qin et al., 2022; Gueta et al.,
2023), as exemplified by linear mode connectivity (Frankle et al., 2020), as well as approaches that
leverage model linearization within the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018).
These studies have demonstrated that during the integration of multiple neural networks via model
merging, techniques such as parameter permutation to align different models within the same basin
in the loss landscape (Ainsworth et al., 2022) or inducing weight disentanglement between task
vectors through linearization (Ortiz-Jimenez et al., 2023) can be effective.

Our proposed method addresses key limitations in existing model integration and task arithmetic
techniques, specifically task interference and the high cost of coefficient tuning. We introduce
the τJp metric (the τ -Jacobian product), which quantifies weight disentanglement, showing an in-
verse correlation with task interference. This metric provides a novel approach to reducing inter-
ference, distinct from conventional masking or trimming techniques. Additionally, by minimizing
τJp through regularization during fine-tuning, we significantly reduce the need for costly coeffi-
cient adjustments. Our method is effective even in practical scenarios, such as when future tasks
are unknown or when using publicly available fine-tuned models, thereby enhancing scalability and
broadening real-world applicability.

6 LIMITATIONS

Our experiments are based on the linear approximation, assuming learning occurs in the NTK
regime. As noted by Ortiz-Jimenez et al. (2023), this linear approximation increases the computa-
tional time for forward calculations by two to three times compared to that of a non-linearized model.
The regularization proposed in this study is based on such linearized models, and this aspect has not
been improved. However, linearization methods leveraging parameter-efficient approaches, such as
LoRA (Hu et al., 2022), have also been proposed (Tang et al., 2023b). Combining these methods
with our regularization has the potential to reduce computational costs while enabling more effi-
cient and effective task arithmetic. Our contribution lies in elucidating the internal structure of task
arithmetic using τJp and confirming the sufficient effectiveness of our regularization under precise
linearization. Validation on larger models (e.g., LLMs) using approximate linearization methods,
such as those mentioned above, is left as future work.

7 CONCLUSION

In this paper, we proposed a novel metric, τJp, to better understand weight disentanglement in task
arithmetic and demonstrated its inverse correlation with normalized accuracy. By incorporating
regularization to minimize τJp during fine-tuning, we significantly reduced task interference, mini-
mizing the need for coefficient adjustments in task addition and negation. In incremental learning,
we found that our τJp regularization method shows strong performance in situations where future
tasks to be learned are unknown or accessible, confirming the scalability of the approach. Further-
more, the τJp regularizer improves the performance of task arithmetic by utilizing publicly avail-
able fine-tuned models, which makes it beneficial for practical use in real-world scenarios. These
findings contribute to advancing the practical application of model-editing techniques through task
arithmetic.
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A SCALING COEFFICIENTS FOR TASK VECTORS IN THE NTK REGIME

We provide theoretical insights into the coefficients applied to task vectors in task arithmetic, em-
ploying the NTK regime.

A.1 THEORETICAL INSIGHTS

First, we present the following two important theorems as a preliminary step.
Theorem 1. In the weight space Rp, let θ0 ∈ Rp denote the initial point and θ⋆ ∈ Rp the fine-tuned
point. For any scalar α ∈ R, define a point on the straight line passing through θ0 and θ⋆ as:

θ(α) = (1− α)θ0 + αθ⋆.

Under the NTK regime, the model’s output can be approximated as:

f(x; θ(α)) ≈ (1− α)f(x; θ0) + αf(x; θ⋆).

In other words, linear interpolation in the weight space corresponds to linear interpolation of the
outputs in the function space.

Proof. Noting Eq. (3) and that f(x; θ⋆) ≈ f(x; θ0) + τ⊤∇θf(x; θ0) based on it, we obtain the
following:

f(x; θ(α)) = f
(
x; (1− α)θ0 + αθ⋆

)
= f

(
x; θ0 + α(θ⋆ − θ0)

)
= f(x; θ0 + ατ)

≈ f(x; θ0) + ατ⊤∇θf(x; θ0)

≈ f(x; θ0) + α
(
f(x; θ⋆)− f(x; θ0)

)
= (1− α)f(x; θ0) + αf(x; θ⋆)

Theorem 2. Consider a convex loss function L(f(x; θ)) with respect to the model output f(x; θ).
Then, in the NTK regime, the loss function L(f(x; θ(α))) is convex with respect to α.

Proof. According to Theorem 1, in the NTK regime, f(x; θ(α)) is a linear interpolation between
f(x; θ0) and f(x; θ⋆), such that

f(x; θ(α)) = (1− α)f(x; θ0) + αf(x; θ⋆).

Since the loss function L is convex with respect to the model output, the composite function
L(f(x; θ(α))) is convex with respect to α ∈ R. This follows from the property that the compo-
sition of a convex function with a linear function is convex.

Specifically, because L is convex and f(x; θ(α)) is a linear function of α, the function L(f(x; θ(α)))
is convex with respect to α.

Finally, based on Theorem 2, we derive the following explanations for the coefficients in task addi-
tion and negation of the linearized model.

Task addition. If the θ⋆ obtained through fine-tuning for each task is optimal (i.e., minimizes the
loss), then, according to Theorem 2, the loss is minimized at α = 1.0. Furthermore, if all τJp
are zero, setting the task-specific coefficients α1 = α2 = · · · = αT = 1.0 enables complete task
addition without any performance degradation for each task.

Task negation. If the θ⋆ obtained through fine-tuning for a particular task is optimal (i.e., mini-
mizes the loss), then the loss decreases monotonically in the direction from θ0 towards θ⋆ along
τ . Conversely, moving in the direction of −τ leads to an increase in loss (i.e., forgetting occurs).
This is because the loss is convex with respect to α. Therefore, in this case, optimal coefficients
cannot theoretically be obtained, and as long as the NTK regime holds, increasing α indefinitely in
the negative direction results in greater forgetting.
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B IMPLEMENTATION DETAILS

All our experiments using CLIP were conducted on four NVIDIA V100 GPUs, each with 16GB of
memory.

B.1 FINE-TUNING DETAILS

Vision Tasks. The fine-tuning process for each task was primarily based on the implementations
of Ilharco et al. (2022); Ortiz-Jimenez et al. (2023). Specifically, for all tasks, we set the number
of steps to 2000, the batch size to 128 (with gradient accumulation for the ViT-L-14 model), and
used the AdamW optimizer with a learning rate of 1e-5, weight decay of 0.1, and a learning rate
schedule based on cosine annealing, incorporating 200 warm-up steps. As noted by Ilharco et al.
(2022); Ortiz-Jimenez et al. (2023), freezing the text encoder during the fine-tuning of CLIP does not
significantly impact final performance, so we adopted a fixed classification head by using the output
of the pre-trained text encoder on class-specific text prompts (e.g., “a photo of {classname}”),
while fine-tuning only the image encoder. For the fine-tuning of the linearized model, we followed
the exact implementation outlined in Ortiz-Jimenez et al. (2023). In our proposed method, during
training for each task within the eight tasks, Torth consisted of all tasks except the target task, as well
as ImageNet. The same task vectors were used for evaluation in both task addition and negation.

NLP Tasks. For task addition in the GLUE benchmark, we adopted a configuration similar to that
used for vision tasks, with the key difference being the use of T5-small as the model. For task
negation, we followed the setup described in Ilharco et al. (2023), using GPT-2 small . Fine-tuning
on Civil Comments involved causal language modeling with a learning rate of 1 1e-5, a batch size
of 16, and training for 5 epochs.

The computation of the τ -Jacobian product for the proposed regularization was efficiently performed
using Jacobian-vector products, as in Ortiz-Jimenez et al. (2023). To reduce computational costs,
we used a batch size that was 1

8 of the batch size used for computing the loss on the target task
for vision tasks, and 1

4 for NLP tasks. The strength of the regularization term, represented by the
hyperparameter λ, was tuned using a grid search over the range [1e-3, 1e-2, 1e-1]. Validation
accuracy was used as the evaluation metric. Due to limited computational resources, the value of λ
obtained from a specific task (Image: Cars, NLP: CoLA) was reused for other tasks. Despite this
simplification, the proposed regularization consistently achieved strong performance across various
tasks. This suggests that empirically, the proposed regularization is not highly sensitive to the choice
of λ.

B.2 TASK VECTOR COEFFICIENTS

In all experiments where task vector coefficients were determined via grid search, the coefficients
were unified across all task vectors. Specifically, in Eq. (4), we set α1 = α2 = · · · = αT . For task
addition, the grid search range was set to α ∈ {0.0, 0.05, . . . , 1.0}, and for task negation, the range
was α ∈ {0.0, 0.1, . . . , 3.0}.

As demonstrated in Appendix A, under the NTK regime, theoretically, if there is no interference be-
tween task vectors, an optimal coefficient of α = 1.0 should be achieved for task addition. However,
for task negation, the NTK approximation theoretically allows α to grow arbitrarily large within the
valid approximation range. Therefore, we adopted a broader search range for task negation com-
pared to previous approaches.

For coefficient selection, in task addition for both vision and NLP tasks, we chose the coefficient
that yielded the highest normalized accuracy on the validation split. For vision task negation, we
selected the coefficient that achieved the lowest accuracy on the target task while maintaining at least
95% of the pre-trained model’s accuracy on the control task (ImageNet) validation split. In NLP task
negation, we selected the largest coefficient that kept the perplexity on WikiText-103 within 0.5 of
the pre-trained model’s perplexity.
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B.3 EVALUATION DETAILS

In the NLP task negation experiments, toxicity was measured using Detoxify (Hanu & Unitary team,
2020). Following the methodology of Ilharco et al. (2023), 1000 text samples were generated with
the prefix ”I don’t care if this is controversial,” and Detoxify was used to compute the toxicity
scores for these samples. The average of these scores is reported as the ”Average toxicity score”
Additionally, the proportion of samples with a toxicity score of 0.5 or higher was calculated and
reported as the ”Toxic generation rate”

C COMPARISON OF STRICT REGULARIZATION AND CYCLICAL
REGULARIZATION

Applying our proposed regularization strictly to penalize at every iteration, as in (10), is computa-
tionally and memory expensive. Therefore, as shown in (11), we propose a more efficient approach
by penalizing each task cyclically. Here, we compare the performance and computational cost of
this efficient regularization with the original strict regularization, demonstrating that its practical use
is justified.

Table 6 presents the results of a comparison between the two approaches and Linear FT (No reg.) in
the context of task addition using ViT-B-32. The evaluation metrics include absolute accuracy, nor-
malized accuracy, and the actual time taken per iteration. From the perspective of accuracy, the strict
regularization (Strict reg.) slightly outperforms the efficient implementation (Cyclical reg.), indicat-
ing that the strict implementation of our proposed regularization can nearly eliminate interference.
On the other hand, while the efficient implementation performs slightly worse in terms of accuracy,
the difference is not significant. Notably, in terms of actual computation time, it achieves a around
80% reduction. Furthermore, despite having a runtime comparable to Linear FT, it demonstrates a
significant improvement in performance.

Based on the above observations, the approximate regularization in (11) provides faster and suffi-
ciently effective regularization.

Table 6: Comparison of the strict regularization and the efficient regularization in task addition on
ViT-B-32

Method Abs. (↑) Norm. (↑) Sec. / Iter.(↓)

No reg. (Linear FT) 74.3 85.0 0.361
Cyclical reg. (11) 84.5 97.6 0.374
Strict reg. (10) 86.4 99.3 2.027

D TASK ARITHMETIC AND MULTI TASK LEARNING

Multi-Task Learning (MTL) (Caruana, 1997) involves training a single model simultaneously us-
ing data from multiple tasks. When sufficient input data and labels are available for each target
task, leveraging them concurrently enables the construction of a unified model capable of handling
multiple tasks effectively.

However, if even one of the tasks has limited access to sufficient data or lacks labels, achieving
this in a single training process becomes challenging. Additionally, adding new capabilities to a
pre-trained model while maintaining its performance on other tasks (Kirkpatrick et al., 2017), or
forgetting toxic abilities, is not a straightforward task.

In contrast, task arithmetic offers high practicality, flexibility, and scalability. Firstly, in practical
applications, task arithmetic does not require complete access to all task data simultaneously during
training. Instead, it allows for learning in environments where only partial access to data is available,
and the weights can be integrated afterward to create a multi-task model. In addition, since each task
has its own independent weight (task vector), task arithmetic offers flexibility to represent a wide
variety of models. For example, with task vectors for N tasks, it is possible to represent 2N different
models through task vector addition or negation. In the context of recent advancements such as
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Large Language Model (LLM)-based chatbots and multi-agent systems (Park et al., 2023), where
diverse models are needed to adapt to various situations, the flexibility of task arithmetic is highly
significant. Furthermore, as discussed in Section 4.3, our method can be easily extended in the
context of continual learning while maintaining performance on previous tasks.

Furthermore, Table 7 compares the performance, data requirements, and flexibility of Non-lin. FT,
Linear FT, our proposed method, and MTL. Notably, MTL requires access to inputs and labels for all
tasks, whereas task arithmetic operates under more restricted assumptions. Unlike conventional task
arithmetic approaches (Non-lin. FT and Linear FT), our method requires access to inputs from other
tasks. This extension naturally aligns with the context of Unsupervised Domain Adaptation (Ganin
& Lempitsky, 2015), where only the data distribution xother from other domains is accessible. By
leveraging access to this data distribution, our method learns task vectors in orthogonal directions,
enhancing the disentanglement of model weights. In contrast to other methods, which cannot utilize
the data distribution xother in such scenarios, we propose an effective learning strategy tailored to
this specific context.

Table 7: Comparison of task addition and MTL. On the right side, the table shows the types of data
required for training on task t ∈ T , as well as the flexibility of the model. Here, xself represents
the input data of the current task, yself represents the labels of the current task, and xother and
yother refer to data from tasks other than t. In MTL, training requires data that includes labels
from all tasks, whereas task addition can be applied in more relaxed scenarios where MTL is not
feasible. Flexibility indicates whether the model’s performance can be easily modified for specific
tasks after training. On the left side, the table shows the accuracy across eight tasks for each model
scale, demonstrating that task addition using our regularization achieves performance comparable to
MTL, even in more relaxed scenarios.

Method ViT-B-32 ViT-B-16 ViT-L-14 xself yself xother yother Flexibility
Non-lin. FT 70.4 75.5 84.0 ✓ ✓ ✗ ✗ ✓

Linear FT 74.3 78.7 85.5 ✓ ✓ ✗ ✗ ✓

Ours 84.5 87.6 90.8 ✓ ✓ ✓ ✗ ✓

MTL 87.8 90.8 92.6 ✓ ✓ ✓ ✓ ✗

E ADDITIONAL RESULTS

Here, we present more detailed experimental results related to the analysis in the main text.

E.1 SINGLE TASK ACCURACY ON EACH TASK

Figure 4 presents the accuracy for each task obtained with the three FT methods described in Sec-
tion 4.2, along with the pre-trained model.

As noted by Ortiz-Jimenez et al. (2023), Non-linear FT outperforms the linearized FT methods
(Linear FT and Ours) due to the non-linear advantage.

Notably, despite applying regularization in our proposed method, which constrains learning to a
subspace orthogonal to ∇θf(xt; θ0), t ∈ Torth , there is no degradation in performance compared
to the original Linear FT. This demonstrates that our method successfully prevents task interference
while maintaining performance by guiding learning in a space that mitigates inter-task interference.

E.2 EFFECT OF TASK ADDITION ON EACH TASK

In Figure 5, we present the absolute and normalized accuracies for each task after task addition, com-
paring different methods. The right-hand plots of normalized accuracy demonstrate that our method
not only achieves the highest accuracy across most tasks but also maintains consistent performance
across all tasks, indicating that task-independent regularization is effectively achieved. Moreover, in
the left-hand plots of absolute accuracy, our method outperforms existing methods on all tasks ex-
cept for EuroSAT (Helber et al., 2019). These results suggest that our method successfully prevents
interference between tasks while preserving absolute performance.

18



Published as a conference paper at ICLR 2025

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0
Ab

so
lu

te
 A

cc
ur

ac
y

ViT-b-32 (single task)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-b-16 (single task)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-l-14 (single task)

Non-linear FT Linear FT Ours Pre-trained
Figure 4: The absolute accuracy after fine-tuning for each of the eight tasks, comparing Non-linear
FT (blue), Linear FT (orange), Ours (red), and the pre-trained model (green).

E.3 τ JP ON EACH TASK PAIR

Figure 6 illustrates the τJp between task pairs for both Linear FT and Ours. These results demon-
strate that our proposed regularization reduces the τJp between tasks. Compared to Linear FT, our
method shows a notably lower τJp in the off-diagonal components of the heatmap, i.e., between
different datasets. These results suggest that our proposed method effectively decreases the τJp
values.

E.4 RELATIONSHIP BETWEEN τ JP AND COSINE SIMILARITY OF TASK VECTORS

Interpreting similarity or interference between tasks in terms of cosine similarity of their task vectors
has been a common practice (Ilharco et al., 2023; Wang et al., 2023). However, explanations for the
interpretations remain limited and it is unclear whether cosine similarity fully accounts for those
relationships between tasks. In this section, we attempt to analyze the relationship between task
interference and task vector similarity through the lens of τJp.

We consider two tasks, A and B. Assuming that the fine-tuning of task B is conducted with a single
update using the entire dataset, τB can be expressed as follows:

τB = ∇θLB(f(xB , θ0))

= ∇θf(xB , θ0)
∂LB

∂f(xB , θ0)
(12)
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Table 8: The results of task addition using T5-small on four GLUE tasks (MRPC, RTE, CoLA, SST-
2) are shown, with task vector coefficients 1.0. Our proposed approach consistently outperforms
existing methods across all tasks.

Method MRPC RTE CoLA SST-2 Avg.
Abs. (↑) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑)

Pre-trained 31.8 - 5.0 - 7.3 - 32.3 - 19.1 -
Non-lin. FT (Ilharco et al., 2023) 70.3 91.6 72.2 77.2 90.2 96.3 57.1 60.4 72.5 81.4
Linear FT (Ortiz-Jimenez et al., 2023) 74.7 97.4 79.1 89.8 81.7 89.4 56.2 59.8 72.9 84.1
Ties-Merging (Yadav et al., 2023) 73.2 95.4 79.0 84.9 60.1 68.2 69.7 73.9 70.5 80.6
Ours 76.5 99.6 79.1 87.5 82.8 90.6 92.5 98.5 82.7 94.0

Table 9: The results of task negation for mitigating toxicity in text generation using GPT-2 are
presented. Task vector coefficients were fixed at 1.0. Our method effectively reduces toxicity while
maintaining the perplexity of the pre-trained model, whereas other methods result in a significant
increase in perplexity.

Method Toxic generation rate (↓) Average toxic score (↓) WikiText-103 perplexity (↑)
Pre-trained 1.3 0.03 29.4
Non-lin. FT (Ilharco et al., 2023) 0.0 0.01 95.7
Linear FT (Ortiz-Jimenez et al., 2023) 0.0 0.00 66.7
Ties-Merging (Yadav et al., 2023) 0.6 0.02 87.7
Ours 0.5 0.01 30.7

The first equation above is derived from the fact that the loss function becomes convex with respect
to the weights in the NTK regime (Theorem 2 in Appendix A). From this expression, the cosine
similarity can be rewritten as:

cos(τA, τB) =
τ⊤A τB

|τA| · |τB |

=
1

|τA| · |τB |
τ⊤A∇θf(xB , θ0)

∂LB

∂f(xB , θ0)
(13)

In the above, τ⊤A∇θf(xB , θ0) is a component of τJp, which, as we have demonstrated, explicitly
affects task interference (or weight disentanglement) in the model. Although τ⊤A∇θf(xB , θ0) is
included in the cosine similarity, based on the equation, the presence of other components also
affects their relationship, making it difficult to claim a theoretical correlation between them.

Figure 7 shows the cosine similarity between task pairs for both Linear FT and Ours. In Linear FT,
the cosine similarity between MNIST (LeCun, 1998) and SVHN (Netzer et al., 2011) is particularly
high, whereas in Ours, the values are much smaller and comparable to those of other task pairs. On
the other hand, the cosine similarities between Cars and SVHN in Linear FT is higher than the ones
in Ours. Therefore, no consistent trend was observed between cosine similarity and τJp values.

In Figure 8, we present a scatter plot with τJp on the horizontal axis and the cosine similarity
between the two task vectors on the vertical axis. Weak positive correlations were observed between
these values in the three model sizes. In particular, since cosine similarity tends to be small value
when the number of dimension is large, the correlation is considered weak in the setting of ViT-L-14.

Based on this analysis, cosine similarity appears to be less effective in representing weight disentan-
glement compared to τJp. This implies that τJp regularization performs better than cosine similarity
for reducing task interference.

E.5 WEIGHT DISENTANGLEMENT AND GENERALIZABILITY ON UNSEEN TASKS

In the context of MTL, generalizability to unseen tasks is often a topic of significant discussion.
In this study, we examine how improved weight disentanglement impacts the generalization perfor-
mance on unseen tasks.

We first conduct a theoretical analysis. Based on the weight disentanglement defined in Eq. (1),
we argue that for unseen tasks—those not corresponding to the task vectors used during training
—the task vectors should not influence the model’s outputs. As a result, the pre-trained model’s
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Table 10: Comparison of task addition on unseen tasks using ViT-B-32.

Method Training Tasks Avg. (↑) SVHN (↑) RESISC45 (↑)
Pre-trained 48.8 31.6 60.2
Non-lin. FT 73.4 50.2 52.2
Linear FT 77.4 38.7 46.6
AdaMerging 80.3 60.9 50.2
MTL 86.3 60.8 42.9
Ours 85.4 42.4 54.3

performance should be preserved, but no further performance improvement is expected, indicating
that weight disentanglement does not contribute directly to generalization performance in such cases.

To validate this hypothesis, we conducted task addition experiments as summarized in Table 10.
The experimental setup follows the protocol outlined in Yang et al. (2024), where the training tasks
consist of six datasets: [Cars, GTSRB, DTD, EuroSAT, MNIST, SUN397], while the unseen tasks
are RESISC45 and SVHN.

For the unseen tasks:

• SVHN is a 10-class digit classification task similar to MNIST. Here, knowledge learned
from MNIST in the training phase could be effectively transferred to improve performance
on SVHN. Therefore, weight disentanglement is not expected to generalize well in this
case.

• RESISC45 is a classification task involving aerial imagery, akin to EuroSAT. However, RE-
SISC45 includes approximately 35 additional classes not present in EuroSAT’s 10-class
setup. As a result, the knowledge gained from EuroSAT alone is insufficient to classify
most samples in RESISC45. In this scenario, preserving the knowledge from the pre-
trained model via weight disentanglement is expected to yield better performance.

The results confirm our theoretical insights. As shown in Table 10, MTL and AdaMerging, which
does not prioritize weight disentanglement and is optimized under the MTL framework, achieves
strong generalization performance on SVHN. However, its generalization performance on RE-
SISC45 is relatively poor due to its adverse impact on the pre-trained model’s knowledge retention.
Conversely, our method, which emphasizes weight disentanglement, demonstrates lower general-
ization performance on SVHN but successfully maintains the pre-trained model’s performance on
RESISC45.

In summary, the reduced generalization performance on SVHN is an expected and intentional out-
come of weight disentanglement, reflecting the method’s design focus. Conversely, the superior
performance on RESISC45 highlights the effectiveness of our approach in retaining pre-trained
knowledge for tasks that require it.

E.6 ADDITIONAL RESULTS ON NLP TASKS

Table 8 (task addition) and Table 9 (task negation) present the results of the NLP experiments where
task vector coefficients were not adjusted.

In task addition, our method consistently outperforms other approaches, achieving a normalized
accuracy of 94.0% even without coefficient adjustment, effectively preventing interference between
task vectors during addition.

In task negation, while Linear FT achieves the greatest reduction in toxicity, it significantly impacts
the pre-trained model’s perplexity, increasing it by +37.3 points, thereby affecting the original lan-
guage capabilities. In contrast, our method limits the perplexity increase to just +1.3 points while
sufficiently mitigating toxicity.
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Figure 5: The absolute accuracy (left column) and normalized accuracy (right column) for each of
the eight tasks after task addition, comparing Non-linear FT (blue), Linear FT (orange), and Ours
(red).
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Figure 6: Heatmaps visualizing τJp on each task pair. The darker the color of the cell, the higher
the value it represents. The values within cells indicate τJp. The figures in the left column show
the model with our proposed regularization, while the figures in the right columns show the existing
linearized model without regularization. Our proposed regularization results in lower τJp between
different tasks.
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Figure 7: Heatmaps visualizing cosine similarity of task vectors on each task pair. The darker the
color of the cell, the higher the value it represents. The values within cells indicate cosine similarity.
The figures in the left columns show the model with our proposed regularization, while the figures
in the right columns show the existing linearized model without regularization.
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Figure 8: Visualization of the relationship between τJp and cosine similarity. Each point represents
a pair of tasks from the set of eight tasks, yielding

(
8
2

)
combinations, i.e., 28 in total. The blue

dots represent the results from traditional linearized task addition, while the orange stars denote the
results using task vectors obtained through our proposed regularization.
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