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Abstract

Forecasting multivariate time series data, which involves predicting future values
of variables over time using historical data, has significant practical applications.
Although deep learning-based models have shown promise in this field, they often
fail to capture the causal relationship between dependent variables, leading to less
accurate forecasts. Additionally, these models cannot handle the cold-start problem
in time series data, where certain variables lack historical data, posing challenges
in identifying dependencies among variables. To address these limitations, we
introduce the Cold Causal Demand Forecasting (CDF-cold) framework that inte-
grates causal inference with deep learning-based models to enhance the forecasting
accuracy of multivariate time series data affected by the cold-start problem. To
validate the effectiveness of the proposed approach, we collect 15 multivariate
time-series datasets containing the network traffic of different Google data centers.
Our experiments demonstrate that the CDF-cold framework outperforms state-of-
the-art forecasting models in predicting future values of multivariate time series
data suffering from cold-start problem.

1 Introduction

Time series forecasting plays a central role in a vast number of studies [44, 30, 32, 22]. The goal of
time series forecasting is to use historical and current data to predict future values over a period of time.
The applications of time series prediction are diverse and include climate and weather forecasting
in geography [9, 14], traffic flow prediction in transportation [47, 8, 49], healthcare diagnosis in
medical science [41, 3], and sales and stock prices prediction in economics [23, 31, 25, 4]. We
specifically focus on forecasting the network traffic of different Google data centers as a motivating
example. Each data center hosts multiple Google services with different network traffic and machine
usage. Accurately forecasting the network traffic in these data centers is critical for efficient resource
allocation and capacity planning, as well as ensuring a high-quality user experience.

In recent years, there has been extensive research and application of various time series forecasting
methods. While classic forecasting methods like Univariate Autoregressive (AR), Univariate Moving
Average (MA), Simple Exponential Smoothing (SES), and Autoregressive Integrated Moving Average
(ARIMA) [2] have been widely studied, they are limited by their assumptions of linearity and
aperiodicity of data. Moreover, these models fail to effectively forecast multivariate time series
datasets, where each variable’s behavior depends not only on its past values but also on the interactions

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.



with other variables. Recently, deep learning models have been developed to capture the complexity
and nonlinearity in time series forecasting. Long Short-Term Memory (LSTM) is one of the prominent
deep learning models used to extract dynamic information from time series data through the memory
mechanism [36, 40].

While these approaches often perform well at capturing temporal patterns, they often overlook the
interdependencies between different time series variables. The better the interdependencies among
different time series are modeled, the more accurate the forecasting can be [47]. In the running
example, the impact of different Google services on the network traffic can vary depending on
the machine usage of the service. Recently, Graph Neural Networks (GNN) have been utilized
to incorporate the topology structure and interdependencies among variables in forecasting tasks
[42, 49]. In GNN models, each variable from a multivariate time series is represented as a node in
a graph, and the edges between the nodes capture the interdependencies or relationships between
the variables. By propagating information between neighboring nodes, Graph Neural Networks
(GNNs) empower each variable in a multivariate time series to be aware of the influence of correlated
variables. However, these models often lack the ability to effectively capture and understand causal
relationships between variables. Incorporating causal knowledge into forecasting models enhances
interpretability and provides insight into the factors that affect the target variable. Previous studies
have attempted to quantitatively characterize the interdependencies between time series variables
through causality [24]. Granger causality is one commonly used approach in time series analysis,
particularly in economics [15]. Nevertheless, research has demonstrated that Granger causality cannot
handle nonlinear relationships well, leading to spurious causality or the identification of false causal
relationships [5].

While it is straightforward to train a forecasting model with past values of the time series, forecasting
time series data with no historical data, known as cold-start forecasting, is challenging. In the absence
of historical data, the forecasting model fails to capture and learn the inter-dependencies between
new and existing variables, leading to inaccurate predictions of the target variables. For instance,
when new Google services are introduced to a data center in the future, they may impact the total
network traffic of the data center.

In this paper, we propose the Cold Causal Demand Forecasting (CDF-cold) framework that brings
together causal inference and deep learning-based models to increase the accuracy of multivariate time
series forecasting suffering from the cold-start problem. CDF-cold consists of two main components:
1) The Causal Demand Forecast component that exploits the causal relationship between different
variables of a multivariate time series to learn a new representation for each variable based on the
representation of other variables that causally impact it, and 2) The Cold-start forecasting component
that leverages similarity-based approaches to alleviate the cold-start forecasting in time series data.
While the idea of using deep learning models in time series forecasting is not novel, combining these
models with causal inference to address the cold-start problem in multivariate time series forecasting
is novel. To summarize, this paper makes the following contributions:

• We formulate the cold-start forecasting problem in multivariate time series datasets. In
particular, we focus on datasets where future values for some variables correlated with the
variables with no historical data are available in advance.

• We develop a similarity-based framework that incorporates causal relationships between
variables in a deep learning model and addresses cold-start forecasting in time series data
with no historical data.

• We evaluate the performance of our framework on 15 multivariate time series datasets from
various Google data centers, containing network traffic, and machine usage of different
Google services. Our results demonstrate that our proposed framework outperforms existing
baselines in forecasting accuracy.

2 Related Work

Classical forecasting methods rely on statistical regression techniques to predict future values of
variables based on historical information. The Autoregressive Integrated Moving Average (ARIMA)
is one of the most widely used statistical methods for time series forecasting in non-seasonal time
series. It combines Autoregression (AR), Moving Average (MA), and a differencing pre-processing
step called integration (I) to make the time series stationary [18, 2]. In Vector Auto Regression
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(VAR), each variable is a linear function of its past values and the past values of all the other variables.
Despite their popularity, these models cannot capture nonlinear and complex temporal patterns among
different time series, resulting in sub-optimal forecasts.

Recent studies have shown that deep learning methods consistently outperform classical methods
in forecasting [26, 43, 17]. A line of research focuses on Recurrent Neural Network architectures
for temporal forecasting applications [34, 29]. Salinas et al. [37] propose DeepAR, a method for
obtaining accurate probabilistic forecasts using an autoregressive RNN model on a large number
of time series datasets. Long Short-Term Memory (LSTM), which is a special type of RNN with
additional features to memorize sequences of data, has gained lots of attention in traffic forecasting
[51, 50]. A new line of research focuses on deploying Graph Neural Networks (GNNs) to integrate
the dependency between variables in the forecasting model [45, 38, 7, 28]. Recently, attention
mechanisms (e.g., transformers) have shown superior performance in time series forecasting due to
their ability to handle long-term dependencies [10, 11, 8].

While there has been extensive research on developing deep-learning methods for time series fore-
casting, less attention has been paid to the impact of causal relationships between variables in a
multivariate time series on forecasting accuracy. Granger causality is one the prominent approaches
to identifying causal relationships in time series data [16, 13, 6, 12]. Nevertheless, prior studies have
shown that Granger causality may lead to spurious or falsely detected causal relationships due to its
inability to handle nonlinear relationships [5]. Xu et al. [47] develop an approach to identify causal
relationships among variables and use this information in multivariate time series forecasting. A
recent study introduced a method for causal discovery and forecasting in nonstationary time series
data, with a primary focus on learning causal graphs from such data [20]. However, there’s still a
need to address the cold-start forecasting problem which is the focus of this paper.

3 Preliminaries

Suppose that we have N data centers, and each data center Li ∈ L generates a multivariate time
series recording A attributes (such as network traffic and machine usage of each Google service) over
time. Let X ∈ RN×T×A denote the multivariate time series from all N data centers for a total of T
time steps. We use xi ∈ RT×A to represent the multivariate time series from data center Li, xi,T to
show the attributes from data center Li at time T , and xj

i,t to denote the value of attribute aj in data
center Li at time t.

The goal of time series forecasting is to learn a function Fθ that, at timestamp t, given the attributes of
the past U timestamps from each data center Li, predicts the values of the attributes in the future H
timestamps. Formally, at timestamp t, the forecasting function Fθ predicts the values of all variables
in data center Li over the next H timestamps as:

(x̂i,t+1, x̂i,t+2, ..., x̂i,t+H) = Fθ(xi,t−U+1, xi,t−U+2, ..., xi,t) (1)
where θ is a set of learnable model parameters of the forecasting model, H is the horizon ahead of the
current timestamp, and x̂i,t−H+1 is the prediction for all variables in data center i at time t−H + 1.

3.1 Cold-start forecasting problem

Cold-start forecasting problem arises when there is no historical data available for time series data
or when the available data is insufficient to make reliable predictions. The problem becomes even
more complex when there are interdependencies between the time series impacted by the cold-start
problem and other variables. One example of such interdependencies is when introducing a new
Google service to a data center, which can have a substantial impact on the overall network traffic
within the data center. This sudden change in the network traffic pattern can disrupt the existing
relationships and correlations that machine learning models rely on for forecasting. As a result,
accurately predicting future patterns becomes more challenging.

Conventional machine learning and neural network forecasting models face challenges when at-
tempting to derive precise inferences from inadequate information. These models often assume
that all variables have an equal impact on the target variable, which does not always hold true in
real-world domains. For example, highly used services can exert a more substantial influence on the
total network traffic of a data center compared to less utilized services. This discrepancy in impact
can lead to inaccuracies in forecasting when conventional models are employed.
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Figure 1: Illustration of Causal Demand Forecast (CDF) component. Input: a multivariate time series
dataset and the causal graph representing the causal relationship between variables. GNN: generates
a representation for each variable in each time point based on the variables causally impacting it.
LSTM: generates a representation for each variable based on the historical data and the representation
generated by the GNN layer. Dense: generate the forecasting for H horizons.

In some cases, future information for certain attributes that are correlated with time series impacted
by the cold-start problem may be available in advance (e.g., machine usage data for a new Google
service). By leveraging this information in the forecasting model, it is possible to improve the
accuracy of predictions and mitigate the cold-start problem to some extent. For example, assume that
in data center Li, the historical data for attributes a2 and aA−1 is not available but the future values
of attribute aA−1 which is correlated with a2 are available. Then, the forecasting task would be:
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In this paper, our goal is to predict (x̂i,t, x̂i,t+1, ..., x̂i,t+H ) as accurate as possible. More formally:

Problem 1 (cold-start forecasting) Given N multivariate time series corresponds to L data centers
with A attributes in T timestamps represented by X ∈ RL×T×A, along with a forecasting horizon of
H, we aim to learn a function Fθ that predicts the future values of attributes such that:

argmin

H∑
h=1

A∑
j=1

(x̂j
i,t+h − xj

i,t+h)
2. (2)

4 Cold Causal Demand Forecasting Model

With the aim of addressing the cold-start problem in multivariate time series forecasting, we propose
Cold Causal Demand Forecasting (CDF-cold) framework, which brings together causal inference
and neural networks to improve forecasting accuracy for multivariate time series datasets suffering
from cold-start problem. In this section, we provide a detailed description of the architecture of the
CDF-cold framework. CDF-cold comprises two main components: 1) Causal Demand Forecasting,
and 2) Cold-start Forecasting.

4.1 Causal Demand Forecasting (CDF)

The CDF component is designed to train a forecasting model for datasets with historical data for all
variables. CDF consists of two sub-components:
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• Causal Component. Existing time series forecasting models often assume correlations
between a time series and its lags [1]. However, the future values of a time series can be
influenced not only by its historical data but also by other variables in the dataset. Causal
inference can play a crucial role in time series forecasting by identifying the causal relation-
ships between variables in the dataset, improving our understanding of how different factors
affect the time series over time, and helping us make more accurate predictions about future
values. In our framework, we leverage a causal discovery algorithm to capture interdepen-
dencies between different variables and integrate the causal graph into the forecasting model.
Structural Causal Models (SCMs) are graphical representations of cause-effect relationships
between variables allowing for the identification of the effect of interest [33]. Causal graphs
are Directed Acyclic Graph (DAG) representations of SCMs, where the direction of an edge
determines the relationship between the variables. If the variable Y is the child of a variable
X, then we say that Y is caused by X, or that X is the direct cause of Y.

• Representation Learning Component. The goal of this component is to learn a representa-
tion for each time series based on lags of the time series and variables causally impacting it.
This component is a multilayer neural network model consisting of:

– Graph Neural Network layer: For representation learning based on other attributes, we
leverage Graph Neural Networks (GNN) whose effectiveness has been demonstrated in
various machine learning tasks [52, 45, 38]. GNN is a deep learning approach for semi-
supervised learning on graph-structured data which gets the matrix representation of the
graph structure and the attribute matrix as the input and generates a new representation
for each node based on the attributes of its neighbors. In our setting, for each data
center Li, We feed the causal graph G, extracted by the Causal Component, and the
multivariate time series xi into the GNN layer to obtain a new representation for each
target variable based on the variables causally impacting it within the causal graph as:

hi = σ((xiM)W1
1) (3)

where M ∈ RA×A is the adjacency matrix corresponding to the causal graph G,
W1 ∈ RT×A×Dg is the weight matrix to be learned, Dg denotes the dimension of the
new representation generated by GNN and σ stands for the ReLU activation function.
By applying the GNN layer to the input multivariate time series and the causal model, an
attribute’s representation is informed by the information from its neighbors. However,
we need not only information from the causally impacting attributes but also we need
to process the information of each attribute over time. With this goal, we pass each
attribute’s new representation through a recurrent layer.

– Long Short-Term Memory Networks (LSTM): LSTM is a Recurrent Neural Network
(RNN) model with the capability of memorizing the important parts of the input
sequence seen so far for the purpose of future use [19]. The LSTM layer enables the
model to memorize historical information for each time series and generate a new
representation based on the representation generated by the GNN layer. For a model
with s LSTM layers, we have:

ĥi = σ(...σ(σ(hiW
1
2)W

2
2)...W

s
2 ) (4)

where Ws
2 ∈ RA×Dl and Dl denotes the dimension of the new representation gener-

ated by the LSTM layer s.
– Dense layer: The output of LSTM is passed to a densely connected neural network

layer to generate the forecasting for H horizons as:

h′
i = σ(ĥiW3) (5)

where W3 ∈ RA×H represents the learnable weights for the dense layer. The output of
the dense layer shows the forecasting for A attributes in time steps t+1, t+2, ..., t+H .

Since we assume that the future values for some attributes are available in advance, we take
advantage of this information to improve the forecasting of other time series. Let O1 denote
the set of attributes with known future values x|O1|

i,H ∈ RH×|O1| in data center Li and let
O2 represents all the attributes in A which are not in O1. We concatenate the forecasting of
set O2 in h′

i with xO1

i,H and obtain a new vector h̃i as:

h̃i = concat(h′
i
|O2|, x

|O1|
i,H ). (6)
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Figure 2: The impact of the number of similar data centers on the forecasting model error.

Then, we feed h̃i to a densely connected neural network layer to obtain the final forecasting:

ḧi = σ(h̃iW4), (7)

where W4 ∈ R|O2|×H is the wight matrix to be learned. Fig. 1 demonstrates the network
architecture of the CDF component.

4.2 Cold-start forecasting component

The utilization of the Representation Learning component enables the prediction of future values
in time series datasets that have access to historical data. However, when faced with the cold-start
problem, the model becomes insufficient in capturing the interdependencies between the target
variable and variables without historical data. To address this issue, we propose a similarity-based
approach that leverages forecasting models trained on the k most similar data centers with historical
data. This component is comprised of three main steps as described below:

1. We use a similarity-based approach to find k most similar data centers to the target data
center with the cold-start problem. A data center is considered a similar data center if it has
enough historical data for the variables without historical data in the target data center.

2. We use the forecasting models trained on the k similar data centers to predict the future
values of attributes in the target data center with no historical data. The input to each trained
model would be the available future data for set O1 of the target data center x|O1|

i,H .

3. We take the average of the predictions for target variables of the target data center predicted
by the models trained on the k similar data centers.

We consider two different similarity-based approaches in our framework:

• Gaussian Mixture Model (GMM): GMM is a clustering technique that assumes a specific
number of Gaussian distributions in the data, where each distribution represents a cluster
[35]. By applying GMM to multiple multivariate time series datasets, we can group time
series belonging to a single distribution. The parameters of the GMM model are estimated
using the Expectation-Maximization algorithm based on maximum likelihood.

• Extended Frobenius norm (Eros): Eros is a Principal Component Analysis (PCA) based
approach that measures the pairwise similarity between multiple multivariate time series
datasets [48]. In this approach, the covariance matrices of different datasets are measured.
Then, the similarity between eigenvectors weighted by eigenvalues of the covariance matrices
quantifies the similarity between different datasets.

5 Experiments

In this section, we evaluate the performance of the baselines in multivariate time series forecasting.
We first describe the dataset used in our experiments and then discuss our baselines and results.

5.1 Dataset

We collect the multivariate time series of 15 Google data centers. Each dataset comprises network
traffic and machine usage information for the top 200 Google services in terms of network traffic, as
well as the overall network traffic for each data center, over a period of 533 days.
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5.2 Baselines

We compare the performance of our framework with different forecasting models:

• LSTM: For each data center, we train a forecasting model comprising an LSTM layer and a
dense layer using the multivariate time series dataset of the data center.

• GNN+LSTM: This approach is similar to the CDF model but we assume that the causal
effect of each variable on all other variables is equivalent to 1 (∀mi,j ∈M , mi,j = 1).

• CDF: This is our proposed forecasting framework represented in Fig. 1.
• CDF_GMM: This method is considered as a variant of the Cold-CDF framework. In this

model, GMM is applied in the cold-start forecasting component of the CDF-cold framework
to find the most similar data centers to the target data center with the cold-start problem.

• CDF_GMM_sd: This approach is a variant of CDF_GMM method. In this technique, GMM
is used to identify the most similar data centers to the target data center. Then, the CDF
models trained on similar data centers are used to forecast the future values of the time series
in the target data center. We iteratively remove the forecasts which are out of the range of
standard deviation of the remaining forecasts. Finally, we take the average of the remaining
forecasts as the predicted values for the target data center.

• CDF_eros: In this approach, the Eros method is used to measure the similarities between
different multivariate time series in the cold-start forecasting component.

• CDF_virtual: In this approach, GMM is used to identify k most similar data centers to
the target data center with the cold-start problem. Then, a virtual data center is created by
measuring the pointwise average of the time series of similar data centers. Finally, a CDF
model is trained using the virtual data center and exploited to forecast in the target center.

• CDF_virtual_mn: This model is a variant of CDF_virtual. In this approach, a virtual data
center is created by measuring the pointwise average of the time series of similar data centers
weighted by the Manhattan distance of the target data center and each similar data center.

5.3 Experimental Setup

To smooth time series data over outliers and short-term fluctuations, we use the rolling median
technique in which the attribute values of a sliding time window are replaced with the median
of the values in that window. We set the window size to 7 and utilize first-order differencing
(xj

i,t ← xj
i,t − xj

i,t−1) to convert non-stationary datasets to stationery. In non-stationary time series
datasets, the statistical properties of the dataset ( e.g., mean and variance) change in time. To
standardize the dataset, we use Z-score normalization in which attributes are rescaled to ensure the
mean and the standard deviation are 0 and 1, respectively.

We set the observable past window size U = 10 and horizon H ∈ {1, 10}. We use the Mean Squares
Error (MSE) loss function and the RMSProp optimizer to optimize the parameters of our model.
For causal discovery, we exploit VARLiNGAM [21] which is an extension of the LiNGAM [39]
model to time series datasets. VARLiNGAM enables analyzing both lagged and contemporaneous
(instantaneous) causal relations in multivariate time series datasets.

To evaluate the effectiveness of various forecasting models in datasets with the cold-start problem,
we remove the historical data for ten of the Google services with high network traffic until t=400 in
each data center. We then predict the total network traffic beyond this time step (H ∈ {10, 20}) when
the removed service is added to the data center. Each time, we select one data center as the dataset
with the cold-start problem, we consider the other 14 data centers as potentially similar data centers.
To assess the performance of different models, we follow existing literature [27, 46] and report the
mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE)
of the total network traffic in each data center.

5.4 Results

Sensitivity to the number of similar data centers: In this experiment, our objective is to explore
how the number of similar data centers affects the performance of different cold-start forecasting
component variants. As shown in Fig. 2, our findings demonstrate that the model trained exclusively
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Table 1: Comparison between the forecasting of different methods for H ∈ {10,20} and U = 12.
H=10 H=20

Data center Metric LSTM LSTM+GNN CDF LSTM LSTM+GNN CDF

L1

MSE 0.088 0.039 0.012 0.21 0.03 0.001
MAE 0.2 0.165 0.08 0.4 0.1 0.03

MAPE 0.91 0.7 0.52 0.18 0.1 0.07

L2

MSE 3.88 3.54 3.1 0.85 0.41 0.32
MAE 1.43 1.35 1.27 0.89 0.63 0.57

MAPE 3.34 2.41 2.27 1.19 0.94 0.66

L3

MSE 9.6 8.69 7.65 0.35 0.13 0.024
MAE 2.19 2.1 1.87 0.47 0.16 0.95

MAPE 2.08 1.48 1.21 4.23 1.00 0.95

L4

MSE 0.28 0.18 0.11 0.26 0.15 0.008
MAE 0.59 0.47 0.27 0.41 0.18 0.079

MAPE 4.68 2.67 2.23 16.49 8.87 3.89

Table 2: Comparison between the performance of different methods in mitigating cold-start forecast-
ing problem for H=10 and U=12. The best results are highlighted in bold.

Data center Metric LSTM LSTM+GNN CDF CDF_eros CDF_GMM CDF_GMM_sd CDF_virtual CDF_virtual_mn

L1

MSE 2.14 1.98 1.85 1.76 1.64 1.41 1.69 1.66
MAE 1.282 1.12 0.99 0.98 0.95 0.9 0.98 0.98

MAPE 1.63 1.35 1.24 1.07 0.98 0.91 1.4 1.18

L2

MSE 2.34 1.98 1.75 1.61 1.55 1.40 1.64 1.62
MAE 0.99 0.91 0.86 0.82 0.79 0.77 0.85 0.82

MAPE 2.99 2.21 2.07 1.86 1.71 1.63 1.9 1.81

L3

MSE 3.11 2.98 2.71 2.68 2.53 2.31 2.63 2.56
MAE 1.22 1.14 1.08 1.04 1.01 1.01 1.04 1.02

MAPE 1.87 1.51 1.49 1.47 1.19 1.12 1.59 1.51

L4

MSE 0.42 0.28 0.2 0.17 0.12 0.09 0.18 0.16
MAE 0.59 0.41 0.31 0.28 0.25 0.24 0.29 0.27

MAPE 10.67 2.61 2.12 1.88 1.51 1.50 1.83 1.78

on the most similar data center does not necessarily yield the most precise forecasting for data centers
that encounter the cold-start problem. In the CDF_eros method, averaging the forecast of the models
trained on the first five most similar data centers produces the least forecasting error. Considering
the CDF_GMM method, we observe that partitioning the dataset into 2 or 3 dense clusters or sparse
clusters with 12, 13, and 14 partitions leads to a significantly higher forecasting error. Conversely,
configuring the number of components to 7 or 8 results in the lowest prediction error.

Evaluating the forecasting performance: In this experiment, the performance of three different
models in total network traffic forecasting was compared. Table 1 presents the MSE, MAE, and
MAPE of total network traffic predicted by three different methods in four different Google data
centers. The results for more datsets can be found in Appendix. The results show that applying
GNN can significantly improve the accuracy of forecasting compared to LTSM in all data centers.
Compared to LSTM+GNN, CDF decreases the error from significantly. To study the ability to
forecast longer horizons, we increase the forecasting horizon from H = 10 to H = 20. Similar to
the results when H = 10, GMM outperforms the LSTM model. Furthermore, we observe that CDF
with a causal component consistently outperforms LSTM+GNN in all datasets.

Cold-start forecasting evaluation: To evaluate different methods for mitigating the cold-start
forecasting, we MSE, MAE, and MAPE of total network traffic prediction using the forecasting
methods. As depicted in Table 2, the methods that lack a cold-start forecasting component (LSTM,
LSTM+GNN, and CDF) exhibit higher estimation error compared to the methods that include a
cold-start forecasting component. This can be attributed to the fact that LSTM cannot, LSTM+GMM,
and CDF cannot learn the interdependence between variables and the total network traffic with-
out historical data for some variables. However, we observed that CDF outperforms LSTM and
LSTM+GNN in all datasets which is consistent with the results reported in Table. 1. Among the
Cold-CDF variants, cluster-based methods (i.e., CDF_GMM, and CDF_GMM_sd) exhibit the least
forecasting error. Compared to CDF, the CDF_GMM_sd approach improves the MSE in all datasets.
The findings for the other two metrics (MAE and APE) are consistent with these results. CDF_GMM
and CDF_GMM_sd also demonstrate the lowest values for MAE and MAPE.

6 Conclusion

In this paper, we present the Cold Causal Demand Forecasting framework, a novel approach designed
to address cold-start forecasting in multivariate time series data where some variables lack historical
information. Our framework leverages causal discovery algorithms to uncover cause-and-effect
relationships among interdependent variables. These discovered relationships are then integrated into
a neural network model, resulting in improved forecasting accuracy. We propose a similarity-based
approach to tackle the cold-start problem. Our comprehensive evaluation of 15 Google multivariate

8



time series datasets reveals the superior performance of our framework in comparison to existing
baseline methods. One potential future direction is to integrate transformers and causal inference to
propose a model for datasets with no historical data for all variables.
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Table 3: Comparison between the forecasting of different methods for H ∈ {10,20} and U = 12.
H=10 H=20

Data center Metric LSTM LSTM+GNN CDF LSTM LSTM+GNN CDF

L5

MSE 1.84 1.69 1.46 6.02 3.28 2.82
MAE 0.99 0.96 0.88 1.52 1.26 1.00

MAPE 2.04 1.05 1.10 0.68 0.60 0.35

L6

MSE 1.38 1.21 1.12 4.2 0.028 0.004
MAE 0.79 0.76 0.69 0.46 0.169 0.058

MAPE 2.56 2.16 1.65 2.05 0.72 0.25

L7

MSE 1.48 1.18 0.98 4.21 3.16 2.82
MAE 0.95 0.83 0.77 2.03 1.72 1.68

MAPE 2.21 1.78 1.30 1.09 0.92 0.6

L8

MSE 1.33 1.02 0.82 0.21 0.01 0.001
MAE 0.71 0.64 0.57 0.42 0.08 0.017

MAPE 2.00 1.5 1.17 3.53 0.33 0.87

L9

MSE 1.17 0.73 0.47 0.58 0.21 0.062
MAE 0.95 0.68 0.57 0.75 0.24 0.11

MAPE 3.34 2.42 1.60 1.71 0.54 0.38

L10

MSE 1.88 1.69 1.34 11.91 9.04 7.97
MAE 0.85 0.65 0.44 2.94 2.63 2.3

MAPE 2.17 1.78 1.39 1.29 1.05 0.86

L11

MSE 7.71 6.88 6.37 3.41 1.93 1.31
MAE 2.5 2.36 2.26 1.61 1.26 1.07

MAPE 1.07 0.99 0.94 1.04 0.99 0.75

L12

MSE 0.93 0.74 0.6 2.5 1.005 1.31
MAE 0.73 0.66 0.58 1.53 1.05 0.84

MAPE 2.63 2.28 1.39 1.19 0.98 0.78

L13

MSE 2.05 1.69 1.53 10.05 6.89 5.98
MAE 1.01 0.94 0.82 3.15 2.61 2.13

MAPE 2.41 2.19 1.08 1.09 0.98 0.81

L14

MSE 2.275 1.14 0.94 0.055 0.016 0.014
MAE 1.12 0.88 0.79 0.22 0.1 0.08

MAPE 2.76 1.14 1.02 2.65 0.68 0.47

L15

MSE 3.83 3.78 3.32 0.75 0.24 0.14
MAE 1.66 1.56 1.49 0.83 0.49 0.39

MAPE 1.92 1.32 0.93 1.27 0.75 0.55

A Appendix

A.1 Hyperparameter Tuning

We vary hyper-parameters for each baseline method and each dataset to achieve their best performance
on this task. We split each dataset into 80% training, 10% validation, and 10% test datasets. To
train LSTM, GNN and CDF models, we search the learning rate in {10−1, 10−2 , 10−3, 10−4}, the
number of epochs in {10, 20, 30, 50, 70, 100} and the batch size in {16, 32, 64, 128}. The number
of hidden units is chosen from {10, 20, 100, 200, 300} and the number of hidden layers is set from
{1, 2, 3}.

A.2 Results

This section contains the results for comparison between different forecasting models in predicting
the future values in datasets with historical data and datasets with a cold-start problem.
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Table 4: Comparison between the performance of different methods in mitigating cold-start fore-
casting problem for H=10 and U=12. The best results are highlighted in bold. CDF_GMM_sd
outperforms other methods in forecasting for all data centers.

Data center Metric LSTM LSTM+GNN CDF CDF_eros CDF_GMM CDF_GMM_sd CDF_virtual CDF_virtual_mn

L5

MSE 1.52 1.32 1.08 0.91 0.86 0.73 0.9 0.87
MAE 0.96 0.81 0.69 0.68 0.66 0.56 0.72 0.69

MAPE 2.31 1.91 1.54 1.32 1.21 1.12 1.78 1.56

L6

MSE 0.89 0.78 0.67 0.61 0.5 0.37 0.6 0.53
MAE 0.76 0.61 0.53 0.49 0.42 0.41 0.5 0.49

MAPE 3.12 1.78 1.52 1.48 1.30 1.26 1.37 1.31

L7

MSE 3.24 2.97 2.51 2.42 2.33 2.18 2.49 2.38
MAE 1.43 1.21 1.09 1.03 1.01 0.99 1.02 1.00

MAPE 1.65 1.35 1.21 1.12 1.02 0.95 1.2 1.14

L8

MSE 1.29 0.98 0.77 0.59 .43 0.31 0.58 0.55
MAE 0.68 0.54 0.49 0.48 0.43 0.40 0.53 0.48

MAPE 2.92 1.96 1.84 1.52 1.45 1.38 2.69 2.13

L9

MSE 0.99 0.88 0.71 0.65 0.51 0.40 0.67 0.64
MAE 0.83 0.71 0.59 0.53 0.52 0.51 0.53 0.52

MAPE 2.77 2.32 1.98 1.63 1.39 1.38 2.10 2.00

L10

MSE 0.86 0.75 0.61 0.53 0.41 0.34 0.58 0.54
MAE 0.69 0.58 0.46 0.4 0.38 0.37 0.42 0.40

MAPE 3.71 2.78 2.43 2.29 2.15 1.69 2.75 2.21

L11

MSE 3.67 2.98 2.74 2.69 2.42 2.11 2.72 2.69
MAE 1.78 1.37 1.33 1.28 1.19 1.02 1.33 1.29

MAPE 1.83 1.54 1.50 1.21 1.07 1.00 1.16 1.08

L12

MSE 1.93 1.63 1.58 1.53 1.42 1.19 1.59 1.51
MAE 1.02 0.96 0.86 0.8 0.76 0.71 0.9 0.78

MAPE 3.72 2.89 2.54 1.47 1.38 1.21 1.65 1.40

L13

MSE 2.53 2.02 1.81 1.64 1.51 1.28 1.98 1.78
MAE 1.16 1.03 0.99 0.98 0.95 0.89 1.04 1.01

MAPE 6.52 5.67 4.22 3.90 3.62 2.65 10.64 7.04

L14

MSE 0.98 0.89 0.76 0.71 0.61 0.50 0.87 0.7
MAE 0.83 0.75 0.96 0.84 0.68 0.68 0.75 0.69

MAPE 1.84 1.70 1.56 1.22 1.07 1.02 1.8 1.65

L15

MSE 4.21 3.93 3.76 3.21 3.05 2.82 3.76 3.43
MAE 1.52 1.43 1.31 1.3 1.24 1.21 1.37 1.27

MAPE 1.62 1.58 1.42 1.21 1.09 1.01 2.44 1.16
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