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ABSTRACT

Photoplethysmography (PPG) is the most widely used non-invasive technique for
monitoring biosignals and cardiovascular health, with applications in both clinical
settings and consumer health through wearable devices. Current machine learning
models trained on PPG signals are mostly task-specific and lack generalizability.
Previous works often used single-device datasets, did not explore out-of-domain
generalization, or did not release their models, hindering reproducibility and fur-
ther research. We introduce PAPAGEI, the first open foundation model for PPG
signals. PAPAGEI is pre-trained on more than 57,000 hours of 20 million unla-
beled segments of PPG signals using publicly available datasets exclusively. We
evaluate against popular time-series foundation models and other benchmarks on
20 tasks of 10 diverse datasets spanning cardiovascular health, sleep disorders,
pregnancy monitoring, and wellbeing assessment. Our architecture incorporates
novel representation learning approaches that leverage differences in PPG signal
morphology across individuals, enabling it to capture richer representations than
traditional contrastive learning methods. Across 20 tasks, PAPAGEI improves
classification and regression performance by an average of 6.3% and 2.9%, respec-
tively, compared to other competitive time-series foundation models in at least 14
tasks. PAPAGEI is more data- and parameter-efficient than other foundation mod-
els or methods, as it outperforms 70x larger models. Beyond accuracy, we also
investigate robustness against different skin tones, establishing a benchmark for
bias evaluations of future models. Notably, PAPAGEI can be used out of the box
as both a feature extractor and an encoder for other multimodal models, opening
up new opportunities for multimodal health monitoring1.

1 INTRODUCTION

Photoplethysmography (PPG), a non-invasive optical sensing technique, is widely used for monitor-
ing cardiovascular health and physiological signals in both clinical and consumer health applications
(Charlton et al., 2023). From hospital pulse oximeters to smartwatches, PPG enables continuous
health monitoring in various settings, bridging acute medical care and long-term health manage-
ment. PPG signals can track a diverse range of health indicators, including cardiovascular health,
blood pressure, mood, and sleep disorders (Sadad et al., 2022; Ave et al., 2015; Temko, 2017; Reiss
et al., 2019; Liang et al., 2018a; Haddad et al., 2021; Schrumpf et al., 2021).

Despite its widespread adoption, PPG presents significant challenges for machine learning (ML).
These include high annotation costs due to the need for domain-specific expertise, especially in
consumer health applications where recording conditions and subject heterogeneity vary greatly.
PPG signals are also susceptible to noise and motion artifacts (Afandizadeh Zargari et al., 2023), and
inherent variability due to factors like skin tone and body composition (Bent et al., 2020) complicates
the development of generalizable ML models. Consequently, existing PPG datasets are often small,
task-specific, and limited in their generalizability, posing a major obstacle to the development of
robust and widely applicable models that could fully leverage the potential of this technology.

1Models, data, and code will be available upon our public release. Preliminary code for reviewing purposes
is available at: https://anonymous.4open.science/r/PaPaGei_ICLR_Review-6FC2/
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Figure 1: PAPAGEI Overview. We curate public datasets of diverse PPG signals, and train a founda-
tion model leveraging a novel morphology-aware contrastive learning approach. To evaluate its ef-
fectiveness, we apply the embeddings generated by PAPAGEI to 20 tasks from 10 different datasets.

The PPG domain lacks general-purpose foundation models (FM), unlike language and vision do-
mains, with most work focused on single-dataset task-specific models. Although PPG signals detect
vital signs like heart rate variability and blood oxygen saturation (Abbaspourazad et al., 2023; Charl-
ton et al., 2023), the absence of generalizable pre-trained models limits progress. While there are
difficulties in obtaining large-scale, high-quality datasets, recent increases in heterogeneous PPG
data offer new opportunities (Johnson et al., 2016; Zhang et al., 2018; Lee et al., 2022). To address
these challenges, we introduce PAPAGEI, a set of robust, pre-trained models capable of serving as
a backbone for various PPG-related tasks, capturing rich PPG representations through large-scale
pre-training.

Our key contributions are: (1) Large-scale pre-training for PPG signals: To our knowledge, PA-
PAGEI is the first open foundation model pre-trained on PPG signals, using 57,000 hours of data
from 20 million signals sourced entirely from public datasets. This establishes a new benchmark
for large-scale model development in wearable and clinical health monitoring. (2) PPG-aware self-
supervised learning (SSL) framework: We introduce a novel SSL framework with a unique PPG
signal morphology augmentation module. Our approach optimizes agreement between PPG signals
with similar blood volume changes while learning signal quality and ratio around the dicrotic notch,
a key PPG marker. (3) Comprehensive evaluation across diverse out-of-domain health tasks:
We evaluate PAPAGEI across 20 tasks, including cardiovascular health, sleep disorders, pregnancy
monitoring, and overall well-being. Our results show that the model’s embeddings contain rich
and predictive information applicable to various health conditions, outperforming existing bench-
marks. (4) Extensive robustness studies: We conduct ablation studies to assess the impact of key
components, including signal morphology augmentation, comparisons with established contrastive
learning approaches, model size, data efficiency, and the effect of skin tone.

2 RELATED WORK

Self-supervised learning (SSL) has become a prominent paradigm for learning general represen-
tations from unlabeled datasets, with applications in physiological signal analysis including health,
fitness, and brain signals (Tonekaboni et al., 2021; Zhang et al., 2022; Chen et al., 2021; Yèche et al.,
2021; Spathis et al., 2021; Cheng et al., 2020; Kiyasseh et al., 2021; Sarkar & Etemad, 2020). De-
spite SSL’s popularity, there are no widely used pre-trained models for PPG signals. Abbaspourazad
et al. (2023) demonstrated that embeddings derived from PPG signals can predict over 45 diverse
downstream health-related tasks using proprietary Apple Watch data. Their approach uses an SSL
framework based on patient-level positive pair contrastive learning. Similarly, (Yun et al., 2024)
showed that embedding PPG signals can improve genetic discovery and risk prediction outcomes
using the UK Biobank dataset. Other works (Weng et al., 2024; Ding et al., 2024; Zhou et al., 2024)
explored PPG embeddings for various applications. However, these studies often used proprietary
datasets, did not explore out-of-domain generalization, or did not release their models, highlighting
the need for openly available, pre-trained PPG FMs (Table 17). For example, In contrast to (Ab-
baspourazad et al., 2023), our work exclusively uses public datasets for large-scale PPG training and
extends the SSL framework to incorporate PPG morphology. While their evaluation is limited to a
single proprietary dataset, we validate our approach on 10 diverse downstream datasets, showcasing
greater generalizability and robustness across varied real-world scenarios.

While generic time-series FMs like Chronos (Ansari et al., 2024) and Moment (Goswami et al.,
2024) have gained popularity, they often lack significant physiological data representation. Recently,
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Figure 2: PAPAGEI-S Overview. Before training, for each PPG segment we compute the morphol-
ogy metrics IPA, SVRI, and SQI, to be used as objectives (left). Next, we pass raw PPG signals
through the encoder (E), to extract embeddings (middle) and feed them into three heads (right): the
projection head (P ) contrasts similar and dissimilar PPG signals based on sVRI, while two mixture-
of-expert heads (M1 and M2) refine the embeddings by predicting IPA and SQI values, respectively.

there is growing interest in modality-specific FMs tailored to physiological signals (Song et al., 2024;
Lai et al., 2023) and human activity (Yuan et al., 2024a). While knowledge transfer from generic
FMs might benefit PPG tasks, their performance is limited compared to PPG-specific models. Sim-
ilarly, transferring from other domain-specific models (e.g., ECG (McKeen et al., 2024; Song et al.,
2024) or EEG (Yuan et al., 2024b)) remains challenging due to distinct signal characteristics. Our
specialized approach targets the nuances of PPG, advancing the trend toward modality-specific FMs.
See Appendix §H for additional discussions.

3 METHODS

Given a dataset D = {p1,p2, · · · ,pS} representing diverse PPG signals from S subjects, a PPG
signal ps ∈ Rn is defined as a time series that models the changes in light intensity due to arterial
blood flow. To model granular changes in PPG signal of each subject s, we segment ps with-
out overlap to obtain Xs = {xs

1,x
s
2, · · ·xN}. Here, the number of segments N depends on the

sampling frequency (f ) and the desired length of time window. We use SSL to train PAPAGEI’s
foundation model. PAPAGEI-P employs a patient contrastive approach that maximizes agreement
between signals from the same subject. Importantly, we propose PAPAGEI-S, a morphology-aware
self-supervised approach that maximizes agreement between signals with similar morphology. We
present the details of both approaches.

3.1 PARTICIPANT-AWARE OBJECTIVE

In PAPAGEI-P, we train a SSL model to maximize agreement between the latent embeddings of PPG
signals from the same subject. Prior work has shown that this strategy is effective for physiological
signals (Kiyasseh et al., 2021). While (Abbaspourazad et al., 2023) implements a similar strategy,
they do not train or evaluate on public datasets.

Training. We define a positive pair as any two distinct segments from the same subject, de-
noted as {(xs

i ,x
s
j)|i ̸= j}. Next, we apply a series of time series augmentations such as ran-

dom cropping, adding Gaussian noise, time flipping, negation, and magnitude scaling (Tang et al.,
2020). Each augmentation is applied with a predefined probability, determining its likelihood
during training. Additionally, each augmentation includes hyper-parameters that control the in-
tensity of the transformation. During training, the augmented versions of two randomly sampled
positive pairs are passed through the encoder E and projection P to obtain embeddings denoted

3
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(zsi , z
s
j). Given a batch of embeddings from N distinct subjects with positive pairs of the form

(zsi , z
s
j), the model optimizes the NT-Xent loss given by: Lp = 1

2 (ℓp(i, j) + ℓp(j, i)), where

ℓp(i, j) = − 1
N

∑N
i=1 log

exp(sim(zs
i ,z

s
j)/τ)∑

s ̸=r exp(sim(zs
i ,z

r
j )/τ)

. In contrast, vanilla SimCLR (Chen et al., 2020)
uses positive pairs as augmented versions of randomly sampled PPG segments.

3.2 MORPHOLOGY-AWARE OBJECTIVE

In PAPAGEI-S, we leverage the PPG signal morphology to train a SSL model that maximizes agree-
ment between similar physiological features of PPG signals across subjects.

PPG Morphology. Total peripheral resistance (TPR)—the force exerted by the body’s blood vessels
on circulating blood—varies under certain medical conditions, such as hypertension and diabetes
(Trammel & Sapra, 2020). Variations in TPR are reflected in PPG signals, presenting as distinct
regions within the waveform (Figure 2, left). To capture these variations, we introduce a morphology
augmentation module before training, which computes three key PPG metrics (Figure 2, left): (1)
stress-induced Vascular Response Index (sVRI) (Lyu et al., 2015; Zhang et al., 2019): the ratio
of mean PPG signal between post- to pre-systolic phases, (2) Inflection Point Area ratio (IPA)
(Wang et al., 2009): the ratio of systolic to diastolic areas defined by the dicrotic notch, and (3)
Signal Quality index (SQI): skewness of the signal as an indicator of quality (Elgendi, 2016). Prior
studies have shown that incorporating PPG signal quality during training yield positive results (Ding
et al., 2024). We choose these metrics because they complement each other, with sVRI capturing
amplitude variations, IPA reflecting signal width, and SQI addressing cases where IPA cannot be
computed due to poor-quality signals lacking a dicrotic notch. We compute these metrics as follows:

sV RI(x) =
sys

∑n
i=sys xi

(n− sys)
∑sys

i=1 xi
, IPA(x) =

∫ n̂

0
x dn∫ n

n̂
x dn

, and SQI(x) =
1

W

∑
w

m3

m
3/2
2

, (1)

where x ∈ RN is the PPG segment, sys is the systolic peak, n is the length of time series, and n̂ is
the dicrotic notch. For SQI , we divide x into 5 second windows (w; total windows W ) and compute
the skewness mi = 1

5×f

∑5×f
j=1 (x[j] − µx[j])

i, which gives the best signal quality discrimination
(Elgendi, 2016).

Training. Before training, the morphology augmentation module takes an augmented (only Gaus-
sian noise and cropping) input time series x and outputs y = {ysvri, yipa, ysqi} ∈ R3 (Fig-
ure 2 middle). Next, we discretize ysvri into a predefined set of n = 8 bins to denote pos-
itive pairs, where ysvri ∈ {0, 1, . . . , n}. We define positive pairs based on the sVRI labels as
{(xi,xj)|ysvrii = ysvrij , i ̸= j}. Note that positive pairs are not defined based on subjects.

ℓs(i, j) = − 1

N

N∑
i=1

log
exp (sim(zi, zj)/τ)∑
k ̸=j exp (sim(zi, zk)/τ)

(2)

Lsvri =
1

2
(ls(i, j) + ls(j, i)) Lipa =

1

N

N∑
i=1

∣∣∣yipai − ŷipai

∣∣∣ Lsqi =
1

N

N∑
i=1

∣∣∣ysqii − ŷsqii

∣∣∣ (3)

Ls = αLsvri + (1− α) (Lipa + Lsqi) ,where α ∈ [0, 1] (4)

Given a batch of N PPG signals and their morphology, we optimize three heads. First, we extract
the embeddings Z = {z1, z2, · · · , zN} from the projection P (Figure 2 right middle), and compute
the contrastive loss for sVRI (equation 2). Next, we use the embeddings H = {h1,h2, · · · ,hN} to
predict the IPA (ŷipa ∈ RN ) and SQI (ŷsqi ∈ RN ) using the mixture of expert (MoE) heads M1

and M2. Each MoE head is composed of three fully connected neural networks (FCNNs), with the
head’s output calculated as a weighted sum of the FCNNs, using softmax to determine the weights.
These heads are optimized using the mean absolute error (equation 3). The morphology indices
encapsulate various PPG characteristics. Our rationale for utilizing MoE is that each expert can
specialize in learning distinct properties that contribute to the overall index. Finally, the overall
PAPAGEI-S training objective is given in equation 4.
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4 EXPERIMENTS

4.1 PRE-TRAINING

Datasets. We pre-train PAPAGEI using three datasets: (1) VitalDB (Lee et al., 2022), which in-
cludes PPG signals collected during surgery from the finger using a patient monitor (f=500Hz). (2)
MIMIC-III waveform database matched subset (Johnson et al., 2016), where finger-tip PPG data
is collected from an ICU monitor (f= 125Hz). (3) Multi-Ethnic Study of Atherosclerosis (MESA)
sleep sub-study (Zhang et al., 2018; Chen et al., 2015), which provides PPG data obtained through
finger-tip polysomnography (f= 256Hz). In total, we have 13.5K subjects with 20M segments (Ta-
ble 1).

Table 1: Pre-training datasets.

Dataset #Subjects #Segments Hours
VitalDB 5,866 6,248,100 17,355
MIMIC-III 5,596 7,196,401 19,990
MESA 2,055 7,306,705 20,296

Total 13,517 20,751,206 57,641

Pre-processing. To curate single-channel PPG sig-
nals across all datasets, we perform the following
steps: (1) Apply a 4th-order Chebyshev bandpass fil-
ter with low and high pass cut-offs set at 0.5Hz and
12Hz, respectively (Lapitan et al., 2024; Liang et al.,
2018c); (2) Segment the signal into 10-second win-
dows ((Orphanidou, 2018; Koteska et al., 2022) use
10s windows whereas larger studies use 30s (Ding
et al., 2024) and 60s Abbaspourazad et al. (2023));
(3) Detect flatline segments and remove any seg-
ment where more than 25% of the data is flat (BioBSS Documentation, 2023); (4) Nor-
malize the segments using Z-score (Temko, 2017; Zhou et al., 2017); and (5) Resample
the segments to 125Hz (the lowest sampling rate of our pre-training datasets, MIMIC-III).

Table 2: The task evaluation benchmark of PAPAGEI. Datasets
in gray are unseen during training (out-of-domain). The rest are
used for pre-training (held-out test-sets and labels). Task Type:
B=binary, R=regression, M-#classes= muticlass classification.

#ID Dataset Task (Task Type) #Subj.(#Samp.)
T1 VitalDB (Lee et al., 2022) ICU admission (B) 5866
T2 Operation Type (M-9) 5866
T3 MIMIC-III (Moody et al., 2020) Mortality (B) 5596
T4 MESA (Zhang et al., 2018) Smoker (B) 2055
T5 AHI > 3% Oxygen Desat. (R) 2055
T6 AHI > 4% Oxygen Desat. (R) 2055
T7 nuMom2B (Facco et al., 2015) Pregnancy stage (B) 3163 (5337)
T8 Gestation Age (R) 3163 (5337)
T9 VV (Skin Tone) (Toye, 2023) Systolic BP* (R) 231
T10 Diastolic BP* (R) 231
T11 PPG-BP (Liang et al., 2018a) Systolic BP (R) 219
T12 Diastolic BP (R) 219
T13 Average Heart Rate (R) 219
T14 Hypertension (B) 219
T15 SDB (Garde et al., 2014) Sleep Disordered Breathing (B) 146
T16 ECSMP (Gao et al., 2021) Mood Disturbance (B) 89
T17 WESAD (Schmidt et al., 2018) Valence (B) 15 (4497)
T18 Arousal (B) 15 (4497)
T19 PPG-DaLiA (Reiss et al., 2019) Heart Rate (R) 15 (64697)
T20 Activity (M-9) 15 (64697)

Implementation. We adopt
a ResNet-style CNN encoder,
following (Ding et al., 2024),
whereas (Abbaspourazad et al.,
2023) utilize an EfficientNet-
style. Our model has 18 con-
volutional blocks, starting with
a filter size of 32, which doubles
every 4 blocks. The projection
layer is a single FC layer, gener-
ating a 512-d embedding. In the
PAPAGEI-S variant, the expert
block (M1 & M2) uses three
parallel FCNNs, each with two
FC layers, resulting in a 128-
d embedding. For augmenta-
tions, PAPAGEI-P uses cropping
(0.50), negation (0.20), flipping
(0.20), and scaling (0.40). PA-
PAGEI-S uses cropping (0.25)
and Gaussian noise (0.25). PA-
PAGEI-S avoids augmentations
that alter PPG’s morphology.
We set α = 0.6 and train on eight V100 GPUs for 15,000 steps (lr= 10−4), with PAPAGEI-P
and PAPAGEI-S having 5M and 5.7M parameters, respectively, while previous works use model
sizes of 3.3M (Abbaspourazad et al., 2023) (we study scaling in Section 5.2).

4.2 DOWNSTREAM TASKS

To evaluate the effectiveness of PAPAGEI, we benchmark it against a diverse set of datasets, tasks,
and baselines, chosen for their large size and clinical relevance (where applicable)2. A brief de-
scription of the tasks with their corresponding #ID is provided in Table 2, with further details in

2https://peterhcharlton.github.io/post/ppg_datasets/
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Figure 3: Radar charts of downstream tasks. (Top) Classification performance in AUROC (larger
area is better). (Bottom) Regression performance in MAE (smaller area is better). Pre-trained
models in purple: REGLE, Chronos, & Moment. Statistical feature baseline in gray. SSL methods
in green: SimCLR, BYOL, & TF-C. PAPAGEI (ours), in pink. Details are in Tables 3 & 4.

Appendix B. Identifying patient risk factors is crucial for hospitals to allocate resources effectively.
To address this, we evaluate several indicators, including ICU admission (T1), type of operation
(T2), mortality (T3), and smoking status (T4). For sleep apnea diagnosis, the American Academy
of Sleep Medicine (AASM) recommends using the Apnea/Hypopnea Index (AHI) with at least 3%
or 4% oxygen desaturation as a key metric (Ruehland et al., 2009). Thus, we predict AHI at 3% and
4% desaturation thresholds (T5 & T6) and classify sleep-disordered breathing (T15). For pregnancy
outcomes, changes in gestational age and pregnancy stage are linked to risks like hypertensive dis-
orders and small-for-gestational-age delivery (Bouariu et al., 2022; Wu et al., 2020; Crump et al.,
2023), enabling us to classify pregnancy stage (T7) and predict gestational age (T8). In cardiovascu-
lar health, we estimate systolic (T9 & T11) and diastolic (T10 & T12) blood pressure (BP) using two
datasets. While PPG-BP (T11 & T12) provides high-frequency, short PPG signals, the VV dataset
helps explore skin tone’s influence on BP estimation. We also assess hypertension classification
(T14), average seated heart rate (T13), and continuous heart rate during activities (T19), along with
activity classification (T20). In the emotion domain, we classify PPG signals into mood disturbance
levels (T16), valence (T17), and arousal (T18).
4.3 BASELINES

We benchmark PAPAGEI’s performance against competitive baselines. As open-source foundation
models designed for physiological signals, PAPAGEI is compared to recent time-series foundation
models: Chronos (Ansari et al., 2024) and MOMENT (Goswami et al., 2024). To evaluate the
merits of our SSL framework, we also compare PAPAGEI with common SSL methods (trained from
scratch) such as SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and TF-C (Zhang et al.,
2022). In addition, to assess model generalizability on PPG signals, we compare against REGLE,
a model pre-trained on UK Biobank’s PPG signals (Yun et al., 2024). As a simple baseline, we
employ a random forest trained on statistical features extracted from the PPG signal, including
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Table 3: Downstream comparison against pre-trained models. The model size is denoted next to
their names. 95% CIs are reported in square brackets and the best value is bolded.

REGLE (0.07M) Chronos (200M) Moment (385M) PAPAGEI-P (5M) PAPAGEI-S (5.7M)

Classification - AUROC (↑) (Yun et al., 2024) (Ansari et al., 2024) (Goswami et al., 2024)

ICU Admission 0.57 [0.52-0.62] 0.73 [0.68-0.80] 0.72 [0.70-0.80] 0.73 [0.67-0.78] 0.79 [0.75-0.82]

Mortality 0.55 [0.52-0.59] 0.68 [0.65-0.71] 0.67 [0.63-0.71] 0.67 [0.63-0.71] 0.67 [0.63-0.70]

Smoker 0.54 [0.47-0.59] 0.62 [0.57-0.67] 0.62 [0.56-0.67] 0.64 [0.58-0.69] 0.61 [0.56-0.66]

Pregnancy stage 0.64 [0.57-0.63] 0.81 [0.79-0.82] 0.76 [0.74-0.78] 0.74 [0.72-0.76] 0.78 [0.75-0.80]

Hypertension 0.47 [0.34-0.58] 0.57 [0.43-0.71] 0.75 [0.64-0.85] 0.74 [0.55-0.90] 0.77 [0.68-0.87]

Sleep Disordered Breathing 0.45 [0.30-0.61] 0.58 [0.35-0.82] 0.45 [0.23-0.66] 0.54 [0.23-0.66] 0.70 [0.57-0.84]

Mood Disturbance 0.41 [0.16-0.66] 0.43 [0.21-0.68] 0.55 [0.33-0.78] 0.53 [0.27-0.78] 0.56 [0.33-0.77]

Valence 0.55 [0.52-0.57] 0.56 [0.53-0.59] 0.57 [0.54-0.59] 0.53 [0.51-0.56] 0.56 [0.54-0.59]

Arousal 0.51 [0.52-0.58] 0.57 [0.54-0.60] 0.56 [0.53-0.58] 0.58 [0.55-0.61] 0.55 [0.52-0.57]

Average 0.52 ± 0.06 0.62 ± 0.10 0.63 ± 0.09 0.63 ± 0.08 0.67 ± 0.09
Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 15.54 [14.20-16.69] 14.06 [13.05-15.16] 14.23 [13.04-15.42] 13.85 [12.43-15.49] 12.97 [11.87-14.05]

Apnea/Hypopnea Index > 4% 12.64 [11.47-13.78] 11.57 [10.51-12.72] 11.80 [10.79-12.93] 11.24 [9.71-12.87] 10.56 [9.59-11.62]

Gestation Age 7.28 [7.16-7.39] 5.69 [5.54-5.85] 6.24 [6.10-6.37] 6.40 [6.21-6.59] 6.05 [5.91-6.17]

Systolic BP (VV) 15.88 [13.67-18.36] 17.24 [14.57-20.13] 14.71 [12.38-17.29] 19.11 [16.26-22.23] 14.65 [12.50-16.78]

Diastolic BP (VV) 8.65 [7.16-10.27] 10.53 [8.91-12.19] 10.53 [8.91-12.19] 10.87 [9.10-12.98] 8.29 [6.61-10.22]

Systolic BP (PPG-BP) 16.32 [13.87-19.13] 16.91 [13.31-19.34] 14.50 [11.98-17.31] 13.60 [10.65-16.51] 14.39 [12.53-16.45]

Diastolic BP (PPG-BP) 9.30 [7.94-10.87] 10.26 [8.13-12.57] 9.53 [8.28-10.96] 8.88 [7.33-10.76] 8.71 [7.18-10.01]

Average HR 6.88 [5.81-8.12] 8.51 [7.05-10.07] 4.41 [3.48-5.48] 3.47 [2.74-4.32] 4.00 [3.34-4.67]

HR 16.35 [16.20-16.50] 9.65 [9.50-9.79] 8.82 [8.68-8.96] 10.92 [10.80-11.04] 11.53 [11.40-11.66]

Average MAE (sMAPE) 12.09 ± 3.83 (15.23%) 11.60 ± 3.60 (14.20%) 10.43 ± 3.46 (13.82%) 10.92 ± 4.25 (14.09%) 10.12 ± 3.47 (13.34%)

mean, median, maximum, minimum, and the 25th, 50th, and 75th percentiles (”Stat. Features”).
This task-specific approach serves as a benchmark for comparison with more advanced techniques.

4.4 LINEAR EVALUATION

Initially, we split the in-domain and out-of-domain datasets into training, validation, and test sets
at 80/10/10 and 60/20/20 ratios. The splitting is performed at the subject level ensuring no overlap
between individuals across the sets. The models are evaluated by extracting feature representations
from resampled data (125Hz) and applying linear probing for each task. For binary classification
tasks, we employ a logistic regression model, with performance measured by the AUROC score.
For regression tasks, ridge regression is used, and performance is evaluated based on the mean ab-
solute error (MAE). Regression tasks are aggregated using the symmetric mean absolute percentage
error (sMAPE). Multi-class classification tasks are trained using a random forest model, with accu-
racy as the evaluation metric. To ensure robustness, we compute 95% confidence intervals through
bootstrapping (500 sampling runs with replacement). More details are provided in the Appendix A.

5 RESULTS

5.1 OVERALL PERFORMANCE

In general, from Figure 3, we observe that PAPAGEI is more accurate across many tasks indicated
by the larger AUROC area and smaller MAE area. Table 3 presents a more detailed comparison be-
tween PAPAGEI and other pre-trained models. For classification tasks, PaPaGei-S achieves the high-
est average AUROC of 0.67, outperforming other models across several tasks, particularly in ICU
Admission (0.79), Hypertension (0.77), and Sleep Disordered Breathing (0.70). In regression tasks,
PaPaGei-S again demonstrates strong performance, achieving the lowest average MAE (10.12), par-
ticularly in tasks related to Apnea/Hypopnea Index and BP measurements. REGLE, a small model
trained on a large PPG dataset, generally underperforms compared to other models, suggesting its
compact size may limit learning complex patterns. Chronos obtains good performance in predict-
ing mortality, pregnancy stage, and smoking, likely due to their slower rate of change and reduced
reliance on granular PPG-specific features. General-purpose models suffice for these high-level
outcomes. However, tasks requiring finer PPG-specific granularity, such as heart rate prediction,
blood pressure estimation, or sleep apnea, benefit from PAPAGEI’s specialized feature extraction.
Notably, PAPAGEI-S consistently outperforms PAPAGEI-P, highlighting the advantages of signal
morphology objectives in enhancing predictive accuracy.
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Table 4: Downstream comparison against baseline and other SSL methods. The model size is
denoted next to their names. 95% CIs are reported in square brackets and the best value is bolded.

Stat. Features SimCLR (5M) BYOL (12M) TF-C (9.7M) PAPAGEI-P (5M) PAPAGEI-S (5.7M)
Classification - AUROC (↑) (Chen et al., 2020) (Grill et al., 2020) (Zhang et al., 2022)

ICU Admission 0.71 [0.65-0.78] 0.75 [0.72-0.79] 0.78 [0.73-0.81] 0.71 [0.67-0.75] 0.73 [0.67-0.78] 0.79 [0.75-0.82]

Mortality 0.57 [0.54-0.61] 0.67 [0.63-0.70] 0.67 [0.64-0.71] 0.67 [0.63-0.70] 0.67 [0.63-0.71] 0.67 [0.63-0.70]

Smoker 0.63 [0.58-0.67] 0.62 [0.57-0.68] 0.62 [0.57-0.68] 0.61 [0.56-0.67] 0.64 [0.58-0.69] 0.61 [0.56-0.66]

Pregnancy stage 0.64 [0.62-0.67] 0.74 [0.72-0.75] 0.62 [0.57-0.68] 0.74 [0.72-0.76] 0.74 [0.72-0.76] 0.78 [0.75-0.80]

Hypertension 0.66 [0.47-0.83] 0.75 [0.64-0.86] 0.74 [0.64-0.84] 0.76 [0.63-0.86] 0.74 [0.55-0.90] 0.77 [0.68-0.87]

SDB 0.32 [0.14-0.55] 0.61 [0.46-0.76] 0.59 [0.42-0.74] 0.58 [0.44-0.73] 0.54 [0.23-0.66] 0.70 [0.57-0.84]

Mood Disturbance 0.54 [0.31-0.77] 0.32 [0.12-0.55] 0.46 [0.21-0.71] 0.59 [0.33-0.84] 0.53 [0.27-0.78] 0.56 [0.33-0.77]

Valence 0.52 [0.49-0.55] 0.52 [0.49-0.55] 0.53 [0.50-0.56] 0.57 [0.54-0.59] 0.53 [0.51-0.56] 0.56 [0.54-0.59]

Arousal 0.55 [0.53-0.58] 0.55 [0.52-0.58] 0.54 [0.30-0.78] 0.55 [0.52-0.58] 0.58 [0.55-0.61] 0.55 [0.52-0.57]

Average 0.57 ± 0.11 0.61 ± 0.13 0.62 ± 0.10 0.64 ± 0.07 0.63 ± 0.08 0.67 ± 0.09
Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 15.31 [13.63-17.14] 14.17 [13.04-15.38] 14.26 [13.10-15.57] 15.10 [13.84-16.40] 13.85 [12.43-15.49] 12.97 [11.87-14.05]

Apnea/Hypopnea Index > 4% 12.52 [10.92-14.14] 11.76 [10.65-12.89] 11.88 [10.71-13.05] 12.41 [11.33-13.49] 11.24 [9.71-12.87] 10.56 [9.59-11.62]

Gestation Age 7.15 [6.99-7.34] 6.28 [6.21-6.49] 6.24 [6.09-6.38] 6.35 [6.21-6.49] 6.40 [6.21-6.59] 6.05 [5.91-6.17]

Systolic BP (VV) 15.76 [13.67-18.36] 16.18 [13.73-18.85] 15.01 [12.32-17.80] 15.70 [13.23-18.13] 19.11 [16.26-22.23] 14.65 [12.50-16.78]

Diastolic BP (VV) 9.75 [7.16-11.27] 9.15 [7.65-10.65] 8.91 [7.48-10.43] 9.15 [7.65-10.65] 10.87 [9.10-12.98] 8.29 [6.61-10.22]

Systolic BP (PPG-BP) 15.50 [11.68-20.25] 14.38 [11.80-16.88] 14.99 [13.03-17.38] 14.45 [12.20-17.00] 13.60 [10.65-16.51] 14.39 [12.53-16.45]

Diastolic BP (PPG-BP) 9.35 [7.44-11.66] 9.01 [7.90-10.60] 9.16 [8.00-10.50] 9.20 [7.90-10.60] 8.88 [7.33-10.76] 8.71 [7.18-10.01]

Average HR 7.01 [5.48-8.89] 4.65 [3.99-5.39] 4.78 [3.88-5.93] 3.58 [2.90-4.21] 3.47 [2.74-4.32] 4.00 [3.34-4.67]

HR 13.07 [12.90-13.23] 11.59 [11.46-11.72] 12.80 [12.66-12.94] 9.99 [9.86-10.12] 10.92 [10.80-11.04] 11.53 [11.40-11.66]

Average MAE (sMAPE) 11.60 ± 3.41 (15.12%) 10.79 ± 3.63 (13.91%) 10.89 ± 3.58 (14.05%) 10.65 ± 3.88 (14.07%) 10.92 ± 4.25 (14.09%) 10.12 ± 3.47 (13.34%)

Table 4 presents a comparison against three SSL methods and a baseline model trained on
statistical features. In classification tasks, PaPaGei-S again shows the highest average AU-
ROC, outperforming all others. SimCLR, BYOL, and TF-C generally outperform the sta-
tistical feature baseline but fall short of PaPaGei-S’s performance. TF-C shows competi-
tive results in some tasks, achieving the highest AUROC for Mood Disturbance and Valence.
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Figure 4: Downstream data-efficiency analysis.
Results are averaged over all binary classification
(left) and regression tasks (right). PAPAGEI-S
performs better with increased label availability.

For regression tasks, PaPaGei-S again achieves
the lowest average MAE. SimCLR, BYOL, and
TF-C show mixed results, as each excels in dif-
ferent tasks. SimCLR comes second in esti-
mating Avg HR, while BYOL does so in Sys-
tolic BP (VV). The statistical feature baseline
generally underperforms compared to the ad-
vanced methods across most tasks. PaPaGei-P,
while not consistently outperforming PaPaGei-
S, shows strong results that are often competi-
tive with or better than other contrastive learning
methods. Overall, both PaPaGei variants offer
robust performance across a wide range of tasks.

5.2 ABLATION STUDIES

Pre-training data ablation. We evaluate PAPAGEI-S using different combinations of pre-training

V M
M-III

V + M

V + M-III

M + M-III All

0.6

0.8
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0.62 0.62 0.61 0.64 0.64 0.64 0.67** ** ** ** **
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V + M
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5
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AE

12.29
11.60 12.01 11.61 11.69 11.36

10.13
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** ** ** ** **

Figure 5: Ablation on pre-training datasets. Average perfor-
mance across tasks for models trained on different datasets:
V (VitalDB), M (MESA), and M-III (MIMIC-III). The mean
value is displayed above the plots. The Wilcoxon signed
rank test is applied to evaluate signifance between the All
dataset and the rest (∗∗ : p < 0.05 and ∗ : 0.05 ≤ p <
0.10).

data. From Figure 5, we observe that
performance on downstream tasks
consistently improves as we incorpo-
rate additional upstream data, with
optimal results achieved when uti-
lizing all three datasets. Notably,
MESA achieves the best perfor-
mance, even though it has the fewest
participants but the highest number of
segments. This aligns with findings
from the language domain (Dubey
et al., 2024) and wearable sensing re-
search (Narayanswamy et al., 2024),
suggesting that a greater number of
segments or hours contributes more
to performance improvement than the
number of users.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PAPAGEI-S component ablation. We assess the impact of PAPAGEI-S components. Figure 6
shows that the full model consistently outperforms individual components in both mean and median
metrics. On average, sVRI (0.64, 10.36) outperforms the combinations of sVRI + SQI (0.62, 10.81)
and sVRI + IPA (0.64, 10.73), with SQI contributing the least to overall performance. Additional
details in Table 14.

Downstream data-efficiency analysis. For limited-data scenarios, we assess the performance of
downstream linear probing across varying levels of labeled data availability. We compare to the sec-
ond best-performing baselines from Tables 3 & 4, namely TF-C and Moment. As shown in Figure
4, the classification performance of PAPAGEI-S steadily improves as more labeled data becomes
available. While TF-C and Moment also show performance gains between 25% and 100% labeled
data, their improvements are less consistent and smaller than PAPAGEI-S. In regression tasks, PA-
PAGEI-S achieves the lowest MAE at both 25% and 100% data availability, consistently reducing
errors. At the middle breakpoints, the results are mixed with TF-C and Moment being competitive.
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Figure 6: PAPAGEI-S component ablation study (a, b) and scaling analysis (c). (Left) The boxplot
shows the performance of PAPAGEI-S components across all tasks. The Wilcoxon signed rank test
is applied to evaluate pair-wise significance (∗∗ : p < 0.05 and ∗ : 0.05 ≤ p < 0.10). (Right)
Heatmap ranks of PAPAGEI-S models with 5M, 35M, and 139M parameters (rank 1 denotes the
best performance). Detailed results in Table 13.

Model size and scaling analysis. We investigated the impact of model size on performance by
training PAPAGEI-S-35M and PAPAGEI-S-139M with 35M and 139M parameters, respectively.
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Figure 7: Pair-wise inter-participant embed-
ding distances for SDB.

Both models share the same number of layers, but
the 35M model uses a 32-filter size while the 139M
model uses 64. As shown in 6c, the smallest model
(5M parameters) consistently outperformed larger
models on all but one task. This suggests the 5M
model is better suited for our pre-training datasets,
aligning with prior findings on the proportionality be-
tween data and model size (Narayanswamy et al.,
2024).While the 139M model surpassed the 35M, it
still lagged behind the 5M, indicating that wider mod-
els may improve performance in classification tasks,
likely due to the contrastive learning objective. Nevertheless, our scaling analysis shows a non-
monotonic trend, indicating other factors strongly influence performance.

5.3 CASE STUDIES

Inter-participant embeddings. Figure 7 shows the distribution of pair-wise embedding distances
across participants in the SDB dataset (Kiyasseh et al., 2021). SimCLR and BYOL exhibit sharper
peaks at lower distances, indicating that participants are more closely clustered within the embed-
ding space. This could be interpreted as a mild form of mode collapse, where the model does not
fully capture the individual differences between participants. TF-C demonstrates a more balanced
distribution, with both large and small peaks, suggesting it captures both similarities and some vari-
ation between participants. In contrast, PAPAGEI-S provides the widest dispersion of embeddings,
highlighting its ability to capture a broader range of features that may be valuable for distinguishing
between participants’ medical conditions.
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Figure 8: Regression plots and prediction distribution of different models compared to ground truth
for AHI > 3%. R2 is the coefficient of determination and m is the correlation slope.
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Figure 9: Skin tone analysis for Blood
Pressure estimation (VV dataset).

Regression predictions. From Figure 8, compared to
the pre-trained and SSL baseline, PAPAGEI-S demon-
strates steeper slopes (m) and higher R2 values, reflect-
ing a stronger alignment between predictions and true
values. Additionally, the prediction distribution for AHI
indicates that SimCLR and Chronos tend to regress more
toward the mean, while PAPAGEI-S achieves a wider
distribution base, highlighting its capacity to capture left
tail better. Additional plots are shown in Appendix F.

Skin tone analysis. We examine BP estimation perfor-
mance across skin tones because it is crucial for practical
use (Bent et al., 2020). As shown in Figure 9 (More de-
tails in Figure 25), PAPAGEI-S achieves the best BP es-
timation across light tones. Across dark tones, we notice
that BYOL and REGLE obtain the lowest MAE for Sys-
tolic BP and Diastolic BP. However, identifying a single
model that performs best across all skin tones remains
challenging. While PAPAGEI-S obtains the best over-
all performance, additional work is necessary to improve
robustness on darker skin tones.

6 DISCUSSION & CONCLUSION

Our results show that PAPAGEI outperforms baselines in atleast 14 tasks, with classification and
regression improvements of 4.7%-6.3% and 2.9%-4.9%, respectively. PAPAGEI-S excelled in car-
diovascular tasks like BP, Hypertension, and HR, which can be attributed to the sVRI and IPA ob-
jectives, and PAPAGEI-P outperformed baselines like Moment, excelling in tasks such as Smoking
and Arousal. Ablation studies confirmed that the model with all three SSL objectives performs best,
with sVRI highlighted as a key component and IPA and SQI providing positive knowledge transfer
in multi-task setups. PAPAGEI-S achieves 7.78 MAE in age regression, 0.85 accuracy in age clas-
sification, and 0.79 accuracy in sex classification (Table 16), advancing open-source efforts despite
trailing larger closed studies (Abbaspourazad et al., 2023) by 2.18, 0.05, and 0.13, respectively. To
assess performance under class imbalance, we examined the F1-score. PaPaGei achieves the highest
F1 in 6 out of 9 classification tasks, demonstrating its effectiveness in handling data imbalance. For
regression, PaPaGei-S achieves the highest R2 in 7 tasks (Appendix D), reflecting better alignment
with the true distribution. These results highlight the robustness and versatility of PaPaGei-S across
classification and regression tasks. PAPAGEI is both data- and size-efficient (5M), making it ideal
for medical applications where large models (200M+) are impractical due to on-device limitations
or data privacy concerns with cloud model inference. While combining PAPAGEI-P and PAPAGEI-S
objectives into one model might seem intuitive, it is impractical because it would constrain positive
pairs on both sVRI and the number of participants, resulting in too many unique labels with lim-
ited samples per label. Our case studies also showed that PAPAGEI-S captured personal medical
information due to well-dispersed embeddings, compared to baselines. Future work should focus on
diversifying training data, investigating sampling rate effects, and exploring multi-modal approaches
or alternative architectures. In conclusion, PAPAGEI represents a significant advancement in foun-
dation models for analyzing PPG signals in resource-constrained medical environments, with its
open-source nature encouraging further research and development in healthcare applications.
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REPRODUCIBILITY STATEMENT

Models, data, and code will be made publicly available upon release, ensuring accessibility for
future research. Our study exclusively utilizes publicly accessible datasets, which can be requested
or downloaded from the respective study group websites, allowing others to easily obtain the data
for their own analyses. In Section 4 and Appendix §B, we provide comprehensive descriptions of
the datasets, ground-truth annotations, and data pre-processing methods used in our experiments,
ensuring transparency in our data handling procedures. The code to run our model will be available
with user-friendly examples. We have provided a detailed overview of the model architecture and
its hyperparameters in Sections 3, 4.1, and Appendix §A. With these detailed resources, our work is
designed to be reproducible, enabling future research to build upon our findings.

ETHICS STATEMENT

Our research on PAPAGEI, utilizing publicly available PPG datasets, adheres to data privacy regu-
lations and promotes transparency through open-source releases. We acknowledge potential biases
in the training data and have evaluated performance across diverse datasets, particularly regarding
skin tone variations. While PaPaGei offers significant potential for improving non-invasive health
monitoring, we recognize the need to address potential misuse (Perez-Pozuelo et al., 2021). Exam-
ples of misuse could include unauthorized health monitoring, discriminatory practices in insurance
or employment, unfair credit scoring, or exploiting personal health data for targeted marketing. We
strongly advocate responsible use solely for beneficial healthcare applications. Our study followed
established research ethics guidelines, and we declare no conflicts of interest. We encourage on-
going interdisciplinary dialogue to address potential risks and ensure responsible development and
deployment of such technologies, recognizing the broader societal impacts of AI in healthcare. We
remain committed to ethical AI advancement and welcome further discussion on the critical issues,
including the development of governance frameworks to prevent misuse and protect data privacy.
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APPENDIX

A TRAINING AND INFERENCE DETAILS

Architecture & Pre-training. The architecture of our ResNet 18-block encoder is described in
Tables 5, 6, and 7. Each 1D convolution layer is configured with a kernel size of 3 and a stride
of 2, while the max-pooling layer utilizes a kernel size of 3 with a stride of 1. We start with a
filter size of 32, which doubles every 4 blocks to capture progressively more complex features.
Dropout is applied with a probability of 0.5 to prevent overfitting. This backbone architecture is used
across different methods in our experiments to ensure consistency and make for a fair comparison
during evaluation. Additionally, our SSL baselines use the same batch size, learning rate, input
sampling frequency, and training steps as PAPAGEI. We use the same augmentation types and
intensity for BYOL (Grill et al., 2020), SimCLR Chen et al. (2020), and PAPAGEI-P. Furthermore,
we investigated 0.07 and 0.5 temperatures as MoCo (He et al., 2020) and SimCLR (Chen et al.,
2020), respectively, and select the best-performing model. In contrast to a smaller embedding size
of 256 adopted by (Abbaspourazad et al., 2023), we project the learned representations to a 512-
dimensional embedding after the convolutional block (we investigated larger embedding sizes of 768
and 1024 and found no significant performance changes). This embedding is then passed through
two Mixture of Experts (MoE) blocks, each containing three experts. Each expert block consists
of two sequential linear layers, with sizes 256 and 1, which are used for IPA and SQI prediction
tasks. It is noteworthy that both BYOL and TF-C require multiple encoders and different projection
heads, resulting in variations in model sizes. For these methods, we use existing implementations
available online34, but apply our encoder as the backbone to ensure consistency. Our models are
pre-trained for 15,000 steps using the Adam optimizer, with a learning rate of 10−4. We use a
batch size of 128 for training since after various trials we did not observe significant differences
in performance with batch sizes of 64 and 256. Additionally, we did not perform an exhaustive
evaluation of different augmentation settings but instead used transformations and values based on
prior research (Abbaspourazad et al., 2023; Tang et al., 2020). For model training, we primarily
used PyTorch (Paszke et al., 2019). The NTXentLoss implementation was sourced from the PyTorch
Metric Learning package5.

Table 5: ResNet-style CNN encoder architec-
ture used in PAPAGEI.

Layer Output Shape
Conv1 [32, 32, 1250]
Batch Norm [32, 32, 1250]
ReLU [32, 32, 1250]
Basic Block Type 1 [32, 32, 1250]
(Basic Block Type 2) × 3 [32, 32, 313]
(Basic Block Type 2) × 4 [32, 64, 79]
(Basic Block Type 2) × 4 [32, 128, 20]
(Basic Block Type 2) × 4 [32, 256, 5]
(Basic Block Type 2) × 2 [32, 512, 3]
BatchNorm [32, 512, 3]
ReLU [32, 512, 3]
Linear [32, 512]

Table 6: Basic Block
Type 1

Layer
Conv1D
BatchNorm
ReLU
Dropout
Conv1D

Table 7: Basic Block
Type 2

Layer
BatchNorm
ReLU
Dropout
Conv1D
BatchNorm
ReLU
Dropout
Conv1D
Maxpool

Feature Extraction & Linear Evaluation We extracted the projected embedding for linear eval-
uation. For Moment and Chronos, we extract the default embedding size, which is 1024 and 768,
respectively. We use cross-validated grid search to identify the best parameters for our linear probes.
The hyperparameters chosen for each model are as follows: (1) Logistic Regression: {’penalty’:
[’l1’, ’l2’], ’C’: [0.01, 0.1, 1, 10, 100], ’solver’: [’lbfgs’], ’max iter’: [100, 200]}. (2) Linear Re-
gression: {’alpha’: [0.1, 1.0, 10.0, 100.0], ’solver’: [’auto’, ’cholesky’, ’sparse cg’]}. (3) Random

3https://github.com/chengding0713/SiamQuality
4https://github.com/mims-harvard/TFC-pretraining
5https://github.com/KevinMusgrave/pytorch-metric-learning
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Forest: {’n estimators’: [100, 200], ’max features’: [’sqrt’, ’log2’], ’max depth’: [10, 20, 30],
’min samples split’: [2, 5], ’min samples leaf’: [1, 2]}
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B DATASETS AND TASKS

Table 8: The task evaluation benchmark of PAPAGEI. Datasets highlighted in gray are unseen during
training, thus, the corresponding tasks are out-of-domain. The rest were used for pre-training but
their test sets and labels are held out. For task type, B/M/R refer to Binary classification, Multi-class
classification (#classes), and Regression, respectively.

#ID Dataset SR (Hz) Collected by Task Task Type #Subjects (#Samples)
T1 VitalDB (Lee et al., 2022) 500 ICU monitor ICU admission (Yes/No) B 5866
T2 Operation Type M (11) 5866
T3 MIMIC-III (Moody et al., 2020) 125 ICU Monitor Mortality B 5596
T4 MESA (Zhang et al., 2018) 256 Polysomnography finger Smoker B 2055
T5 AHI > 3% Oxygen Desat. R 2055
T6 AHI > 4% Oxygen Desat. R 2055
T7 nuMom2B (Facco et al., 2015) 75 Polysomnography finger Pregnancy stage (early/late) B 3163 (5337)
T8 Gestation Age R 3163 (5337)
T9 VV (Skin Tone) (Toye, 2023) 60 Finger Systolic BP R 231
T10 Diastolic BP R 231
T11 PPG-BP (Liang et al., 2018a) 1000 Finger Pulse Ox Systolic BP R 219
T12 Diastolic BP R 219
T13 Average Heart Rate R 219
T14 Hypertension B 219
T15 SDB (Garde et al., 2014) 62.5 Finger Pulse Ox Sleep Disordered Breathing B 146
T16 ECSMP (Gao et al., 2021) 64 Wrist Mood Disturbance B 89
T17 WESAD (Schmidt et al., 2018) 64 Wrist Valence B 15 (4497)
T18 Arousal B 15 (4497)
T19 PPG-DaLiA (Reiss et al., 2019) 64 Wrist Heart Rate R 15 (64697)
T20 Activity M (9) 15 (64697)

VitalDB. The VitalDB dataset provides comprehensive monitoring of vital signs and physiological
parameters from 6,388 surgical cases. This high-resolution dataset includes a wide range of intraop-
erative monitoring variables such as heart rate, blood pressure, oxygen saturation, and other critical
physiological signals, collected at frequent intervals throughout surgery. The surgical operation be-
longs to one of the eleven categories: colorectal, biliary/pancreas, stomach, major resection, minor
resection, breast, transplantation, thyroid, hepatic, vascular, and others. After the data cleaning pro-
cess, we narrowed the dataset down to 5,866 subjects with complete and usable information. As
depicted in Figure 10, we observe that the gender distribution is relatively balanced, with nearly
equal representation of male and female patients. Additionally, the majority of the subjects fall
within the age range of 50 to 70, with a significant proportion being around 60 years old. The ICU
label corresponds to whether the person was admitted to the ICU or not.
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Figure 10: VitalDB dataset descriptive statistics.

MIMIC-III. In our analysis, we utilize the MIMIC-III waveform database matched subset, which
comprises data from 10,282 ICU patients. From this dataset, we focus specifically on extracting
photoplethysmogram (PPG) data, provided it is available for each patient. To ensure the quality
of the data, we set a criterion of at least 1 minute of usable PPG signal that must be present. After
performing a thorough data cleaning process, we end up with a cohort of 5,596 subjects with reliable
PPG data. As illustrated in Figure 11, the dataset shows a gender imbalance, with a higher proportion
of male patients compared to female patients. Additionally, the majority of subjects are aged 60
years or older, reflecting a typical ICU population that often includes elderly patients with critical
health conditions.
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Figure 11: MIMIC-III dataset descriptive statistics.

MESA. The Multi-Ethnic Study of Atherosclerosis (MESA) sleep sub-study gathered data from
2,237 participants through overnight, unattended polysomnography to assess various sleep parame-
ters. After the data cleaning process, we retained 2,055 subjects for analysis. As shown in Figure
12, the dataset shows a slightly larger proportion of female participants. The age distribution reveals
that most subjects are between 60 and 80 years old, reflecting an older adult population, which is
commonly studied concerning sleep disorders and cardiovascular risks.

In this study, we use the Apnea-Hypopnea Index (AHI) with at least 3% and 4% oxygen desaturation
as the primary measure for diagnosing sleep apnea, as recommended by the American Academy of
Sleep Medicine (AASM) (Ruehland et al., 2009). These thresholds indicate the severity of sleep
apnea, with oxygen desaturation during apneas/hypopneas being a critical factor. We predict these
AHI values directly in our regression models. Additionally, we classify participants with any history
of smoking as smokers. This approach allows us to account for both current and former smokers,
capturing a broader range of smoking-related health risks within our analysis.

60 70 80 90
age

0

50

100

150

Co
un

t

MESA

0 25 50 75 100
AHI > 3%

0
50

100
150
200

Co
un

t

MESA

0 20 40 60 80 100
AHI > 4%

0
100
200
300
400

Co
un

t

MESA

female male
sex

0

500

1000

Co
un

t

MESA

yes no not reported
Smoking

0

500

1000

Co
un

t

MESA

Figure 12: MESA dataset descriptive statistics.

NuMoM2B. Changes in gestational age and pregnancy stage are risk factors associated with adverse
pregnancy outcomes such as hypertensive disorders and small-for-gestational-age delivery (Bouariu
et al., 2022; Parikh et al., 2021; Wu et al., 2020; Crump et al., 2023). These diseases affect heart
function that can be measured using the PPG sensor (Feli et al., 2024). The Nulliparous Pregnancy
Outcomes Study: monitoring mothers-to-be (nuMoM2B) sub-study examines the relationship be-
tween adverse pregnancy outcomes and sleep disorders. In particular, an overnight polysomnograph
that collects PPG data is administered to the women at their homes during 6-15 weeks (early) and
22-31 weeks (late) of pregnancy. Therefore, our tasks are to classify between early and late-stage
pregnancy as well as predict the gestation age of the fetus. In Figure 13, we observe that maternal
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Figure 13: NuMoM2B dataset descriptive statistics.

age peaks around 28 years. The gestational age distribution is bimodal, which we use as a predictor
in our regression task. For pregnancy stage, we classify visit 1 as early and visit 3 as late.

VitalVideos (VV) (Skin Tone). The Vital Videos study is an ongoing project that collects data on
vital signs, videos, and blood pressure across a variety of conditions, including variations in lighting,
background, and skin tone. For our analysis, we used data from two groups, totalling 231 subjects,
from Europe and Sub-Saharan Africa. As shown in Figure 14, most subjects have a Fitzpatrick skin
tone of 5 or 6, indicating darker skin. The dataset is primarily composed of female participants, with
an age range between 40 and 60 years. Additionally, the majority of subjects had a systolic blood
pressure of around 125 and a diastolic pressure of around 80, suggesting that most individuals in the
study were relatively healthy.
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Figure 14: Vital Videos dataset descriptive statistics.

PPG-BP. The PPG-BP consists of short PPG recordings from 219 subjects collected at 1000Hz.
For each subject, there are three 2.1s recordings. For our analysis, we zero pad them to 10s. In
Figure 15, the age distribution shows that most subjects are between 40 and 80 years old, with
fewer participants under 40. Furthermore, the majority of individuals have hypertension. In terms
of gender, the dataset has slightly more females than males. The distribution of systolic blood
pressure is centered around 120-140, indicating a population with normal to moderately elevated
blood pressure, while diastolic blood pressure predominantly falls between 70 and 90. Lastly, the
average heart rate for most subjects ranges between 70 and 90 beats per minute.
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Figure 15: PPG-BP dataset descriptive statistics.
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Figure 16: SDB dataset descriptive
statistics.

SDB. The sleep-disordered breathing dataset includes
data from 146 children, collected through polysomnog-
raphy with finger recordings lasting over three hours.
Ground truth labels are provided as Apnea-Hypopnea In-
dex (AHI) values, categorized into four levels: 0 (nor-
mal), 1 (mild, AHI between 5 and 15), 2 (moderate, AHI
between 15 and 30), and 3 (severe, AHI over 30) as shown
in Figure 16. For our classification task, we group AHI 0
as indicating no sleep breathing disorder, while AHI lev-
els 1 through 3 are classified as the presence of a sleep
breathing disorder.

ECSMP. The ECSMP dataset was gathered to study the
relationship between emotion, cognition, and sleep in 89
subjects. As shown in Figure 17, the majority of the participants are young adult females, with an
average age of around 25 years. Mood disturbances were measured using the Profile of Mood States
(POMS) scale, which captures various aspects of emotional states. To classify participants into high
versus low mood disturbance categories, we binarized the Total Mood Disturbance (TMD) values
by using the median as the cutoff point.
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Figure 17: ECSMP dataset descriptive statistics.

WESAD. The wearable stress and affect detection dataset is a multi-modal dataset collected from 15
subjects using various sensor modalities. In this study, participants were exposed to videos designed
to elicit different affective states, such as amusement, meditation, stress, and baseline conditions.
Following each session, participants completed the Self-Assessment Manikins (SAM) questionnaire
(Bradley & Lang, 1994), which provided the ground-truth values for valence and arousal. In our
analysis, we binarized these values by categorizing valence and arousal as low (1) when less than 5
and high (0) otherwise. Then, we perform regression at the segment level. As shown in Figure 18,
arousal levels are generally low, while valence tends to be high in most cases.
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Figure 18: WESAD dataset descriptive statistics.

PPG-DaLiA. This dataset collects PPG signals from 15 subjects for heart rate estimation while
performing various daily activities. These activities include sitting, ascending/descending stairs,
table soccer, cycling, driving, lunch break, walking, and working. As a result, the dataset captures a
wide range of heart rates, varying from 60 to 150 beats per minute, depending on the specific activity
being performed.
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Figure 19: PPG-DaLiA dataset descriptive statistics.
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C REPRESENTATIVE SIGNALS FROM PRE-TRAINING DATASETS
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Figure 20: Representative 10-second raw PPG segments from VitalDB, MESA, and MIMIC-III. We
observe that each signal’s amplitude (y-axis) and sampling rate differ.
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Figure 21: Normalized and resampled 10-second pre-processed PPG segments from VitalDB,
MESA, and MIMIC-III. These signals represent the final form before being fed to our models.
We observe that the signal characteristics across datasets are more consistent.
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D ADDITIONAL RESULTS

D.1 MULTI-CLASS CLASSIFICATION

Table 9: Multi-class classification comparison against pre-trained models. The parameter size
and reference are denoted next to their names. 95% CIs are reported in square brackets and the best
value is bolded.

REGLE (0.07M) Chronos (200M) Moment (385M) PAPAGEI-P (5M) PAPAGEI-S (5.7M)

Classification - ACC (↑) (Yun et al., 2024) (Ansari et al., 2024) (Goswami et al., 2024)

Operation Type 0.21 [0.18-0.23] 0.25 [0.22-0.29] 0.27 [0.23-0.31] 0.30 [0.26-0.33] 0.30 [0.27-0.32]

Activity 0.29 [0.28-0.29] 0.41 [0.40-0.42] 0.41 [0.40-0.42] 0.38 [0.37-0.39] 0.37 [0.36-0.37]

Average 0.25 ± 0.04 0.33 ± 0.08 0.34 ± 0.07 0.34 ± 0.04 0.33 ± 0.03

Table 10: Multi-class classification comparison against CL methods. The parameter size and
reference are denoted next to their names. 95% CIs are reported in square brackets and the best
value is bolded.

Stat. Features SimCLR BYOL TF-C PAPAGEI-P (5M) PAPAGEI-S (5.7M)

Classification - ACC (↑) (Chen et al., 2020) (Grill et al., 2020) (Zhang et al., 2022)

Operation Type 0.27 [0.24-0.32] 0.27 [0.24-0.29] 0.31 0.27-0.34 0.27 [0.27-0.29] 0.30 [0.26-0.33] 0.30 [0.27-0.32]

Activity 0.37 [0.36-0.38] 0.36 [0.35-0.37] 0.34 [0.33-0.35] 0.37 [0.36-0.38] 0.38 [0.37-0.39] 0.37 [0.36-0.37]

Average 0.32 ± 0.05 0.31 ± 0.04 0.32 ± 0.01 0.32 ± 0.05 0.34 ± 0.04 0.33 ± 0.03

D.2 F1-SCORE AND R2 EVALUATION METRICS.

Table 11: Downstream comparison against pre-trained models (additional metrics: F1-score
and R2). The parameter size and reference are denoted next to their names. 95% CIs are reported
in square brackets and the best value is bolded.

REGLE (0.07M) Chronos (200M) Moment (385M) PAPAGEI-P (5M) PAPAGEI-S (5.7M)

Classification - F1-Score (↑) (Yun et al., 2024) (Ansari et al., 2024) (Goswami et al., 2024)

ICU Admission 0.00 [0.00-0.00] 0.20 [0.11-0.30] 0.12 [0.04-0.20] 0.12 [0.04-0.20] 0.26 [0.18-0.33]

Mortality 0.00 [0.00-0.00] 0.14 [0.09-0.19] 0.16 [0.11-0.21] 0.22 [0.16-0.27] 0.17 [0.13-0.22]

Smoker 0.16 [0.10-0.23] 0.51 [0.44-0.58] 0.40 [0.33-0.47] 0.45 [0.38-0.51] 0.45 [0.37-0.50]

Pregnancy stage 0.49 [0.47-0.52] 0.69 [0.67-0.71] 0.63 [0.60-0.65] 0.62 [0.59-0.64] 0.65 [0.62-0.67]

Hypertension 0.77 [0.70-0.84] 0.68 [0.58-0.77] 0.75 [0.66-0.84] 0.84 [0.72-0.92] 0.78 [0.70-0.86]

Sleep Disordered Breathing 0.00 [0.00-0.00] 0.33 [0.00-0.60] 0.22 [0.00-0.47] 0.32 [0.00-0.60] 0.47 [0.23-0.67]

Mood Disturbance 0.00 [0.00-0.00] 0.36 [0.10-0.59] 0.23 [0.00-0.47] 0.37 [0.00-0.66] 0.32 [0.00-0.58]

Valence 0.00 [0.00-0.00] 0.10 [0.07-0.14] 0.12 [0.09-0.16] 0.17 [0.13-0.21] 0.03 [0.01-0.04]

Arousal 0.83 [0.81-0.84] 0.82 [0.80-0.83] 0.81 [0.79-0.82] 0.81 [0.79-0.82] 0.83 [0.81-0.84]

Average 0.25 ± 0.33 0.42 ± 0.24 0.38 ± 0.26 0.43 ± 0.25 0.44 ± 0.25

Regression - R2 (↑)

Apnea/Hypopnea Index > 3% 0.02 [0.00-0.03] 0.18 [0.08-0.26] 0.14 [0.06-0.22] 0.15 [0.05-0.24] 0.29 [0.22-0.36]

Apnea/Hypopnea Index > 4% 0.01 [0.00-0.03] 0.16 [0.08-0.22] 0.13 [0.05-0.20] 0.12 [0.03-0.22] 0.28 [0.20-0.34]

Gestation Age 0.04 [0.02-0.06] 0.28 [0.24-0.31] 0.20 [0.17-0.23] 0.18 [0.14-0.22] 0.22 [0.19-0.25]

Systolic BP (VV) -0.03 [-0.18-0.01] -0.24 [-0.72-0.03] 0.06 [-0.25-0.28] -0.41 [-0.77-(-0.15)] 0.15 [-0.09-0.30]

Diastolic BP (VV) 0.01 [-0.09-0.06] -0.29 [-0.87-(-0.01)] 0.01 [-0.25-0.14] -0.48 [-1.02-(-0.20)] 0.10 [-0.11-0.23]

Systolic BP (PPG-BP) -0.07 [-0.21-0.04] -0.13 [-0.36-0.06] 0.07 [-0.31 -0.31] 0.36 [0.16-0.49] 0.20 [0.02-0.31]

Diastolic BP (PPG-BP) 0.01 [-0.05-0.02] -0.10 [-0.45-0.07] -0.03 [-0.31-0.13] 0.22 [-0.13-0.40] 0.08 [-0.07-0.17]

Average HR 0.37 [0.17-0.51] 0.02 [-0.16-0.17] 0.68 [0.45-0.80] 0.79 [0.57-0.90] 0.78 [0.69-0.83]

HR 0.00 [0.00-0.01] 0.57 [0.56-0.59] 0.63 [0.61-0.64] 0.52 [0.51-0.53] 0.48 [0.42-0.46]

Average 0.04 ± 0.12 0.05 ± 0.25 0.21 ± 0.24 0.16 ± 0.38 0.28 ± 0.20

D.3 ABLATION RESULTS

In this section, we provide the numeric results for the scaling analysis (Table 13) and PAPAGEI-S
component analysis (Table 14).
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Table 12: Downstream comparison against CL models (additional metrics: F1-score and R2).
The parameter size and reference are denoted next to their names. 95% CIs are reported in square
brackets and the best value is bolded.

Stat. Features SimCLR BYOL TF-C PAPAGEI-P (5M) PAPAGEI-S (5.7M)

Classification - F1-Score (↑)

ICU Admission 0.30 [0.18-0.40] 0.19 [0.12-0.26] 0.17 [0.11-0.22] 0.10 [0.05-0.16] 0.12 [0.04-0.20] 0.26 [0.18-0.33]

Mortality 0.03 [0.01-0.06] 0.15 [0.10-0.20] 0.13 [0.08-0.17] 0.15 [0.10-0.20] 0.22 [0.16-0.27] 0.17 [0.13-0.22]

Smoker 0.47 [0.40-0.53] 0.43 [0.35-0.49] 0.49 [0.42-0.56] 0.37 [0.30-0.44] 0.45 [0.38-0.51] 0.45 [0.37-0.50]

Pregnancy stage 0.43 [0.41-0.47] 0.60 [0.57-0.63] 0.60 [0.57-0.63] 0.59 [0.56-0.62] 0.62 [0.59-0.64] 0.65 [0.62-0.67]

Hypertension 0.73 [0.58-0.85] 0.82 [0.73-0.89] 0.81 [0.73-0.88] 0.81 [0.72-0.89] 0.84 [0.72-0.92] 0.78 [0.70-0.86]

Sleep Disordered Breathing 0.00 [0.00-0.00] 0.46 [0.21-0.64] 0.45 [0.23-0.62] 0.19 [0.00-0.36] 0.32 [0.00-0.60] 0.47 [0.23-0.67]

Mood Disturbance 0.21 [0.00-0.47] 0.21 [0.00-0.44] 0.37 [0.00-0.67] 0.56 [0.27-0.80] 0.37 [0.00-0.66] 0.32 [0.00-0.58]

Valence 0.04 [0.02-0.07] 0.09 [0.06-0.12] 0.01 [0.00-0.03] 0.07 [0.04-0.09] 0.17 [0.13-0.21] 0.03 [0.01-0.04]

Arousal 0.82 [0.81-0.83] 0.81 [0.79-0.82] 0.83 [0.81-0.84] 0.81 [0.80-0.83] 0.81 [0.79-0.82] 0.83 [0.81-0.84]

Average 0.33 ± 0.28 0.42 ± 0.26 0.43 ± 0.27 0.40 ± 0.27 0.43 ± 0.25 0.44 ± 0.25

Regression - R2 (↑)

Apnea/Hypopnea Index > 3% -0.00 [-0.06-0.03] 0.16 [0.07-0.23] 0.16 [0.08-0.22] 0.06 [-0.00-0.13] 0.15 [0.05-0.24] 0.29 [0.22-0.36]

Apnea/Hypopnea Index > 4% -0.01 [-0.07-0.03] 0.13 [0.06-0.21] 0.13 [0.05-0.19] 0.13 [-0.06-0.26] 0.12 [0.03-0.22] 0.28 [0.20-0.34]

Gestation Age 0.07 [0.04-0.10] 0.19 [0.15-0.21] 0.19 [0.15-0.22] 0.18 [0.15-0.21] 0.18 [0.14-0.22] 0.22 [0.19-0.25]

Systolic BP (VV) -0.10 [-0.51-0.10] -0.05 [-0.44-0.21] -0.03 [-0.37-0.18] -0.05 [-0.36-0.12] -0.41 [-0.77-(-0.15)] 0.15 [-0.09-0.30]

Diastolic BP (VV) -0.15 [-0.31-0.11] -0.14 [-0.29-0.08] -0.01 [-0.40-0.20] -0.09 [-0.45-0.16] -0.48 [-1.02-(-0.20)] 0.10 [-0.11-0.23]

Systolic BP (PPG-BP) 0.12 [-0.04-0.21] 0.09 [-0.20-0.31] 0.10 [-0.16-0.30] 0.13 [-0.06-0.26] 0.36 [0.16-0.49] 0.20 [0.02-0.31]

Diastolic BP (PPG-BP) 0.01 [-0.18-0.14] 0.00 [-0.20-0.18] 0.05 [-0.11-0.17] 0.02 [-0.15-0.12] 0.22 [-0.13-0.40] 0.08 [-0.07-0.17]

Average HR 0.15 [-0.10-0.33] 0.74 [0.64-0.80] 0.65 [0.50-0.77] 0.82 [0.73-0.88] 0.79 [0.57-0.90] 0.78 [0.69-0.83]

HR 0.34 [0.32-0.36] 0.45 [0.44-0.47] 0.36 [0.35-0.37] 0.54 [0.53-0.55] 0.52 [0.51-0.53] 0.48 [0.42-0.46]

Average 0.05 ± 0.14 0.17 ± 0.25 0.18 ± 0.20 0.19 ± 0.28 0.16 ± 0.38 0.28 ± 0.20

Table 13: Scaling: Downstream comparison for different PAPAGEI-S models. 95% CIs are
reported in square brackets and the best value is bolded.

PAPAGEI-S-5M PAPAGEI-S-35M PAPAGEI-S-139M
Classification - AUROC (↑)

ICU Admission 0.79 [0.75-0.82] 0.72 [0.68-0.75] 0.77 [0.73-0.80]

Mortality 0.67 [0.63-0.70] 0.66 [0.63-0.70] 0.66 [0.63-0.69]

Smoker 0.61 [0.56-0.66] 0.58 [0.52-0.64] 0.59 [0.54-0.65]

Pregnancy stage 0.78 [0.75-0.80] 0.77 [0.75-0.79] 0.76 [0.74-0.78]

Hypertension 0.77 [0.68-0.87] 0.75 [0.64-0.85] 0.77 [0.65-0.87]

Sleep Disordered Breathing 0.70 [0.57-0.84] 0.59 [0.44-0.74] 0.62 [0.46-0.78]

Mood Disturbance 0.56 [0.33-0.77] 0.53 [0.30-0.73] 0.54 [0.29-0.78]

Valence 0.56 [0.54-0.59] 0.53 [0.50-0.56] 0.54 [0.51-0.56]

Arousal 0.55 [0.52-0.57] 0.52 [0.49-0.55] 0.55 [0.52-0.58]

Average 0.67 ± 0.09 0.63 ± 0.09 0.63 ± 0.10

Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 12.97 [11.87-14.05] 13.07 [11.92-14.25] 12.86 [11.79-13.94]

Apnea/Hypopnea Index > 4% 10.56 [9.59-11.62] 10.79 [9.85-11.83] 10.65 [9.62-11.68]

Gestation Age 6.05 [5.91-6.17] 6.10 [5.94-6.24] 6.17 [6.02-6.30]

Systolic BP (VV) 14.65 [12.50-16.78] 15.10 [13.10-17.21] 14.95 [12.87-17.01]

Diastolic BP (VV) 8.29 [6.61-10.22] 9.20 [6.93-11.12] 8.95 [6.72-10.95]

Systolic BP (PPG-BP) 14.39 [12.53-16.45] 16.70 [14.25-19.38] 16.20 [13.73-18.85]

Diastolic BP (PPG-BP) 8.71 [7.18-10.01] 9.48 [8.24-10.90] 9.32 [7.90-10.69]

Average HR 4.00 [3.34-4.67] 4.76 [3.94-5.86] 4.71 [3.86-5.60]

HR 11.53 [11.40-11.66] 12.86 [12.73-12.99] 12.20 [12.07-12.34]

Average 10.12 ± 3.47 10.89 ± 3.73 10.76 ± 3.57

D.4 STATISTICAL SIGNIFICANCE OF MODEL COMPARISON

In addition to confidence intervals, we perform the following steps to evaluate the significance across
models on a per task basis (Tables 3 & 4). First, we ran the Friedmann Chi Square test, and identified
statistically significant differences across PAPAGEI and the baseline models at p < 0.05. Next, we
created critical difference (CD) diagrams to rank the best performing models, as suggested by the
literature to compare models over multiple datasets6 (Demšar, 2006). The CDs indicate that PaPaGei
performs the best across both classification and regression tasks. Furthermore, it has a statistically
significant average rank as indicated by the lack of horizontal line.

6https://scikit-posthocs.readthedocs.io/en/latest/tutorial.html#
critical-difference-diagrams

26

https://scikit-posthocs.readthedocs.io/en/latest/tutorial.html#critical-difference-diagrams
https://scikit-posthocs.readthedocs.io/en/latest/tutorial.html#critical-difference-diagrams


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 14: PAPAGEI component ablation study results.

sVRI sVRI + SQI sVRI + IPA Full
Classification - AUROC (↑)

ICU Admission 0.79 0.75 0.78 0.79
Mortality 0.67 0.65 0.67 0.67
Smoker 0.59 0.61 0.60 0.61
Pregnancy stage 0.78 0.73 0.72 0.78
Hypertension 0.77 0.72 0.75 0.77
Sleep Disordered Breathing 0.62 0.53 0.64 0.70
Mood Disturbance 0.53 0.56 0.55 0.56
Valence 0.54 0.55 0.53 0.56
Arousal 0.44 0.51 0.49 0.55

Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 13.36 13.74 13.42 12.97
Apnea/Hypopnea Index > 4% 11.01 11.43 11.29 10.56
Gestation Age 6.18 6.32 6.15 6.05
Systolic BP (VV) 14.65 15.97 15.33 14.65
Diastolic BP (VV) 8.32 8.79 9.04 8.29
Systolic BP (PPG-BP) 15.03 14.39 16.15 14.39
Diastolic BP (PPG-BP) 9.12 8.76 9.06 8.71
Average HR 4.00 5.88 4.26 4.00
HR 11.53 11.97 11.88 11.53

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Regle (0.22)
Stat. Features (0.4)

BYOL (0.51)
SimCLR (0.54)

(0.9) PaPaGei
(0.66) Chronos
(0.65) Moment
(0.62) TF-C

Classification: Critical difference diagram of average score ranks

Figure 22: Critical Difference Diagram for Classification Tasks. The axis represents the average
rank of the model. The horizontal connector lines indicate no significant differences between the
models.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

PaPaGei (0.19)
SimCLR (0.48)
Moment (0.5)

BYOL (0.53)

(0.81) Stat. Features
(0.81) Regle
(0.65) Chronos
(0.53) TF-C

Regression: Critical difference diagram of average score ranks

Figure 23: Critical Difference Diagram for Regression Tasks. The axis represents the average
rank of the model. The horizontal connector lines indicate no significant differences between the
models.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

From the critical difference diagrams we observe that PAPAGEI is significantly better across clas-
sification (Figure 22) and regression (Figure 23) tasks. This arises because PAPAGEI is the highest
ranking model across most tasks. Furthermore, we observe Moment is a strong model across both
classification and regression tasks. Whereas Chronos and TF-C perform well for classification tasks
only.

E ADDITIONAL BASELINES: DEMOGRAPHICS & PPG MORPHOLOGY
FEATURES

In this section, we evaluate the effectiveness of demographics (Demo: age, sex) and PPG mor-
phology (sVRI, IPA, SQI) to predict both regression (ridge) and classification (logistic regression)
tasks: (1) Ablation Study: We compared PaPaGei with three baselines—demographics alone, PPG
features alone, and demographics + PPG features. Our results show that while demographics is a
stronger baseline than statistical features, PaPaGei outperforms the demographics + PPG baseline
in 14 out of 18 tasks. (2) Effect of Demographics: We trained a model combining PaPaGei-S with
demographics. The results indicate that incorporating demographic features with PaPaGei-S creates
a stronger model than using PaPaGei-S alone.

Table 15: Demographics & PPG Morphology Baseline Results.

Stat. Features Demo PPG Demo + PPG PAPAGEI-S or -P PAPAGEI-S + Demo
Classification - AUROC (↑)

ICU Admission 0.71 [0.65-0.78] 0.64 [0.60-0.68] 0.59 [0.54-0.64] 0.66 [0.61-0.70] 0.79 [0.75-0.82] 0.77 [0.74-0.81]

Mortality 0.57 [0.54-0.61] 0.66 [0.61-0.69] 0.57 [0.53-0.61] 0.66 [0.61-0.69] 0.67 [0.63-0.70] 0.70 [0.67-0.74]
Smoker 0.63 [0.58-0.67] 0.64 [0.59-0.70] 0.56 [0.52-0.62] 0.66 [0.61-0.71] 0.64 [0.58-0.69] 0.62 [0.56-0.68]

Pregnancy stage 0.64 [0.62-0.67] 0.52 [0.50-0.55] 0.55 [0.53-0.57] 0.56 [0.53-0.58] 0.78 [0.75-0.80] 0.78 [0.76-0.80]
Hypertension 0.66 [0.47-0.83] 0.77 [0.65-0.88] 0.53 [0.40-0.68] 0.77 [0.65-0.88] 0.77 [0.68-0.87] 0.80 [0.70-0.89]
SDB 0.32 [0.14-0.55] – 0.46 [0.31-0.62] – 0.70 [0.57-0.84] –
Mood Disturbance 0.54 [0.31-0.77] 0.54 [0.30-0.80] 0.64 [0.42-0.85] 0.63 [0.36-0.87] 0.56 [0.33-0.77] 0.52 [0.25-0.78]

Valence 0.52 [0.49-0.55] 0.57 [0.54-0.60] 0.44 [0.41-0.47] 0.57 [0.54-0.60] 0.56 [0.54-0.59] 0.55 [0.53-0.58]

Arousal 0.55 [0.53-0.58] 0.54 [0.52-0.58] 0.51 [0.48-0.54] 0.54 [0.52-0.58] 0.58 [0.55-0.61] 0.58 [0.54-0.59]

Regression - MAE (↓)

Apnea/Hypopnea Index > 3% 15.31 [13.63-17.14] 14.53 [13.29-15.84] 15.09 [14.01-16.54] 14.40 [13.12-15.61] 12.97 [11.87-14.05] 12.35 [11.27-13.46]
Apnea/Hypopnea Index > 4% 12.52 [10.92-14.14] 12.28 [11.19-13.39] 12.65 [11.57-13.83] 12.17 [11.10-13.39] 10.56 [9.59-11.62] 10.47 [9.53-11.50]
Gestation Age 7.15 [6.99-7.34] 7.69 [7.61-7.77] 7.61 [7.51-7.70] 7.59 [7.51-7.68] 6.05 [5.91-6.17] 6.02 [5.88-6.17]
Systolic BP (VV) 15.76 [13.67-18.36] 14.96 [13.21-17.35] 15.82 [13.48-18.31] 15.01 [13.30-17.86] 14.65 [12.50-16.78] 14.27 [11.92-16.44]
Diastolic BP (VV) 9.75 [7.16-11.27] 8.75 [6.48-9.77] 9.20 [7.21-10.71] 8.78 [7.10-10.25] 8.29 [6.61-10.22] 8.26 [6.64-10.16]
Systolic BP (PPG-BP) 15.50 [11.68-20.25] 13.71 [11.33-15.95] 15.76 [13.36-18.30] 13.74 [11.37-16.09] 13.60 [10.65-16.51] 13.20 [11.47-15.66]
Diastolic BP (PPG-BP) 9.35 [7.44-11.66] 9.26 [7.89-10.68] 9.36 [7.95-10.92] 9.28 [8.00-10.56] 8.71 [7.18-10.01] 8.61 [7.34-9.88]
Average HR 7.01 [5.48-8.89] 9.12 [7.86-10.61] 8.07 [6.60-9.71] 8.23 [6.82-9.78] 3.47 [2.74-4.32] 4.00 [3.35-4.73]

HR 13.07 [12.90-13.23] 15.18 [15.03-15.33] 16.75 [16.60-16.90] 14.46 [14.32-14.62] 10.92 [10.80-11.04] 12.38 [11.90-12.96]

From Table 15, we observe the following classification performance (Positive is better): ICU
(+0.13), Mortality (+0.01), Smoker (-0.02), Pregnancy Stage (+0.22), Hypertension (0.00), SDB
(no demographics), Mood Disturbance (-0.08), Valence (-0.01), Arousal (+0.04). Regression Tasks
(Negative is better): AHI > 3% (-1.43), AHI > 4% (-1.61), gestation age (-1.54), SBP-VV (-0.31),
DBP-VV (-0.46), SBP (-0.11) , DBP (-0.65), Avg. HR (-4.07), HR (-2.93). PaPaGei-S performs
better for real-time sleep and cardiovascular outcomes such as sleep apnea, heart rate and blood
pressure, respectively. In particular, we notice that outcomes such as heart rate benefit substantially
from PPG rather than demographics. Demographics are useful in tasks without real-time depen-
dence such as smoking, which is established to be associated with age and sex (Chung et al., 2020).
Importantly, demographics do not add much to already homogeneous populations. For example,
consider the NuMoM2B dataset which has women within a specific age range. Here, we observe
that PaPaGei obtains much higher AUROC and MAE than the supervised baselines.

Furthermore, We observe that adding demographics to PaPaGei-S embeddings improves over Pa-
PaGei in the following tasks: Mortality (+0.03), Hypertension (+0.03), AHI > 3% (-0.62), AHI >
4% (-0.09), gestation age (-0.03), SBP VV (-0.38), DBP VV (-0.03), SBP (0.40), DBP (0.10). Based
on these results, PaPaGei-S + Demo is a stronger model in many cases. Importantly, these results
indicate that PaPaGei-S embeddings learn features that are complementary to demographics are not
simply proxies for age or sex. However, it is important to note that while demographic features can
be valuable for personalization, they may not always be readily available, and in reality, we cannot
use them in isolation to predict real-time outcomes such as blood pressure or heart rate. Therefore,
our PaPaGei models are designed to function effectively with real-time sensor data alone, ensuring
their applicability in situations where complete demographic information is not accessible.
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These findings underscore an important point: demographic features are not competing with Pa-
PaGei but rather complement it, as previously established in studies including demographics with
sensor data (Spathis et al., 2022). This highlights the synergistic potential of combining PaPaGei’s
advanced feature extraction with demographic context for improved task performance.

Predicting Demographics Targets. Using the PAPAGEI-S features, we predict downstream demo-
graphics such as age and sex (Table 16).

Table 16: Predicting personal characteristics with embeddings. Downstream prediction on age
regression, age classification, and sex classification in our pre-training datasets (VitalDB, MESA,
MIMIC-III). The regression and classification tasks are reported using MAE and AUROC, respec-
tively. Note: training and testing are conducted with completely different cohorts in the two studies,
hence comparisons are difficult.

Study Age Regression (↓) Age Classification (↑) Sex Classification (↑)

Abbaspourazad et al. (2023) 6.60 0.90 0.87
PAPAGEI-S (Ours) 8.78 [8.47-8.09] 0.85 [0.83-0.87] 0.74 [0.72-0.76]

F ADDITIONAL PREDICTION PLOTS

The regression plots to evaluate the agreement between true and predicted values in shown in Figure
24. From the Figure, we observe that PAPAGEI’s predictions are more aligned to the true values for
AHI > 3% (R2 = 0.28), Avg. HR (R2 = 0.79), gestation age (R2 = 0.28), SBP (R2 = 0.36),
and DBP (R2 = 0.22). Moreover, from the distribution plots in Figure 24, we notice that PAPAGEI
has stronger overlap for AHI > 4%, Avg. HR and DBP, indicating its ability to capture the tails for
these tasks. Interestingly, we notice that all models are unable to capture the bi-modal nature of the
gestation age measurements. Here, Chronos performs better than other methods to capture readings
from the first visit.

G EFFECT OF SKIN TONE

We present the skin tone analysis in a more granular way in Figure 25. Here, PAPAGEI-S clearly
performs better than PAPAGEI-P in most cases. Overall, we notice that PAPAGEI-S is good for
lighter skin tones in the 1-2 range for SBP and 2-3 range for DBP. While PAPAGEI-S does not
perform the best for darker skin tones, it’s performance is comparable to other models for skin tone
ratings of 4 and 5. Overall, these results indicate that PAPAGEI is relatively robust to skin tone
variations, and that additional future work is needed to make it better darker skin tones.

H EXTENDED RELATED WORK

Self-supervised learning (SSL) is the most prominent paradigm for learning general representations
from large unlabeled datasets, including methods like SimCLR (Chen et al., 2020), BYOL (Grill
et al., 2020), and masked autoencoders (MAE) (He et al., 2022). Timeseries-specific objectives like
TNC and TF-C have also shown promise (Tonekaboni et al., 2021; Zhang et al., 2022). SSL has
gained traction in the domain of physiological signal analysis, with applications to health records
(Chen et al., 2021; Yèche et al., 2021), fitness and personalization (Spathis et al., 2021), as well as
brain (Cheng et al., 2020) and heart signals (Kiyasseh et al., 2021; Sarkar & Etemad, 2020).

However, despite the popularity of SSL, there are no widely used pre-trained models for PPG
data. A recent study (Abbaspourazad et al., 2023) demonstrated that embeddings derived from
ECG and PPG signals can generalize across multiple health outcomes using proprietary large-scale
data. While this work showcased the potential of foundation models for physiological signals, it
was based on a single dataset and device (Apple Watch) while the models were not released, lim-
iting its practical use in the research community. Similarly, REGLE’s work (Yun et al., 2024) on
the UK Biobank dataset showed that embedding PPG signals can improve genetic discovery and
risk prediction outcomes. Although parts of that model and pipeline are public, the dataset is not
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Figure 24: Regression plots and prediction distribution of different models compared to ground truth
for (a) Avg. HR. PAPAGEI matches the true label distribution better than other methods. R2 is the
coefficient of determination and m is the correlation slope.

Table 17: Comparison of Large-scale PPG studies. * indicates partial availability

Study #Subjects #Devices (Types) Open Data Open Weights Open Code #Tasks (#Datasets)

Abbaspourazad et al. (2023) 141,207 1 (Smartwatch) ✗ ✗ ✗ >46 (1)
Ding et al. (2024) 34,145 5-6 (ICU, Smartwatch) ✗* ✗ ✓ 4 (7)
Yun et al. (2024) 170,714 1 (Finger) ✗ ✓ ✓* 2 (4)

PAPAGEI (Ours) 13,517 7 (ICU, Smartwatch,
Finger, ”Phone Ox.”) ✓ ✓ ✓ 20 (10)
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Figure 25: Detailed skin tone analysis for Blood Pressure estimation (VV dataset).

openly accessible, and the primary goal was not to create a foundation model for PPG but rather
to focus on genetics. Another work on the same data showed that PPG embeddings are promising
for cardiovascular risk prediction (Weng et al., 2024). SiamQuality (Ding et al., 2024) also trained
an unreleased model on 36 million PPG signals using proprietary data. Importantly, most of these
works pre-trained on a single-device dataset and did not explore out-of-domain datasets or conduct
transfer learning experiments, which are crucial for assessing the true generalizability of foundation
models. These studies highlight the potential of PPG-based foundation models but also underscore
the need for openly available, pre-trained models that can be widely used and adapted by the research
community.

On the other hand, generic time series foundation models have begun to gain popularity, mirroring
the trend seen in Large Language Models (LLMs). These models are pre-trained on massive corpora
of diverse time series data, aiming to learn universal representations that can be applied across
various domains. For instance, Chronos (Ansari et al., 2024) was trained on an impressive 84 billion
observations (analogous to tokens in NLP) from 28 distinct datasets. However, it’s notable that
this diverse collection does not include physiological data. Similarly, Moment (Goswami et al.,
2024) was trained on billions of observations from a wide-ranging dataset that includes weather,
traffic, energy, and other domains. While Moment does incorporate a small amount of ECG data, it
comprises only a tiny percentage of the overall data pool.

In contrast to these generic approaches, our work takes a domain-specific focus. We curate a large
pre-training and evaluation benchmark dedicated exclusively to PPG data. While knowledge gained
from generic time series foundation models may transfer to domain-specific tasks like PPG, we
expect the performance to be limited compared to a model trained specifically on PPG data. Fur-
thermore, foundation models for ECG (McKeen et al., 2024; Song et al., 2024) or EEG (Yuan et al.,
2024b) have shown promise but transferring from one domain-specific model (e.g., ECG) to another
(PPG) is likely to be even more challenging, as the underlying signal characteristics can be quite
different. For instance, Lai et al. (2023) trained a large-scale 12-lead ECG model for detecting 60
diagnostic terms, while McKeen et al. (2024) developed an open-source ECG FM using 1.6 mil-
lion 12-lead signals. In brain signal analysis, Yuan et al. (2024b) introduced Brant-2, an EEG and
SEEG model supporting tasks like sleep staging and seizure detection. Building on this progress,
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we adopt a domain-specific approach focused on photoplethysmography (PPG) signals. Building on
the increasing interest in modality-specific foundation models, our specialized approach allows us
to capture nuances and complexities specific to PPG signals.

An increasingly popular approach involves feeding timeseries data and prompts directly to Large
Language Models (LLMs) (Gruver et al., 2024). However, despite promising results, LLMs strug-
gle with high-dimensional signals due to their text-based processing (Spathis & Kawsar, 2024). A
modality-specific encoder like PAPAGEI addresses this limitation by providing representations of
raw signals (Belyaeva et al., 2023), which can be combined with text and fed into more powerful
multimodal foundation models, such as AnyMAL (Moon et al., 2023). This approach offers several
advantages: computational efficiency through a fixed LLM, flexibility due to the modular design
of encoder, adapter, and LLM components, and interoperability with other high-performing models
(e.g., a state-of-the-art IMU encoder (Yuan et al., 2024a)). Crucially, this encoder-LLM approach
does not require paired data with other modalities to train a single multimodal model. However, it
may introduce complexity by limiting end-to-end gradient propagation and reduce interpretability
in encoder-LLM communication compared to natural language prompts. Despite these trade-offs,
PAPAGEI serves dual purposes: as a generic feature extractor for various PPG signals and applica-
tions, and as a modality encoder in next-generation frontier models. This versatility positions it as a
valuable tool for advancing multimodal sensory AI systems.

I EXTENDED DISCUSSION

Our results show that PAPAGEI outperforms baselines in at least 14 out of 20 tasks, with aver-
age classification and regression improvements of 4.7%-6.3% and 2.9%-4.9%, respectively (Section
5.1). PAPAGEI-S performed best for cardiovascular parameters like BP, Hypertension, and Avg.
HR, which are closely linked to components such as sVRI and IPA (Liang et al., 2018b). Addition-
ally, PAPAGEI-P surpassed pre-trained baselines like Moment and is well-suited for tasks such as
Smoking and Arousal.

By ablating different components of PAPAGEI-S (Section 5.2), we found that the full model per-
forms best, with sVRI contributing the most. Adding IPA or SQI separately did not improve per-
formance, suggesting that (a) IPA and SQI positively transfer in a multi-task setup, and (b) our
design choice to include both to compensate for situations where IPA cannot be computed is effec-
tive (Section 3.2). While combining PAPAGEI-P and PAPAGEI-S may seem intuitive, constraining
positive pairs on both sVRI and participants leads to too many unique labels with limited samples. In
our scalability analysis, we observed that the smallest model (5M parameters) outperformed others,
aligning with other studies using CNNs with 3.3M parameters for biosignals (Abbaspourazad et al.,
2023), likely due to the size of PPG datasets. Larger models like Chronos or Moment are impractical
for wearables due to their size and privacy concerns with cloud-based inference for health data. Ad-
ditionally, PAPAGEI-S is more data-efficient for linear probing, showing greater performance gains
with increased data availability, making it a promising backbone for small studies in future research.

Our studies in Section 5.3 reveal that PAPAGEI-S embeddings are more dispersed across partici-
pants, enhancing performance, while regression predictions more accurately reflect the true distribu-
tion. We attribute this to our positive pair selection, which chooses positive pairs across individuals
based on sVRI. Moreover, our skin tone analysis shows that the method performs better on lighter
skin tones, likely due to the model being trained predominantly on such data. For darker skin tones,
performance was similar across models for diastolic BP, with REGLE and BYOL performing best,
highlighting the need for future work creating more robust models for diverse skin tones.

To provide future direction regarding the use of PAPAGEI, we provide some suggestions. For in-
stance, let’s consider the nuMoM2B dataset which consists of pregnant women. PAPAGEI-S obtains
an AUROC of 0.78 in pregnancy stage classification and 6.05 is gestation age classification. Com-
pared to the pre-training population with diverse age and gender, the nuMoM2B consists of women
generally aged between 20-35. Furthermore, the gestation age readings are collected approximately
around the first and third trimester. Given these factors, the target nuMoM2B dataset has many vari-
ables contributing toward distribution shift. Therefore, PaPaGei-S can be fine-tuned to address the
shift in the following ways: (1) We can align the pre-trained embeddings to the nuMoM2B embed-
ding using unsupervised or semi-supervised domain adaptation. (2) Domain Generalization is also
an option during the training phase to improve generalization robustness. (3) Newer methods such
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as LoRA can provide another way to quickly fine-tune. (4) Importantly, given that more women are
present in the first visit compared to the third visit, we can optimize different metrics to improve
accuracy under the imbalance. For example, AUPRC can be optimized instead of AUROC. Fairness
of classification across genders can also be considered during training. Exploring these avenues
to further enhance the performance and applicability of PaPaGei is a promising direction for fu-
ture studies.Moreover, future work may benefit from exploring PPG specific augmentations such as
GAN-based approaches (Kiyasseh et al., 2020); and systematically evaluating different augmenta-
tions to provide insights into useful PPG augmentations.
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