
Multi-View Optimization of
Local Feature Geometry

Mihai Dusmanu1, Johannes L. Schönberger2, and Marc Pollefeys1,2

1 Department of Computer Science, ETH Zürich 2 Microsoft

Abstract. In this work, we address the problem of refining the geometry
of local image features from multiple views without known scene or
camera geometry. Current approaches to local feature detection are
inherently limited in their keypoint localization accuracy because they
only operate on a single view. This limitation has a negative impact
on downstream tasks such as Structure-from-Motion, where inaccurate
keypoints lead to large errors in triangulation and camera localization.
Our proposed method naturally complements the traditional feature
extraction and matching paradigm. We first estimate local geometric
transformations between tentative matches and then optimize the keypoint
locations over multiple views jointly according to a non-linear least squares
formulation. Throughout a variety of experiments, we show that our
method consistently improves the triangulation and camera localization
performance for both hand-crafted and learned local features.

Keywords: 3D reconstruction, local features

1 Introduction

Local image features are one of the central blocks of many computer vision
systems with numerous applications ranging from image matching and retrieval
to visual localization and mapping. Predominantly, local feature extraction and
matching are the first stages in these systems with high impact on their final
performance in terms of accuracy and completeness [38]. The main advantages
of local features are their robustness, scalability, and efficient matching, thereby
enabling large-scale 3D reconstruction [18] and localization [22].

Handcrafted local feature approaches generally focus on low-level structures
for detection [16,24]. Despite the typically accurate keypoint localization of
these methods, they are easily perturbed by appearance variations such as
day-to-night or seasonal changes, as shown by Sattler et al. [36]. To achieve a
better robustness against viewpoint and appearance changes, recent methods
turned to convolutional neural networks (CNNs) for local feature detection and
description [28,10,12,31]. However, this comes at the cost of a poorer keypoint
localization, mainly caused by relying on larger receptive fields and feature map
down-sampling through pooling or strided convolutions.

Moreover, both traditional and CNN-based methods only exploit a single
view, as feature detection and description is run independently on each image.

ar
X

iv
:2

00
3.

08
34

8v
2

 [
cs

.C
V

]
 2

2
Ju

l 2
02

0

2 M. Dusmanu et al.

Fig. 1. Multi-view keypoint refinement. The proposed method estimates local
transformations between multiple tentative views of a same feature and uses them to
refine the 2D keypoint location, yielding more accurate and complete point clouds.

Even for low-level detectors, there is no inherent reason why detections would be
consistent across multiple views, especially under strong viewpoint or appearance
changes. While some recent works [15,17,45] consider multiple views to improve
the feature matching step, to the best of our knowledge, no prior work exploits
multiple views to improve the feature detection stage for more accurate keypoints.

In this paper, we propose a method for optimizing the geometry of local
features by exploiting multiple views without any prior knowledge about the
camera geometry or scene structure. Our proposed approach first uses a patch-
alignment CNN between tentative matches to obtain an accurate two-view
refinement of the feature geometry. The second stage aggregates all the two-view
refinements in a multi-view graph of relative feature geometry constraints and
then globally optimizes them jointly to obtain the refined geometry of the features.
The proposed two-stage approach is agnostic to the type of local features and
easily integrates into any application relying on local feature matching. Numerous
experiments demonstrate the superior performance of our approach for various
local features on the tasks of image matching, triangulation, camera localization,
and end-to-end 3D reconstruction from unstructured imagery. The source code of
our entire method and of the evaluation pipeline will be released as open source.

2 Related work

Our method is directly related to local features as well as patch description
and matching. The two-view alignment network borrows concepts from recent
advances in the field of image alignment and visual flow. In this section, we
provide an overview of the state of the art in these research directions.

Local features. Traditional local feature extractors can be split into two main
stages: first, feature detection finds interesting regions in the image using low-level
statistics (e.g., Difference-of-Gaussians [24] or the Harris score [16]), typically
followed by the estimation of local feature geometry (e.g., scale, orientation, affine
shape) for the detected interest points to achieve viewpoint invariance. Second,
feature description then normalizes the local image region around interest points
to a canonical frame using the detected feature geometry and finally extracts an
illumination invariant, compact numerical representation from the normalized
patch (e.g., SIFT [24], Root-SIFT [3], BRIEF [8]). More recently, researchers

Multi-View Optimization of Local Feature Geometry 3

Fig. 2. Overview of the proposed method. Our method operates on the tentative
matches graph (with patches as nodes Pu, Pv and matches as edges) without knowledge
of scene and camera geometry. A neural network is used to annotate the edges of this
graph with local geometric transformations (Tu→v, Tv→u). Next, the graph is partitioned
into tracks, each track containing at most one patch from each image. Finally, the
keypoint locations xu, xv are refined using a global optimization over all edges.

have developed trainable counterparts that either replace individual parts of the
pipeline – learned detectors [44,37,6] and descriptors [5,27] – or reformulate the
entire pipeline in an end-to-end trainable manner [46,30].

Lately, methods have moved away from the detect-then-describe methodology
to a describe-then-detect approach, mainly due to the sensitivity of detections to
changes in image statistics. These methods start by using a CNN as a dense feature
extractor and afterwards either train a classifier for detection on top [28], use it
as a shared encoder that splits into two decoders for detection and description
respectively [10,31], or directly use non-maxima suppression on the deep feature
maps [12]. However, these approaches have another issue: due to their large
receptive field and feature map down-sampling, the obtained keypoints are
generally not well localized when compared to their hand-crafted, low-level
counterparts. This is the case even for methods [10] explicitly trained to detect
corners. In this paper, we address the limited accuracy of feature detections for
both hand-crafted as well as learned features. Our approach only requires images
as input and achieves superior detection accuracy by considering multiple views
jointly, which is in contrast to existing local feature approaches.

Patch description and matching. CNNs have been successfully used to
learn local descriptors offering better robustness to viewpoint and illumination
changes using different triplet losses [5], hard-negative mining techniques [27], and
geometric similarity for training [26]. Likewise, in Multi-View Stereo, hand-crafted
similarity metrics [14] and descriptors [43] traditionally used for patch matching
were replaced by learned counterparts [25,15,17,45]. Closer to our approach are
methods bypassing description and directly considering multiple views to decide
whether two points correspond [47,48,15]. While these approaches focus on the
second part of the local feature pipeline, we focus our attention on the detection
stage. However, the intrinsic motivation is the same: exploiting multiple views
facilitates a more informed decision for better results.

4 M. Dusmanu et al.

Geometric alignment and visual flow. Recent advances in semantic align-
ment [32,34] and image matching [34] as well as flow estimation [11] use a Siamese
network followed by a feature matching layer. Our patch alignment network uses
the correlation normalization introduced in [32]. The matching results are pro-
cessed by a sequence of convolutional and fully connected layers for prediction.
Contrary to visual flow, which is generally targeted at temporally adjacent video
frames, where pixel displacements remain relatively low and appearance is similar,
our method must handle large deformations and drastic illumination changes.

Refinement from known geometry or poses. Closer to our method, Eich-
hardt et al. [13] recently introduced an approach for local affine frame refinement.
While they similarly formulate the problem as a constrained, multi-view least
squares optimization, their method assumes known two-view camera geometries
and does not consider visual cues from two views jointly to compute the patch
alignment. Furthermore, they need access to ground-truth feature tracks (com-
puted by an initial Structure-from-Motion process). In contrast, not requiring
known camera geometry and feature tracks makes our approach amenable to
a much wider range of practical applications, e.g., Structure-from-Motion or
visual localization. Moreover, the two methods are in fact complementary – our
procedure can improve the quality of Structure-from-Motion, which can then be
further refined using their approach.

3 Method

The generic pipeline for multi-view geometry estimation, illustrated in Figure 2,
starts from a set of input images I = {I1, . . . , IN} and first runs feature ex-
traction on each image Ii independently yielding keypoints pi with associated
local descriptors di. Feature matching next computes tentative feature correspon-
dences Mi,j = {(k, l) such that di,k matches dj,l} between image pairs (Ii, Ij)
based on nearest neighbors search in descriptor space (usually alongside filtering
techniques). The output of this step can be interpreted as a tentative matches
graph G = (V,E) with keypoints as nodes (V = ∪ipi) and matches as edges
(E = ∪i,jMi,j), optionally weighted (e.g., by the cosine similarity of descriptors).
In the last step, the specific application (e.g., a Structure-from-Motion [39] or
visual localization pipeline [35]) takes the tentative matches graph as input and
estimates camera or scene geometry as the final output.

In this paper, we propose a further geometric refinement of the nodes V in
the tentative matches graph, as shown in the bottom part of Figure 2. This
intermediate processing step naturally fits into any generic multi-view geometry
pipeline. As demonstrated in experiments, our method significantly improves the
geometric accuracy of the keypoints and thereby also the later processing steps,
such as triangulation and camera pose estimation.

3.1 Overview

Our proposed method operates in a two-stage approach. First, for each edge, we
perform a two-view refinement using a patch alignment network that, given local

Multi-View Optimization of Local Feature Geometry 5

Source
Warped

Source ← Target
Target

Fig. 3. Coarse-to-fine refinement and qualitative examples. Left: We start by
a coarse alignment at feature extraction resolution taking into account only the central
point, followed by a fine refinement on sub-patches corresponding to each grid point.
Right: The first and last columns show the source and the target patch, respectively.
The 3× 3 regular grid is plotted with circles. For the target patch, we plot the deformed
grid predicted by the coarse-to-fine refinement with crosses. The middle column shows
the warped target patch using bisquare interpolation in between grid locations.

patches Pu, Pv around the corresponding initial keypoint locations u, v ∈ R2,
predicts the flow du→v of the central pixel from one patch in the other and
vice versa as dv→u. This network is used to annotate the edges of the tentative
matches graph with geometric transformations Tu→v, Tv→u. In the second step,
we partition the graph into components (i.e., features tracks) and find a global
consensus by optimizing a non-linear least squares problem over the keypoint
locations, given the estimated two-view transformations.

3.2 Two-view refinement

Our method starts by computing a two-view refinement for every edge in the graph.
Similarly to previous works in the field of CNNs for semantic alignment [32,33],
image matching [34], and visual flow [11], we employ a Siamese architecture for
feature extraction followed by a correlation layer. The final flow is predicted by a
succession of convolutional and fully connected layers.

Feature extraction and correlation. The architecture first densely extracts
features in both patches (Pu, Pv) with a standard CNN architecture. The output
is two 3D tensors Fu, Fv ∈ Rh×w×d, each of which can be interpreted as a set of
d-dimensional descriptors associated to a h×w spatial grid in their corresponding
patches fu(i, j), fv(i, j) ∈ Rd. Before matching the descriptors using dot-product

correlation, we perform L2-normalization as f̂(i, j) = f(i,j)
‖f(i,j)‖2 .

Dense matching can be implemented using a correlation layer yielding a
4D tensor c ∈ Rh×w×h×w defined by c(i1, j1, i2, j2) = f̂u(i1, j1)T f̂v(i2, j2). This
volume can be interpreted as a 3D tensor m ∈ Rh×w×(h·w), where each channel

6 M. Dusmanu et al.

is associated to a different grid position in the opposite patch: m(i1, j1)k =
c(i1, j1, i2, j2) where k = i2 · w + j2.

Following the methodology proposed by [32], we use L2-normalization across
the channel dimension to lower the values of ambiguous matches

m̂(i, j) =
ReLU(m(i, j))

‖ReLU(m(i, j))‖2
, (1)

when the opposite patch contains more than one similar descriptor.

Regression. The final matching result m̂ is post-processed by a CNN to
aggregate local information. Finally, to enforce a patch-level consistency, a
sequence of fully connected layers predicts the final output du→v. Please refer to
the supplementary material for more details regarding the architecture.

3.3 Multi-view refinement

In a two-view scenario, the network described in the previous section is sufficient:
(u and v+du→v) or (u+dv→u and v) can directly be used as the refined keypoint
locations. However, given that our final goal is to perform optimization over
multiple views, there are several challenges we need to overcome.

Firstly, since corresponding features are generally observed from different
viewpoints and looking at non-planar scene structures, the computed displacement
vector is only valid for the central pixel and not constant within the patch (i.e.,
δ
δudu→v 6= 02,2). Thus, when refining keypoint locations u, v, w, . . . over multiple
views, consistent results can only be produced by forming displacement chains
(e.g., du→v + d(v+du→v)→w + . . .) without loops. However, such an approach does
not consider all possible edges in the graph and quickly accumulate errors along
the chain. Another possible way to perform the refinement is to predict new
displacements every time the keypoint locations are updated during the multi-
view optimization. The main downside of this approach is its run-time, since the
two-view network would have to be run for each edge after each optimization
step. Therefore, to refine the keypoints over the entire graph and also achieve
practical run-times, we use the two-view network to estimate local flow fields
Tu→v prior to multi-view refinement and then efficiently interpolate displacements
within the patch during the optimization. Some qualitative examples are shown
in Figure 3 (right).

Secondly, the connected components of G generally contain feature tracks
of different scene points, as the graph topology is purely based on appearance
and feature matching is imperfect despite various filtering constraints – a single
incorrect match can merge two tracks. As such, we partition the connected
components into smaller, more reliable subsets based on the descriptor cosine
similarity su,v between patch pairs (u, v).

Thirdly, predicting the reverse flow or loops in the graph does not necessarily
produce a consistent result (e.g., Tv→u◦Tu→v 6= id, Tw→u◦Tv→w◦Tu→v 6= id) due
to wrong matches or noisy network predictions. We tackle this by formulating a
joint robust optimization of all tentatively matching keypoint locations considering

Multi-View Optimization of Local Feature Geometry 7

all the edges over multiple views, analogous to Pose Graph Optimization [29]. In
the following paragraphs, we detail our solutions to the issues mentioned above.

Flow field prediction. To facilitate the multi-view optimization of the key-
point locations, we use repeated forward passes of the central flow network to
predict a local flow field Tu→v around the initial keypoint location u. Note that
this prediction is directionally biased and, as such, we always also predict the
inverse flow field Tv→u. For further space and time efficiency considerations,
we approximate the full flow field between two patches by a 3 × 3 displace-
ment grid and use bi-square interpolation with replicate padding in between
the grid points. Assuming locally smooth flow fields, we can efficiently chain
the transformations from any node u to another node w without any additional
forward-passes of the two-view network. To obtain correspondences for all points
of the 3× 3 grid, we first predict a coarse alignment dcu→v using patches around
matched features u, v at original keypoint extraction resolution. Subsequently,
we further refine the coarse flow at a finer resolution using sub-patches around
each 3× 3 grid position g, dfu+g→v+dcu→v+g. The final transformation is given by:

Tu→v(g) = dcu→v + dfu+g→v+dcu→v+g. This process is illustrated in Figure 3 (left).

Match graph partitioning. To address the second issue, our multi-view refine-
ment starts by partitioning the tentative matches graph into disjoint components
called tracks. A track is defined as a subset of the nodes V containing at most
one node (patch) from each image. This is similar to a 3D feature track (i.e.,
the set of 2D keypoints corresponding to the same 3D point). For each node
u ∈ V , we denote tu the track containing u. For a subset S of V , we define
IS as the set of images in which the features (nodes) of S were extracted (i.e.,
IS = {I ∈ I|∃u ∈ S s.t. u ∈ I}).

The proposed algorithm for track separation follows a greedy strategy and is
closely related to Kruskal’s minimum-spanning-tree algorithm [21]. The edges
(u→ v) ∈ E are processed in decreasing order of their descriptor similarity su→v.
Given an edge u → v linking two nodes from different tracks (i.e., tu 6= tv),
the two tracks are joined only if their patches come from different images (i.e.,
Itu ∩ Itv = Ø). The pseudo-code of this algorithm is defined in Figure 4 (left).

Another challenge commonly arising due to repetitive scene structures are
very large connected components in the tentative matches graph. These large
components are generally caused by a small number of low-similarity edges and
lead to excessively large optimization problems. To prevent these large components
from slowing down the optimization, we use recursive normalized graph-cuts
(GC) on the meta-graph of tracks G = (V, E) until each remaining connected
component has fewer nodes than the number of images N . The nodes of G
correspond to tracks (V = {tu|u ∈ V }) and its edges aggregate over the edges of G,
E = {(tu, tv, wtu,tv)|(u → v) ∈ E,wtu,tv =

∑
(u′→v′)∈E s.t. tu′=tu,tv′=tv

su′→v′}.
The G-cardinality of a subset A ⊆ V is defined as: |A|G = |{u ∈ V |tu ∈ A}|. The
pseudo-code is detailed in Figure 4 (right). This step returns a pair-wise disjoint
family of sets S corresponding to the final connected components of G.

8 M. Dusmanu et al.

Input: Graph G = (V,E)
Output: Track assignments tu, ∀u ∈ V
for u ∈ V do

tu ← new track {u};
end
F ← E sorted by decreasing similarity;
for (u, v) ∈ F do

if Itu ∩ Itv = Ø then
merge tu and tv;

end

end

Input: Meta-graph G = (V, E)
Output: Family of sets S
S ← {};
for C connected component of G do

RecursiveGraphCut(C);
end
Function RecursiveGraphCut(C)

if |C|G > N then
A,B ← NormalizedGC(C);
RecursiveGraphCut(A);
RecursiveGraphCut(B);

else
S ← S ∪ {C};

end

Fig. 4. Algorithms. Left – track separation algorithm: the tentative matches graph is
partitioned into tracks following a greedy strategy. Each track contains at most one
patch from each image. Right – recursive graph cut: we remove edges until having
connected components of size at most N - the number of images. This algorithm yields
a pair-wise disjoint family of sets S, each set representing an ensemble of tracks.

Given the track assignments and a set of tracks A ∈ S, we define the set
of intra-edges connecting nodes within a track as EAintra = {(u → v) ∈ E|tu =
tv, tu ∈ A} and the set of inter-edges connecting nodes of different tracks as
EAinter = {(u→ v) ∈ E|tu 6= tv, tu ∈ A, tv ∈ A}. In the subsequent optimization
step, the intra-edges are considered more reliable and prioritized, since they
correspond to more confident matches.

Graph optimization. Given the tentative matches graph augmented by dif-
ferentiable flow fields T for all edges, the problem of optimizing the keypoint
locations xp can be formulated independently for each set of tracks A ∈ S as the
bounded non-linear least squares problem

min
{xp|tp∈A}

∑
(u→v)∈EAintra

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)+

∑
(u→v)∈EAinter

su→vψ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0
p‖1 ≤ K,∀p ,

(2)

where x0
· are the initial keypoint locations, ρ is a soft, unbounded robust function

for intra-edges, ψ is a stronger, bounded robust function for inter-edges, and K
is the degree of liberty of each keypoint (in pixels). Finally, su→v is the cosine
similarity between descriptors of nodes u and v; thus, closer matches in descriptor
space are given more confidence during the optimization.

The inter-edges are essential since most features detectors in the literature
sometimes fire multiple times for the same visual feature despite non-max sup-
pression (at multiple scales or with different orientations). Without inter-edges,
given our definition of a track as only containing at most one feature from each
image, these detections would be optimized separately. With inter-edges, the
optimization can merge different tracks for higher estimation redundancy if the
deviations from the intra-track solutions are not too high.

Multi-View Optimization of Local Feature Geometry 9

Note that this problem can have multiple local minima corresponding to
different scene points observed in all the patches of a track. For robust convergence
of the optimization to a good local minimum, we fix the keypoint location of the
node rτ with the highest connectivity score3 in each track τ , rτ = arg max

{u|tu=τ}
γ(u).

4 Implementation details

This section describes the loss and dataset used for training the patch align-
ment network in a supervised manner, as well as details regarding the graph
optimization algorithm, hyperparameters, and runtime.

Training loss. For training the network, we use a squared L2 loss: L =∑
P1,P2

‖d1→2 − dgt
1→2‖22, where d and dgt are the predicted and ground-truth

displacements for the central pixel from patch 1 to patch 2, respectively.

Training dataset. We use the MegaDepth dataset [23] consisting of 196
different scenes reconstructed from internet images using COLMAP [39,40] to
generate training data. Given the camera intrinsics, extrinsics, and depth maps
of each image, a random triangulated SIFT keypoint is selected as reference and
reprojected to a matching image to generate a corresponding patch pair. We
enforce depth consistency to ensure that the reference pixel is not occluded in
the other view. We discarded 16 scenes due to inconsistencies between sparse
and dense reconstructions. The extracted patch pairs are centered around the
SIFT keypoint in the reference view and its reprojected correspondence in the
target view respectively (i.e., the ground-truth flow is 0). Random homographies
are used on the target view to obtain varied ground-truth central point flow.
While the MegaDepth dataset provides training data across a large variety of
viewpoint and illumination conditions, the ground-truth flow is sometimes not
perfectly sub-pixel accurate due to errors in the dense reconstruction. Therefore,
we synthesize same-condition patch pairs with perfect geometric flow annotation
using random warping of reference patches to generate a synthetic counterpart.

Feature extraction CNN. As the backbone architecture for feature extraction,
we use the first two blocks of VGG16 [42] (up to conv2 2) pretrained on ImageNet
[9]. To keep the features aligned with input patch pixels, we replace the 2 × 2
max-pooling with stride 2 by a 3× 3 max-pooling with stride 2 and zero padding.

Training methodology. We start by training the regression head for 5 epochs.
Afterwards, the entire network is trained end-to-end for 30 epochs, with the
learning rate divided by 10 every 10 epochs. Adam [20] serves as the optimizer
with an initial learning rate of 10−3 and a batch size of 32. To counter scene
imbalance, 100 patch pairs are sampled from every scene during each epoch.

Graph optimization. During the optimization, keypoints are allowed to move
a maximum of K = 16 pixels in any direction. We initialize xp to the initial

3 The connectivity score of a node u is defined as the similarity-weighted degree of the
intra-edges γ(u) =

∑
{(u→v)|tu=tv} su→v.

10 M. Dusmanu et al.

keypoint locations x0
p. Empirically, we model the soft robust function ρ as Cauchy

scaled at 4 pixels, and the strong one ψ as Tukey scaled at 1 pixel. We solve the
problems from Eq. 2 for each connected component A ∈ S independently using
Ceres [1] with sparse Cholesky factorization on the normal equations.

Runtime. The coarse-to-fine patch transformation prediction processes 1-4
image pairs per second on a modern GPU depending on the number of matches.
The average runtime of the graph optimization across all methods on the ETH3D
scenes is 3.0s (median runtime 1.0s) on a CPU with 16 logical processors.

5 Experimental evaluation

Despite being trained on SIFT keypoints, our method can be used with a variety
of different feature detectors. To validate this, we evaluate our approach in
conjunction with two well-known hand-crafted features (SIFT [24] and SURF [7]),
one learned detector combined with a learned descriptor (Key.Net [6] with
HardNet [27]), and three learned ones (SuperPoint [10] denoted SP, D2-Net [12],
and R2D2 [31]). For all methods, we resize the images before feature extraction
such that the longest edge is at most 1600 pixels (lower resolution images are
kept unchanged). We use the default parameters as released by their authors in
the associated public code repositories. Our refinement protocol takes exactly the
same input as the feature extraction. The main objective is not to compare these
methods against each other, but rather to show that each of them independently
significantly improves when coupled with our refinement procedure.

First, we evaluate the performance with and without refinement on a standard
image matching task containing sequences with illumination and viewpoint
changes. Then, we present results in the more complex setting of Structure-
from-Motion. In particular, we demonstrate large improvements on the tasks of
multi-view triangulation, camera localization, as well as their combination in an
end-to-end image-based 3D reconstruction scenario.

For the Structure-from-Motion evaluations, we use the following matching
protocol: for SIFT and SURF, we use a symmetric second nearest neighbor ratio
test (with the standard threshold of 0.8) and mutual nearest neighbors filtering.
For Key.Net+HardNet, we use the same protocol with a threshold of 0.9. For
the remaining methods, we use mutual nearest neighbors filtering with different
similarity thresholds - 0.755 for SuperPoint, 0.8 for D2-Net, and 0.9 for R2D2.4

5.1 Image matching

In this experiment, we evaluate the effect of our refinement procedure on the full
image sequences from the well-known HPatches dataset [4]. This dataset consists
of 116 sequences of 6 images with changes in either illumination or viewpoint.
We follow the standard evaluation protocol introduced by [12] that discards 8 of

4 The thresholds for the learned methods were determined following the methodology
of [24]. Please refer to the supplementary material for more details.

Multi-View Optimization of Local Feature Geometry 11

SuperPointSIFT D2-NetSIFT + ref. D2-Net + ref. SuperPoint + ref.
SURF SURF + ref. R2D2 R2D2 + ref. Key.Net + ref.Key.Net

1 2 3 4 5 6 7 8 910
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

M
at

ch
in

g
Ac

cu
ra

cy
Overall

1 2 3 4 5 6 7 8 910
threshold [px]

Illumination

1 2 3 4 5 6 7 8 910

Viewpoint
Method

AUC
2px 5px 10px

SIFT 39.49% 49.57% 55.15%
SIFT + ref. 44.78% 52.95% 57.19%

SURF 30.69% 39.68% 44.96%
SURF + ref. 37.67% 44.23% 47.68%

D2-Net 19.36% 40.93% 60.35%
D2-Net + ref. 54.24% 67.62% 75.57%

R2D2 44.21% 63.54% 73.83%
R2D2 + ref. 58.62% 71.23% 77.90%

SP 44.08% 59.04% 68.09%
SP + ref. 58.88% 68.76% 73.86%

Key.Net 40.87% 56.04% 65.30%
Key.Net + ref. 55.91% 66.29% 71.69%

Fig. 5. Matching evaluation. We plot the mean matching accuracy on HPatches
Sequences at different thresholds for illumination and viewpoint sequences, as well as
overall. We also report the area under the overall curve (AUC) up to 2, 5, and 10 pixels.
All methods have their performance improved by the proposed refinement procedure.

the sequences due to resolution considerations. The protocol reports the mean
matching accuracy per image pair of a mutual nearest neighbors matcher while
varying the pixel threshold up to which a match is considered to be correct.

Figure 5 shows the results for illumination-only, viewpoint-only, as well as
overall for features with and without refinement. As expected, our method greatly
improves upon learned features under either condition. Note that the evaluated
learned methods represent the state of the art on this benchmark already and
we further improve their results. For SIFT [24], while the performance remains
roughly the same under viewpoint changes, our method significantly improves the
results under illumination sequences, where low-level changes in image statistics
perturb the feature detector. It is also worth noting that, especially in the
viewpoint sequences for learned features, our refinement procedure improves the
results for coarse thresholds by correcting wrong, far-away correspondences.

5.2 Triangulation

Next, we evaluate the triangulation quality with known ground-truth camera
poses and intrinsics on the ETH3D benchmark [41]. Originally, this benchmark
was proposed for multi-view stereo methods and provides highly accurate ground-
truth camera poses and dense 3D point-clouds. Nevertheless, the same evaluation
protocol also applies to our scenario – we want to evaluate the impact of refined
keypoint locations on the completeness and accuracy of sparse multi-view trian-
gulation. For each method, we run the multi-view triangulator of COLMAP [39]
with fixed camera intrinsics and extrinsics. Given the sparse point cloud, we run
the ETH3D evaluation code to report the accuracy (% of triangulated points)
and completeness (% of ground-truth triangulated points) at different real-world
thresholds. We refer to the original paper for more details about the evaluation.

Table 1 compares the different local feature approaches with their refined
counterparts. Our proposed keypoint refinement procedure improves the results

12 M. Dusmanu et al.

Table 1. Triangulation evaluation. We report the accuracy (% of triangulated
points) and completeness (% of ground-truth triangulated points) at 1cm, 2cm, and
5cm. The refined versions outperform their raw counterparts in both metrics.

Dataset Method
Comp. (%) Accuracy (%)

Method
Comp. (%) Accuracy (%)

1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm

Indoors
7 scenes

SIFT 0.20 0.86 3.61 75.74 84.77 92.26 SURF 0.08 0.41 1.97 66.37 79.05 89.61
SIFT + ref. 0.24 0.96 3.88 81.06 88.64 94.61 SURF + ref. 0.12 0.52 2.26 76.28 85.30 92.36

D2-Net 0.46 1.83 7.00 46.95 64.91 83.25 R2D2 0.53 2.04 8.53 66.70 79.26 90.04
D2-Net + ref. 1.44 4.53 12.97 78.53 86.46 93.05 R2D2 + ref. 0.66 2.32 9.08 77.56 85.74 92.54

SP 0.59 2.21 8.86 75.26 85.27 93.30 Key.Net 0.16 0.68 3.01 66.51 80.44 91.61
SP + ref. 0.71 2.51 9.55 86.03 91.91 95.83 Key.Net + ref. 0.21 0.81 3.36 80.51 89.24 94.73

Outdoors
6 scenes

SIFT 0.06 0.34 2.44 58.31 73.13 86.24 SURF 0.03 0.17 1.22 44.21 63.11 79.71
SIFT + ref. 0.07 0.41 2.75 61.61 76.89 88.96 SURF + ref. 0.05 0.26 1.68 62.88 74.67 87.10

D2-Net 0.03 0.19 1.80 21.35 35.08 56.75 R2D2 0.11 0.55 3.61 48.75 65.74 82.81
D2-Net + ref. 0.21 1.09 6.13 59.07 72.34 85.62 R2D2 + ref. 0.16 0.71 4.08 63.85 78.10 90.09

SP 0.09 0.54 3.86 49.67 64.57 80.79 Key.Net 0.01 0.09 0.75 39.25 54.57 72.30
SP + ref. 0.15 0.77 4.91 65.23 77.50 88.37 Key.Net + ref. 0.02 0.13 0.91 55.62 69.41 85.56

across the board for all methods. Once again, the learned keypoints that suf-
fer from poor localization due to downsampling and large receptive field are
drastically improved for both indoor and outdoor scenarios. Even though the
performance gain is smaller in the case of SIFT, this experiment shows that
exploiting multi-view information is beneficial for very well localized features as
well. The increase in completeness for all local features shows that our approach
does not trim the 3D models to only contain accurate points, but rather improves
the overall quality by yielding more triangulated points which are also more
precise. Please refer to the supplementary material for results on each dataset.

5.3 Camera localization

We also evaluate the camera localization performance under strict thresholds
on the ETH3D dataset [41]. For each scene, we randomly sample 10 images
that will be treated as queries (130 query images in total). For each query, a
partial 3D model is built without the query image and its 2 closest neighbors in
terms of co-visibility in the reference model (released with the dataset); 2D-3D
correspondences are inferred from the tentative matches between the query image
and all (partial) 3D model images; finally, absolute pose estimation with non-
linear refinement from COLMAP is used to obtain the camera pose. The partial
models are built independently, i.e., multi-view optimization is only run on the
views that are part of each partial model (without the query and holdout images).
For the query keypoints, central point flow is predicted from the reprojected
locations of 3D scene points in the matching views to the query view. To obtain
a single 2D coordinate for each matching 3D point, we compute the similarity-
weighted average of the flow for each track, which is equivalent to solving Eq. 2,
where nodes of keypoints in the 3D model are connected through a single edge
to matching query keypoints.

The results of this experiment are presented in Figure 6. The performance
of SIFT [24] after refinement is on par with the unrefined version despite the
increase in point-cloud accuracy and completeness; this suggests that the method
has nearly saturated on this localization task. All the other features have their

Multi-View Optimization of Local Feature Geometry 13

SuperPointSIFT D2-NetSIFT + ref. D2-Net + ref. SuperPoint + ref.
SURF SURF + ref. R2D2 R2D2 + ref. Key.Net + ref.Key.Net

100 101 102

mm
0

20

40

60

80

100
%

 o
f i

m
ag

es
Method

AUC
1mm 1cm 10cm

SIFT 13.85% 55.40% 79.13%
SIFT + ref. 13.85% 52.82% 80.30%

SURF 4.62% 28.37% 63.18%
SURF + ref. 7.69% 35.40% 65.68%

D2-Net 2.31% 12.24% 54.58%
D2-Net + ref. 20.77% 55.29% 76.00%

R2D2 10.77% 52.52% 81.72%
R2D2 + ref. 23.08% 60.93% 82.93%

SP 11.54% 51.00% 81.03%
SP + ref. 31.54% 64.02% 85.79%

Key.Net 3.85% 29.08% 68.03%
Key.Net + ref. 14.62% 48.18% 72.61%

100 101 102

mm
0

20

40

60

80

100

%
 o

f i
m

ag
es

Fig. 6. Camera localization evaluation. We report the percentage of localized
images at different camera position error thresholds as well as the area under the curve
(AUC) up to 1mm, 1cm and 10cm. The performance of SIFT remains similar on this
task. All other features show greatly improved camera pose accuracy after refinement.

performance greatly improved by the proposed refinement. It is worth noting
that the refined versions of SuperPoint [10] and R2D2 [31] drastically outperform
SIFT especially on the finer thresholds (1mm and 1cm).

5.4 Structure-from-Motion

Finally, we evaluate our refinement procedure on the scenario of end-to-end 3D
reconstruction from unstructured imagery on the benchmark introduced in [38].
For the internet datasets (Madrid Metropolis, Gendarmenmarkt, and Tower of
London), instead of exhaustively matching all images, we use NetVLAD [2] to
retrieve top 20 related views for each image and only match against these. Due to
the wide range of resolutions in internet images, we impose the use of multi-scale
features if available and not active by default (i.e., for D2-Net [12]).

After matching and feature refinement, we run COLMAP [39] to obtain sparse
3D reconstructions. Finally, different reconstruction statistics taking into account
only the images registered both with and without refinement are reported in
Table 2. For independent results, please refer to the supplementary material.

Overall, the results with refined keypoints achieve significantly better statistics
than their original counterparts. On the small datasets all refined methods apart
from R2D2 have sub-pixel keypoint accuracy (i.e., a reprojection error lower
than 0.5). SuperPoint and Key.Net, despite being targeted at low-level features,
are still largely behind SIFT in terms of reprojection error without refinement.
The refinement lowers this gap while also improving their already significant
track length. For SIFT, the main improvement is in terms of reprojection error
showing that it is possible to refine even features with accurate, sub-pixel keypoint
localization. For R2D2 and SURF, on the large datasets, we see a tendency to
very slightly decrease the track length to improve the reprojection error. This
points to the fact that loosely grouped features during SfM are split into multiple,
but more accurate feature tracks. The results on the large internet datasets

14 M. Dusmanu et al.

Table 2. Local Feature Evaluation Benchmark. A 3D model is built for each
method and different reconstruction statistics are reported. For the large datasets, we
report the statistics on the common images only.

Dataset Method
Reg.

images
Num.
obs.

Track
length

Reproj.
error

Method
Reg.

images
Num.
obs.

Track
length

Reproj.
error

Herzjesu
8 images

SIFT
8

15.9K 4.10 0.59 SURF
8

5.0K 3.64 0.70
SIFT + ref. 16.2K 4.16 0.29 SURF + ref. 5.2K 3.70 0.30

D2-Net
8

38.5K 3.36 1.32 R2D2
8

21.1K 5.84 1.08
D2-Net + ref. 47.7K 4.06 0.41 R2D2 + ref. 21.6K 6.04 0.57

SP
8

17.2K 4.54 1.00 Key.Net
8

5.0K 4.29 1.00
SP + ref. 17.9K 4.72 0.36 Key.Net + ref. 5.3K 4.46 0.42

Fountain
11 images

SIFT
11

27.0K 4.51 0.55 SURF
11

5.6K 3.91 0.64
SIFT + ref. 27.4K 4.56 0.26 SURF + ref. 5.7K 3.95 0.30

D2-Net
11

62.0K 3.51 1.36 R2D2
11

33.0K 7.11 1.10
D2-Net + ref. 77.4K 4.47 0.40 R2D2 + ref. 33.6K 7.47 0.62

SP
11

21.5K 4.93 1.06 Key.Net
11

8.4K 5.53 1.00
SP + ref. 22.4K 5.19 0.43 Key.Net + ref. 8.7K 5.70 0.44

Madrid
Metropolis

1344 images

SIFT
379

187.2K 6.83 0.70 SURF
268

116.0K 6.25 0.76
SIFT + ref. 187.7K 6.86 0.66 SURF + ref. 115.2K 6.25 0.66

D2-Net
372

668.8K 6.00 1.47 R2D2
410

355.2K 10.20 0.90
D2-Net + ref. 752.5K 7.28 0.96 R2D2 + ref. 356.8K 10.17 0.76

SP
414

269.7K 7.64 0.98 Key.Net
304

111.9K 9.18 0.94
SP + ref. 277.7K 8.20 0.72 Key.Net + ref. 114.5K 9.31 0.75

Gendarmen-
markt

1463 images

SIFT
874

440.3K 6.33 0.82 SURF
472

163.9K 5.45 0.90
SIFT + ref. 441.4K 6.42 0.75 SURF + ref. 164.8K 5.43 0.78

D2-Net
858

1.479M 5.33 1.44 R2D2
929

1.043M 10.09 0.99
D2-Net + ref. 1.665M 6.37 1.04 R2D2 + ref. 1.043M 10.05 0.89

SP
911

626.9K 6.84 1.05 Key.Net
810

253.3K 7.08 0.99
SP + ref. 648.0K 7.10 0.89 Key.Net + ref. 258.6K 7.25 0.86

Tower of
London

1576 images

SIFT
561

447.8K 7.90 0.69 SURF
430

212.0K 5.94 0.70
SIFT + ref. 449.0K 7.96 0.59 SURF + ref. 212.7K 5.92 0.58

D2-Net
635

1.408M 5.96 1.48 R2D2
689

758.0K 13.44 0.92
D2-Net + ref. 1.561M 7.63 0.91 R2D2 + ref. 759.2K 13.74 0.76

SP
621

442.9K 8.06 0.95 Key.Net
495

186.5K 9.02 0.85
SP + ref. 457.6K 8.55 0.69 Key.Net + ref. 190.8K 9.18 0.65

notably show the robustness of the multi-view refinement to incorrect matches,
repeated structures, drastic illumination changes, and large, complex graphs with
as much as 5 million nodes and more than 1 million tracks.

6 Conclusion

We have proposed a novel method for keypoint refinement from multiple views.
Our approach is agnostic to the type of local features and seamlessly inte-
grates into the standard feature extraction and matching paradigm. We use
a patch alignment neural network for two-view flow prediction and formulate
the multi-view refinement as a non-linear least squares optimization problem.
The experimental evaluation demonstrates drastically improved performance
on the Structure-from-Motion tasks of triangulation and camera localization.
Throughout our experiments, we have shown that our refinement cannot only
address the poor keypoint localization of recent learned feature approaches, but
it can also improve upon SIFT – the arguably most well-known handcrafted local
feature with accurate sub-pixel keypoint refinement.
Acknowledgements. This work was supported by the Microsoft Mixed Reality
& AI Zürich Lab PhD scholarship.

Multi-View Optimization of Local Feature Geometry 15

Supplementary material

This supplementary material provides the following information: Section A ex-
plains how we determined the match filtering thresholds for the learned methods.
Section B contains the additional results mentioned in the main paper (e.g.,
ETH3D [41] triangulation results on each individual dataset and independent
results of each method on the Local Feature Evaluation Benchmark [38]) as well
as some qualitative examples before and after refinement. Section C presents
an ablation study for both the two-view and the multi-view refinement proce-
dure. Section D details the query keypoint refinement protocol used for camera
localization on the ETH3D dataset. Section E describes the filtering steps used
during the generation of the two-view training dataset.

A Match filtering

Match filtering is an essential step before large-scale SfM because it significantly
reduces the number of wrong registrations due to repetitive structures and
semantically similar scenes. To determine a good threshold (either for similarity
or ratio to the second nearest neighbor), we adopt the methodology suggested
by Lowe [24] – we plot the probability distribution functions for correct and
incorrect mutual nearest neighbors matches on the sequences from the HPatches
dataset [4]. A match is considered correct if its projection error, estimated using
the ground-truth homographies, is below 4 pixels. To have a clear separation,
the threshold for incorrect matches is set to 12 pixels. All matches with errors
in-between are discarded. Figure 7 shows the plots for all learned methods as
well as SIFT (used as reference).

For SIFT [24], the ratio threshold traditionally used (0.8) filters out 16.7% of
correct matches and 96.8% of wrong ones. For SuperPoint [10], we use the cosine
similarity threshold suggested by the authors (0.755) which filters out 82.0%
of wrong matches. For Key.Net [6] and R2D2 [31], we empirically determine
thresholds with a similar filtering performance to the ones used for SIFT and
SuperPoint. The only method that is not compatible with either the ratio test or
similarity thresholding is D2-Net [12]. Thus, for it, we settle on a conservative
similarity threshold of 0.8, filtering out only 62.7% of incorrect matches.

B Additional results

For the Local Feature Evaluation Benchmark [38], the results reported in the
main paper show the sparse 3D reconstruction statistics on the images registered
by both the refined and unrefined versions of each feature - this was done in
order to allow a fair comparison in terms of number of observations, track length,
and reprojection error. Nevertheless, we also provide the independent results for
each local feature in Table 3.

Due to space constraints, in the main paper, we only reported the average
results on indoor and outdoor scenes for the ETH3D triangulation evaluation [41].

16 M. Dusmanu et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio to SNN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SIFT

PDF for correct matches
PDF for incorrect matches Method Filtering

% correct % wrong
filtered out

SIFT Ratio 0.8 16.7% 96.8%

KeyNey Ratio 0.9 19.7% 87.9%

D2-Net Sim. 0.8 17.2% 62.7%

R2D2 Sim. 0.9 22.1% 83.0%

SP Sim. 0.755 12.8% 82.0%

.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Similarity to NN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
D2-Net

PDF for correct matches
PDF for incorrect matches

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Similarity to NN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R2D2

PDF for correct matches
PDF for incorrect matches

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Similarity to NN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SuperPoint

PDF for correct matches
PDF for incorrect matches

Fig. 7. Match filtering. Following the protocol of Lowe [24], we plot the probability
distribution function (PDF) of the correct and incorrect mutual nearest neighbors
matches. The horizontal axis represents either the ratio to the second nearest neighbor
or the cosien similarity to the first nearest neighbor.

Tables 5 and 6 show the results for each of the 13 datasets. For the learned
features, the results with refinement are always better. For SIFT, the only scene
where the results after refinement are worse is Meadow; this is a textureless scene
where SIFT has troubles correctly matching features. Due to the low number of
matches passed to COLMAP, its triangulation results are very sensitive to small
changes in the input. Some qualitative examples are shown in Figures 8 and 9.
A short video with additional examples is available at https://www.youtube.

com/watch?v=eH4UNwXLsyk.

C Ablation study

In this section, an ablation study for the proposed refinement procedure will be
presented. We will first start by studying the effect of training data on the two-
view refinement network. Secondly, we will study how each step of the multi-view
refinement influences the final result.

C.1 Two-view refinement

The architecture used for the two-view refinement between tentative matches is
described in Table 10. For the layers with batch normalization, we place it before
the non-linearity (i.e., the order is convolution followed by batch normalization
and finally non-linearity) as suggested in the reference paper [19].

https://www.youtube.com/watch?v=eH4UNwXLsyk
https://www.youtube.com/watch?v=eH4UNwXLsyk

Multi-View Optimization of Local Feature Geometry 17

SIFT SURF

D2-Net R2D2

SuperPoint Key.Net

Fig. 8. Courtyard. We show top-down partial views of point clouds triangulated on
the Courtyard scene. We overlap the point-cloud obtained from refined keypoints and
the point-cloud from raw keypoints. The noise levels are drastically reduced nearby
planar surfaces. Best viewed on a monitor.

18 M. Dusmanu et al.

SIFT SURF

D2-Net R2D2

SuperPoint Key.Net

Fig. 9. Delivery Area. We show top-down partial views of point clouds triangulated
on the Courtyard scene. We overlap the point-cloud obtained from refined keypoints
and the point-cloud from raw keypoints. The noise levels are drastically reduced nearby
planar surfaces. Best viewed on a monitor.

Multi-View Optimization of Local Feature Geometry 19

Table 3. Evaluation on the Local Feature Evaluation Benchmark. We report
the results for each method independently, instead of considering only the commonly
registered images for refined and unrefined features.

Dataset Method
Reg.

images
Num.
obs.

Track
length

Reproj.
error

Method
Reg.

images
Num.
obs.

Track
length

Reproj.
error

Madrid
Metropolis

1344 images

SIFT 393 188.7K 6.84 0.70 SURF 296 121.4K 6.22 0.76
SIFT + ref. 390 189.7K 6.90 0.66 SURF + ref. 274 116.6K 6.26 0.66

D2-Net 392 683.6K 6.01 1.46 R2D2 422 357.2K 10.17 0.90
D2-Net + ref. 405 773.4K 7.26 0.96 R2D2 + ref. 427 359.5K 10.15 0.76

SP 422 272.1K 7.64 0.98 Key.Net 317 114.4K 9.28 0.94
SP + ref. 425 279.9K 8.23 0.72 Key.Net + ref. 323 119.4K 9.39 0.75

Gendarmen-
markt

1463 images

SIFT 879 440.7K 6.34 0.82 SURF 475 164.1K 5.45 0.90
SIFT + ref. 882 442.2K 6.41 0.75 SURF + ref. 483 165.6K 5.42 0.78

D2-Net 865 1.482M 5.33 1.44 R2D2 988 1.102M 9.94 0.98
D2-Net + ref. 959 1.805M 6.38 1.02 R2D2 + ref. 935 1.044M 10.04 0.89

SP 919 627.4K 6.84 1.05 Key.Net 817 253.9K 7.08 0.99
SP + ref. 972 680.6K 7.07 0.88 Key.Net + ref. 828 260.5K 7.21 0.86

Tower of
London

1576 images

SIFT 562 448.9K 7.90 0.69 SURF 433 212.2K 5.94 0.71
SIFT + ref. 566 449.6K 7.96 0.59 SURF + ref. 432 212.9K 5.92 0.58

D2-Net 653 1.417M 5.93 1.48 R2D2 693 758.2K 13.44 0.92
D2-Net + ref. 661 1.568M 7.64 0.91 R2D2 + ref. 700 760.8K 13.73 0.76

SP 625 443.3K 8.06 0.95 Key.Net 500 186.9K 9.03 0.85
SP + ref. 633 458.9K 8.52 0.69 Key.Net + ref. 495 190.8K 9.18 0.66

For this ablation study, we focus on the HPatches Sequences dataset [4],
because it allows to isolate the network output. Given a tentative match u, v, we
run a forward pass of the patch alignment network to predict du→v and use u and
v + du→v as keypoint locations. As can be seen in Figure 10, training only with
synthetic data (i.e., pairs consisting of a patch and a warped version of itself) is
not sufficient to achieve the final performance. By using real pairs extracted from
the MegaDepth dataset [23], we allow the network to learn different illumination
conditions as well as occlusions / large viewpoint changes.

C.2 Multi-view refinement

We use the largest dataset with ground-truth data available (Facade from
ETH3D [41]) to study the relevance of the following steps of our pipeline: graph
partitioning, inter-edges, 3×3 displacement grid. The ablation results are summa-
rized in Table 4. For the purpose of this section, we define the set of intra-edges
connecting nodes within a track as Eintra = {(u→ v) ∈ E|tu = tv} and the set of
inter-edges connecting nodes of different tracks as Einter = {(u→ v) ∈ E|tu 6= tv}
on the entire graph G (without graph-cut).

Without any graph partitioning, the optimization can be formulated as:

min
xp

∑
(u→v)∈E

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0
p‖1 ≤ K,∀p .

(3)

Despite the long track length, the reprojection error is generally larger and the
point clouds are less accurate - this is mainly due to wrong tentative matches.
Moreover, this formulation has one of the highest optimization runtimes.

20 M. Dusmanu et al.

Layer
Batch
Norm.

ReLU
Output
shape

input, RGB 33 × 33 × 3

conv1 1, 3 × 3 X 33 × 33 × 64
conv1 2, 3 × 3 X 33 × 33 × 64

max pool1, 3 × 3, stride 2 17 × 17 × 64

conv2 1, 3 × 3 X 17 × 17 × 128
conv2 2, 3 × 3 X 17 × 17 × 128

correlation 17 × 17 × 289

reg conv1, 5 × 5 X X 13 × 13 × 128
reg conv2, 5 × 5 X X 9 × 9 × 128
reg conv3, 5 × 5 X X 5 × 5 × 64
reg conv4, 5 × 5 X X 1 × 1 × 64

reg fc 2

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
M

at
ch

in
g

A
cc

ur
ac

y

1 2 3 4 5 6 7 8 9 10

Overall

threshold [px]

Fig. 10. Two-view refinement. Left – architecture: We use a slightly modified version
of VGG16 up to conv2 2 for feature extraction. The results of the dense matching are
processed by a sequence of convolutional and fully connected layers. Right – ablation:
The results for D2-Net without refinement are reported by a solid line. We compare a
network trained on synthetic pairs only (dotted) and one trained with both synthetic
and real data (dashed).

After partitioning the graph into tracks, one could ignore the inter-edges:

min
xp

∑
(u→v)∈Eintra

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0
p‖1 ≤ K,∀p .

(4)

This formulation can be solved independently for each track and is thus the
fastest. However, detectors often fire multiple times for the same visual feature.
Since we restrict the tracks to only contain one feature from each image, these
multiple detections will never be merged into a single point.

To address this, the inter-edges must be considered:

min
xp

∑
(u→v)∈Eintra

su→vρ(‖x̄v − x̄u − Tu→v(x̄u)‖2)+

∑
(u→v)∈Einter

su→vψ(‖x̄v − x̄u − Tu→v(x̄u)‖2)

s.t.‖x̄p‖1 = ‖xp − x0
p‖1 ≤ K, ∀p .

(5)

The main issue with this formulation is its runtime due to having the same number
of residuals as Equation 3. However, it generally achieves similar accuracy and
reprojection error to Equation 4 while having a better track length.

By using recursive graph cut to split the connected components into smaller
sets and solving on each remaining component independently, we strike a balance
between the performance of Equation 5 and the efficiency of Equation 4.

While the constant flow assumption also improves the performance of local
features, it is not sufficient to explain all structures. The 3× 3 deformation grid
is better suited and achieves a superior performance across the board.

The runtime of the proposed graph optimization procedure is shown in
Figure 11 for all datasets of our evaluation. The top-right points correspond to

Multi-View Optimization of Local Feature Geometry 21

Table 4. Multi-view refinement ablation study. Reconstruction statistics are
reported for the Facade scene of ETH3D [41] consisting of 76 images for different
formulations of the multi-view optimization problem.

Method
Comp. (%) Accuracy (%) Track

length
Reproj.
error

Optim.
runtime1cm 2cm 5cm 1cm 2cm 5cm

SIFT

no refinement 0.06 0.36 3.08 36.04 52.10 73.28 5.42 1.07

no graph partitioning 0.09 0.50 3.85 44.52 62.26 82.74 5.86 0.81 49.7s

intra-edges 0.09 0.51 3.84 45.16 62.56 82.44 5.80 0.80 10.2s
+ inter-edges 0.09 0.50 3.83 45.46 62.58 82.65 5.82 0.80 54.1s
+ graph-cut (full) 0.09 0.50 3.82 45.19 62.32 82.38 5.81 0.80 13.3s

full (constant flow) 0.09 0.49 3.72 44.12 61.33 80.65 5.75 0.84 11.9s

D2-Net

no refinement 0.02 0.18 2.26 7.56 14.21 29.90 3.20 1.60

no graph partitioning 0.11 0.71 5.50 28.20 43.64 67.50 5.64 1.09 317.7s

intra-edges 0.16 1.01 8.17 34.85 53.05 75.80 5.05 0.85 20.0s
+ inter-edges 0.16 1.01 8.16 34.88 53.18 75.90 5.06 0.85 223.6s
+ graph-cut (full) 0.16 1.01 8.18 34.86 53.32 76.02 5.06 0.85 31.1s

full (constant flow) 0.13 0.87 7.53 29.37 46.05 69.51 4.78 0.99 28.1s

SuperPoint

no refinement 0.07 0.49 4.95 18.82 32.21 54.72 4.21 1.54

no graph partitioning 0.09 0.62 5.54 25.77 41.67 66.16 4.95 1.28 246.7s

intra-edges 0.14 0.90 7.21 35.16 53.12 74.72 5.23 0.94 32.4s
+ inter-edges 0.14 0.89 7.21 35.73 53.36 75.32 5.31 0.93 255.8s
+ graph-cut (full) 0.14 0.90 7.23 35.73 53.49 75.48 5.25 0.94 47.6s

full (constant flow) 0.12 0.78 6.66 30.41 47.57 69.90 5.12 1.06 43.2s

the internet reconstruction from the Local Feature Evaluation Benchmark [38]
(Madrid Metropolis, Gendarmenmarkt, Tower of London). For these datasets,
the runtime remains low (1− 5 minutes depending on the method) compared to
the runtime of the sparse 3D reconstruction (15− 30 minutes).

D Query refinement

For the localization experiments, we used the tentative matches {u1, u2, . . . } of
each query feature q to refine its location. First, all matches corresponding to
non-triangulated features are discarded since they cannot be used for PnP. For
each remaining match ui ↔ q, let πi be the 3D point associated to ui and ûi be
the reprojection of πi to the image of ui.

Since these matches are purely based on appearance, the points ui might
correspond to different 3D points of the partial model. Each matching 3D location
Π is considered as an independent hypothesis. Given that the reprojected locations
are fixed, the optimization problem can be simplified by considering only one-
directional ui → q edges:

min
xq

∑
ui s.t. πi=Π

sui→qρ(‖x̄q − dûi→q‖2)

s.t.‖x̄q‖1 = ‖xq − x0
q‖1 ≤ K .

(6)

The central point flow in the above formulation is considered from the reprojected
feature ûi in a view of the partial model to the query feature q.

22 M. Dusmanu et al.

104 105 106

keypoints

10 1

100

101

102

ru
nt

im
e

(s
)

104 105 106 107

matches

10 1

100

101

102

Fig. 11. Graph optimization runtime. The runtime is plotted as a function of the
number of keypoints and matches. We respect the color coding from the main paper:
SIFT [24], SURF [7], D2-Net [12], R2D2 [31], SuperPoint [10], and Key.Net [6].

After removing the robustifier and supposing that the two-view displacements
are always smaller than K, the problem can be rewritten as follows:

min
xq

∑
ui s.t. πi=Π

sui→q‖x̄q − dûi→q‖2 . (7)

This formulation has a closed-form solution:

xΠq = x0
q +

∑
ui s.t. πi=Π

sui→qdûi→q∑
ui s.t. πi=Π

sui→q
. (8)

Thus, for each query feature q with triangulated tentative matches, we obtain
one or more refined 2D-3D correspondences (xΠq , Π) which can be used for pose
estimation.

E Training dataset

As mentioned in the main paper, several steps were taken to improve the quality
of the training data extracted from MegaDepth [23].

Scene filtering. We discarded 16 scenes due to inconsistencies between sparse
and dense reconstructions. This was done automatically using the following
heuristic: from each scene, 100000 random pairs of matching 2D observations
part of the 3D model were selected; for each such pair (k1, k2), the Multi-View

Stereo (MVS) depth was used to warp k1 to the other image obtaining k̂2; a

keypoint is inconsistent if its reprojection k̂2 is more than 12 pixels away from
its feature position k2, i.e., |k̂2 − k2| > 12. The following scenes were removed for
having a low number of consistent points: 0000, 0002, 0011, 0020, 0033, 0050,
0103, 0105, 0143, 0176, 0177, 0265, 0366, 0474, 0860, 4541.

Depth consistency. We enforce depth consistency to make sure that the
central pixel is not occluded. The MVS depth D1 of a source image is used to

Multi-View Optimization of Local Feature Geometry 23

back-project a keypoint k1 to 3D and obtain p. We then reproject this 3D point
to the target image to obtain k̂2 and depth d. The depth consistency verifies that
the MVS depth from the second image D2 is consistent with the 3D point p, i.e.,
|D2(k̂2)− d| < 10−2.

24 M. Dusmanu et al.

Table 5. ETH3D triangulation evaluation - Indoors. We report triangulation
statistics on each indoor dataset for methods with and without refinement.

Dataset Method
Comp. (%) Accuracy (%)

Method
Comp. (%) Accuracy (%)

1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm

Deliv. Area
44 images

SIFT 0.06 0.34 2.29 61.59 74.40 86.98 SURF 0.03 0.20 1.35 53.91 70.15 83.18
SIFT + ref. 0.09 0.44 2.66 71.65 82.47 91.64 SURF + ref. 0.06 0.30 1.76 68.67 80.26 89.72

D2-Net 0.08 0.53 3.53 30.99 47.16 67.35 R2D2 0.17 0.86 5.26 52.09 66.80 82.29
D2-Net + ref. 0.40 1.93 9.87 65.00 77.26 88.51 R2D2 + ref. 0.27 1.11 5.81 70.57 81.63 91.29

S 0.15 0.80 5.36 56.80 71.42 85.10 Key.Net 0.05 0.28 1.78 52.08 69.11 85.33
SP + ref. 0.22 1.07 6.36 74.39 85.36 93.89 Key.Net + ref. 0.09 0.38 2.15 74.01 84.16 92.56

Kicker
31 images

SIFT 0.27 1.29 5.64 71.78 82.69 91.63 SURF 0.22 1.08 4.78 65.20 77.94 90.31
SIFT + ref. 0.33 1.44 5.92 77.32 86.61 93.90 SURF + ref. 0.31 1.34 5.31 77.43 86.12 93.82

D2-Net 0.20 1.16 6.18 38.41 56.54 75.83 R2D2 0.46 1.87 8.41 68.08 80.30 89.91
D2-Net + ref. 0.87 3.51 11.20 69.53 79.72 88.16 R2D2 + ref. 0.56 2.12 8.89 75.12 84.28 91.48

SP 0.44 2.08 9.24 67.88 79.43 89.01 Key.Net 0.18 0.84 4.28 62.94 79.51 90.44
SP + ref. 0.57 2.46 10.05 79.23 87.04 92.01 Key.Net + ref. 0.25 1.07 4.85 72.73 84.31 92.92

Office
26 images

SIFT 0.11 0.53 2.72 75.48 84.81 93.30 SURF 0.06 0.26 1.36 70.50 86.47 95.17
SIFT + ref. 0.12 0.55 2.64 77.27 86.98 94.69 SURF + ref. 0.07 0.34 1.58 70.72 85.57 96.01

D2-Net 0.12 0.76 3.76 38.78 57.62 82.58 R2D2 0.33 1.45 6.02 54.97 70.53 87.52
D2-Net + ref. 0.54 2.08 6.21 65.46 79.30 91.47 R2D2 + ref. 0.42 1.66 6.53 61.07 75.67 89.38

SP 0.27 1.19 5.27 75.36 85.47 95.46 Key.Net 0.11 0.53 2.73 63.14 77.22 90.43
SP + ref. 0.34 1.37 5.46 84.05 91.69 96.96 Key.Net + ref. 0.17 0.71 3.19 80.63 90.29 95.87

Pipes
14 images

SIFT 0.06 0.27 1.11 73.23 80.52 87.53 SURF 0.02 0.10 0.52 66.90 74.19 90.30
SIFT + ref. 0.08 0.34 1.50 80.66 86.61 93.52 SURF + ref. 0.03 0.14 0.64 77.65 84.04 91.84

D2-Net 0.14 0.76 3.53 54.80 76.15 91.93 R2D2 0.22 0.97 4.83 68.50 79.42 87.92
D2-Net + ref. 0.59 2.08 5.69 87.10 93.23 97.50 R2D2 + ref. 0.31 1.19 5.21 75.22 82.71 88.68

SP 0.41 1.77 7.30 85.31 90.70 96.23 Key.Net 0.05 0.24 1.27 76.85 87.68 93.31
SP + ref. 0.55 2.17 8.25 91.15 94.15 96.07 Key.Net + ref. 0.07 0.30 1.55 82.15 92.89 95.36

Relief
31 images

SIFT 0.30 1.35 5.19 81.88 91.02 96.29 SURF 0.09 0.46 2.20 73.72 86.39 94.79
SIFT + ref. 0.35 1.46 5.43 86.59 92.80 96.61 SURF + ref. 0.13 0.55 2.40 83.11 89.60 95.07

D2-Net 0.45 2.51 9.29 46.72 67.65 88.16 R2D2 0.52 2.16 9.86 71.12 85.64 95.50
D2-Net + ref. 1.82 6.45 16.58 87.71 92.03 95.33 R2D2 + ref. 0.70 2.48 10.45 87.07 93.13 96.89

SP 0.49 2.25 9.17 77.73 88.05 95.52 Key.Net 0.14 0.66 3.23 65.82 80.47 92.78
SP + ref. 0.60 2.49 9.75 91.01 94.82 97.07 Key.Net + ref. 0.18 0.74 3.41 83.26 89.70 94.99

Relief 2
31 images

SIFT 0.16 0.80 3.74 76.67 86.48 93.35 SURF 0.05 0.29 1.41 64.15 82.25 93.02
SIFT + ref. 0.20 0.89 4.00 83.77 91.19 95.64 SURF + ref. 0.08 0.37 1.62 80.24 89.38 94.64

D2-Net 0.25 1.48 7.63 46.03 64.57 84.66 R2D2 0.49 2.10 10.16 74.70 86.28 94.43
D2-Net + ref. 1.36 5.24 16.12 86.58 91.56 95.01 R2D2 + ref. 0.67 2.47 10.84 88.42 93.04 96.73

SP 0.32 1.58 7.80 77.21 88.20 94.85 Key.Net 0.11 0.58 3.00 59.26 76.71 93.30
SP + ref. 0.41 1.83 8.42 89.62 94.49 97.05 Key.Net + ref. 0.16 0.70 3.32 79.91 90.00 95.35

Terrains
42 images

SIFT 0.44 1.46 4.60 89.51 93.47 96.76 SURF 0.11 0.46 2.14 70.22 75.98 80.49
SIFT + ref. 0.50 1.60 5.01 90.14 93.81 96.29 SURF + ref. 0.15 0.58 2.55 76.13 82.15 85.45

D2-Net 1.99 5.59 15.11 72.96 84.66 92.26 R2D2 1.49 4.87 15.15 77.45 85.81 92.74
D2-Net + ref. 4.51 10.40 25.10 88.34 92.13 95.37 R2D2 + ref. 1.71 5.21 15.81 85.44 89.72 93.33

SP 2.07 5.82 17.89 86.51 93.60 96.93 Key.Net 0.51 1.64 4.77 85.47 92.35 95.69
SP + ref. 2.30 6.20 18.58 92.77 95.80 97.74 Key.Net + ref. 0.58 1.78 5.05 90.91 93.30 96.09

Multi-View Optimization of Local Feature Geometry 25

Table 6. ETH3D triangulation evaluation - Outdoors. We report triangulation
statistics on each outdoor dataset for methods with and without refinement.

Dataset Method
Comp. (%) Accuracy (%)

Method
Comp. (%) Accuracy (%)

1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm 1cm 2cm 5cm

Courtyard
38 images

SIFT 0.08 0.47 3.72 67.94 81.80 92.04 SURF 0.06 0.31 1.88 66.40 80.04 89.58
SIFT + ref. 0.10 0.56 4.03 75.17 86.01 94.00 SURF + ref. 0.08 0.41 2.25 79.96 87.53 94.03

D2-Net 0.03 0.24 2.07 22.63 38.53 61.33 R2D2 0.07 0.37 2.73 45.72 62.08 79.61
D2-Net + ref. 0.21 1.14 5.98 66.78 79.04 89.40 R2D2 + ref. 0.10 0.52 3.33 63.91 78.18 90.29

SP 0.13 0.79 5.04 45.36 60.61 77.84 Key.Net 0.02 0.12 0.83 41.60 62.78 79.38
SP + ref. 0.21 1.12 6.68 63.98 77.69 88.95 Key.Net + ref. 0.03 0.16 0.99 63.54 77.83 89.96

Electro
45 images

SIFT 0.03 0.15 0.94 63.76 78.46 88.84 SURF 0.01 0.07 0.48 47.54 65.22 81.48
SIFT + ref. 0.03 0.18 1.05 65.82 79.19 90.11 SURF + ref. 0.02 0.11 0.68 62.75 75.20 87.06

D2-Net 0.03 0.19 1.50 30.30 45.29 66.46 R2D2 0.12 0.57 3.66 57.32 73.33 87.98
D2-Net + ref. 0.19 0.95 4.99 68.36 79.57 89.56 R2D2 + ref. 0.17 0.72 4.00 70.96 82.32 91.46

SP 0.06 0.34 2.45 60.66 75.89 89.26 Key.Net 0.02 0.11 0.83 45.09 65.80 82.31
SP + ref. 0.09 0.44 2.77 76.96 87.29 93.75 Key.Net + ref. 0.03 0.17 1.01 65.93 81.83 91.56

Facade
76 images

SIFT 0.06 0.36 3.08 36.04 52.10 73.28 SURF 0.05 0.36 3.18 25.17 41.25 63.75
SIFT + ref. 0.09 0.50 3.82 45.19 62.32 82.38 SURF + ref. 0.11 0.66 4.71 43.41 63.28 83.43

D2-Net 0.02 0.18 2.26 7.56 14.21 29.90 R2D2 0.05 0.28 2.17 25.07 40.83 64.42
D2-Net + ref. 0.16 1.01 8.18 34.86 53.32 76.02 R2D2 + ref. 0.08 0.42 2.91 37.34 56.66 78.81

SP 0.07 0.49 4.95 18.82 32.21 54.72 Key.Net 0.01 0.06 0.58 15.21 25.12 49.91
SP + ref. 0.14 0.90 7.23 35.73 53.49 75.48 Key.Net + ref. 0.01 0.08 0.74 29.77 43.53 71.33

Meadow
15 images

SIFT 0.01 0.04 0.35 60.25 78.01 89.47 SURF 0.00 0.01 0.10 30.77 63.64 84.62
SIFT + ref. 0.01 0.05 0.40 49.26 73.95 87.12 SURF + ref. 0.00 0.02 0.13 55.56 65.31 80.70

D2-Net 0.00 0.03 0.35 21.89 34.05 57.35 R2D2 0.02 0.14 0.95 50.23 70.77 87.10
D2-Net + ref. 0.03 0.17 1.19 49.89 62.62 77.82 R2D2 + ref. 0.03 0.17 1.05 63.15 81.45 91.74

SP 0.02 0.12 1.06 51.05 68.91 88.18 Key.Net 0.00 0.01 0.06 46.67 56.25 64.71
SP + ref. 0.03 0.16 1.21 66.67 78.85 88.02 Key.Net + ref. 0.00 0.01 0.07 51.72 64.52 85.71

Playground
38 images

SIFT 0.15 0.80 4.86 66.57 78.10 90.58 SURF 0.03 0.18 1.14 57.25 73.61 86.05
SIFT + ref. 0.18 0.91 5.27 70.70 81.76 91.73 SURF + ref. 0.06 0.27 1.57 74.60 83.76 92.70

D2-Net 0.05 0.31 2.42 28.01 46.88 69.61 R2D2 0.26 1.28 7.71 63.69 78.08 91.31
D2-Net + ref. 0.46 2.01 8.19 71.63 83.73 93.60 R2D2 + ref. 0.37 1.58 8.29 78.03 88.76 96.53

SP 0.19 0.97 5.63 59.09 72.42 86.01 Key.Net 0.03 0.15 1.26 45.61 59.18 80.10
SP + ref. 0.28 1.29 6.83 70.30 79.84 90.09 Key.Net + ref. 0.04 0.22 1.54 64.06 78.65 91.32

Terrace
23 images

SIFT 0.04 0.20 1.66 55.32 70.28 83.23 SURF 0.01 0.06 0.56 38.13 54.91 72.80
SIFT + ref. 0.05 0.26 1.93 63.53 78.10 88.41 SURF + ref. 0.02 0.10 0.75 61.00 72.97 84.68

D2-Net 0.02 0.19 2.21 17.73 31.53 55.85 R2D2 0.12 0.64 4.46 50.46 69.33 86.43
D2-Net + ref. 0.22 1.24 8.26 62.92 75.78 87.34 R2D2 + ref. 0.19 0.84 4.90 69.73 81.24 91.69

SP 0.10 0.56 4.04 63.03 77.40 88.71 Key.Net 0.02 0.10 0.96 41.31 58.29 77.42
SP + ref. 0.14 0.72 4.75 77.76 87.87 93.94 Key.Net + ref. 0.03 0.14 1.13 58.70 70.11 83.46

26 M. Dusmanu et al.

References

1. Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org
2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN

architecture for weakly supervised place recognition. In: Proc. CVPR (2016)
3. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve

object retrieval. In: Proc. CVPR (2012)
4. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: A benchmark and

evaluation of handcrafted and learned local descriptors. In: Proc. CVPR (2017)
5. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors

with triplets and shallow convolutional neural networks. In: Proc. BMVC. (2016)
6. Barroso-Laguna, A., Riba, E., Ponsa, D., Mikolajczyk, K.: Key.Net: Keypoint

Detection by Handcrafted and Learned CNN Filters. In: Proc. ICCV (2019)
7. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In:

Proc. ECCV (2006)
8. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent

elementary features. In: Proc. ECCV (2010)
9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale

hierarchical image database. In: Proc. CVPR (2009)
10. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: Self-Supervised Interest

Point Detection and Description. In: CVPR Workshops (2018)
11. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van

Der Smagt, P., Cremers, D., Brox, T.: FlowNet: Learning optical flow with convo-
lutional networks. In: Proc. ICCV (2015)

12. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-Net: A Trainable CNN for Joint Detection and Description of Local Features.
In: Proc. CVPR (2019)

13. Eichhardt, I., Barath, D.: Optimal multi-view correction of local affine frames. In:
Proc. BMVC. (2019)

14. Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. In: Proc. CVPR
(2006)

15. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: Unifying feature
and metric learning for patch-based matching. In: Proc. CVPR (2015)

16. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. Alvey
Vision Conf. (1988)

17. Hartmann, W., Galliani, S., Havlena, M., Van Gool, L., Schindler, K.: Learned
multi-patch similarity. In: Proc. ICCV (2017)

18. Heinly, J., Schönberger, J.L., Dunn, E., Frahm, J.M.: Reconstructing the World*
in Six Days *(As Captured by the Yahoo 100 Million Image Dataset). In: Proc.
CVPR (2015)

19. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv (2015)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. ICLR
(2015)

21. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society (1956)

22. Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide Pose Estimation using
3D Point Clouds. In: Proc. ECCV (2012)

23. Li, Z., Snavely, N.: MegaDepth: Learning single-view depth prediction from internet
photos. In: Proc. CVPR (2018)

http://ceres-solver.org

Multi-View Optimization of Local Feature Geometry 27

24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)
25. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching.

In: Proc. CVPR (2016)
26. Luo, Z., Shen, T., Zhou, L., Zhu, S., Zhang, R., Yao, Y., Fang, T., Quan, L.:

GeoDesc: Learning local descriptors by integrating geometry constraints. In: Proc.
ECCV (2018)

27. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working hard to know your
neighbor’s margins: Local descriptor learning loss. In: Advances in NeurIPS (2017)

28. Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Largescale image retrieval with
attentive deep local features. In: Proc. ICCV (2017)

29. Olson, E., Leonard, J., Teller, S.: Fast Iterative Optimization of Pose Graphs with
Poor Initial Estimates. In: Proc. ICRA (2006)

30. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-Net: Learning local features from images.
In: Advances in NeurIPS (2019)

31. Revaud, J., Weinzaepfel, P., de Souza, C.R., Humenberger, M.: R2D2: Repeatable
and Reliable Detector and Descriptor. In: Advances in NeurIPS (2019)

32. Rocco, I., Arandjelović, R., Sivic, J.: Convolutional neural network architecture for
geometric matching. In: Proc. CVPR (2017)

33. Rocco, I., Arandjelović, R., Sivic, J.: End-to-end weakly-supervised semantic align-
ment. In: Proc. CVPR (2018)

34. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbour-
hood consensus networks. In: Advances in NeurIPS (2018)

35. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct
2D-to-3D matching. In: Proc. ICCV (2011)

36. Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E.,
Safari, D., Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., Pajdla, T.: Benchmarking
6DoF outdoor visual localization in changing conditions. In: Proc. CVPR (2018)

37. Savinov, N., Seki, A., Ladicky, L., Sattler, T., Pollefeys, M.: Quad-networks: unsu-
pervised learning to rank for interest point detection. In: Proc. CVPR (2017)

38. Schönberger, J.L., Hardmeier, H., Sattler, T., Pollefeys, M.: Comparative evaluation
of hand-crafted and learned local features. In: Proc. CVPR (2017)

39. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proc. CVPR
(2016)

40. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: Proc. ECCV (2016)

41. Schöps, T., Schönberger, J.L., Galliani, S., Sattler, T., Schindler, K., Pollefeys,
M., Geiger, A.: A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In: Proc. CVPR (2017)

42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proc. ICLR (2015)

43. Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to
wide-baseline stereo. IEEE PAMI (2009)

44. Verdie, Y., Yi, K., Fua, P., Lepetit, V.: TILDE: A temporally invariant learned
detector. In: Proc. CVPR (2015)

45. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: Depth Inference for Unstruc-
tured Multi-view Stereo. In: Proc. ECCV (2018)

46. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: Learned invariant feature transform.
In: Proc. ECCV (2016)

47. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional
neural networks. In: Proc. CVPR (2015)

28 M. Dusmanu et al.

48. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network
to compare image patches. Journal of Machine Learning Research (2016)

	Multi-View Optimization ofLocal Feature Geometry

