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Abstract— Continuous sign language recognition (CSLR) is to
recognize the glosses in a sign language video. Enhancing the
generalization ability of CSLR’s visual feature extractor is a
worthy area of investigation. In this paper, we model glosses
as priors that help to learn more generalizable visual features.
Specifically, the signer-invariant gloss feature is extracted by
a pre-trained gloss BERT model. Then we design a gloss
prior guidance network (GPGN). It contains a novel parallel
densely-connected temporal feature extraction (PDC-TFE) mod-
ule for multi-resolution visual feature extraction. The PDC-TFE
captures the complex temporal patterns of the glosses. The
pre-trained gloss feature guides the visual feature learning
through a cross-modality matching loss. We propose to formulate
the cross-modality feature matching into a regularized optimal
transport problem, it can be efficiently solved by a variant of
the Sinkhorn algorithm. The GPGN parameters are learned by
optimizing a weighted sum of the cross-modality matching loss
and CTC loss. The experiment results on German and Chinese
sign language benchmarks demonstrate that the proposed GPGN
achieves competitive performance. The ablation study verifies
the effectiveness of several critical components of the GPGN.
Furthermore, the proposed pre-trained gloss BERT model and
cross-modality matching can be seamlessly integrated into other
RGB-cue-based CSLR methods as plug-and-play formulations to
enhance the generalization ability of the visual feature extractor.

Index Terms— Continuous sign language recognition, cross-
modality feature matching, parallel densely-connected temporal
feature, optimal transport problem.

I. INTRODUCTION
IGN languages are used by hearing impaired people for
daily communication. The information in sign languages
is conveyed by complex joint patterns of manual channels
including hand shape and trajectory of hand movements, and
non-manual channels such as facial expressions and head
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gestures [1]. Continuous sign language recognition (CSLR)
has received increasing attention in the computer vision
community. The task is to recognize the glosses (the text
vocabularies corresponding to the sign language actions) in
a sign language video, which is fundamental for other appli-
cations e.g., sign language translation (SLT) [2].

Compared with the traditional methods that extract hand-
craft features for CSLR, deep learning models have achieved
remarkable performance improvement. Most deep learning
models adopt the paradigm that the spatial-temporal visual
feature is extracted, followed by a cross-modality alignment.
Various visual feature extraction modules have been developed
such as CNN-LSTM [5], 3D-CNN [6], fully convolutional net-
work [7] and transformer [8]. In addition, the cross-modality
alignment module such as CTC adopted in [6] look for the
correspondence between video segments and glosses, which
leverage the sentence-level gloss annotation as the ground
truth for the alignment. This annotation is a form of weak
supervision signal, as only the order but not the timing of
gloss annotations in the video is known.

To learn effective visual features in CSLR, the sub-tasks i.e.,
video representation learning, gloss representation learning,
and cross-modality alignment are coupled together, which
often results in model overfitting under the limited size of
available benchmarks [9]. Previous methods have employed
iterative fine-tuning strategies to mitigate the overfitting prob-
lem to enhance the generalization ability of the visual feature
extractor [10], updating either the visual feature extractor or
sequence module while keeping the other module constant.
Additionally, Niu et al. proposed stochastic frame-dropping
and stochastic gradient-stopping strategies to alleviate model
overfitting [3]. In [4], a visual alignment constraint was
devised for the same purpose.

Nevertheless, these approaches have ignored the presence
of different signers executing the same gloss introducing
significant visual discrepancies. These factors pose obstacles
to achieving effective visual feature learning, as depicted in
Figure 1. In order to address the aforementioned limitations,
we present a novel approach called the gloss prior guidance
network (GPGN) as a solution. GPGN aims to alleviate
visual feature divergence by aligning the signer-variant visual
features with corresponding signer-invariant gloss features in
an end-to-end manner. This is accomplished through the use of
the proposed cross-modality matching loss. Instead of utilizing
one-hot vectors as gloss representations, we leverage language
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Fig. 1. Illustration of the impact of visual feature generalization on testing
recognition performance, where incorrect predictions are highlighted in red.
Although SFL [3] and VAC [4] can accurately recognize glosses such as
“DREISSIG,” “WIND,” and “NACHSTE” when performed by the specific
signer, they struggle to achieve accurate recognition when these glosses
are performed by other signers. In contrast, the GPGN achieves correct
recognition of these glosses across different signers. The GPGN overcomes
this limitation by incorporating gloss as a prior, thereby learning visual
features that are more generalizable.

model pre-training techniques to obtain vectorized gloss fea-
tures that capture the rich sign contextual and grammatical
information from training sentences. These gloss features
remain fixed throughout the learning process of the CSLR
model, making them invariant to different signers. To train
the video feature extractor, we propose to minimize the
cross-modality matching loss and the CTC loss. By means
of the matching, the pre-trained gloss feature is used as prior
semantic information to help learn a more generalizable video
feature extractor. The proposed GPGN is distinguished by the
following technical novelties:

« We adopt a pre-training approach to learn fixed gloss fea-
ture representations for enhancing visual feature extractor
learning. Specifically, we fine-tune a variant of the BERT
model [11] by utilizing the mask language model scheme.

e A parallel densely-connected temporal feature extrac-
tion (PDC-TFE) module is designed to extract multi-
resolution visual features.

o« We formulate visual and glossy feature matching into
an optimal transport problem, and consequently design
a cross-modality matching loss that is optimized in an
end-to-end manner to facilitate the learning of more
generalizable visual features.

Experimental results on several public benchmarks [2], [6],
[12], [13] demonstrate the effectiveness of our method.

II. RELATED WORK
A. Continuous Sign Language Recognition

Continuous sign language recognition (CSLR) has been
studied in the vision community for decades. To learn
robust visual features under sentence-level annotations,
some methods have adopted connectionist temporal classi-
cation (CTC) [14] constraint with an iterative fine-tuning
strategy to enhance the visual feature extractor. However,
this strategy proves to be time-consuming [4]. In recent
years, several works have focused on relieving the model
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overfitting problem in an end-to-end manner. For example,
FCN [7] has designed a Gloss Feature Enhancement (GFE)
module to refine the visual feature. SFL [3] has proposed
a reinforcement learning operation to predict the gloss-wise
labels. VAC [4] and SMKD [9] have improved the visual
model generalization by optimizing the learning of the visual
feature extractor and the sequential module. C2SLR [15] have
employed the keypoints heatmaps and proposed spatial and
temporal constraints to concentrate on informative regions of
signs. TwoStream-SLR [16] proposed a two-stream network
to incorporate the videos and keypoint sequences information.
TLP [17], SEN [18], and CorrNet [19] focused on squeezing
temporal features. Besides, CVT-SLR [20] and CTCA [I1]
designed a V-L mapper, a contrastive learning based loss and a
knowledge distillation based loss, respectively, to transfer gloss
knowledge from a pre-trained language model to the visual
model. In contrast to these above approaches, the proposed
GPGN leverages the gloss as valuable prior to facilitating the
learning of more generalizable visual features via optimizing
a regularized optimal transport objective.

B. Visual Feature Extraction

Spatio-Temporal visual feature modeling is a fundamental
aspect of research in video analysis. In TDN [21], the tem-
poral difference between consecutive frames and segments is
computed to extract spatio-temporal features. To address the
issue of local semantic consistency and semantic ambiguity,
a temporal semantic pyramid network is proposed in [22].
It incorporates inter-scale attention for local semantic consis-
tency and intra-scale attention to resolve semantic ambiguity.
MS-TCN++ [23] introduces a stacked single-stage temporal
convolution module. This module primarily consists of a dual
dilated layer (DDL) with two dilated convolutions having
complementary receptive fields. In the case of DenseTCN [24],
a dense connection is employed in the stacked TC layers to
hierarchically capture signs (means sign language gestures in
sign language video). Each TC layer learns temporal resolution
information, and a fully-connection layer produces predictions,
which are fused using an “argmax” operation. Unlike the above
methods, we propose a parallel densely-connected temporal
feature extraction (PDC-TFE) to capture the multiscale tem-
poral patterns of glosses.

C. Vision-Text Modeling

Matching visual signals with textual semantics forms the
widely used method of computer vision tasks. To address
multi-label image and video classification, a method intro-
duced in [25] constructs a label affinity graph and employs
graph embedding to extract label semantic information. Fur-
thermore, referring expression comprehension also referred to
as image text matching, constitutes a prototypical problem,
aiming to localize the object instance described by natural
language [26]. Moreover, related studies have extensively
emerged in domains such as image captioning and text-based
image retrieval. Leveraging large-scale pre-training offers
considerable advantages in developing generic vision-and-
language models [27]. Subsequent to appropriate fine-tuning,
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Fig. 2. The pipeline of GPGN. We first fine-tune the pre-trained BERT using sign language glosses, and then extract semantic gloss features (§Sec.III-A). Next,
the spatial-temporal visual feature is extracted using the ResNet18 and the proposed PDC-TFE module (§Sec.III-B). Subsequently, the sequence information is
encoded by Bi-GRU. Moreover, a linear layer is employed to map the gloss and sequence features into a common feature space to enable the cross-modality
matching (§Sec.III-C). Finally, the mapped sequence features are fed into a classifier for sequence prediction.

these pre-trained models can be tailored to various downstream
tasks. As a theoretically sound data matching algorithm,
optimal transport has found utility in diverse applications, and
has recently gained attention in computer vision research [28].
In this work, we utilize optimal transport to align sign lan-
guage visual features with signer-invariant gloss features.

III. GLOSS PRIOR GUIDANCE NETWORK

The framework of the proposed GPGN model is illustrated
in Figure 2. In this section we elaborate in detail on the
three model components: a) pre-trained gloss feature repos-
itory; b) visual feature extraction module; c) cross-modality
matching loss, CTC loss, model training, and model inference.

A. Gloss Feature Pre-Training

Sign language glosses serve as a written form of sign
language, they aid in how sign language works by converting
video form into text form. It is worth noting that signers
may exhibit significant variations when signing the same sign,
similar to how speakers of a spoken language may differ in
tone or pronunciation. Therefore, the gloss feature represen-
tation is ideally supposed to be signer-invariant. To address
this, we propose a pre-trained gloss feature repository. Our
approach involves training a gloss BERT model for each
type of considered sign language e.g., German sign language
and Chinese sign language. This enables us to preserve the
discriminative qualities of each gloss while also capturing the
contextual semantic information between glosses through
the masked gloss token.

Existing literature highlights the significant correlation
between sign language glosses and natural language vocab-
ulary [13]. Therefore, extracting gloss features by the natural
language BERT model can ensure the discrimination between
different glosses [11]. Nevertheless, the limited availability of
sign language data makes it challenging to learn the contextual
nuances of sign language glosses. Nevertheless, if the extracted
gloss features can capture certain sign language characteristics,
this would greatly benefit sign language recognition models.
Therefore, we employ a fine-tuning strategy for each type
of sign language under consideration (e.g., German sign lan-
guage or Chinese sign language) using a Masked Language
Modeling (MLM) scheme [11]. This MLM approach enables
our models to learn bidirectional representations of sentences,

which is particularly well-suited for tasks such as CSLR that
necessitate comprehensive contextual understanding.

The gloss BERT is a multi-layer bidirectional Transformer
model, with the tokenized gloss sequences and the position
information of each gloss as input. We denote a gloss token
sequence containing L glosses by y = {y}=, € [C|, IC|
indicates the gloss corpus. For each token y;, an embedding
layer (Embr) is utilized to map gloss tokens into a feature
space, then token position embedding (Embp) is added:

Emb(y;) = Embr (y;) + Embp (i).

The embedded gloss features fg, = {Emb(y,-)}i":1 are fed into
a 12-layer stacked Transformer Blocks {Trans; }}21 [29], that is

fe, = Trans; (fg,_,),

.12

In our experimental study, the German and Chinese sign
language benchmarks are initialized using pre-trained German
and Chinese BERT models [30], respectively. Subsequent to
initialization, the models are trained through a masked gloss
token prediction task. Specifically, M ratio of tokens in a given
sentence are randomly masked, and the models are tasked with
predicting these tokens. Let d represent the dimension of the
gloss feature. After the MLM training process, the model will
output the pre-trained gloss feature repository fg € RL*9,
according to the given gloss sequence with L glosses.

i=1,..

B. Visual Feature Extraction

The visual feature extraction of our proposed GPGN is
composed of three parts: a backbone per-frame feature extrac-
tion module, a parallel densely-connected temporal feature
extraction module, and a sequential predictor.

We adopt ResNetl8 as the backbone per-frame feature
extractor, denoted as G, ¢. This choice aligns with recent CSLR
works [3], [9]. We denote a T-frame sign language video by
I = {Ii}iT:p where I; € R¥*"** indicates the RGB channels
of the i-th frame image. Here, & and w indicate the height and
width of the frame image, respectively. The per-frame feature,
denoted as fr,, is obtained by fr, = G,r(l;;0,r), where
fr, € R presents the output of the ResNet18 global average
pooling layer; 6,7 is the module parameter. By aggregating
all {fF, }iT=1’ the R°*T spatial feature matrix is obtained and
it will be utilized for subsequent parallel densely-connected
temporal feature extraction module.
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Fig. 3. Illustration of the PDC-TFE module and the RDC layer. The
PDC-TFE module utilizes m parallel densely-connected SDC blocks, each
with [ RDC layers. The RDC layer is a residual convolution layer with the
kernel size of K and dilated factor of D = 2"~1,

1) Parallel Densely-Connected Temporal Feature Extraction
Module: Sign language glosses exhibit significant variations
in terms of their temporal length, as observed in bench-
marks such as RWTH-2014 [12], where glosses can range
from 5 to 16 frames. To effectively capture the temporal
patterns inherent in these glosses, we propose a parallel
densely-connected temporal feature extraction (PDC-TFE)
module Gpac(fr; Opac), parameterized by 6p4c. Its input
is the spatial feature fr. As illustrated in Figure 3, the
PDC-TFE module comprises m parallel stacked densely-
connected (SDC) blocks. Each SDC block consists of [ layers
employing a residual dilated convolution (RDC) architecture,
as depicted in Figure 3 as well. The RDC architecture involves
a 1D dilated temporal convolution layer, followed by batch
normalization (BN) and a ReLU activation function. Take the
RDC in the m-th block and [/-th layer as an example, we denote
the input and output as in,, ;, o,,,; and the operation is:

Om,l = inm,l + Relu(BN(inm,l * Wm,l + bm,l))s (1)

where * denotes the dilated convolution imposed on the
temporal dimension, with the dilated factor of 2m=1  The
convolutional kernel parameter is represented by W,, ; € R'*3,
and the bias is denoted as b, ; € R
As depicted in Figure 3, these m SDC blocks and [ RDC

layers of each block are designed to have dense connections.
For example, the input of the /-th layer in the m-th block is
the sum of the / — 1 layers’ output of both the m-th block and
the (m — 1)-th block, that is:

-1

Ny, = Z(Om,i + Om—1,i)-

i=1
To facilitate effective information flow, we introduce dense
connections within the m SDC blocks and / RDC layers. The
dense connection strategy has proven to be effective for image
feature extraction [31], and we adopt this strategy to learn the
high temporal resolution patterns of glosses by reusing the
low. Finally, the output of all SDC blocks {01,021, ..., 0m.1}
is aggregated as a spatial-temporal feature fr e R™**T,
where the aggregation is the concatenation operation on the
channel dimension.
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2) Sequential Predictor: The sequential predictor Gy, (f7;
Osp) consists of two-layer Bidirectional Gated Recurrent
Unit (Bi-GRU), a fully-connected layer, and a classifier. The
spatial-temporal feature fr is passed through the Bi-GRU
and then the fully-connected layer to generate d-dimension
vectors fy € R¥*T. fy also serves as the visual feature input
for computing the cross-modality matching loss. For each
fv. € fv, the classifier produces frame-level gloss prediction
pi € RI as probabilistic outputs.

C. Objective Function

The training objective function contains the CTC loss and
the proposed cross-modality matching loss (CM loss).

1) Connectionist Temporal Classification (CTC): To handle
the alignment between the video sequence and the target
gloss sequence, we employ the CTC algorithm [14]. Given
the video’s per-frame categorical probability prediction py, =
{Pi}iT:p pi € Rl and the gloss target sequence yy, =
{yj}]L.zl, CTC aims to find an alignment path = = {m;}]_,.
Where 7; € |C| U {blank}, |C| is the gloss corpus and blank
is an additional label used to indicate categories outside the
vocabulary and to separate consecutive repeating glosses. The
latent variables {m}l.T=1 capture the alignment between the
frames {Il-}l.T=1 and their associated glosses. The conditional
probability of an alignment path 7 = {JT,-}I.T:1 is defined as the
follows:

T
pr(rlpy) = [ [ pr(mil pi). @)
i=1

The conditional probability pr(yy |py ) is calculated by sum-
ming up the probabilities of all alignment paths 7:

>

meB~l(yy)

pr(yylpy) = pr(z|py), 3)

where B : (|C| U {blank)T — |C|t; B~! is the inverse
mapping function of B; B maps the alignment path x to
its corresponding gloss sequence by removing blanks and
repeated glosses. Finally, the CTC loss is defined as

‘cctc = - 10g p(yV |pV) (4)

2) Cross-Modality Matching Loss: Visual feature learning
for CSLR poses challenges due to its weakly supervised
nature. To address this, we design a cross-modality matching
loss (CM loss) to facilitate effective visual feature learning.

For the CM loss, we first model the gloss features
fo = {fe}=,. fo, € RY and the visual features fy =
{fvj}/T-zl, fv; € R4 as two sets in a shared feature space.
Subsequently, given a cost matrix C € RE*T | where C; j =
1— fGTiij

16 A, 1>
the gloss features and their corresponding visual features using
a variant of the optimal transport distance D,;, that is:

L T
> D MG,

the goal is to maximize the correlation between

Dys = min
Mery T i
st. Mlp=1;,, M'1; =17. (5)
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where 17 and 1; are T-dimension and L-dimension vectors
with all entries equal to one, respectively. M can be interpreted
as the transport matrix and the optimal solution of M; ; is the
optimal amount of mass required to move fg; to fy; with a
minimum overall cost.

Solving (5) has o3 log(n)) worst case computational
complexity, where n is proportional to L and 7. To reduce this
complexity, we finally adopt the relaxation proposed in [32],
which adds an entropy-based regularization term to (5) to
optimize the transport matrix by using Sinkhorn iteration [32].
As a result, it achieves an approximate solution to the original
optimal transportation problem to reduce the computational
complexity. The cross-modality matching loss is defined as:

L T
z ZMi,jCi,j — BHM),

i=1 j=I

L:cm =

min
LxT
MeRY

st. Mlp=1;, M'1;, =1;. (6)

where HM) = Zi’ j M;;logM;; and B is the regularization
parameter controlling the importance of the entropy term.
The larger the 8, the denser the final transport matrix will be.
The optimal solution of M can be obtained by a variant of the
Sinkhorn algorithm proposed in [32].

D. Model Training and Inference

During the training stage, the parameters of ResNet18 6,
PDC-TFE module 6,4 and Sequential predictor 6, are opti-
mized by:
min

arg
0[)]’ »epdc ﬂsp

LCtC + )"LCWH (7)
where A is the hyperparameter to balance the contribution of
L¢e and Ly,

During the inference stage, given a testing sign language
video, the spatial-temporal visual feature is extracted by G,r
and Gp4. modules. Subsequently, the sequence predictor G,
generates per-frame category probability predictions. To obtain
the gloss sequence prediction, a CTC beam search algorithm is
employed, with the beam width set to 10. This approach effi-
ciently explores multiple potential gloss sequences and selects
the most likely prediction based on the category probabilities.

IV. EXPERIMENTS

A. Benchmarks and Evaluation Metric

1) RWTH-2014 [12]: 1t is a German CSLR benchmark
divided into a training set with 5,672 videos, a development
set with 540 videos, and a test set with 629 videos. Across
all videos, a total of 1,295 words are signed by 9 different
signers.

2) RWTH-2014T [2]: It encompasses a vocabulary of 1,085
words, and comprises 7,096, 519, and 642 videos in the
training set, development set, and test set, respectively.

3) CSL-500 [6]: It is a Chinese CSLR benchmark con-
taining 100 sentences and a vocabulary of 178 words. It is
split into a training set with 4,700 videos and a test set with
300 videos.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

4) CSL-Daily [13]: Ttis a large-scale Chinese sign language
benchmark. It is composed of 18,401 videos for the training
set, 1,077 videos for the development set, and 1,176 videos
for the test set. And it has 2,000 words for the CSLR task.

5) Evaluation Metric: We adopt the word error rate (WER)
metric that is widely used for CSLR evaluation [1]. The WER
measures the minimum number of substitutions, deletions,
and insertions needed to convert one predicted sentence to
an associated reference sentence:

Ni+N N
WER:%7 (8)

where Ny, Np, Ng are the number of operations for insertions,
deletions, and substitutions, respectively.

B. Experimental Setup

1) Gloss BERT: For all benchmarks, we employ the last
hidden state of pre-trained BERT as the gloss feature fg,
dimension d is 768, mask ratio M of the MLM scheme is
set to 0.5.

2) Visual Feature Extraction: In the PDC-TFE module,
we set m = 3 (except m = 2 for the CSL-500), / = 3, and
¢ = 512. For the sequence predictor, the dimension of Bi-GRU
is 1024, and the dimension of fy matches that of fg.

3) Data Augmentation: For all benchmarks, half of all
video frames are randomly discarded like SFL [3]. The remain-
ing frames are resized to 256 x 256 and then randomly cropped
to 224 x 224 with random horizontal flipping employed (center
cropping 224 x 224 during the inference stage).

4) Training: GPGN was trained using the Adam optimizer
for 80 epochs, with weight decay and learning rate set to
le-4 for two RWTH benchmarks and the CSL-500 benchmark,
while they were set to le-6 and Se-5 for the CSL-Daily
benchmark, respectively. Through experiments, A and 8 are
set to 2 and 0.3, respectively for all benchmarks. The exper-
iments are implemented using PyTorch and conducted on an
A100 GPU.

C. Ablation Study

The GPGN consists of two key components: the cross-
modality matching (CM) strategy and the PDC-TFE module.
We define the combination of the pre-trained gloss BERT
model and the CM loss as the CM strategy.

“Baseline” refers to ResNetl8 is equipped with a three-
layer 1D-temporal convolution network. This baseline is
similar to state-of-the-art baseline [4], and it is optimized by
CTC loss. As shown in Table I, baseline achieves performance
of 24.0% and 24.5% on both the dev and test sets.

1) Effect of PDC-TFE: “R+PDC-TFE” indicates ResNet18
is equipped with PDC-TFE module. In Table I, since the
PDC-TFE effectively captures the rich temporal information
inherent in glosses of various lengths, it achieves improve-
ments of 2.3% and 2.9% compared to the baseline.

2) Effect of Different Values of m and | of PDC-TFE
Module: Large m and [ represent large temporal resolutions,
in addition, large m also means more diverse temporal resolu-
tions. In Table II, experiments are based on “R+PDC-TFE”.
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TABLE I

ABLATION EXPERIMENTS (%) OF THE GPGN ON THE RWTH-2014,
“B” AND “R” INDICATES THE BASELINE
AND RESNETI18, RESPECTIVELY

Variants CM PDC-TFE  Dev% Test%
Baseline - - 24.0 24.5
R+PDC-TFE - v 217 (L 2.3) 216 (4 2.9)

B+CM v - 28 12230 1.5)

GPGN v V199 (] 4.1) 204 (] 4.1)

TABLE I

EFFECT (%) OF DIFFERENT VALUES OF m AND [ OF THE PDC-TFE
MODULE. EXPERIMENTS (%) ARE BASED ON
THE RWTH-2014 TEST SET

Modules | =1 1=2 1=3 =4
PDC-TFE (m=1) 234 230 231 228
PDC-TFE (m=2) 228 227 227 226
PDC-TFE (m=3) 22.6 219 216 220
PDC-TFE (m=4) 21.9 24 227 22.8

We observe that setting m = 3, [ = 3 is optimal, but larger
m and [ lead to performance decrease. We consider that a
large value of m or [ brings many parameters, leading to
overfitting. Additionally, a too-large temporal resolution may
capture collections of several short signs, resulting in temporal
boundary ambiguity.

3) Effect of CM Strategy: “B+CM” denotes that the cross-
modality matching (CM) strategy is applied to the baseline.
Table I illustrates “B+CM” outperforming the baseline. Fur-
ther, we plug the CM strategy into other RGB-cue-based
state-of-the-art methods, such as VAC, TLP, SEN, CorrNet,
and CTCA. As shown in Table III, all methods gain significant
improvements through the use of the CM strategy, which
convincingly shows its effectiveness and transferability. For
the above results, we consider that gloss features extracted
by the fine-tuned gloss BERT model exhibit promising
signer-invariant characteristics and carry rich gloss correlation
semantics. Furthermore, with the effect of the cross-modality
matching loss, the gloss features serve as a reference to
promote semantic correlation learning among visual features.
As a result, visual features will be clustered with their
corresponding gloss features. This clustering approach can
effectively reduce the intra-class divergence of visual features.

4) Effect of PDC-TFE Module & CM Strategy: As shown
in Table I, GPGN combining the PDC-TFE module and CM
strategy in the baseline leads to remarkable performance gains,
surpassing “Baseline”, “B4CM” and “R+PDC-TFE” on both
the dev and test sets. These improvements can be attributed
to the utilization of PDC-TFE in capturing fine differences
among various temporal glosses within a video, which further
enhances the performance of the CM strategy.

5) Effect of Different Values of . and B: We have done
extensive experiments and concluded that GPGN performs
optimally when A=2 and B=0.3. If the CM loss is assigned
a high A, the resulting gradient feedback may weaken the
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TABLE III

EFFECT (%) OF THE CROSS-MODALITY MATCHING STRATEGY (“CM”)
PLUGGED INTO RECENT STATE-OF-THE-ART RGB-CUE-BASED
METHODS ON THE RWTH-2014. “*” DENOTES EXPERIMENT
RESULTS ACCOMPLISHED BY OUR IMPLEMENTATION

WER

Methods Dev% Test%

VAC [4] (ICCV 2021) 21.2 22.3
VAC+CM* 203 09 21.1({ 1.2

TLP [17] (ECCV 2022) 19.7 20.8
TLP+CM* 193 (J 04) 20.2 { 0.6)

SEN [18] (AAAI 2023) 19.5 21.0
SEN+CM* 192 (1 0.3) 202 (] 0.8)

CorrNet™ [19] (CVPR 2023) 19.0 19.7
CorrNet*+CM 18.7 (1 0.3) 194 (] 0.3)

CTCA [1] (CVPR 2023) 19.5 20.1
CTCA+CM™ 193 0.2) 19.8 { 0.3)

s Lambda(ﬁxmg[}*OD 22; Beta (fixing A=2)

Word Error Rate(%)
‘Word Error Rate(%)
\ o

) S R I I U B B 1oL
23 00 01 02 03 04 05 06 07 08 09 10

Fig. 4. Experimental results of different A and  on the RWTH-2014. When
changing A, $=0.3 will be fixed and vice versa A=2 will be fixed.

CTC loss and drive the model optimization in an undesirable
direction. A larger value of 8 generates a denser transport
matrix in (6). In Figure 4, we can observe that the GPGN per-
formance is less dependent on the choice of hyperparameters,
thus indicating the stability of the CM loss.

D. Comparison With Baseline Methods

1) Evaluation on RWTH-2014: Table IV presents a com-
parison between our GPGN and several baseline methods on
the RWTH-2014. Only employing the RGB cue, our GPGN
achieves the competitive performance (19.9% and 20.4%) on
both the dev and test sets. FCN, VAC, and SMKD neglect
the gloss prior guidance and the capturing of glosses with
various temporal patterns, as a result, their performances are
significantly inferior to our GPGN. In addition, performances
of TLP, SEN, and CorrNet demonstrate the importance of cap-
turing glosses with various temporal patterns, and CTCA and
CVT-SLR have validated employing the gloss prior guidance
plays significant enhancement roles for the CSLR model.

2) Evaluation on RWTH-2014T: Table V shows the com-
parison between our GPGN and baseline methods on the
RWTH-2014T. V-L Mapper lacks the ability to capture glosses
with complex temporal patterns, C?SLR, and TLP neglects
the gloss prior guidance. Our GPGN achieves remarkable
performance, outperforming the V-L Mapper and TLP by 2.0%
and 0.7%, on the test set, respectively. Furthermore, on the
dev set, GPGN outperforms C>SLR by 0.9%.
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TABLE IV

COMPARISON (%) WITH BASELINE METHODS ON THE RWTH-2014.
THE ENTRIES DENOTED BY “*” USED EXTRA CUES (KEYPOINTS OR
REGIONS OF HAND AND FACE)

Dev% Test%
Methods del/ins WER | del/ins WER
FCN (2020) [7] - 37| - 239
DNF+SBD-RL (2020) [33] |10.5/3.3 23.4 |10.6/2.8 23.5
VAC (2021) [4] 7925 212 | 84/26 223
SMKD (2020) [9] 6.8/2.5 20.8 | 6.3/23 21.0
SEN (2023) [18] 5.8/26 19.5 | 7.3/40 21.0
TLP (2022) [17] 6.3/2.8 19.7 | 6.1/29 20.8
STMC™ (2021) [34] 77134 21.1 | 7.4/2.6 20.7
C2SLR* (2022) [15] - 205] - 204
CVT-SLR (2023) [20] 6.4/26 19.8 | 6.1/2.3 20.1
CTCA (2023) [1] 6.2/29 19.5 | 6.1/2.6 20.1
CorrNet (2023) [19] 5.6/2.8 18.8 | 5723 194
TwoStream-SLR™ (2022) [16] - 18.4 - 18.8
GPGN (2022) (Ours) 5.8/3.6 19.9 | 6.3/2.8 204

TABLE V

COMPARISON (%) WITH BASELINE METHODS ON THE RWTH-2014T.
THE ENTRIES DENOTED BY “*” USED EXTRA CUES (KEYPOINTS)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE VI

COMPARISON (%) WITH BASELINE METHODS ON THE CSL-500 SpPLIT I
AND SPLIT II. THE ENTRIES DENOTED BY “x” USED EXTRA
CUES (KEYPOINTS OR REGIONS OF HAND AND FACE OR
DEPTH INFORMATION)

WER

Methods Split 1 Split 11

S2VT (2015) [36] 255 67.0
LS-HAN (2018) [6] 17.3 -
HLSTM-atten (2018) [37] 10.2 64.1
CTM (2019) [38] - 61.9
DenseTCN (2019) [24] 143 44.7
STMC* (2020) [39] 2.1 -
FCN (2020) [7] 3.0 -
VAC (2021) [4] 1.6 -
C?SLR* (2022) [15] 0.9 -
SEN (2023) [18] 0.8 -
CorrNet (2023) [19] 0.8 -
GEU* (2021) [40] 0.6 499
SBD-RL (2020) [33] - 26.8
GPGN (2022) (Ours) 0.9 284

TABLE VII

WER COMPARISON (%) WITH BASELINE METHODS ON THE CSL-DAILY.
Methods Dev% Test% THE ENTRIES DENOTED BY “*” USED EXTRA CUES (KEYPOINTS)
SFL (2020) [3] 25.1 26.1 Methods Dev% Test%
SLT (Gloss+Text) (2020) [4] 24.6 245 del/ins WER | deliins WER
BN-TIN+Transf (2021) [13] 22.7 23.9 BN-TIN+Transf (2021) [13] | 13.934 33.6 | 13.5/3.0 33.1
V-L Mapper (2022) [35] 21.9 22.5 TIN-Tterative (2019) [41] | 12.8/3.3 32.8 |12.52.7 324
SMKD [9] (2021) 20.8 224 SLT(Gloss+Text) (2020) [3] |10.3/4.4 33.1 | 9.6/4.1 32.0
TLP (2022) [17] 19.4 212 SEN (2023) [15] A oy
SEN (2023) [15] 19.3 20.7 CorrNet (2023) [19] - 306| - 301
g;’;f;f (é(())?z))[[ ]] ;22 gg'i CTCA (2023) [1] 9225 313 |8.123 294
: ’ TwoStream-SLR™* (2022) [16] - 254 - 253
CVT-SLR (2023) [20] 19.4 20.3 GPGN (Ours) 96125 3111|9621 300
CTCA (2023) [1] 19.3 203
TwoStream-SLR™ (2022) [16] 17.7 19.3
GPGN (2022) (Ours) 19.3 20.5 TABLE VIII

3) Evaluation on CSL-500: Table VI delivers the com-
parison between our GPGN and baseline methods on the
CSL-500. S2VT, LS-HAN, LS-HAN, GEU, and SBD-RL
lack capturing glosses with various temporal patterns. CTM,
DenseTCN, and SBD-RL focus on gloss temporal boundary
detection, they have no gloss prior guidance. Although GEU is
SOTA in Split I, our GPGN brings obvious gains by GEU of
21.5% in the more challenging Split II. Furthermore, although
SBD-RL surpasses GPGN by 1.6% on Split II, its enhanced
variant’s performance [33] on RWTH-2014 (23.4%/23.5%) is
remarkably inferior to our GPGN by (3.5%/3.1%).

4) Evaluation on CSL-Daily: Table VII illustrates the
results of GPGN and other baseline methods. Both
BN-TIN+Transf, TIN-Iterative, and FCN utilize a single-
temporal resolution structure to capture signs, they are inferior
to our GPGN, which achieves effective WERs of 31.1% and
30.0% on both the dev set and test sets.

EVALUATION (%) OF DISTINCT BERT MODEL STRATEGIES ON
THE RWTH-2014 AND CSL-DAILY

RWTH-2014 ‘ CSL-Daily
Methods ‘
ethods ‘ Dev%  Test% ‘ Dev%  Test%
Embedding 21.5 21.5 - -
BERT 20.9 21.2 32.1 30.8
BERT fine-tuning | 19.9 20.4 31.1 30.0

E. Module Analysis

1) Comparison With Different Gloss Feature Extractors:
As shown in Table VIII, “Embedding” presents an embedding
method consisting of an embedding layer, an LSTM layer, and
an MLP layer. “BERT” indicates the BERT model as the ini-
tialization. While “BERT fine-tuning” denotes that the BERT
model has been fine-tuned on sign language benchmarks as
the initialization. The performance of “BERT” outperforms
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TABLE IX

EVALUATION (%) OF DIFFERENT MASK RATIOS M FOR THE MLM
SCHEME OF THE FINE-TUNED BERT ON THE RWTH-2014

M | 015 03 0.5 0.6 0.8 0.9

Dev/Test‘20.4/20.7 20.1/20.4 19.9/20.4 20.3/20.7 20.7/20.8 21.2/21.4

TABLE X

COMPARISON (%) WITH DIFFERENT TEMPORAL FEATURE EXTRACTORS
AND CM LOSSES ON THE RWTH-2014. * DENOTES THAT
EXPERIMENTS ARE ACCOMPLISHED BY
OUR IMPLEMENTATION

Methods Dev% Test%
del/ins ~ WER del/ins  WER
FCN [7] ; - ; 26.0
Dilated™ [42] 7.6/3.0 23.6 7.4/3.2 24.8
MS-TCN™ [43] 7.8/2.7 24.4 7.512.6 24.6
DDL* [23] 8.6/3.2 23.3 8.1/2.6 232
HRDC 7.7/3.4 21.9 7.5/2.8 22.3
DenseTCN [24] 10.7/5.1 35.9 10.5/5.5 36.5
3D+PDC-TFE* 12.9/4.2 333 12.6/4.1 329
R+PDC-TFE 7.3/3.4 21.7 6.7/2.8 21.6
GPGN (soft-DTW) 7.1/2.5 21.3 7.2/2.5 21.8
GPGN (CM) 5.8/3.6 19.9 6.3/2.8 20.4

the embedding method. Because the BERT model can extract
more discriminative gloss features. Furthermore, employing
the fine-tuned BERT model achieves the best performance
on both RWTH-2014 and CSL-Daily. We attribute this to
the MLM scheme, which allows the BERT model to capture
contextual semantics and subtle sign grammatical information
from sign language sentences, although it may be overfitting.

2) Comparison With Different Mask Ratios M for the Fine-
Tuned BERT: As shown in Table IX, setting the mask ratio
M to 0.5 yields optimal performance. when M is set to
0.9, the performance of GPGN is near the “Embedding” in
Table VIII. This result demonstrates that a suit larger mask
rate will force BERT to provide enough contexts to learn good
representations, but the BERT is unable to learn contextual
knowledge among glosses under a very large mask ratio.

3) Comparison With Different Temporal Feature Extrac-
tors: In Table X, we replaced the backbone of Dilated,
MS-TCN, and DDL with ResNetl8. We also replaced the
temporal convolution layers with the PDC-TFE module in
DenseTCN to construct the “3D+PDC-TFE”. “R+PDC-TFE”
outperforms FCN, Dilated, MS-TCN, and DDL, because
the first three methods capture single-temporal resolution,
and DDL captures two-scale temporal resolution. Addi-
tionally, “3D+PDC-TFE” achieves better results than the
multi-temporal resolution extractor, DenseTCN. We attribute
this result to the multi-temporal resolution parallel learning
of PDC-TFE. To verify the dense-connection strategy’s effec-
tiveness, we remove the dense-connection from the PDC-TFE
module that we refer to as “HRDC”, and its performance
decreases.

4) Comparison With Different Cross-Modality Matching
Methods: In Table X, “GPGN (soft-DTW)” indicates the
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Effects of different feature dimensions in RDC layer
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Fig. 5. Effects (%) of different feature dimension ¢ in the RDC layer on the
RWTH-2014.

ABEND AUCH EBEN

MOEGLICH REGEN GRAUPEL KURZ GEWITTER

ABEND  IX() AUCH (D) MOEGLICH REGEN L) MIT(S) GEWITTER

BaselinesPDC-TFE "% (D) auct V(' BoDENGS)  MOEGLICH REGEN GRAUPEL ODER(S)  GEWITTER

Baseline+CM ABEND AUCH  ANFANG(S) MOEGLICH REGEN GRAUPEL ODER(S)  GEWITTER

CMFM ABEND AUCH  ANFANG(S) MOEGLICH REGEN GRAUPEL KURZ GEWITTER

Fig. 6. Qualitative results of GPGN and its variants. An example
from the test set of the RWTH-2014 is presented. The wrongly rec-
ognized glosses are marked in red/cyan/orange words that denote the
deletion(D)/substitution(S)/ errors, respectively. “*” denotes the
model cannot identify the gloss.

replacement of CM loss with soft Dynamic Time Warp-
ing [44]. The performance of CM loss outperforms the
soft-DTW. This can be attributed to the limitations of soft-
DTW, such as erroneous alignments for periodic sequences
with different starting points [45] and the tendency to match
noisy frames due to its strict order constraint. In contrast, the
CM loss can avoid these cases due to the optimal transport,
achieving more flexibility with increased interpretability.

5) Comparison With Different Feature Dimensions of RDC
Layer: In Figure 5, experiments based on GPGN, setting
¢ = 512 achieves the optimal results. When ¢ exceeds 512,
overfitting occurs, causing a performance decline, but it still
performs better than cases with smaller c¢. This observation
indicates that balanced high-dimensional features are more
effective in capturing temporal information.

FE. Qualitative Results

To qualitatively evaluate the GPGN, Figure 6 visualizes
an example with video frames with their predicted glosses.
We can observe that when the baseline incorporates the
PDC-TFE module, the gloss “GRAUPEL” can be correctly
recognized. Furthermore, with the help of the CM strat-
egy, the model corrects the recognition errors for “ABEND”
and “GRAUPEL” made by the baseline. Remarkably, when
employing GPGN, only a single substitution recognition
error (ANFANG) occurs. These results highlight that the
GPGN performs favorably, particularly in handling challeng-
ing signs.

To assess the generalizability of visual features, Figure 7
visualizes the class activation maps for the 7 x 7 feature maps
from the ResNetl8. Comparing GPGN with VAC and SFL,
it is evident that GPGN effectively focuses on learning crucial
sign-related information, such as the hand, arm, and head
(mouth shape). This result demonstrates the sign sensitivity of
GPGN and its ability to capture nuanced distinguishing signs.
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Fig. 7.
counterparts SFL and VAC with an example from the test set of the
RWTH-2014. The colors of images change from blue to yellow and to red,
meaning the model pays more attention to the positions (e.g. head, hand,
and arm).

Visualizing the CAMs results generated by the GPGN and its

V. CONCLUSION AND DISCUSSION

In this paper, we present a novel gloss prior guidance
network (GPGN) aimed at enhancing the generalizability
of the visual feature extractor in CSLR model learning.
Our approach capitalizes on the gloss prior information to
improve the generalizability of the visual features. To achieve
this, we design a pre-trained gloss BERT model to extract
the gloss feature that is signer-invariant and encompasses
rich contextual gloss sequences and sign grammatical infor-
mation. Furthermore, we devise a PDC-TFE module that
collaborates with a ResNetl8 backbone for multi-resolution
spatial-temporal visual feature extraction. Moreover, we pro-
pose a cross-modality matching loss that formulates the
alignment between gloss and visual features as a regularized
optimal transport problem. We refer to the combination of
the gloss BERT and this matching loss as the cross-modality
matching strategy. Extensive experiments on RWTH-2014,
RWTH-2014T, CSL-500, and CSL-Daily have demonstrated
the competitive performance of our GPGN and the transfer-
ability of the cross-modality matching strategy.
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