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ABSTRACT

Though the pre-trained contextualized language model (PrLM) has made a sig-
nificant impact on NLP, training PrLLMs in languages other than English can be
impractical for two reasons: other languages often lack corpora sufficient for train-
ing powerful PrLMs, and because of the commonalities among human languages,
computationally expensive PrLM training for different languages is somewhat re-
dundant. In this work, building upon the recent works connecting cross-lingual
transfer learning and neural machine translation, we thus propose a novel cross-
lingual transfer learning framework for PrLMs: TRELM. To handle the symbol
order and sequence length differences between languages, we propose an interme-
diate “TRILayer” structure that learns from these differences and creates a better
transfer in our primary translation direction, as well as a new cross-lingual lan-
guage modeling objective for transfer training. Additionally, we showcase an
embedding aligning that adversarially adapts a PrLM’s non-contextualized em-
bedding space and the TRILayer structure to learn a text transformation network
across languages, which addresses the vocabulary difference between languages.
Experiments on both language understanding and structure parsing tasks show
the proposed framework significantly outperforms language models trained from
scratch with limited data in both performance and efficiency. Moreover, despite an
insignificant performance loss compared to pre-training from scratch in resource-
rich scenarios, our transfer learning framework is significantly more economical.

1 INTRODUCTION

Recently, the pre-trained contextualized language model has greatly improved performance in natu-
ral language processing tasks and allowed the development of natural language processing to extend
beyond the ivory tower of research to more practical scenarios. Despite their convenience of use,
PrLLMs currently consume and require increasingly more resources and time. In addition, most of
these PrLMs are concentrated in English, which prevents the users of different languages from en-
joying the fruits of large PrLMs. Thus, the task of transferring the knowledge of language models
from one language to another is an important task for two reasons. First, many languages do not
have the data resources that English uses to train such massive and data-dependent models. This
causes a disparity in the quality of models available to English users and users of other languages.
Second, languages share many commonalities - for efficiency’s sake, transferring knowledge be-
tween models rather than wasting resources training new ones is preferable. Multilingual PrLMs
(mPrLMs) also aim to leverage languages’ shared commonalities and lessen the amount of language
models needed, but they accomplish this by jointly pre-training on multiple languages, which means
when they encounter new languages, they need to be pre-trained from scratch again, which causes
a waste of resources. This is distinct from using TreLM to adapt models to new languages because
TreLM foregoes redoing massive pre-training and instead presents a much more lightweight ap-
proach for transferring a PrLM. mPrLMs can risk their multilingualism and finetune on a specific
target language, but we will demonstrate that using TreLM to transfer an mPrLLM actually leads to
better performance than solely finetuning. Therefore, in order to allow more people to benefit from
the PrLLM, we aim to transfer the knowledge stored in English PrLMs to models for other languages.
The differences in training for new languages with mPrLMs and TRELM are shown in Figure|[l]

Machine translation, perhaps the most common cross-lingual task, is the task of automatically con-
verting source text in one language to text in another language; that is, the machine translation model
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Figure 1: Typical language transfer scenarios for mPrLM and TRELM.

converts the input consisting of a sequence of symbols in some language into a sequence of symbols
in another language; i.e., it follows a sequence-to-sequence paradigm. Language has been defined as
“a sequence that is an enumerated collection of symbols in which repetitions are allowed and order
does matter” (Chomskyl |2002)). From this definition, we can derive three important differences in
the sequences of different languages: symbol sets, symbol order, and sequence length, which can
also be seen as three challenges for machine translation and three critical issues that we need to
address in migrating a PrLM across languages.

In this work, to resolve these critical differences in language sequences, we propose a novel frame-
work that enables rapid cross-lingual transfer learning for PrLLMs and reduces loss when only limited
monolingual and bilingual data are available. To address the first aforementioned issue, symbol sets,
we employ a new shared vocabulary and adversarially align our target embedding space with the raw
embedding of the original PrLMs. For the symbol order and sequence length issues, our approach
draws inspiration from neural machine translation methods that overcome the differences between
languages (Bahdanau et al.,|2014), and we thus propose a new cross-lingual language modeling ob-
jective, CALM, which tasks our model with predicting the tokens for a from its parallel sentence in
the target language. To facilitate this, we also propose a new “TRILayer” structure, which acts as
an intermediary layer that evenly splits our models’ encoder layers set into two halves and serves
to convert the source representations to the length and order of the target language. Using parallel
corpora for a given language pair, we train two models (one in each translation direction) initialized
with the desired pre-trained language model’s parameters. Combining the first half of our target-to-
source model’s encoder layer set and the second half of our source-to-target model’s encoder layer
set, we are thus able to create a full target-to-target language model. During training, we use three
separate phases for the proposed framework, where combinations of Masked Language Modeling
(MLM), the proposed CdLM, and other secondary language modeling objectives are used.

We conduct extensive experiments on Chinese and Indonesian, as well as German and Japanese
(shown in Appendix [I0), in challenging situations with limited data and transfer knowledge from
English PrLMs. On several natural language understanding and structure parsing tasks, BERT (De-
vlin et al.|[2019) and RoBERTa (Liu et al.,[2019b) PrLM models that we migrate using our proposed
framework improve the performance of downstream tasks compared to monolingual models trained
from scratch and models pre-trained in a multilingual setting. Moreover, statistics show that our
framework also has advantages in terms of training costs.

2 RELATED WORK

Because of neural networks’ reliance on heavy amounts of data, transfer learning has been an in-
creasingly popular method of exploiting otherwise irrelevant data in recent years. It has seen many
applications and has been used particularly often in Machine Translation (Zoph et al.,|2016; Dabre
et al [2017; Qi et al., 2018} [Nguyen & Chiang} [2017; |Gu et al. |2018; Kocmi & Bojar, [2018; Neu-
big & Hul 2018 Kim et al.| 2019} |Aji et al.l [2020), in which transfer learning is generally used to
improve translation performance in a low resource scenario using the knowledge of a model trained
in a high resource scenario. In addition to cross-lingual situations, transfer learning has also been
applied to adapt across domains in the POS tagging (Schnabel & Schiitze| [2013)) and syntactic pars-
ing (McClosky et al.,|2010; Rush et al., 2012) tasks, for example, as well as specifically for adapting
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language models to downstream tasks (Chronopoulou et al.l [2019; Houlsby et al., 2019)). One par-
ticular difference between our method and many transfer learning methods is that we do not exactly
use the popular “Teacher-Student” framework of transfer learning, which is particularly often used
in knowledge distillation (Hinton et al.| [2015; |[Sanh et al., |2020) - transferring knowledge from a
larger model to a smaller model. We instead use two ”student” models, and unlike traditional meth-
ods, these student models do not share a target space with their teacher (the language is different),
and their parameters are initialized with the teacher’s parameters rather than being probabilistically
guided by the teacher during training.

When using transfer learning for cross-lingual training, there have been various solutions for the
vocabulary mismatch. |Zoph et al.| (2016)) did not find vocabulary alignment to be necessary, while
Nguyen & Chiang|(2017) and Kocmi & Bojar| (2018) used joint vocabularies, and |[Kim et al.|(2019)
made use of cross-lingual word embeddings. One particular work that inspired us is that of Lample
et al.|(2018), who also used an adversarial approach to align word embeddings without any supervi-
sion while achieving competitive performance for the first time. This succeeded the work of Zhang
et al.[(2017)), who also used an adversarial method but did not achieve the same performance. Also
like our aligning method, Xu et al.| (2018) took advantage of the similarities in embedding distribu-
tions and cross-lingually transferred monolingual word embeddings by simultaneously optimizing
based on distributional similarity in the embedding space and the back-translation loss.

Several works have also explored adapting the knowledge of large contextualized pre-trained lan-
guage models to more languages, which pose a much more complicated problem compared to trans-
ferring non-contextualized word embeddings. The previous mainstream approach for accommodat-
ing more languages is using mPrLLMs. Implicitly joint multilingual models, such as m-BERT (Devlin
et al., 2019), XLLM (Conneau & Lamplel [2019), XLM-R (Conneau et al., 2019), and mBART (Liu
et al.|[2020), are usually evaluated on multi-lingual benchmarks such as XTREME (Hu et al., [2020)
and XGLUE (Liang et al., [2020), while some works use bilingual dictionaries or sentences for ex-
plicit cross-lingual modeling with mPrLLMs (Schuster et al., 2019; Mulcaire et al., 2019; |L1iu et al.,
2019a}; |Cao et al., [2020). Transferring monolingual PrLLMs, another research branch, is relatively
new. |Artetxe et al.|(2020) presented a monolingual transformer-based masked language model that
was competitive with multilingual BERT when transferred to a second language. To facilitate this,
they did not rely on a shared vocabulary or joint training (to which multilingual models’ perfor-
mance is often attributed) and instead simply learned a new embedding matrix through MLM in the
new language while freezing parameters of all other layers. [Iran| (2020) used a similar approach,
though instead of randomly initialized embeddings, he used a sparse word translation matrix on En-
glish embeddings to create word embeddings in the target language, reducing the training cost of
the model.

3 TRELM

Cross-lingual Transfer Learning for Language Modeling (TRELM) is a framework that rapidly mi-
grates existing PrLMs. In this framework, the embedding space of a source language is linearly
aligned with that of a target using an adversarial embedding alignment, which we experimentally
verified was effective due to shared spatial structure similarities (refer to Appendix [A.T]for details).
Leveraging joint learning, we propose a novel pre-training objective, CdLM, and unify it with MLM
into one format. In regards to model structure, we proposed TRILayer, an intermediary transfer
layer, to support language conversion during the CdLM training process.

3.1 TRILAYER AND CdLM

For the disparities in symbol sets of different languages and different pre-trained models, we em-
ploy embedding space alignment, while for the issues of the symbol order and sequence length,
unlike previous work, we do not assume that the model can implicitly learn these differences, and
we instead leverage language embeddings and explicit alignment information and propose a novel
Cross-Lingual Language Modeling (CdLM) training objective and a Transfer Learning Intermediate
Layer (TRILayer) structure as a pivot layer in the model to bridge the differences of the two lan-
guages. To clearly explain our training approach, we take the popular PrLM BERT as a basis for
introduction.
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In the original BERT (as shown in FigureEka)), Transformer (Vaswani et al.| 2017)) is taken as the
backbone of model, which takes tokens and their positions in a sequence as input before encoding
this sequence into a contextualized representation using multiple stacked multi-head self-attention
layers. During the pre-training process, BERT predominantly adopts an MLM training objective, in
which a [MASK] (also written as [M]) token is used to replace a token in the sequence selected by a
predetermined probability, and the original token is predicted as the gold target. Formally speaking,
given a sentence X = {1, s, ...,z } and M, the set of masked positions, the training loss Ly
for the MLLM objective is:

| M|
Ly (On) = =108 Py, (204, X\ 1),
i=1
where 01, are the parameters of BERT, | M| is the length of set M, and X\ 5 indicates the sequence
after masking. An example of MLM training is shown in the top-left region of Figure 5]

Much work in the field of machine translation suggests that the best way to transfer learning across
languages is through translation learning because the machine translation model must address all
three of the above-described language differences in the training process. Therefore, we take inspi-
ration from the design of machine translation, especially the design of non-autoregressive machine
translation, and propose a Cross-Lingual Language Modeling (CdALM) objective. CdLM is just like a
traditional language modeling objective, except across languages, so given an input of source tokens,
it generates tokens in a separate target language. We describe the differences between CdLM and
related MLM variants (such as Translation Language Modeling (TLM) and BRidge Language Mod-
eling (BRLM)) in Appendix With this proposed objective, we aim to make as few changes as
possible to the existing PrLM and thus introduce a Translation/Transfer Intermediate Layer (“TRI-
Layer”) structure, which bridges two opposing half-models to create our final model.

First, in the modified version of BERT for transfer learning, we add a language embedding Ej,,
following the practice of (Conneau & Lamplel 2019) to indicate the current language being pro-
cessed by the model. This is important because the model will handle both the source and target
languages simultaneously in 2 of our 3 training phases (described in next subsection). The new input
embedding is:
Einp = Puayrd + Eseg + Epos + Eln97

where Fy,q, Eseq, and E,,s are the word (token) embedding, segment embedding, and position
embedding, respectively.

Next, we denote N as the number of stacked Transformer layers (L = {l1, 2, ...,Ix}) in BERT and
split the BERT layers into two halves Ly = {14, ..., l%} and Ly = {l%ﬂv Iy gy In}. The
TRILayer is placed between the two halves (making the total number of layers N + 1) and functions
as a pivot. In the L<% half, the input embedding is encoded by its Transformer layers to hidden

states H; = TRANSFORMER;(H;_1), in which Hy = E;,,;, and TRANSFORMER, indicates the i-th
Transformer layer in the model.

Before the outputs of the LS% half are fed into the TRILayer, the source hidden representation
H N is reordered according to new order O. During CdLM training, for source language sentence
X = {1, 2, ...,x7}, a possible translation sentence Y = {y1,ys, ...,y } is provided. To find
the new order, explicit alignment information between the transfer source and target sentences is
obtained using an unsupervised external aligner tool. We define the source-to-target alignment pair
set as:

Axy = ALIGN(X, Y) = {(‘TALNIDX(yl)a yl)a (xALNIDX (yz), y2), ey (xALNIDx(yT’ )a Yr! )}7

where ALNIDX(+) is a function that returns the alignment index in the source language or gy
when there is no explicit alignment between the token in the target language and any source lan-
guage token. x,, represents a special placeholder token [P] that is always appended to the
inputs. Finally, the source hidden representation [ N is reordered according to the new order

O = {ALNIDX(y1), ALNIDX(y2), ..., ALNIDX(y; )} from alignment set Ay v, creating HS .
2

Thus, the resultant hidden representation H is in the order of the target language and is consistent

2
with the target sequence in length, making it usable for language modeling prediction. Unfortu-
nately, the position information is lost in reordering. To combat this, the position embedding and
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language embedding will be reintegrated as follows:
Hr, = TRANSFORMERTL(HS + Eppyv + Epos),
2

where Hryp is the output of TRILayer, TRANSFORMERTy, is the Transformer structure inside the
TRILayer, and E;,, ,v is the target language embedding. Next, the Hry is encoded in the L, 2 half

as done for the L x N half (let H N = = Hr forthe L~ N half) to predict the final full sequence of the
target language. The model is tramed to minimize the loss Lcarm, which is:

’

T
Leam(Ou) = = log Py, (4| X, Ax ).

i=1

To enable MLM and CdLM to train models simultaneously rather than through successive optimiza-
tion, we provide a unified view for MLM and CdLM language modeling:

Tnax

£ULM(9LM Z 1 Z S C) 10g PQLM(er|S ./4)
i=1

where T« denotes the maximum sequence length for language modeling, S is the input sequence,
wy; is the i-th token in output sequence W, C is the set of positions to be predicted, and A is the
alignment between the input and output sequence. Both the input and output sequences are padded to
the maximum sequence length T}« during training. 1(i € C') represents the indicator function and
equals 1 when -th position exists in the set for the parse to be predicted and 0 otherwise. In MLM,
S=Xc,A=1{(1,1),(2,2),...,(Thax, Tmax) } is a successive alignment, and W = X, while in
CdLM, S = X, A = Ax_,y,and W = Y. Due to the unified language modeling abstractions
of MLM and CdLM, the input and output forms, as well as the internal logic of their models, are
the same. Therefore, models can be trained with the two objectives in the same mini-batch, which
enhances the stability of transfer training.

3.2 TRIPLE-PHASE TRAINING

In our TRELM framework, the whole training process is divided into three phases with different
purposes but the same design goal: minimize the number of parameter updates as much as possible
to speed up convergence and enhance training stability. The three phases are commonality training,
transfer training, and language-specific training. In the commonality learning phase, only the target
language MLM objective is used, while in the transfer learning phase, CALM and target language
MLM objectives are both used at the same time, and in the final language-specific learning phase,
target language MLM and other secondary language modeling objectives are adopted.

Commonality Training Though languages are very different on the surface, they also share a lot of
underlying commonalities, often called linguistic universals or cross-linguistic generalizations. We
therefore take advantage of these commonalities between languages and jointly learn the transfer-
ring source and target languages. In this phase, the parameters of the position, segment embedding,
and Transformer layers are initialized with original BERT, the TRILayer is initialized with param-
eters of Transformer layer L N, the word embedding is initialized with the output of the adversarial
embedding aligning, and orthogonal weight initializations are adopted for the language embedding.
For this phase, the model is trained by joint MLM with monolingual inputs from both the source and
target languages. Moreover, in this training process, to make convergence fast and stable, the param-
eters of BERT’s backbone (Transformer) layers are fixed; only the embeddings and TRILayer are
updated by the gradient-based optimization based on the joint MLM loss. The final model obtained
in this phase is denoted as 6{%;.

Transfer Training Since the model is not pre-trained from scratch, making the model aware of
changes in inputs is a critical factor for a maximally rapid and accurate migration in the case of
limited data. Since there is not enough monolingual data in the target language to allow the model
to adapt to the new language, we use the supervisory signal from the two languages’ differences
and leverage parallel corpora to directly train the model. Specifically, we split the original BERT
transformer layers into two halves. With a parallel corpus from the source language to the target
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language and one from the target language to the source language, we train two corresponding
models, both of which are initialized using the parameters learned in the previous phase. In the
source-to-target model, only the upper half of the encoder layers is trained, and the lower half is
kept fixed, while the converse is true for the target-to-source model. TRILayer then provides cross-
lingual order and length adjustment, which is similar to the behavior of a neural machine translation
model. Thus, we create two reciprocal models: one whose upper half can handle the target language,
and one whose lower half can handle it, which we connect via the TRILayer. Finally, the two trained
models are combined as 6}%,. We describe the full procedure in Algorithm

Algorithm 1 Transfer Training of Pre-trained Contextualized Language Models

Input: The commonality pre-trained model parameters 6¢%;, Languages £ = {Ing™, Ing" }, Parallel training
set P = {(X7 0, X )}li‘l, Number of training steps /C

1: for jin 0, 1 do

2:  Initialize model parameters 6, ¢, "~ « 6¢L,

3 if 7 == 0 then o

4 Fix the parameters of L_ y half of o0

5:  else

6 Fix the parameters of L_ x half of 95\’,‘[%2(1_”

7 end if

8 for stepin 1,2, 3, ..., C do

9

Sample batch (X, X (-9 from B.

10: Alignment information A: Ag; e, ) ALIGN(X %, X*-9)
11: CdLM Loss: Lcam <— —  log P@fdag(l’” (X*ta-» \XLJ‘,AEJ_,E(PJ,))
12: Masked version of X 1 X\Eltj — MASK(X*1)
L1y e
13: MLM Loss: Lyim —ZlogPeLshiﬂs(lfj) (X7 [ XTar)
14: CdLM+MLM Update: Gf&_)s(l_j ) optimizer,update(ﬁf{,',ﬁs(l_'7) s Loam, Lvim)
15:  end for
16: end for

17: Combine the two obtained models as 6f%; by choosing the L N half model parameters from model
0507 and L_ N half model parameters from model 6,5~ and average the other parameters (such
as embedding and TRILayer parameters) of the two models

Output: Learned model 6%,

Language-specific Training During the language-specific training phase, we only use the mono-
lingual corpus of the target language and further strengthen the target language features for the
model obtained in the transfer training phase. We accomplish this by using the MLLM objective and
other secondary objectives such as Next Sentence Prediction (NSP).

4 EXPERIMENTS

In this section, we discuss the details of the experiments undertaken for this work. We conduct ex-
periments based on English PrLMﬂ We transfer via English-to-Chinese and English-to-Indonesian
directions for the purpose of comparing with previous recent work. We describe the training de-
tails and parameters in Appendix From English to Chinese and English to Indonesian, we
transfer two pre-trained contextualized language models: BERT and RoBERTa. Our performance
evaluation on the migrated models is mainly conducted on two types of downstream tasks: language
understanding and language structure parsing. Please refer to Appendix [A.6] for introductions of
tasks and baselines and Appendix for an ablation study. We note that the comparisons between
models trained using TRELM and the monolingual and multilingual PrLLMs trained from scratch on
the target language (see Table [I) is only for illustrating the relative performance loss of the model

'Our code is available atlhttps://github.com/agcbi2017/TrelM
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Models Sentence-Pair Single-Sentence MRC

AFQMC CMNLI CSL TNEWS IFLYTEK WSC CMRCI8 CHID (3
(acc) (acc) (acc) (acc) (acc) (acc) (EM) (acc) (acc)

Single-task single models on dev

BERT-base 74.16  79.47 79.63 56.09 60.37  63.48 64.77  82.20 65.70
m-BERT-base 70.29 79.03  79.26 53.71 56.63  62.82 63.93  80.00 63.81
BERT-small 69.71 66.54 69.73 53.22 4540  53.29 50.23  68.55 56.84
TRI-BERT-base 72.98 79.44  79.34 55.45 58.36  63.00 63.96  80.94 65.06
TRI-BERT-large 73.41 80.50 80.59 56.20 60.99  64.76 66.35  82.61 66.08

TRI-RoBERTa-base  73.51 80.47 80.26 55.98 61.65 63.92 65.76  82.02 65.98
TRI-RoBERTa-large 74.55 81.68 81.35 57.02 62.24  65.16 67.29  83.53 66.79

Table 1: Results on the CLUE development datasets.

Models CTB 5.1 CoNLL-09ZH  UD 231D GSD
UAS  LAS UAS  LAS UAS  LAS
(Dozat & Manning| 2016) 89.30 8823 8890 8538 85.93* 7821
BERT-base 9148 89.24 9263  89.59 86.691  77.971
m-BERT-base 89.84 8733 9098 87.70 87.19  79.10
- TRI-BERT-base 89.96 8743 ~ 9094 8781 8756 7944
TRI-RoBERTa-base 90.30 87.82 9162 8829 88.42  79.95
EN-ID-ZH XLM-MLM 89.25 8698  90.00 86.98 86.64  77.74
_EN-ID-ZH XLM-MLM+TLM 8958 87.16 9053 87.37 8696 78.01
TRI-XLM-en-2048 90.66 8820 ~ 9195 ~ 88.61 88.67 ~ 80.30

Table 2: Dependency parsing results on the Chinese PTB 5.1, CoNLL-2009 Chinese, and Universal
Dependency Indonesian GSD test sets. “x” indicates that the result was from our own experiments
on the UD dataset based on [Dozat & Manning| (2016)’s model, and “{” indicates that the official
BERT paper did not provide Indonesian BERT-base, so we used IndoBERT-base pre-trained by

(Wilie et al., 2020)).

produced by TRELM. These models are not directly comparable, as we intentionally use less data to
train models when using TRELM. Continuing to pre-train the PrLMs on the target language would
also obviously further improve their performance, but this is not our main focus.

Language Understanding We first compare the PrLMs transferred by TRELM alongside the re-
sults the existing monolingual pre-trained BERT-base-chinese and the multilingual pre-trained
BERT-base-multilingual in Table[I|using the CLUE benchmark.

When comparing with the same model architecture, taking BERT as an example, our model TRI-
BERT-base exceeds m-BERT-base and BERT-small and is slightly weaker than original BERT-base.
Compared with BERT-small, which is trained from scratch for a longer time, our TRI-BERT-base
generally achieves better results on these NLU tasks. This demonstrates that because of the common-
alities of languages, models for languages with relatively few resources can benefit from language
models pre-trained on languages with richer resources, which confirms our cross-lingual transfer
learning framework’s effectiveness.

m-BERT is another potential language model migration scheme and has the advantage of supporting
multiple languages at the same time; however, in order to be compatible with multiple languages,
the unique characteristics of each language are neglected. Our TRI-BERT, which is built on top
of BERT-base, instead focuses on and highlights language differences during the transfer learning
process, which leads to an increase in performance compared to m-BERT. When TRI-BERT and
TRI-RoBERTa have the same model size, TRI-RoBERTa outperforms TRI-BERT, which is consis-
tent with the performance differences between the original RoOBERTa and BERT, indicating that our
migration approach maintains the performance advantages of PrLMs.
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Models CoNLL-09 187
p R F, af |
(Cai et al}, 20T8) 84.7 840 843 {865 =
+BERT-base 86.86 87.48 87.17 § sl | =
+m-BERT-base 85.17 85.53 85.34 2l
+TRI-BERT-base 86.15 8558 8586 o 1%
+TRI-RoBERTa-base 87.08 86.99 87.03
" +TRI-RoBERTa-base . -~  oc .n  oc orn

85.77 85.62 85.69 0 1K 10K 100K 500K 1M

Parallel Data

(w/o CALM)

Table 3: Dependency SRL results on the Figure 2: Language modeling effects vs. Parallel
CoNLL-2009 Chinese benchmark. data size on the evaluation set.

Language Structure Parsing We report results on dependency parsing for Chinese and Indone-
sian in Table[2] As shown in the results, the baseline model has been greatly improved for the PrLM.
In Chinese, the performance of BERT-base is far superior to m-BERT-base, which highlights the im-
portance of the unique nature of the language for downstream tasks, especially for refined structural
analysis tasks. In Indonesian, IndoBERT (Wilie et al.l [2020) performs worse than m-BERT, which
we suspect is due to IndoBERT’s insufficient pre-training. We also compare TRI-BERT-base and
IndoBERT-base on Indonesian, whose ready-to-use language resources are relatively small com-
pared to English. We find that although pre-training PrLLMs on the available corpora is possible,
because of the size of language resources, engineering implementation, etc., our migrated model is
more effective than the model pre-trained from scratch. This shows that migrating from the ready-
made language models produced from large-scale language training and extensively validated by the
community is more effective than pre-training on relatively small and limited language resources. In
addition, we also conduct experiments for these pre-trained and migrated models on Chinese SRL.

mPrLMs are another important and competitive approach that can adapt to cross-lingual PrLLM appli-
cations, so we also include several mPrLMs in our comparison on dependency parsing. Specifically,
we used XLM, a monolingual and multilingual PrLM pre-training framework, as our basis. For
TRELM, we used XLM—-en-2048, officially provided by|Conneau & Lample|(2019)), as the source
model. The data amount used and the number of training steps are consistent with TRI-BERT/TRI-
RoBERTa. In mPrLM, we combined EN, ID, and ZH sentences (including monolingual and parallel
sentences) together (10M sentences in total) to train an EN-ID-ZH mPrLM with MLM and TLM
objectives. The performance comparison of these three PrLMs on the dependency parsing task is
shown in the lower part of Table[2]

From the results, we see mPrLMs pre-trained from scratch have no special performance advantage
over TRELM when corpus size is constant, and especially when not using the cross-lingual transfer
learning objective TLM, which models parallel sentences. In fact, our TRI-XLM-en-2048 solidly
outperforms its two multilingual XLM counterparts. Monolingual PrLMs generally outperform
mPrLMs, which likely leads to the performance advantages shown with monolingual migration.
Additionally, like our TRELM, mPrLMs can also finetune on only the target language to improve
performance, and leveraging TRELM to transfer an mPrLLM leads to even further gains, as seen in
Table [9]in the appendix.

While the two approaches can compete with each other, they have their own advantages in general.
In particular, TRELM is more suitable for transferring additional languages that were not considered
in the initial pre-training phase and for low-resource scenarios, while mPrLLMs have the advantage
of being able to train and adapt to multiple languages at once.

In Table [3} we compared a model migrated without CALM to the full one. To compensate for the
removal of CdLM, we added a monolingual corpus with the same size as the parallel corpora and
trained the model with an extra 80K steps, but despite using more target monolingual data and
training steps, the performance was still much better when CdLM was included.
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5 DISCUSSION

Effects of Parallel Data Scale Since the proposed TRELM framework relies on parallel corpora
to learn the language differences explicitly, the sizes of the parallel corpora used are also of con-
cern. We explored the influence of different parallel corpus sizes on the performance of the models
transferred with the TRI-RoBERTa-base architecture. The variation curve of BPW score with the
size of parallel data is shown in Figure 2] We see that with increasingly more parallel data, BPW
gradually decreases, but this decrease slows as the data grows. The effect of the parallel corpora
for cross-lingual transfer therefore has a upper bound because when the parallel corpora reaches a
certain size, the errors from the alignment extraction tools cannot be ignored, and additionally, due
to how lightweight the TRILayer structure is, TRILayers can only contain so much cross-lingual
transfer information, which further restricts the growth of the migration performance.

Pre-training Cost vs. Migration Training Cost The training cost is an important factor for
choosing whether to pre-train from scratch or to migrate from an existing PrLM. We listed the
training data size, model parameters, training hardware, and training time of several public PrLM
models and compared them with our models. The comparisons are shown in Table[d] Although the
training hardware and engineering implementation of various PrLM models are different, this can
still be used as a general reference. When model size is the same, our proposed transfer learning is
much faster than pre-training from scratch, and less data is used in the transfer learning process. In
addition, the total training time of our large model migration training is less than that of even the
base model pre-training when hardware is kept the same. Therefore, the framework we proposed
can be used as a good supplementary scheme for the PrLM in situations when time or computing
resources are restricted.

Model Data BSZ Steps Params Hardware Train Time G/TPU-Days
ELMo ~4GB — —  96M 3 GTX 1080 GPUs 14d 42
GPT ~4.5GB 64 =~12M 117M 8 P6000 GPUs 25d 200
BERT-base 16GB 256 IM 110M 16 TPUs/8 V100 GPUs 4d/11d 64 /88
BERT-large 16GB 256 IM  340M 64 TPUs /8 V100 GPUs 4d/21d 256/ 168
RoBERTa-large 160GB 8K 500K 340M 1024 V100 GPUs 1d 1024
XLNet-large 126GB 2K 500K 360M 512 TPUs 2.5d 1280
ELECTRA-small 16GB 128 IM 14M 1 V100 GPU 4d 4
ELECTRA-base 16GB 256 766K 110M 64 TPUs 4d 256
BERT-small ~24GB 256 240K  15M 8 V100 GPUs 1.5d 12
TRI-BERT-base 128 120K 154M 2.5d 20
TRI-BERT-large 128 120K 398M 5d 40
TRI-RoBERTa-base 128 120K 154M 2.5d 20
TRI-RoBERTa-large 128 120K 398M 5d 40

Table 4: Comparison of the training and migration costs of the PrLMs.

6 CONCLUSION AND FUTURE WORK

In this work, we present an effective method of transferring knowledge from a given language’s
pre-trained contextualized language model to a model in another language. This is an important
accomplishment because it allows more languages to benefit from the massive improvements arising
from these models, which have been primarily concentrated in English. As a further plus, this
method also enables more efficient model training, as languages have commonalities, and models in
the target language can exploit these commonalities and quickly adopt these common features rather
than learning them from scratch. In future work, we plan to use our framework to transfer other
models such as ALBERT and models for more languages. We also aim to develop an unsupervised
cross-lingual transfer learning objective to remove the reliance on parallel sentences.
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A APPENDIX

A.1 ADVERSARIAL EMBEDDING ALIGNING

Since the symbol sets in different languages are different, the first step in the cross-lingual migration
of PrLMs is to supplement or even replace their vocabularies. In our proposed framework, to make
the best use of the commonalities between languages, we choose to use a shared vocabulary with
multiple languages rather than replace the original language vocabulary with one for the new lan-
guage. In addition, in current PrLMs, a subword vocabulary is generally adopted in order to better
mitigate out-of-vocabulary (OOV) problems caused by limited vocabulary size. To accommodate
the introduction of a shared vocabulary, it is necessary to jointly re-train the subword model to en-
sure that some common words in different languages are consistent in subword segmentation, which
leads to the problem that some tokens in the newly acquired subword vocabulary are different from
those in the original subword vocabulary, though they belong to the same language. To address this
issue, we consider the most complicated case, in which the vocabulary is completely replaced by a
new one. Consequently, we assume that there are two embedding spaces: one is the embedding of
the original vocabulary, which is well-trained in the language pre-training process, and the other is
the embedding of the new vocabulary, yet to be trained.

When considering raw embeddings and non-contextualized embeddings (e.g. Word2vec), it is easy
to see their training objectives are similar in theory. The only differences are the addition of context
and the change in model structure to accommodate language prediction. Despite these differences,
non-contextualized embeddings can be used to simulate the raw embeddings in a PrLM that we
aim to replace (refer to Appendix [A.Z] for a detailed explanation). Although the two embedding
spaces we consider are similar in structure, they may be at different positions in the whole real
embedding space, so an extra alignment process is required, and although common tokens may exist,
due to the inconsistent token granularity from using byte-level byte-pair encoding (BBPE) (Radford
et al.; 2019), a matching token of the two embedding spaces cannot be utilized for embedding space
alignment, as it is likely to represent different meanings. Therefore, inspired by (Lample et al.
2018)), we present an adversarial approach for aligning the word2vec embedding space to the PrLM’s
raw embedding space without supervision. With this approach, we aim to minimize the differences
between the two embedding spaces brought about by different similarity forms.

We define U = {uy,ua, ..., U} and V = {v1,va, ..., v, } as the two embedding spaces of m and n
tokens from the PrLM and word2vec training, respectively. In the adversarial training approach, a
linear mapping W is trained to make the spaces WV = {Wwvy, W, ..., Wu,, } and U close as pos-
sible, while a discriminator D is employed to discriminate between tokens randomly sampled from
spaces WV and U. Let 6,4, denote the parameters of the adversarial training model and the prob-
abilities Py, (1(2)|z) and Py, ,, (0(2)|#) indicate whether or not the sampling source prediction is
the same as its real space for a vector z. Therefore, the discrimination training loss £p (6p|W) and
the mapping training loss £ (W |6p) are defined as:

Lp(p|W)=—= Zlog Py, (L(Wuv;)|[Wo;) — — ng Py, (1(ui)|w),
1=0

w(Wlfp) = —— Zlog Py, ., (O(Wv;)|[Woy) — — Zlog Py, ., (0(u;)[us),
1=0

where 0p are the parameters of discriminator D, which is implemented as a multilayer perceptron
(MLP) with two hidden layers and Leaky-ReL.U as the activation function.

During the adversarial training, the discriminator parameters fp and W are optimized successively
with discrimination training loss and mapping training loss. To enhance the effect of embedding
space alignment, we adopted the same techniques of iterative refinement and cross-domain similar-
ity local scaling as [Lample et al.| (2018) did. While the two embedding spaces in (Lample et al.,
2018) both can be updated by gradient, we consider U as the goal spatial structure and hence fix U
throughout the training process, and we update WV to better align V.
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Figure 3: Individual histogram plots of cosine similarity of a single term “genes” with other terms
in the vocabularies of BERT-base-cased (left) and FastText cc.en.300d (right).

A.2 ANALYZING NON-CONTEXTUALIZED EMBEDDINGS AND PrLMS’ RAW EMBEDDINGS

Bidirectional PrLMs such as BERT (Devlin et al.,|2019) use Masked Language Modeling (MLM) as
the training objective, in which the model is required to predict a masked part of the sentence. This
training paradigm has no essential difference with word2vec (Mikolov et al., 2013)). Word2vec em-
ployed a simple single-layer perceptron neural network and restricted the context for the masked part
to the sliding window, while recent mainstream PrLLMs adopted self-attention-based Transformer as
the context encoder, which can utilize the whole sentence as context. Because of this, we specu-
late that BERT’s raw embeddings and word2vec embeddings have a similar nature, and that we can
simulate BERT’s raw embeddings with the word2vec embeddings through some special designs.
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Figure 4: Two-dimensional PCA projection of the embedding vectors representing “genes” and top-
50 similar terms in vocabularies of BERT-base-cased and FastText cc.en.300d.

To verify our theory, we studied the important relational nature of embeddings. Specifically, we
chose BERT-base-cased’s raw embeddings and word2vec-based FastText cc.en.300d embeddings
(Grave et al.| [2018)) and evaluated the cosine similarity of single terms compared to other terms in
their vocabularies. An example histogram for the term “genes” is shown in Figure [3] Examining
the two types of embeddings, we found that the learned vectors, regardless of the type of similarity
(semantic/syntactic/inflections/spelling/etc.) they capture, have a very similar distribution shape.
This showed us that the two embedding spaces are similar, and words within them may just have
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different relations to each other. Thus, our work focuses on aligning the new word2vec embedding
space by learning a mapping to the original embedding space to simulate the original embedding
allow for a cross-lingual migration of the PrLM.

To illustrate the necessity of embedding alignment, we also took out the top-50 terms closest to the
term “genes” in the two embedding spaces, used principal component analysis (PCA) to reduce the
vector dimension to 2, and presented it in a two-dimensional figure, as shown in Figure ] As can be
seen from the figure, due to the different language modeling architectures and contexts in FastText
and BERT, corresponding points are distributed at different locations in the embedding space. This
is why compatibility problems exist when we use the original non-contextualized embeddings to
simulate the new embedding and hence why we need to align the embeddings.

A.3 MODEL ARCHITECTURE IN TRELM
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(a) Original BERT architecture (b) Our proposed TRI-BERT architecture

Figure 5: The proposed model architecture, taking BERT as an example.

A.4 MLM, TLM, BRLM, AND CdLM

As stated in the original MLM objective, the model can only learn from monolingual data. Though a
joint MM training can be performed across languages, there is still a lack of explicit language cues
for guiding the model in distinguishing language differences. |Conneau & Lample|(2019) proposed a
Translation Language Modeling (TLM) objective as an extension of the MLM objective. The TLM
objective leverages bilingual parallel sentences by concatenating them into single sequences as in
the original BERT and predicts the tokens masked in the concatenated sequence. This encourages
the model to predict the masked part in a bilingual context. Ji et al.|(2020) further proposed a BRidge
Language Modeling (BRLM) built on the TLM, benefiting from explicit alignment information or
additional attention layers that encourage word representation alignment across different languages.
These MLM variants drive models to learn explicit or implicit token alignment information across
languages and have been shown effective in machine translation compared to the original MLM,
but for the cross-lingual transfer learning of PrLMs, modeling the order difference and semantic
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equivalence in different languages is still not enough. Since both contexts in MLM variants have
been exposed to the model, whether the prediction of the masked part depends on the cross-lingual
context or the context of its own language is unknown, as it lacks explicit clues for cross-lingual
training. In our proposed CdLM, we use sentence alignment information for explicit ordering. The
model is exposed to both the transfer source and transfer target languages at the same time, during
which the input is a sequence of the source language, and the prediction goal is a sequence of the
target language. Thus, we convert translation into a cross-language modeling objective, which gives
a clear supervision signal for cross-lingual transfer learning.

A.5 TRAINING DETAILS

The initial weights for the migration are BERT-base-cased, BERT-large-cased,
RoBERTa-base, and RoBERTa-large, which are taken from their official sources. We use
English Wikipedia, Chinese Wikipedia, Chinese News, and Indonesian CommonCrawl Corpora for
the monolingual pre-training data. For all models migrated in the same direction, regardless of their
original vocabulary, we used the same single vocabulary that we trained on the joint language data
using the WordPiece Subword scheme (Schuster & Nakajima, |2012). In English-to-Chinese, the vo-
cabulary size is set to 80K and the alphabet size is limited to 30K, while in English-to-Indonesian,
the vocabulary size is set to 50K, and the alphabet size is limited to 1K. With the WordPiece vocab-
ulary, we tokenized the monolingual corpus to train the non-contextualized word2vec embedding of
subwords. Using the fast Text (Bojanowski et al.,2017) tool and skipgram representation mode,
three embedding sizes 128, 768, and 1024 were trained to be compatible the respective pre-trained
language models.

In the “commonality” training phase, we sampled 1M sentences of English Wikipedia and either IM
sentences of Chinese Wikipedia or 1M sentences of Indonesian CommonCrawl for the English-to-
Chinese and English-to-Indonesian models. We trained the model with 20K update steps with total
batch size 128 and set the peak learning rate to 3e-5.

For the “transfer” training phase, we sampled 1M parallel sentences from the UN Corpus (Ziemski
et al.| [2016) for English-to-Chinese and 1M parallel sentences from OpenSubtitles Corpus (Lison &
Tiedemann, 2016) for English-to-Indonesian. We use the fastalign toolkit (Dyer et al., 2013) to
extract the tokenized subword alignments for CALM. The two half models are optimized over 20K
update steps, and the batch size and peak learning rate are set to 128 and 3e-5, respectively.

In the final phase, “language-specific” training, 2M Chinese and Indonesian sentences were sampled
to update their respective models, training for 80K steps with total batch size 128 and initial learning
rate 2e-5. In all the above training phases, the maximum sequence length was set to 512, weight
decay was 0.01, and we used Adam (Kingma & Ba}|2014) with 5; = 0.9, 85 = 0.999.

In addition to our migrated pre-trained models, we also pre-trained a BERT—smallE] model from
scratch with data of the same size as our migration process to compare the performance differ-
ences between migration and scratch training. For the BERT-small model, we started with the
BERT-base hyper-parameters and vocabulary but shortened the maximum sequence length from
512 to 128, reduced the model’s hidden and token embedding dimension size from 768 to 256, set
the batch size to 256, and extended the training steps to 240K.

Our TRI-BERT -* and TRI-RoBERTa-* all used the same amount of training data (2M target lan-
guage monolingual sentences, 1M source language monolingual sentences, and 1M parallel sen-
tences). BERT-small pre-trained from scratch on only the target language, using SM target language
sentences to ensure the training data amount was the same. Compared with the original model, the
TRI-* model only has an extra TRI-layer added and some changes in the embedding layer. BERT-
base-chinese and m-BERT-base models were downloaded from the official repository, which trained
with 25M sentence (much more than our 5M sentences) and more training steps.

The performance of BERT-base for pre-training from scratch with this limited data is inferior to that of
BERT-small, so we do not compare it with our migrated models.
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A.6 DOWNSTREAM TASKS

Following previous contextualized language model pre-training, we evaluated the English-to-
Chinese migrated language models on the CLUE benchmark. The Chinese Language Understanding
Evaluation (CLUE) benchmark (Xu et al., |2020) consists of six different natural language under-
standing tasks: Ant Financial Question Matching (AFQMC), TouTiao Text Classification for News
Titles (TNEWS), IFLYTEK (COj 2019)), Chinese-translated Multi-Genre Natural Language Infer-
ence (CMNLI), Chinese Winograd Schema Challenge (WSC), and Chinese Scientific Literature
(CSL) and three machine reading comprehension tasks: Chinese Machine Reading Comprehension
(CMRC) 2018 (Cui et al., 2019), Chinese IDiom cloze test (CHID) [Zheng et al.| (2019), and Chi-
nese multiple-Choice machine reading Comprehension (C3) (Sun et al.,|2019). We built baselines
for the natural language understanding tasks by adding a linear classifier on top of the “[CLS]”
token to predict label probabilities. For the extractive question answering task, CMRC, we packed
the question and passage tokens together with special tokens to form the input: “[CLS] Question
[SEP] Passage [SEP]”, and employed two linear output layers to predict the probability of each
token being the start and end positions of the answer span following the practice for BERT (Devlin
et al.; 2019). Finally, in the multi-choice reading comprehension tasks, CHILD and C3, we con-
catenated the passage, question, and each candidate answer (“[CLS] Question || Answer [SEP]
Passage [SEP]”), input this to the models, and also predicted the probability of each answer on
the representations from the “[CLS]” token following prior works (Yang et al., 2019; [Liu et al.,
2019b).

In addition to these language understanding tasks, language structure analysis tasks are also a very
important part of natural language processing. Therefore, we also evaluated the PrLMs on syntactic
dependency parsing and semantic role labeling, a type of semantic parsing. The baselines we se-
lected for dependency parsing and semantic role labeling are from (Dozat & Manning, 2016) and
Cai et al.| (2018)), respectively. These two baseline models are very strong and efficient and rely only
on pure model structures to obtain advanced parsing performance. Our approach to integrate the
PrLLM with the two baselines is to replace the BiLSTM encoder in the baseline with the encoder of
the PrLM. We took the first subword or character representation of a word as the representation of a
word, which solved the PrLM’s inconsistent granularity issue that impeded parsing.

For the English-to-Indonesian migrated language models, since the language understanding tasks in
Indonesian are very limited, we chose to use the Universal Dependency (UD) parsing task (v2.3,
Zeman et al. [2018)), in which the treebanks of the world’s languages were built by an international
cooperative project, as the downstream task for evaluation.

A.7 ABLATIONS

Effects of Different Embedding Initialization To show the effectiveness of non-contextualized
simulation and adversarial embedding space alignment, we compare the TRI-RoBERTa-base mod-
els obtained in the commonality training phase of our framework under four different embedding
initialization configurations: random, random+adversarial align, fastText pre-trained, and fastText
pre-trained+adversarial align. In addition, to lessen the influence of training different amounts dur-
ing different initializations, we trained an additional 40K update steps in the commonality training
phase. We selected newstest2020-enzh.ref.zh in the WMT-20 news translation task as the evaluation
set with a total of 1418 sentences to avoid potential overlapping with the training set. The subword-
level bits-per-word (BPW) was used as the evaluation metric for the model’s MLM performanceﬂ

The BPW results on the evaluation set are presented in Table [5] The non-contextualized fastText
embedding simulation and adversarial embedding alignment setting achieves better BPW scores
than other configurations, which shows the effectiveness of our proposed approach. In addition,
comparing the embedding initialization of random+adversarial align and fastText pre-trained shows
that pre-training non-contextualized embeddings using language data is more effective than direct
embedding space alignment. Considering different training 20K steps versus 40K steps, longer
training leads to lower BPW, but the performance gains are less than what our method brings.

3We do this because these models in comparison use the same vocabulary, and the masked parts on the
evaluation set are identical, making the BPW scores comparable.
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Configurations 20K 40K

Rand 6.9877 6.3264
Rand + Adv Align 6.7725 5.9982
fastText PT 6.5288 5.7957

fastText PT + Adv Align  5.9330 5.2679

Table 5: Evaluation of the subword-level BPW performance for the MLM objective of TRI-
RoBERTa-base on various embedding initialization configurations after the commonality training.

Models EN—ZH ZH—EN
Transformer-base NMT  65.0/42.1/282/19.8 57.3/28.7/16.6/10.3
TRI-RoBERTa-base 46.6/5.7/0.8/0.1 36.4/52/0.7/0.1
w/o CALM 1.3/0.1/0.0/0.0 1.7/0.1/0.0/0.0
TRI-RoBERTa-large 472/59/09/0.1 36.8/5.5/0.7/0.1
w/o CdLM 1.5/0.1/0.0/0.0 2.0/0.1/0.0/0.0

Table 6: Evaluation of the translation performance of our migrated language models on the WMT
newstest2020 test set with BLEU-1/2/3/4 metrics.

Effects of Cross-lingual Transfer Learning in TRELM We conduct further ablation studies to
analyze our proposed TRELM framework’s cross-lingual transfer learning design choices, including
introducing the novel training objective, CdLM, and the TRILayer structure. The translation perfor-
mance evaluation results are shown in Table@ Using the newstest2020 en-zh and zh-en test sets, we
evaluate the TRI-RoBERTa-base and TRI-RoBERTa-large models at the end of their transfer train-
ing phases. Since there is no alignment information available during the evaluation phase, we use
the same successive alignment that MLM uses. For the sequence generated by the model, continu-
ous repetitions were removed and the [SEP] token was taken as the stop mark to obtain the final
translation sequence. In the EN—ZH translation direction, we report character-level BLEU, while
in ZH—EN, we report word-level BLEU. The Transformer-base NMT models for comparison are
from [Tiedemann & Thottingal| (2020) and were trained on the OPUS corpora (Tiedemannl, 2012).

As seen from the results, our TRI-RoBERTa-base and TRI-RoBERTa-large with CALM were able
to obtain very good BLEU-1 scores, indicating that the mapping between the transferring source
language and target language was explicitly captured by the model. When CdLM is removed and
we only use the traditional joint MLM and TLM for training on the same size parallel data, we find
that the BLEU-1 score significantly decreases, demonstrating that joint MLM and TLM do not learn
explicit alignment information. The BLEU-1 score is lower than that of the Transformer-base NMT
model, but this is because the Transformer-base model uses more parallel corpora as well as a more
complex model design compared to our non-autoregressive translation pattern and lightweight TRI-
Layer structure. In addition, compared with BLEU-2/3/4, it can be seen that although Transformer-
base can accurately translate some tokens, many tokens are not translated or are translated in the
wrong order due to the lack of word ordering information and the differing sequence lengths, which
result in a very low score. This also shows that word order is a very important factor in translation.

Since the TRELM framework is evaluated using the existed pre-trained models, our migrated models
are always larger than the original ones. Additional parameters arise in two places: embedding layer
parameters grow due to a larger vocabulary and language embeddings, and the TRILayer structure

Models Params BPW UAS LAS
TRI-RoBERTa-base 154M  1.548 90.30 87.82
w/o CALM 154M  3.028 88.16 85.20

w/o CdLM & w/o TRILayer 148M  3.469 87.45 84.69

Table 7: Language modeling effects of the CdLM objective and TRILayer structure for the Chinese
TRI-RoBERTa-base model. UAS and LAS scores are given for the CTB 5.1 test set.
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TRI-RoBERTa-base BPW  UAS  LAS

w/ CdLM 1.548 90.30 87.82
w/ CdLM* - 90.02 87.49
w/ TLM 3.028 88.16 85.20
w/ BRLM 2932 89.85 87.27

Table 8: Effects of different cross-lingual transfer learning objectives. *

vocabulary is used.

indicates that a separate

adds parameters. The embedding layer growth is necessary, but the TRILayer structure is optional,
as it is only used for cross-lingual transfer training. Therefore, for this ablation, we test removing
the TRILayer structure for a fairer comparisorﬂ and show the results in Table [7| Comparing the
evaluation set BPW scores of the final models obtained from RoBERTa-base under different migra-
tion methods, we found that our TRELM framework is stronger in cross-lingual transfer learning
compared to jointly using MLM and TLM, and it does not simply rely on the extra parameters of
the TRILayer. Furthermore, applying these pre-trained language models to the downstream task,
dependency parsing on the CTB 5.1 treebank, achieves corresponding effects in BPW, which shows
that the BPW score does describe the performance of PrLMs and that the pre-training performance
will greatly affect performance in downstream tasks.

Comparison of Different Cross-lingual Transfer Learning Objectives As discussed in Ap-
pendix [A.4] CdLM, TLM, and TLM variants such as BRLM are typical objectives of cross-lingual
transfer learning, in which parallel sentences are utilized for cross-lingual optimization. In order to
compare the differences between these objectives empirically, we conducted a comparative experi-
ment on TRI-RoBERTa-base. For this experiment, instead of using the transfer learning objective
CdLM in the second stage of training like our other models, we use TLM or BRLM instead. In
addition, we follow (Artetxe et al.,2020) in experimenting with the effects of joint vocabulary ver-
sus a separate vocabulary in cross-lingual transfer learning, and we include a model, CALM*, with
a separate vocabulary in this comparison as well. Specifically, for this model, we forego language
embeddings and adopt independent token embeddings for difference languages. CdLM and MLM
alternately optimize the model.

The empirical comparison of these objectives is listed in Table 8. The migration target language
is Chinese, and BPW score is used to compare the performance of the migrated model. We also
show the dependency parsing performance on the CTB 5.1 dataset for the obtained model. Looking
at CdALM and CdLM?*, in our TRELM framework, using a joint vocabulary leads to better perfor-
mance than using a separate vocabulary strategy, which is not consistent with |Artetxe et al.| (2020)
’s conclusion. We attribute this difference to the fact that (Artetxe et al., 2020)’s model uses joint
MLM pre-training of multiple languages to achieve implicit transfer learning, so maintaining in-
dependent embeddings is important for distinguishing the language. In TRELM, because it trains
two half-models, the explicit conversion signal guides the model’s migration training in discerning
the language. When using separate vocabularies, some common information (such as punctuation,
loanwords, etc.) are ignored, lessening the impact of CdLM. Second, comparing TLM, BRLM,
and CdLM, we note that CdLM takes the source and target language sequences as input and out-
put, respectively, which cooperates with the TRILayer and half-model training strategy much better,
whereas TL and BRLM combine the source and target sentences as input and predict a masked sen-
tence as in MLM, which is much less conducive to the half-model training strategy. Because the
source and target language sentences are separate in CdLM, the model is much more able to differ-
entiate the two languages, which makes CdLM a stronger cross-lingual transfer learning objective.

Comparison with Cross-lingual Transfer Learning Related Works on mPrLM Although we
propose our method as an alternative to mPrLMs for cross-lingual transferring, it can also be applied
to transfer the learning of mPrLMs. When transferring mPrLLMs, the vocabulary replacement and
embedding re-initialization are no longer needed, which makes our framework more simple.

“In this setting, we train the model with same number of update steps using joint MLM and TLM when
leveraging parallel sentences.
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Models UAS LAS
m-BERT-base 89.84 87.33

* +Target-Language Finetune 90.28 87.76
+ROSITAWORD (Mulcaire et al.|2019) 89.88 87.36
+MIM (Liu et al.l|2019a) 90.09 87.42
+Word-Alignment Finetune (Cao et al.,[2020) 90.33  87.79

" TRI-BERT-base @~ 80.96 87.43
TRI-BERT-base (400K) 90.85 88.39
TRI-m-BERT-base 90.68 88.24
TRI-m-BERT-base (400K) 90.72 88.29

Table 9: Performance of different cross-lingual transfer learning approaches on dependency parsing
on CTB 5.1.

We examine four main related approaches in the line of cross-lingual transfer learning based on
PrLLMs. The first approach is trivial: using data from the target language and MLM to finetune a
mPrLM. This helps specify the mPrLLM as a PrLLM specifically for the target language.

The second is ROSITAWORD (Mulcaire et al., [2019). In this method, the contextualized embed-
dings of mPrLLM are concatenated with non-contextualized multilingual word embeddings. This rep-
resentation is then aligned across languages in a supervisory manner using a parallel corpus, biasing
the model toward cross-lingual feature sharing. The third, proposed by |[Liu et al.| (2019a), makes
use of MIM (Meeting-In-the-Middle) (Doval et al., 2018)), which uses a linear mapping to refine the
embedding alignment, and is somewhat similar to our first step’s adversarial embedding alignment,
but because (Liu et al., 2019a) only migrate the contextualized embedding of an mPrLM, it is not
a true migration of the model. Specifically, their post-processing trained linear mapping after the
contextualized embedding of mPrLM is completely different from our new initialization of the raw
embedding of PrLM. The fourth approach, Word-alignment Finetune, is similar in motivation to our
CdLM, which uses the alignment information of the parallel corpora to perform finetuning training
on the model (whereas ROSITAWORD and MIM focus on language-specific post-processing on the
contextualized embedding of mPrLLM). The difference is that Word-Alignment Finetune uses con-
textualized embedding similarity measurement for alignment to calculate the loss, and our method
is inspired by machine translation, which uses language-to-language sequence translation for cross-
lingual language modeling.

We evaluate the effectiveness of these methods on dependency parsing as shown in Table 0] We
chose the widely used m-BERT-base as the base mPrLM and Chinese as the target language for
these experiments. The resulting models were evaluated on the CTB 5.1 data of the dependency
parsing task. For ROSITAWORD, we used the word-level embedding trained by Fastext and aligned
by MUSE, as done in the original paper. For MIM, the number of training steps for the linear
mapping is kept the same as in our first stage’s adversarial embedding alignment training, and both
train for 5 epochs. Target-Language Finetuning and Word-Alignment Finetuning use the same data
as our main experiments and the same 120K update as well. We also listed a model migrated from a
monolingual PrLM (TRI-BERT) to compare the performance differences between transfer learning
from monolinguals and multilingual PrLMs. Since the migrated mPrLM is simpler - it does not
need to re-initialize or train embeddings and can converge faster, we train the migrated PrLM model
longer steps (400K total training steps) to more fairly compare them.

Comparing our TRELM with similar methods, the concatenation of cross-lingual aligned word-
level embeddings in ROSITAWORD seems to have limited effect. MIM, which uses mapping
for post-processing, leads to some improvement, but compared to Target-Language Finetune and
Word-Alignment Finetune, it is obviously a weaker option. The results of TRI-m-BERT-base,
Word-Alignment Finetune, and Target-Languagde Finetune suggest that using explicit alignment
signals is advantageous compared to using the target language monolingual data when finetuning
a limited amount of update steps, though when data is sufficient and training time is long enough,
the performance for cross-lingually transferred models will approach the performance of monolin-
gually pre-trained models regardless of transfer method. Thus, the methods primarily differ in how
they perform with limited data, computing resources, or time. Our TRI-m-BERT-base outperforms
+Word-Alignment Finetune, which shows that our CdLM, a language sequence modeling method
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DE GSD ID GSD JA GSD
Models
UAS  LAS UAS  LAS UAS  LAS
(Dozat & Mamning| 2016)  86.84" 8131  8593° 7821"  8624" 84.52"
89.28 8460 8669 7797  9385' 91.62!
BERT-base 94.66F  92.65%
m-BERT-base 8837 8322 87.19 79.10 9412 9235
- TRI-BERT-base 80.12 8434 8756 7944 9430 9256
TRI-RoBERTa-base 89.79 8495 8842 7995 9498  93.01

Table 10: Universal Dependency v2.3 parsing performance. * means that the results are evaluated
based on our own implementation, not reported by |[Dozat & Manning| (2016). We use the following
PrLLMs not provided by the official (Devlin et al., [2019), third-party BERT-base PrLLMs: Deepset
BERT-base-german, IndoBERT-base (Wilie et al., 2020), CL-TOHOKU BERT-base-japanese (1),
and NICT BERT-base-japanese (§).

inspired by machine translation, is more effective than solely deriving loss from an embedding space
alignment. The results of TRI-BERT-base and TRI-m-BERT-base demonstrate that the simpler mi-
gration for m-BERT-base provides an initial performance boost when both models are trained 120k
steps due to its faster convergence, but when they are trained to a longer 400K steps, TRI-BERT-base
actually shows better performance compared to TRI-m-BERT-base.

More Languages for a More Comprehensive Evaluation In order to demonstrate the general-
ization ability of the cross-lingual transfer learning of the proposed TRELM framework, we also
migrate to German (DE) and Japanese (JA) in addition to Chinese and Indonesian. We also experi-
mented with these languages on the Universal dependency parsing task.

The migrated German and Japanese TRI-BERT-base and TRI-RoBERTa-base use the same corpus
size and training steps as their respective Chinese and Indonesian models. We show the results of
German, Indonesian, and Japanese on UD in Table@} Since there are no official BERT-base mod-
els for these three language, we use third-party pre-trained models: Deepset BERT—base-germarﬂ
IndoBERT-base (Wilie et al., [2020), CL-TOHOKU BERT—base-japaneseEl and NICT BERT-base-
japanes

First, according to the results in the table, our TRI-BERT-base achieves quite similar performance
compared to the third-party BERT-base models and even exceeds the third-party models in some
instances. This demonstrates that our TRELM is a general cross-lingual transfer learning frame-
work. Second, comparing third-party pre-trained BERT-base models and the official m-BERT-base,
we found that some third-party BERTs are even less effective than m-BERT (Generally speaking,
m-BERT is not as good as monolingual BERT when the data and training time are sufficient). This
shows that in some scenarios, pre-training from scratch is not a very good choice, potentially due to
insufficient data, unsatisfactory pre-training resource quality, and/or insufficient pre-training time.
Compared with the well-trained monolingual BERT models, our migrated models are very compet-
itive and can exceed PrLMs suffering from poor pre-training. In addition, in DE and JA, we also
observed that the effect of TRI-RoBERTa was stronger than that of the TRI-BERT, indicating that
our migration process maintained the performance advantage of the original model.

Shttps://deepset.ai/german-bert
®https://github.com/cl-tohoku/bert-japanese
"nttps://alaginrc.nict.go.jp/nict-bert/index.html
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