
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALPHAZEROES: DIRECT SCORE MAXIMIZATION CAN
OUTPERFORM PLANNING LOSS MINIMIZATION IN
SINGLE-AGENT SETTINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Planning at execution time has been shown to dramatically improve performance
for AI agents. A well-known family of approaches to planning at execution time
in single-agent settings and two-player zero-sum games are AlphaZero and its
variants, which use Monte Carlo tree search together with a neural network that
guides the search by predicting state values and action probabilities. AlphaZero
trains these networks by minimizing a planning loss that makes the value prediction
match the episode return, and the policy prediction at the root of the search tree
match the output of the full tree expansion. AlphaZero has been applied to various
single-agent environments that require careful planning, with great success. In this
paper, we explore an intriguing question: in single-agent settings, can we outper-
form AlphaZero by directly maximizing the episode score instead of minimizing
this planning loss, while leaving the MCTS algorithm and neural architecture
unchanged? To directly maximize the episode score, we use evolution strategies,
a family of algorithms for zeroth-order blackbox optimization. We compare both
approaches across multiple single-agent environments. Our experiments suggest
that directly maximizing the episode score tends to outperform minimizing the
planning loss.

1 INTRODUCTION

Lookahead search and reasoning is a central paradigm in artificial intelligence, and has a long
history (Newell and Ernst, 1965; Hart et al., 1968; Nilsson, 1971; Hart et al., 1972; Lanctot et al.,
2017; Brown et al., 2018). In many domains, planning at execution time significantly improves
performance. In domains like Sokoban, Pacman, and 2048, all state-of-the-art approaches use some
form of planning by the agent. Many planning approaches use Monte Carlo Tree Search (MCTS),
which iteratively grows a search tree from the current state, and does so asymmetrically according to
the information seen so far. A prominent subfamily of approaches in this category are AlphaZero
and its variants, which leverage function approximation via neural networks to learn good heuristic
predictions of the values and action distributions at each state, which can be used to guide the tree
search. AlphaZero (and its variants) train this prediction function by minimizing a planning loss
consisting of the sum of a value loss and a policy loss.

In this paper, we set out to explore whether we can outperform AlphaZero and its variants in single-
agent environments by directly maximizing the episode score instead, while leaving all other aspects
of the agent, MCTS algorithm, and neural architecture unchanged. Since MCTS is not differentiable,
to maximize the episode score, we employ evolution strategies, a family of algorithms for zeroth-order
black-box optimization.

The structure of the paper is as follows. In §2, we present a detailed formulation of the problem. In
§3, we describe related work. In §4, we present our method. In §5, we describe our experimental
benchmarks and present our results. In §6, we discuss the experimental results. In §7, we present our
conclusion and suggest directions for future research.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 PROBLEM FORMULATION

In this section, we formulate the problem in detail and introduce notation. If X is a set,△X denotes
the set of probability distributions on X . An environment is a tuple (S,A, ρ, δ) where S is a set of
states, A is a set of actions, ρ : △S is an initial state distribution, and δ : S ×A → R× R× S is a
transition function. A policy is a function S → △A that maps a state to an action distribution. Given
an environment and policy, an episode is a tuple (s, a, r, γ) that is generated as follows. First, an
initial state s0 ∼ ρ is sampled. Thereafter, on each timestep t ∈ N, an action at ∼ π(st) is sampled,
and a reward, discount factor, and new state (rt, γt, st+1) = δ(st, at) are obtained. The discount
factor represents the probability of the episode ending at that timestep. For a given episode, the return
at timestep t ∈ N is defined recursively as Rt = rt + γtRt+1. The score is the return at the initial
timestep, R0. Our goal is to find a policy π : S → △A that maximizes the expected score ER0.

3 RELATED WORK

In this section, we describe related work. Monte Carlo methods are a wide class of computational
algorithms that use repeated random sampling to estimate numerical quantities. In the setting
of planning, Monte-Carlo evaluation estimates the value of a position by averaging the return of
several random rollouts. Monte-Carlo Tree Search (MCTS) (Coulom, 2007) combines Monte-Carlo
evaluation with tree search. Instead of backing-up the min-max value close to the root, and the
average value at some depth, it uses a more general backup operator that progressively changes
from averaging to min-max as the number of simulations grows. MCTS grows the search tree
asymmetrically, focusing on more promising subtrees.

AlphaGo (Silver et al., 2016) used a variant of MCTS to tackle the two-player board game of Go.
It used a neural network to evaluate board positions and select moves. These networks are trained
using a combination of supervised learning from human expert games and reinforcement learning
from self-play. It was the first computer program to defeat a human professional player. AlphaGo
Zero (Silver et al., 2017a) used reinforcement learning alone, without any human data, guidance or
domain knowledge beyond game rules. AlphaZero (Silver et al., 2018) generalized AlphaGo Zero
into a single algorithm that achieved superhuman performance in many challenging domains.

MuZero (Schrittwieser et al., 2020) combined AlphaZero’s tree-based search with a learned dynamics
model. The latter allows it to plan in environments where the agent does not have access to a
simulator of the environment at execution time. Gumbel MuZero (Danihelka et al., 2022) is a policy
improvement algorithm based on sampling actions without replacement. It replaces the more heuristic
mechanisms by which AlphaZero selects actions at root and non-root nodes. Empirically, it yields
significantly better performance when planning with few simulations.

MCTS is a state-of-the-art general-purpose technique for search, planning, and optimization in single-
agent settings. For example, in the papers that introduced them, the prominent MCTS-based methods
MuZero and Gumbel MuZero were shown to be state of the art in single-agent settings, including 57
different Atari games, the canonical video game environment for testing AI techniques. Świechowski
et al. (2023) note that “Automated planning is one of the major domains of application of the MCTS
algorithm outside games.” Vallati et al. (2015) note that winning approaches of the International
Probabilistic Planning Competition were using MCTS. This competition included combinatorial
optimization problems, such as the minimization of open stacks problem (Yanasse and Senne, 2010).

MCTS has also been used in other discrete combinatorial problems, such as polynomial evaluation
(Kuipers et al., 2013), low latency communication (Jia et al., 2020), generating large-scale floor plans
with adjacency constraints (Shi et al., 2020), query selection in kidney exchange (McElfresh et al.,
2020), and preference elicitation (Martin et al., 2024). Abe et al. (2019) used AlphaZero to solve
NP-hard problems on graphs, including min vertex cover and max cut. Fawzi et al. (2022) used an
AlphaZero-based algorithm, AlphaTensor, to discover efficient and provably-correct algorithms for
multiplication of arbitrary matrices. Xu and Lieberherr (2019) showed that neural MCTS can be used
in a general way to solve combinatorial optimization problems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

4 PROPOSED METHOD

In this section, we present a detailed description of our proposed method, which we call AlphaZeroES.
The essential difference to AlphaZero is described in §4.3.

4.1 PLANNING ALGORITHM

We use the implementation of Gumbel MuZero (Danihelka et al., 2022), which is the prior state of the
art for this setting, found in the open-source Google DeepMind library Mctx (DeepMind et al., 2020).
It iteratively constructs a search tree starting from a state s0. Each node in the tree contains a state,
predicted value, predicted action probabilities, and, for each action, a visit count N , action value
Q, reward, and discount factor. Each iteration of the algorithm consists of three phases: selection,
expansion, and backpropagation.

During selection, we start at the root and traverse the tree until a leaf edge is reached. At internal
nodes, we select actions according to the policy described in Danihelka et al. (2022). When we
reach a leaf edge (s, a), we perform expansion as follows. We compute (r, γ, s′) = δ(s, a), storing
r and γ in the edge’s parent node. We then query the agent’s prediction function (v, p) = fθ(s

′) to
obtain the predicted value and action probabilities of s′. A new node is added to the tree containing
this information, with action visit counts and action values initialized to zero. Finally, we perform
backpropagation as follows. The new node’s value estimate is backpropagated up the tree to the root
in the form of an n-step return. Specifically, from t = T to 0, where T is the length of the trajectory,
we compute an estimate of the cumulative discounted return Gt that bootstraps from the value
estimate v: GT = v and Gt = rt + γtGt+1. For each such t, we update the statistics for the edge
corresponding to (st, at) as follows: Q(st, at)← N(st,at)Q(st,at)+Gt

N(st,at)+1 , N(st, at)← N(st, at) + 1.
The simulation budget is the total number of iterations, which is the number of times the search tree
is expanded, and therefore the size of the tree.

4.2 PREDICTION FUNCTION

The prediction function of the agent takes an environment state as input and outputs a probability
distribution over actions and value estimate. Following Silver et al. (2018), we use a single neural
network that outputs both of these. Our experimental settings have states that are naturally modeled
as sets of objects (such as sets of cities, facilities, targets, boxes, etc.), where each object can be
described by a vector (e.g., the coordinates of a city and whether it has been visited or not). Therefore,
we seek a neural network architecture that can process a set of vectors, rather than just a single vector.
Early works on neural networks for processing set inputs include McGregor (2007; 2008).

In our experiments, we use DeepSets (Zaheer et al., 2017), a neural network architecture that
can process sets of inputs in a way that is equivariant or invariant (depending on the desired type
of output) with respect to the inputs. It is known to be a universal approximator for continuous
set functions, provided that the model’s latent space is sufficiently high-dimensional (Wagstaff
et al., 2022). DeepSets may be viewed as the most efficient incarnation of the Janossy pooling
paradigm (Murphy et al., 2018), and can be generalized by Transformers (Vaswani et al., 2017; Kim
et al., 2021). A permutation-equivariant layer of the DeepSets architecture has the form (Zaheer
et al., 2017, Supplement p. 19) Y = σ(X ·A + 1 ⊗ b + 1 ⊗ ((1 ·X) · C)) where X ∈ Rn×d,
Y ∈ Rn×k, A,C ∈ Rn×k, b ∈ Rk, and 1 is the all-ones vector of appropriate dimensionality,
and σ is a nonlinear activation function, such as ReLU. Here, n is the size of the set (i.e., number
of inputs/outputs), d is the dimension of each input, and k is the dimension of each output. A
permutation-invariant layer is simply a permutation-equivariant layer followed by global average
pooling (yielding an output that is a vector rather than a matrix) followed by a nonlinearity.

In problems where the action space matches the set of inputs (such as cities in the TSP problem, or
points in the vertex k-center and maximum diversity problems), the predicted action logits are read
out via a dense layer following the permutation-equivariant layer, before global pooling. In problems
where the action space is a fixed set of actions (such as Sokoban and the navigation problems), the
predicted action logits are read out via a dense layer following the permutation-invariant layer. In both
cases, the predicted value is read out via a dense layer from the output of the permutation-invariant
layer.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For clarity, we emphasize that we use the exact same architecture for both AlphaZero and AlphaZe-
roES in each problem. This is an apples-to-apples comparison. The only thing that changes is the
optimization objective. AlphaZero itself is largely agnostic to the particular neural architecture avail-
able to the agent. It has been used in conjunction with simple feedforward networks, convolutional
networks, attention-based networks (which encode permutation invariance), and so on.

4.3 TRAINING PROCEDURE

We are now ready to present the essential difference between AlphaZero and our AlphaZeroES. The
difference lies in the training objective, which in turn entails a difference in the training procedure.
AlphaZero minimizes a planning loss, which is the sum of a value loss

∑
t(Rt − vt)

2 and a policy
loss

∑
t H(wt, pt). Here, (vt, pt) = fθ(st) is the predicted state value and action probabilities for

st, respectively. (Rt − vt)
2 is the squared difference between vt and the actual episode return Rt.

H(wt, pt) is the cross entropy between the action weights wt returned by the MCTS algorithm for st
and pt. Our approach keeps exactly the same architecture, hyperparameters, and MCTS algorithm as
AlphaZero, but changes the optimization objective. Specifically, instead of minimizing the planning
loss, we directly maximize the episode score. The parameters that are optimized are exactly those
of AlphaZero, namely, the neural network parameters of the prediction function. Only the training
objective is different.

One way to directly optimize the episode score is to use policy gradient methods, which yield an
estimator of the gradient of the expected return with respect to the agent’s parameters. There is a vast
literature on policy gradient methods, which include REINFORCE (Williams, 1992) and actor-critic
methods (Konda and Tsitsiklis, 1999; Grondman et al., 2012). However, there is a problem. Most
of these methods assume that the policy is differentiable—more precisely, that its output action
distribution is differentiable with respect to the parameters of the policy. However, our planning
policy uses MCTS as a subroutine, and standard MCTS is not differentiable. Because our policy
contains a non-differentiable submodule, we need to find an alternative way to optimize the policy’s
parameters. Furthermore, Metz et al. (2021) show that differentiation can fail to be useful when trying
to optimize certain functions—specifically, when working with an iterative differentiable system with
chaotic dynamics. Fortunately, we can turn to black-box (i.e., zeroth-order) optimization. Black-box
optimization uses only function evaluations to optimize a function with respect to a set of inputs.
In particular, it does not require gradients. In our case, the black-box function maps our policy’s
parameters to a sampled episode score.

There is a class of black-box optimization algorithms called evolution strategies (ES) (Rechenberg
and Eigen, 1973; Schwefel, 1977; Rechenberg, 1978) that maintain and evolve a population of
parameter vectors. Natural evolution strategies (NES) (Wierstra et al., 2014; Yi et al., 2009) represent
the population as a distribution over parameters and maximize its average objective value using the
score function estimator. For many parameter distributions, such as Gaussian smoothing, this is
equivalent to evaluating the function at randomly-sampled points and estimating the gradient as a
sum of estimates of directional derivatives along random directions (Duchi et al., 2015; Nesterov
and Spokoiny, 2017; Shamir, 2017; Berahas et al., 2022). ES can be used to learn non-differentiable
parameters of large supervised models, such as sparsity masks for weights (Lenc et al., 2019).

We use OpenAI-ES (Salimans et al., 2017), an NES algorithm that has been shown to be effective
for reinforcement learning (Salimans et al., 2017), including training large language models (Qiu
et al., 2025). It is based on the identity ∇x Ez∼D f(x+ σz) = 1

σ Ez∼D f(x+ σz)z, where D is the
standard multivariate normal distribution. This algorithm is shown in Algorithm 1. Like Salimans
et al. (2017), we use antithetic sampling (Geweke, 1988), also called mirrored sampling (Brockhoff
et al., 2010), to reduce variance. It samples antithetic pairs of perturbations (zi,−zi).
This algorithm is massively parallelizable, since each δi can be evaluated on a separate worker.
Furthermore, communication between workers is minimal. All workers are initialized with the same
random seed. Worker i evaluates δi, sends it to the remaining workers, and receives the other workers’
values (this is called an all-gather operation in distributed computing). Thus the workers compute
the same g and stay synchronized. Again, each worker computes the δi corresponding to its own
index i and receives the others from the other workers, but generates the all workers’ perturbation
vectors {zj}j∈I itself, which is more efficient than communicating them. The shared random seed

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Evolution strategies (with a vanilla SGD optimizer).

Input: Initial parameters x ∈ Rd, noise scale σ ∈ R, learning rate α ∈ R, set of workers I.
for t = 0, 1, 2, . . . do

Sample perturbations z1, . . . , zn ∼ N (0d, Id)
For each i ∈ I, let worker i compute δi ← f(x+ σzi)
Compute pseudogradient g← 1

σ|I|
∑

i∈I δizi
Update parameters x← x+ αg

Figure 1: Example states for each environment: Navigation, Sokoban, TSP, VKCP, and MDP.

ensures that workers can compute identical perturbation vectors without communication. The only
worker-dependent computation is δi.

Notably, AlphaZeroES needs only the parameter perturbation vector z and the final episode score
to update the parameters. In contrast, AlphaZero needs to compute gradients of the parameters via
backpropagation (reverse-mode automatic differentiation) through the neural network and over the
timesteps of the episode. In our experiments, AlphaZero and AlphaZeroES took about the same
amount of time per iteration.

5 EXPERIMENTS

In this section, we describe our experiments. We use 10 trials per experiment, 1000 episodes per
batch (for both training and evaluation at the end of each epoch), 1000 training batches per epoch,
4 hours of training time per trial, the AdaBelief (Zhuang et al., 2020) optimizer1, a perturbation
scale of 0.1 for OpenAI-ES, an MCTS simulation budget of 8,2 hidden layer sizes of 16 for the
DeepSets network, 1 equivariant plus 1 invariant hidden layer for the DeepSets network, and the
ReLU activation function. We used an NVIDIA A100 SXM4 40GB GPU. Each trial uses 1 such GPU
all to itself. This keeps the comparison between AlphaZero and AlphaZeroES as precise as possible.
For our code, we use Python 3.12.2, JAX 0.4.28 (Bradbury et al., 2018), Flax 0.8.3 (Heek et al.,
2024), Optax 0.2.2 (DeepMind et al., 2020), Mctx 0.0.5 (DeepMind et al., 2020), and Matplotlib
3.8.4 (Hunter, 2007). In our plots, we show the episode scores attained by AlphaZero (labeled es=0
in the plot legend) vs. AlphaZeroES (labeled es=1 in the plot legend). At any point along the X axis,
AlphaZero and AlphaZeroES have undergone the same number of episodes of learning. To perform
a fair comparison, since AlphaZero and AlphaZeroES optimize different objectives, we test both
across a wide range of learning rates (labeled lr in the plot legend). In addition, we show value
and policy losses over the course of training. Though AlphaZeroES does not optimize these losses
directly, we wish to observe what happens to them as a side-effect of maximizing the episode score.
Solid lines show the mean across trials, and bands show the standard error of the mean. Our goal is
not to develop the best special-purpose solver for any one of these domains. Rather, we are interested
in a general-purpose approach that can tackle all of these domains and learn good heuristics on its
own. Due to space constraints, we relegate the plots showing value and policy loss to the appendix.

1Both AlphaZero and AlphaZeroES can be combined with any optimizer from the literature. Finding the
best optimizer is not the focus of this paper. AdaBelief is a well-known optimizer with many citations. We chose
it because it is (a) relatively well-known and (b) outperforms SGD and Adam.

2Gumbel Muzero, the AlphaZero variant we use, can learn reliably with as few as 2 simulations, and was
evaluated in its paper with 2, 4, and 16 simulations (Danihelka et al., 2022, p. 8).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Navigation score. Figure 3: Sokoban score.

5.1 NAVIGATION

In this environment, an agent navigates a gridworld to reach as many targets as possible within a
given time limit. At the beginning of each episode, targets are placed uniformly at random in a
10× 10 grid, as is the agent. On each timestep, the agent can move up, down, left, or right by one tile.
The agent reaches a target when it moves into the same tile. The agent receives a reward of +0.05
when it reaches a target. Thus the agent is incentivized to reach as many targets as possible within
the time limit. For our experiments, we use 20 targets and a time limit of 50 steps. The prediction
network observes a set of vectors, one for each target, where each vector contains the coordinates
of the target, a boolean 0-1 flag indicating whether it has already been reached, and the number of
episode timesteps remaining. This environment has been used before as a benchmark by Oh et al.
(2017, §4.2). It resembles a traveling salesman-like problem in which several “micro” actions are
required to perform the “macro” actions of moving from one city to another. (Also, the agent can
visit cities multiple times and does not need to return to its starting city.) This models situations
where several fine-grained actions are required to perform relevant tasks, such as moving a unit in a
real-time strategy game a large distance across the map.

An example state is shown in Figure 1. The blue circle is the agent. Red squares are unreached targets.
Gray squares are reached targets. Experimental results are shown in Figure 2 and 7. AlphaZeroES
dramatically outperforms AlphaZero. Unlike AlphaZero, it does not seem to minimize the value
and policy losses by a noticeable amount. In fact, for AlphaZeroES, the value and policy losses
seem to increase over time as training proceeds (and the mean episode score increases). This will
be a recurring pattern across environments, as we will observe with the other benchmarks. This
phenomenon suggests that maximizing “self-consistency” via planning loss minimization, as standard
AlphaZero does, is not necessarily aligned as an objective with performing better in the environment,
as measured by mean episode score.

5.2 SOKOBAN

Sokoban is a puzzle in which an agent pushes boxes around a warehouse to get them to storage
locations. It is played on a grid of tiles. Each tile may be a floor or a wall, and may contain a box
or the agent. Some floor tiles are marked as storage locations. The agent can move horizontally or
vertically onto empty tiles. The agent can also move a box by walking up to it and push it to the tile
beyond, if the latter is empty. Boxes cannot be pulled, and they cannot be pushed to squares with walls
or other boxes. The number of boxes equals the number of storage locations. The puzzle is solved
when all boxes are placed at storage locations. Planning ahead is crucial, since an agent can easily get
stuck if it makes the wrong move. Sokoban has been studied in the field of computational complexity
and shown to be PSPACE-complete (Culberson, 1997). It has received significant interest in artificial
intelligence research because of its relevance to automated planning (e.g., for autonomous robots),
and is used as a benchmark. Sokoban’s large branching factor and search tree depth contribute to its
difficulty. Skilled human players rely mostly on heuristics and can quickly discard several futile or
redundant lines of play by recognizing patterns and subgoals, narrowing down the search significantly.
Various automatic solvers have been developed in the literature (Junghanns and Schaeffer, 1997;

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2001; Froleyks and Balyo, 2016; Shoham and Schaeffer, 2020), many of which rely on heuristics, but
more complex Sokoban levels remain a challenge.

Our environment is as follows. We use the unfiltered Boxoban training set (Guez et al., 2019), which
contains 900,000 levels of size 10× 10 each. At the beginning of each episode, we sample a level
from this dataset. As a form of data augmentation, we sample one of the eight symmetries of the
square (a horizontal flip, vertical flip, and/or 90-degree rotation) and apply it to the level. In each
timestep, the agent has four actions available to it, for motion in each of the four cardinal directions.
The level ends after a specified number of timesteps. (We use 50 timesteps.) The return at the end
of an episode is the number of goals that are covered with boxes. Thus the agent is incentivized
to cover all of the goals. The prediction network observes a set of vectors, one for each tile in the
level, where each vector contains the 2 coordinates of the tile, 4 boolean flags indicating whether
the tile contains a wall, goal, box, and/or agent, and the number of episode timesteps remaining. An
example state is shown in Figure 1. This was rendered by JSoko (Meger, 2023), an open-source
Sokoban implementation. The yellow vehicle is the agent, who must push the brown boxes into the
goal squares marked with Xs. (Boxes tagged “OK” are on top of goal squares.) Experimental results
are shown in Figure 3 and 8. AlphaZeroES dramatically outperforms AlphaZero. Unlike AlphaZero,
it does not seem to minimize the value and policy losses by a noticeable amount.

5.3 TSP

The traveling salesman problem (TSP) is a classic combinatorial optimization problem. Given a
set of cities and their pairwise distances, the goal is to find a shortest route that visits each city
once and returns to the starting city. This problem has important applications in operations research,
including logistics, computer wiring, vehicle routing, and various other planning problems (Matai
et al., 2010). TSP is known to be NP-hard (Karp, 1972), even in the Euclidean setting (Papadimitriou,
1977). Various approximation algorithms and heuristics (Nilsson, 2003) have been developed for
it. Our environment is as follows. We seek to learn to solve TSP in general, not just one particular
instance of it. Thus, on every episode, a new problem instance is generated by sampling a matrix
X ∼ Uniform([0, 1]n×2), representing a sequence of n ∈ N cities. In our experiments, we use
n = 20. At timestep t ∈ [n], the agent chooses a city at ∈ [n] that has not been visited yet. At
the end of the episode, the length of the tour through this sequence of cities (including the segment
from the final city to the initial one) is computed, and treated as the negative score. Thus the
agent is incentivized to find the shortest tour through all the cities. Formally, the final score is
−
∑

t≤n d(Xat ,Xat+1 mod n), where d is the Euclidean metric. The prediction network observes a
set of vectors, one for each city, where each vector contains the coordinates of the city and 3 boolean
0-1 flags indicating whether it has already been visited, whether it is the initial city, and whether it is
the current city.

An example state is shown in Figure 1. Dots are cities. The red dot is the initial city. The lines
connecting the dots constitute the constructed path. The dotted line is the last leg from the final city
back to the initial city. Experimental results are shown in Figure 4 and 9. AlphaZeroES dramatically
outperforms AlphaZero. Interestingly, as a side effect, it minimizes the policy loss about as much as
AlphaZero does. It also minimizes the value loss (except at the highest learning rate), though to a
lesser extent than AlphaZero.

5.4 VKCP

The vertex k-center problem (VKCP) is a classic combinatorial optimization problem that has
applications in facility location and clustering. The problem is as follows. Given n points in Rd,
select a subset S of k points that minimizes the distance from any point in the original set to its nearest
point in S . The n points can be interpreted as possible locations in which to build facilities (e.g., fire
stations, police stations, supply depots, etc.), where S is the set of locations in which such facilities
are built, and the goal is to minimize the maximum distance from any location to its nearest facility.
(There is also a variant of the problem that seeks to minimize the mean distance.) This problem was
first proposed by Hakimi (1964). It is NP-hard, and various approximation algorithms have been
proposed for it (Kariv and Hakimi, 1979; Gonzalez, 1985; Dyer and Frieze, 1985; Hochbaum and
Shmoys, 1985; Shmoys, 1994). A survey and evaluation of approximation algorithms can be found
in Garcia-Diaz et al. (2019).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: TSP score. Figure 5: VKCP score.

We sample n = 40 locations uniformly at random from the unit square and let k = 20. At any
timestep t, the agent selects a location at ∈ [n] that has not been selected yet to add a facility at
that location. The final score is −maxi∈[n] minj∈S d(xi,xj), where xi ∈ [0, 1]2 is the position of
point i ∈ [n] and d is the Euclidean metric. The prediction network observes a set of vectors, one
for each point, where each vector contains the coordinates of the point and a single bit indicating
whether it is in the subset S. An example state is shown in Figure 1. Black dots are locations, red
dots are facilities placed so far, and red lines connect locations to their nearest facility. Experimental
results are shown in Figure 5 and 10. AlphaZeroES dramatically outperforms AlphaZero. In this
environment, AlphaZeroES hardly minimizes the value and policy losses as a side effect.

5.5 MDP

Figure 6: MDP score.

In the maximum diversity problem (MDP), we
are given n points in Rd, and we are asked to
select a subset S of k points that maximizes
the minimum distance between distinct points.
(There is also a variant of the problem that seeks
to maximize the mean distance between dis-
tinct points.) This problem is strongly NP-hard,
as can be shown via reduction from the clique
problem (Kuo et al., 1993; Ghosh, 1996). Vari-
ous heuristics have been proposed for it (Glover
et al., 1998; Katayama and Narihisa, 2005; Silva
et al., 2007; Duarte and Martí, 2007; Martí et al.,
2010; Lozano et al., 2011; Wu and Hao, 2013;
Martí et al., 2013). This problem has applica-
tions in ecology, medical treatment, genetic en-
gineering, capital investment, pollution control,
system reliability, telecommunication services,
molecular structure design, transportation sys-
tem control, emergency service centers, and energy options, as cataloged by Glover et al. (1998,
Table 1).

For our experiments, we sample n = 40 locations uniformly at random from the unit square and
let k = 20. At any timestep t, the agent can select a point at ∈ [n] that has not been selected yet
to add to the set S. The final score is mini,j∈S,i̸=j d(xi,xj), where xi ∈ [0, 1]2 is the position of
point i and d is the Euclidean metric. The prediction network observes a set of vectors, one for each
point, where each vector contains the coordinates of the point and a bit flag indicating whether it
has been included in the set. An example state is shown in Figure 1. Black dots are points, red dots
are points selected so far, and the red line connects the closest pair of points in the set selected so
far. Experimental results are shown in Figure 6 and 11. AlphaZeroES dramatically outperforms
AlphaZero. As a side effect, it minimizes the policy loss about as much as AlphaZero does. However,
unlike AlphaZero, it does not seem to minimize the value loss.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 DISCUSSION

Why does our method work? Our method did not drive value and policy losses down to zero, as
standard AlphaZero does, suggesting that maximizing “self-consistency” is not necessarily required
to perform better in the environment in terms of score. One reason might be that optimal or strong
performance does not actually require internal consistency (of value and action predictions), and
achieving good performance might be easier than achieving internal consistency.

There are situations where learning a good policy is easy, but learning a good function is hard.
Consider an environment where there is a simple optimal policy, but the value function under that
policy is complicated—that is, for any given state, it is easy to determine what the “right” action
to take is, but difficult to predict the final return. AlphaZero’s performance intrinsically depends
on the accuracy of its learned value function, since that value function is used as an oracle inside
the MCTS algorithm in a way that ultimately determines what action to take. If this value function
is difficult to learn, AlphaZero might struggle. In fact, even being semi-accurate with respect to
values does not, in and of itself, guarantee good action selection. The value estimates also need to be
order-accurate—that is, accurate with respect to their relative rankings or differences—since this
ultimately determines which actions MCTS chooses.

On the other hand, AlphaZeroES has the flexibility to simply optimize a policy directly, even if it has
not learned an accurate value function for it. The value function being accurate might be helpful, but
is not necessary. In summary, direct policy methods sometimes succeed where value-based methods
fail. This can happen when a good policy is more easily representable (and learnable) than a good
value function. In those cases, direct policy improvement can easily yield a good policy. Conversely,
relying on a poorly-approximated critic can actually hamper performance. To illustrate this point,
in the appendix, we give concrete examples of simple environments where AlphaZero fails while
AlphaZeroES succeeds. In the appendix, we also include an ablation study that investigates whether
the improvement of AlphaZeroES over AlphaZero comes mostly from an improved value output or
an improved policy output. Interestingly, the answer is environment-dependent.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we set out to study whether AlphaZero and its newest variants can be improved by
maximizing the episode score directly instead of minimizing the standard planning loss. Since MCTS
is not differentiable, we maximize the episode score by using evolution strategies. We conducted
experiments across multiple domains, including standard combinatorial optimization problems and
motion planning problems from the literature. In each setting, our approach yielded a dramatic
improvement in performance over planning loss minimization.

Our work opens up new possibilities for tackling environments where planning is important. It does
this by allowing agents to learn to leverage internal nondifferentiable planning algorithms, such as
MCTS, in a purely blackbox way that does not depend on the internal details of those algorithms.
Instead of training the agent’s parameters to minimize some indirect proxy objective, such as a
planning loss, we can now maximize the desired objective directly.

Limitations The original AlphaZero and Gumbel MuZero MCTS algorithms are designed for
fully-observable deterministic environments. Thus, so is our method. An extension to stochastic
environments exists in the form of Stochastic MuZero (Antonoglou et al., 2022). By replacing the
MCTS algorithm with that of Stochastic MuZero, it might be possible to extend our method to
stochastic environments. Another potential direction for future research might be to extend our work
to adversarial or multiagent settings. Doing so would require introducing concepts from game theory
and making modifications to our method. For example, our method uses ES to maximize the episode
score. However, solving a two-player zero-sum game is not a pure maximization problem, but rather
a min-max (saddle-point) problem. Solving such a problem requires more sophisticated gradient
dynamics. It might be possible to use a modified version of ES to seek equilibria of the players’
individual episode scores with respect to their parameters. Related works for this include Bichler
et al. (2021), Martin and Sandholm (2023), and Martin and Sandholm (2025). This is outside the
scope of this paper, but potentially interesting for future research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Allen Newell and George Ernst. The search for generality. In Proc. IFIP Congress, 1965.

Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 1968.

Nils Nilsson. Problem-solving methods in artificial intelligence. Artificial Intelligence, 1971.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Correction to “a formal basis for the heuristic
determination of minimum cost paths”. ACM SIGART Bulletin, 1972.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. Conference on Neural Information Processing Systems (NeurIPS), 2017.

Noam Brown et al. Depth-limited solving for imperfect-information games. In NeurIPS, 2018.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Computers
and Games, 2007.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of Go without human knowledge. Nature, 2017a.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, Go, chess and shogi by planning with a learned model. Nature,
2020.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with Gumbel. In International Conference on Learning Representations (ICLR), 2022.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte Carlo tree
search: a review of recent modifications and applications. Artificial Intelligence Review, 2023.

Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, and Scott Sanner.
The 2014 international planning competition: Progress and trends. AI Magazine, 2015.

Horacio Yanasse and Edson Senne. The minimization of open stacks problem: A review of some
properties and their use in pre-processing operations. European Journal of Operational Research
(EJOR), 2010.

Jan Kuipers, Aske Plaat, Jos A. M. Vermaseren, and H. Jaap van den Herik. Improving multivariate
Horner schemes with Monte Carlo tree search. Computer Physics Communications, 2013.

Jie Jia, Jian Chen, and Xingwei Wang. Ultra-high reliable optimization based on Monte Carlo tree
search over nakagami-m fading. Applied Soft Computing, 2020.

Feng Shi, Ranjith K. Soman, Ji Han, and Jennifer K. Whyte. Addressing adjacency constraints in
rectangular floor plans using Monte-Carlo tree search. Automation in Construction, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Duncan McElfresh, Michael Curry, Tuomas Sandholm, and John Dickerson. Improving policy-
constrained kidney exchange via pre-screening. Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Carlos Martin, Craig Boutilier, Ofer Meshi, and Tuomas Sandholm. Model-free preference elicitation.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2024.

Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving NP-hard problems on graphs
with extended AlphaGo Zero. arXiv:1905.11623, 2019.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature, 2022.

Ruiyang Xu and Karl Lieberherr. Learning self-game-play agents for combinatorial optimization
problems. arXiv:1903.03674, 2019.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Simon McGregor. Neural network processing for multiset data. In International Conference on
Artificial Neural Networks, 2007.

Simon McGregor. Further results in multiset processing with neural networks. Neural networks,
2008.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J. Smola. Deep Sets. Conference on Neural Information Processing Systems (NeurIPS),
2017.

Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Michael A. Osborne, and Ingmar Posner.
Universal approximation of functions on sets. Journal of Machine Learning Research, 2022.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. arXiv:1811.01900, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Conference on Neural Information
Processing Systems (NeurIPS), 2017.

Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. Transformers generalize deepsets and can be
extended to graphs & hypergraphs. Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Ronald Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 1992.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Conference on Neural Information
Processing Systems (NeurIPS), 1999.

Ivo Grondman, Lucian Busoniu, Gabriel A. D. Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 2012.

Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients are not all you
need. arXiv:2111.05803, 2021.

11

http://github.com/google-deepmind


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ingo Rechenberg and Manfred Eigen. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog Stuttgart, 1973.

Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrate-
gie. Birkhäuser Basel, 1977.

Ingo Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie.
Springer, 1978.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 2014.

Sun Yi, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber. Stochastic search using the natural
gradient. In International Conference on Machine Learning (ICML), 2009.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: the power of two function evaluations. IEEE Transactions on
Information Theory, 2015.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 2017.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research, 2017.

Albert S. Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and
empirical comparison of gradient approximations in derivative-free optimization. Foundations of
Computational Mathematics, 2022.

Karel Lenc, Erich Elsen, Tom Schaul, and Karen Simonyan. Non-differentiable supervised learning
with evolution strategies and hybrid methods. arXiv:1906.03139, 2019.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv:1703.03864, 2017.

Xin Qiu, Yulu Gan, Conor F Hayes, Qiyao Liang, Elliot Meyerson, Babak Hodjat, and Risto
Miikkulainen. Evolution strategies at scale: LLM fine-tuning beyond reinforcement learning.
arXiv:2509.24372, 2025.

John Geweke. Antithetic acceleration of Monte Carlo integration in Bayesian inference. Journal of
Econometrics, 1988.

Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim Hohm. Mirrored sampling
and sequential selection for evolution strategies. In Parallel Problem Solving from Nature, PPSN
XI, 2010.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. AdaBelief optimizer: Adapting stepsizes by the belief in observed
gradients. Conference on Neural Information Processing Systems (NeurIPS), 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
http://github.com/google/flax.

John Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 2007.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Conference on Neural
Information Processing Systems (NeurIPS), 2017.

Joseph Culberson. Sokoban is PSPACE-complete. Technical report, University of Alberta, 1997.

12

http://github.com/jax-ml/jax
http://github.com/google/flax


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andreas Junghanns and Jonathan Schaeffer. Sokoban: A challenging single-agent search problem. In
IJCAI Workshop on Using Games as an Experimental Testbed for AI Reasearch, 1997.

Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-agent search methods
using domain knowledge. Artificial Intelligence, 2001.

Nils Froleyks and Tomás Balyo. Using an algorithm portfolio to solve Sokoban. PhD thesis,
Karlsruher Institut für Technologie (KIT), 2016.

Yaron Shoham and Jonathan Schaeffer. The FESS algorithm: A feature based approach to single-agent
search. In IEEE Conference on Games (CoG), 2020.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and
Timothy Lillicrap. An investigation of model-free planning. In International Conference on
Machine Learning (ICML), pages 2464–2473. Proceedings of Machine Learning Research (PMLR),
2019.

Matthias Meger. JSoko – website of the open source Sokoban game JSoko, 2023. URL https:
//jsokoapplet.sourceforge.io/.

Rajesh Matai, Surya Singh, and Murari Lal Mittal. Traveling salesman problem: an overview of
applications, formulations, and solution approaches. Traveling salesman problem, theory and
applications, 2010.

Richard Karp. Reducibility among combinatorial problems. Springer, 1972.

Christos Papadimitriou. The Euclidean travelling salesman problem is NP-complete. Theoretical
computer science, 1977.

Christian Nilsson. Heuristics for the traveling salesman problem. Linkoping University, 2003.

S. Louis Hakimi. Optimum locations of switching centers and the absolute centers and medians of a
graph. Operations research, 1964.

Oded Kariv and S. Louis Hakimi. An algorithmic approach to network location problems. I: The
p-centers. SIAM journal on applied mathematics, 1979.

Teofilo Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 1985.

Martin Dyer and Alan Frieze. A simple heuristic for the p-centre problem. Operations Research
Letters, 1985.

Dorit Hochbaum and David Shmoys. A best possible heuristic for the k-center problem. Mathematics
of operations research, 1985.

D. Shmoys. Computing near-optimal solutions to combinatorial optimization problems. Technical
report, Cornell University Operations Research and Industrial Engineering, 1994.

Jesus Garcia-Diaz, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Saúl Pomares Hernán-
dez, Julio César Pérez-Sansalvador, and Noureddine Lakouari. Approximation algorithms for the
vertex k-center problem: Survey and experimental evaluation. IEEE Access, 2019.

Ching-Chung Kuo, Fred Glover, and Krishna S. Dhir. Analyzing and modeling the maximum diversity
problem by zero-one programming. Decision Sciences, 1993.

Jay Ghosh. Computational aspects of the maximum diversity problem. Operations research letters,
1996.

Fred Glover, Ching-Chung Kuo, and Krishna S. Dhir. Heuristic algorithms for the maximum diversity
problem. Journal of information and Optimization Sciences, 1998.

Kengo Katayama and Hiroyuki Narihisa. An evolutionary approach for the maximum diversity
problem. In Recent advances in memetic algorithms. Springer, 2005.

13

https://jsokoapplet.sourceforge.io/
https://jsokoapplet.sourceforge.io/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Geiza C. Silva, Marcos R. Q. De Andrade, Luiz S. Ochi, Simone L. Martins, and Alexandre Plastino.
New heuristics for the maximum diversity problem. Journal of Heuristics, 2007.

Abraham Duarte and Rafael Martí. Tabu search and grasp for the maximum diversity problem.
European Journal of Operational Research (EJOR), 2007.

Rafael Martí, Micael Gallego, and Abraham Duarte. A branch and bound algorithm for the maximum
diversity problem. European Journal of Operational Research (EJOR), 2010.

Manuel Lozano, Daniel Molina, and C. Garcı. Iterated greedy for the maximum diversity problem.
European Journal of Operational Research (EJOR), 2011.

Qinghua Wu and Jin-Kao Hao. A hybrid metaheuristic method for the maximum diversity problem.
European Journal of Operational Research (EJOR), 2013.

Rafael Martí, Micael Gallego, Abraham Duarte, and Eduardo G. Pardo. Heuristics and metaheuristics
for the maximum diversity problem. Journal of Heuristics, 2013.

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and David Silver. Plan-
ning in stochastic environments with a learned model. In International Conference on Learning
Representations (ICLR), 2022.

Martin Bichler, Maximilian Fichtl, Stefan Heidekrüger, Nils Kohring, and Paul Sutterer. Learning
equilibria in symmetric auction games using artificial neural networks. Nature Machine Intelligence,
2021.

Carlos Martin and Tuomas Sandholm. Finding mixed-strategy equilibria of continuous-action games
without gradients using randomized policy networks. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2023.

Carlos Martin and Tuomas Sandholm. Joint-perturbation simultaneous pseudo-gradient. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI), 2025.

Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In
Conference on Neural Information Processing Systems (NeurIPS), 2016.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The predictron:
end-to-end learning and planning. In International Conference on Machine Learning (ICML),
2017b.

Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pas-
canu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented
agents for deep reinforcement learning. Conference on Neural Information Processing Systems
(NeurIPS), 2017.

Arthur Guez, Theophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wierstra,
Remi Munos, and David Silver. Learning to search with MCTSnets. In International Conference
on Machine Learning (ICML), 2018.

Gregory Farquhar, Tim Rocktaeschel, Maximilian Igl, and Shimon Whiteson. TreeQN and ATreeC:
Differentiable tree planning for deep reinforcement learning. In International Conference on
Learning Representations (ICLR), 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Xuxi Yang, Werner Duvaud, and Peng Wei. Continuous control for searching and planning with a
learned model. arXiv:2006.07430, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning (ICML), 2021.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

John R. Rice. The algorithm selection problem. In Advances in computers. Elsevier, 1976.

Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions. In The
Handbook of Market Design. Oxford University Press, 2013.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Conference on Neural Information Processing Systems
(NeurIPS), 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research (EJOR), 2021.

Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, and
Andrea Lodi. Predicting solution summaries to integer linear programs under imperfect information
with machine learning. arXiv:1807.11876, 2018.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 2021.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. Conference on Neural Information Processing Systems (NeurIPS), 2022.

Carlo Aironi, Samuele Cornell, and Stefano Squartini. A graph-based neural approach to linear sum
assignment problems. International Journal of Neural Systems, 2024.

Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Liò. Neural algorithmic
reasoning for combinatorial optimisation. In Learning on Graphs Conference, 2024.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
Generalization guarantees and limits of data-independent discretization. Journal of the ACM, 2024.
Early version in ICML-18.

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample complexity
of tree search configuration: Cutting planes and beyond. Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural analysis
of branch-and-cut and the learnability of Gomory mixed integer cuts. Conference on Neural
Information Processing Systems (NeurIPS), 2022.

Guangxiang Zhao, Xu Sun, Jingjing Xu, Zhiyuan Zhang, and Liangchen Luo. Muse: Parallel
multi-scale attention for sequence to sequence learning. arXiv:1911.09483, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv:1607.06450,
2016.

Guido Van Rossum and Fred L. Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Navigation losses.

Figure 8: Sokoban losses.

A ADDITIONAL FIGURES

In this section, we include additional figures that did not fit in the body of the paper.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: TSP losses.

Figure 10: VKCP losses.

Figure 11: MDP losses.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORK

In this section, we include additional related work that did not fit in the body of the paper.

B.1 AGENTS THAT USE NEURAL NETWORKS AND PLANNING

Value Iteration Network (VIN) (Tamar et al., 2016) is a fully differentiable network with a planning
module embedded within. It can learn to plan and predict outcomes that involve planning-based
reasoning, such as policies for reinforcement learning. It uses a differentiable approximation of
the value-iteration algorithm, which can be represented as a convolutional network, and is trained
end-to-end using standard backpropagation.

Predictron (Silver et al., 2017b) consists of a fully abstract model, represented by a Markov reward
process, that can be rolled forward multiple “imagined” planning steps. Each forward pass accumu-
lates internal rewards and values over multiple planning depths. The model is trained end-to-end so
as to make these accumulated values accurately approximate the true value function.

Value Prediction Network (VPN) (Oh et al., 2017) integrates model-free and model-based RL methods
into a single network. In contrast to previous model-based methods, it learns a dynamics model
with abstract states that is trained to make action-conditional predictions of future returns rather than
future observations. VIN performs value iteration over the entire state space, which requires that 1)
the state space is small and representable as a vector with each dimension corresponding to a separate
state and 2) the states have a topology with local transition dynamics (such as a 2D grid). VPN does
not have these limitations. VPN is trained to make its predicted values, rewards, and discounts match
up with those of the real environment (Oh et al., 2017, §3.3).

Imagination-Augmented Agent (I2A) (Racanière et al., 2017) augments a model-free agent with
imagination by using environment models to simulate imagined trajectories, which are provided as
additional context to a policy network. An environment model is any recurrent architecture which can
be trained in an unsupervised fashion from agent trajectories. Given a past state and current action,
the environment model predicts the next state and observation. The imagined trajectory is initialized
with the current observation and rolled out multiple time steps into the future by feeding simulated
observations.

MCTSnet (Guez et al., 2018) incorporates simulation-based search inside a neural network, by
expanding, evaluating and backing-up a vector embedding. The parameters of the network are trained
end-to-end using gradient-based optimization. When applied to small searches in the well-known
planning problem Sokoban, it outperformed prior MCTS baselines.

TreeQN (Farquhar et al., 2018) is an end-to-end differentiable architecture that substitutes value
function networks in discrete-action domains. Instead of directly estimating the state-action value
from the current encoded state, as in Deep Q-Networks (DQN) (Mnih et al., 2015), it uses a learned
dynamics model to perform planning up to some fixed-depth. The result is a recursive, tree-structured
network between the encoded state and the predicted state-action values at the leafs. The authors
also propose ATreeC, an actor-critic variant that augments TreeQN with a softmax layer to form a
stochastic policy network. Unlike MCTS-based methods, the shape of the planning tree is fixed, and
the agent cannot “focus” on more promising subtrees to expand during planning.

Yang et al. (2020) proposed Continuous MuZero, an extension of MuZero to continuous actions,
and showed that it outperforms the soft actor-critic (SAC) algorithm. Hubert et al. (2021) proposed
Sampled MuZero, an extension of the MuZero algorithm that is able to learn in domains with
arbitrarily complex action spaces (including ones that are continuous and high-dimensional) by
planning over sampled actions.

Stochastic MuZero (Antonoglou et al., 2022) extended MuZero to environments that are inherently
stochastic, partially observed, or so large and complex that they appear stochastic to a finite agent.
It learns a stochastic model incorporating after-states following an action, and uses this model to
perform a stochastic tree search. It matches or exceeds the state of the art in a canonical set of
environments, including 2048.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 MACHINE LEARNING FOR TUNING INTEGER PROGRAMMING AND COMBINATORIAL
OPTIMIZATION SOLVERS

Another, different, form of learning in search techniques is tuning integer programming (IP) and
combinatorial optimization (CO) (Schrijver, 2003) techniques. The idea of automated algorithm
tuning goes back at least to Rice (1976). It has been applied in industrial practice at least since
2001, when Sandholm (2013) started using machine learning to learn IP algorithm configurations
(related to branching, cutting plane generation, etc.) and IP formulations based on problem instance
features, in the context of combinatorial auction winner determination in large-scale sourcing auctions.
In 2007, the leading commercial general-purpose IP solvers started shipping with such automated
configuration tools.

IP solvers typically use a tree search algorithm called branch-and-cut. However, such solvers typically
come with a variety of tunable parameters that are challenging to tune by hand. Research has
demonstrated the power of using a data-driven approach to automatically optimize these parameters.

Similarly, real-world applications that can be formulated as CO problems often have recurring patterns
or structure that can be exploited by heuristics. The design of good heuristics or approximation
algorithms for NP-hard CO problems often requires significant specialized knowledge and trial-and-
error, which can be a challenging and tedious process.

The rest of this section reviews some of the newer work on automated algorithm configuration in IP
and CO.

Khalil et al. (2017) sought to automate the CO tuning process using a combination of reinforcement
learning and graph embedding. They applied their framework to a diverse range of optimization
problems over graphs, learning effective algorithms for the Minimum Vertex Cover, Maximum Cut
and Traveling Salesman problems.

Bengio et al. (2021) surveyed recent attempts from the machine learning and operations research
communities to leverage machine learning to solve IP and CO problems. According to the authors,
“Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics
for making decisions that are otherwise too expensive to compute or mathematically not well defined.
Thus, machine learning looks like a natural candidate to make such decisions in a more principled
and optimized way.” They cite Larsen et al. (2018), who train a neural network to predict the solution
of a stochastic load planning problem for which a deterministic mixed integer linear programming
formulation exists. The authors state that “The nature of the application requires to output solutions
in real time, which is not possible either for the stochastic version of the load planning problem or its
deterministic variant when using state-of-the-art MILP solvers. Then, ML turns out to be suitable for
obtaining accurate solutions with short computing times because some of the complexity is addressed
offline, i.e., in the learning phase, and the run-time (inference) phase is extremely quick.”

Another survey of reinforcement learning for CO can be found in Mazyavkina et al. (2021). According
to the authors, “Many traditional algorithms for solving combinatorial optimization problems involve
using hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed by
domain experts and may often be suboptimal due to the hard nature of the problems. Reinforcement
learning (RL) proposes a good alternative to automate the search of these heuristics by training an
agent in a supervised or self-supervised manner.”

To address the scalability challenge in large-scale CO, Qiu et al. (2022) propose an approach called
Differentiable Meta Solver (DIMES). Unlike previous deep reinforcement learning methods, which
suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES
introduces a compact continuous space for parameterizing the underlying distribution of candidate
solutions. Such a continuous space allows stable REINFORCE-based training and fine-tuning via
massively parallel sampling.

Aironi et al. (2024) proposed a graph-based neural approach to linear sum assignment problems,
which are well-known CO problems with applications in domains such as logistics, robotics, and
telecommunications. In general, obtaining an optimal solution to such problems is computationally
infeasible even in small settings, so heuristic algorithms are often used to find near-optimal solutions.
Their paper investigated a general-purpose learning strategy that uses a bipartite graph to describe the
problem structure and a message-passing graph neural network model to learn the correct mapping.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The proposed graph-based solver, although sub-optimal, exhibited the highest scalability, compared
with other state-of-the-art heuristic approaches.

Georgiev et al. (2024) note that “Solving NP-hard/complete combinatorial problems with neural
networks is a challenging research area that aims to surpass classical approximate algorithms. The
long-term objective is to outperform hand-designed heuristics for NP-hard/complete problems by
learning to generate superior solutions solely from training data.” The authors proposed leveraging
recent advancements in neural algorithmic reasoning to improve learning of CO problems.

Balcan et al. (2024) provide the first sample complexity guarantees for tree search parameter tuning,
bounding the number of samples sufficient to ensure that the average performance of tree search over
the samples nearly matches its future expected performance on the unknown instance distribution.
Balcan et al. (2021) prove the first guarantees for learning high-performing cut-selection policies
tailored to the instance distribution at hand using samples. Balcan et al. (2022) derive sample
complexity guarantees for using machine learning to determine which cutting planes to apply during
branch-and-cut.

C STATISTICAL TESTS

We show statistical tests for each environment in Table 1. For each environment’s comparison, we
selected the best-performing learning rate for each method (AlphaZero vs. AlphaZeroES) under 10
trials, and compare the final mean scores. We used the same JAX PRNG key for each individual pair,
that is, common random numbers.

Wilcoxon signed-rank test Paired t-test
Environment statistic p-value statistic p-value

Navigation 55 0.000976562 24.1637 8.51516 ×10−10

Sokoban 55 0.000976562 24.3562 7.93596 ×10−10

TSP 55 0.000976562 6.89033 3.57182 ×10−5

VKCP 55 0.000976562 13.4227 1.47451 ×10−7

MDP 55 0.000976562 3.85802 0.00192935

Table 1: Statistical tests for each environment.

All pairwise differences were positive, so the Wilcoxon statistic maxed out at n(n + 1)/2 =
10 × 11/2 = 55. All p-values are well under 0.05. In conclusion, all the results are highly
statistically significant.

D SCALABILITY

In this section, we run experiments that test the scalability of our method, AlphaZeroES, in comparison
to standard AlphaZero. Specifically, we see which method performs best for various problem sizes
(such as number of nodes for TSP problems). Each individual run received exactly 1 hour of training
time on a single NVIDIA A100 SXM4 40GB GPU. Results are shown in Figures 12, 13, and 14.
In the legends of these plots, loss=alphazero denotes AlphaZero and loss=score_es denotes
AlphaZeroES. Likewise, in Figure 15, we compare the scalability of AlphaZero against AlphaZeroES
in terms of the size of the network (specifically, the hidden layer size). In all figures, AlphaZeroES
outperforms AlphaZero regardless of the scale of the problem.

Regarding the performance of OpenAI-ES vs. classical gradient-based methods on high-dimensional
problems, Salimans et al. (2017) note the following: “The resemblance of ES to finite differences
suggests the method will scale poorly with the dimension of the parameters θ. [...] However, it is
important to note that this does not mean that larger neural networks will perform worse than smaller
networks when optimized using ES: what matters is the difficulty, or intrinsic dimension, of
the optimization problem [emphasis added]. To see that the dimensionality of our model can be
completely separate from the effective dimension of the optimization problem, consider a regression
problem where we approximate a univariate variable y with a linear model ŷ = x ·w: if we double
the number of features and parameters in this model by concatenating x with itself (i.e. using features

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

x′ = (x,x)), the problem does not become more difficult. The ES algorithm will do exactly the same
thing when applied to this higher dimensional problem, as long as we divide the standard deviation of
the noise by two, as well as the learning rate.”

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: TSP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 13: VKCP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom). The size
of the choice set is half the number of points.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 14: MDP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom). The size of
the choice set is half the number of points.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 15: Performance comparison for different network sizes. Left to right, top to bottom: TSP,
VKCP, MDP, and Navigation.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 16: Ablation. Left to right, top to bottom: TSP, VKCP, MDP, and Navigation.

E ABLATION

To further investigate where the advantage of AlphaZeroES over AlphaZero comes from, and whether
most of the improvement comes from a better value or policy output, we conducted an ablation study
as follows. First, we train a combined policy/value network under the standard AlphaZero loss, as
described in §4 and §5. Second, we create two copies of this network and use only the value output of
one (henceforth, we call it the value network) and the policy output of the other (henceforth, we call
it the policy network). We do this so that we can further train the value and policy outputs separately,
starting from the parameters obtained by vanilla AlphaZero. Third, we freeze the value network (or
policy network) and train only the policy network (or value network) under ES.

Results are shown in Figure 16. The original AlphaZero baseline is labeled with loss=alphazero.
The subsequent training runs, which start from the final parameters of this baseline, are labeled
with loss=score_es. The label freeze_policy denotes whether the policy network is frozen.
The label freeze_value denotes whether the value network is frozen. As expected, allowing
either (or both) of these to be further trained under ES improves performance over the AlphaZero
baseline. Furthermore, allowing both of them to be trained yields maximum performance. In some
environments, namely TSP, VKCP, and MDP, freezing only the value network outperforms freezing
only the policy network, suggesting that improving the policy output is more important. In other
environments, namely Navigation, freezing only the policy network outperforms freezing only the
value network, suggesting that improving the value output is more important. Thus, interestingly,
where most of the improvement of AlphaZeroES over vanilla AlphaZero comes from—a better value
output or a better policy output—is environment-dependent.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 17: Performance under the attention-based architecture on TSP, VKCP, MDP, and Navigation.

F ARCHITECTURE COMPARISON

To check whether our approach generalizes to architectures rather than DeepSets (Zaheer et al., 2017),
we run experiments with a different architecture, namely one based on neural attention (Vaswani et al.,
2017). A theoretical comparison of these two architectures can be found in Wagstaff et al. (2022). Our
architecture starts by applying an affine layer mapping the multiset of inputs to a multiset of hidden
vectors. Then, we apply a sequence of D attention blocks, where D is a depth hyperparameter. (We
use D = 2.) Each such block is a parallel attention block, as described in Zhao et al. (2019). It applies
layer normalization (Ba et al., 2016), followed by a parallel application of (1) a pointwise feedforward
multilayer perceptron with a single hidden layer and (2) a multi-head attention module (Vaswani
et al., 2017). These two outputs are then combined with a skip connection from the input to the block,
via simple addition. For reduction, we apply a many-to-one multi-head attention module on a learned
readout vector initialized with random normal entries. After that, we apply the ReLU activation
function followed by an affine layer. Results are shown in Figure 17. Our method, AlphaZeroES,
continues to outperform AlphaZero on the new architecture.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 18: XOR environment metrics.

G FAILURE MODES FOR ALPHAZERO

In this section, we give concrete examples of simple environments where AlphaZero fails while
AlphaZeroES succeeds.

G.1 XOR ENVIRONMENT

Consider the following environment. A state is a triple (b, c, t) where b, c ∈ {0, 1} are bits and t ∈ N
is the timestep. At the beginning of an episode, b ∈ {0, 1} is sampled uniformly at random, c = b,
and t = 0. An action is a bit a ∈ {0, 1}.
Letting a be the current action, the transition function yields (b, c′, t+ 1), where c′ = b⊕ a if t = 0
and c′ = c otherwise. In other words, c = b⊕ a0 for the remainder of the episode, where a0 is the
initial action. At the end of the episode, the reward is b⊕ c = b⊕ (b⊕ a0) = a0. Therefore, after the
initial step, the value of state (b, c, t) is just a0.

Therefore, this environment has an optimal policy that is very simple: always play a = 1. This
constant policy should be easily discoverable by optimizing episode score via ES.

Suppose that we use AlphaZero with a linear function approximator for its prediction network. At
the initial timestep, MCTS inspects the two successor states (b, b, 1) and (b, b⊕ 1, 1), and potentially
their descendants, to decide which action to play. However, with a linear function approximator,
AlphaZero’s prediction network is unable to extract the key information b⊕ c = b⊕ (b⊕ a0) = a0,
which determines the value of the state being examined.

Therefore, when AlphaZero is trained with the standard planning loss, it has no way to determine
which action it should take at the initial timestep. (Provided that the episode is long enough that
MCTS does not expand all the way to the terminal nodes.) On the other hand, AlphaZeroES can
simply learn to always put all of the predicted prior probability on a = 1, which causes it to always
be chosen by MCTS. Thus, we predict that AlphaZero consistently fails to learn any useful policy in
this environment, while AlphaZeroES does.

In practice, we observe that this is the case. We set the number of timesteps to 32 and deployed each
agent. We use only a linear (or more precisely, affine) layer for the AlphaZero prediction network,
directly mapping the state to a value scalar and logits vector. Other hyperparameters are the same as
in the rest of the experiments. Results are shown in Figure 18. As expected, AlphaZero fails to learn
any useful policy, while AlphaZeroES learns the optimal policy.

G.2 ENCRYPTED ENVIRONMENT

Consider the environment. Suppose that the states of the environment are “encrypted” counters.
In any state, action A decrypts the counter with a secret key, increments it, and re-encrypts it. In
contrast, action B does nothing. At the end of an episode, the agent receives the value of the counter.
The optimal policy is very simple: always choose A. But learning a good value function is nearly
impossible from the perspective of the agent, given that it is unable to “decrypt” states. While this
example may seem extreme, given its reliance on cryptography, it is an illustrative analogy: an
environment can look “encrypted” from the perspective of an agent that is not sophisticated enough
(at least at the beginning of training) to “understand” what the states mean.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 19: Encrypted environment metrics.

We implement a simple example of such an environment. For n ∈ N, let [n] = {0, . . . , n − 1}.
The environment’s encryption function is simply a permutation e : [256]→ [256]. We sample this
permutation uniformly at random from the set of all permutations. Likewise, the environment’s
decryption function is the inverse permutation e−1.

Each state is a pair (c, t), where c ∈ [256] is the encrypted counter and t ∈ [256] is the timestep.
Given such a state, the agent observes the 8 bits of c, concatenated with t/255. The initial state is
(e(0), 0). Given action a ∈ {0, 1}, state (c, t) is mapped to (e(e−1(c) + a), t+ 1). The environment
terminates when t = 255, and the reward is e−1(c).

Results are shown in Figure 19. As expected, AlphaZeroES easily learns the trivial optimal policy,
while AlphaZero struggles to learn. This is because AlphaZero essentially needs to learn a big lookup
table that maps each arbitrary 8-bit pattern to an arbitrary value.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 20: Sokoban.

Figure 21: TSP.

H VARYING THE PERTURBATION SCALE

In this section, we explore what happens with different perturbation scales for AlphaZeroES. Results
are shown in Figures 20–23. The results are qualitatively similar across different scales.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 22: VKCP.

Figure 23: MDP.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

I CODE

The following is an implementation of our method in the Python programming language (Van Rossum
and Drake Jr., 1995). The libraries used here are described in §5 of the paper.

File rl_utils.py:

1import jax
2from jax import lax , random
3from jax import numpy as jnp
4
5
6def get_returns(episode):
7def f(carry , reward_discount):
8reward , discount = reward_discount
9new_carry = reward + discount * carry
10return new_carry , new_carry
11
12rewards = episode["reward"]
13discounts = episode["discount"]
14init = jnp.zeros(rewards.shape [1:])
15xs = rewards , discounts
16_, returns = lax.scan(f, init , xs, unroll=True , reverse=True)
17return returns
18
19
20def get_reach_probs(episode):
21discounts = episode["discount"]
22reach_probs = jnp.cumprod(discounts [:-1])
23reach_probs = jnp.insert(reach_probs , 0, 1)
24return reach_probs
25
26
27def get_score(episode):
28reach_probs = get_reach_probs(episode)
29return reach_probs @ episode["reward"]
30
31
32def sample_episode(env , agent , params , key , unroll =1):
33def step(state_memory , key):
34state , memory = state_memory
35action , new_memory , agent_extra = agent.apply(params , state , key ,

↪→ memory)
36reward , discount , new_state = env.step(state , action)
37return (new_state , new_memory), {
38"state": state ,
39"action": action ,
40"agent_extra": agent_extra ,
41"reward": reward ,
42"discount": discount ,
43"memory": memory ,
44}
45
46key , subkey = random.split(key)
47state = env.init(subkey)
48
49key , subkey = random.split(key)
50memory = agent.init_memory(subkey)
51
52keys = random.split(key , env.max_steps ())
53(state , memory), episode = lax.scan(step , (state , memory), keys ,

↪→ unroll=unroll)
54
55episode["state"] = jax.tree.map(
56lambda xs, x: jnp.concatenate ([xs, x[None ]]),

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

57episode["state"],
58state ,
59)
60
61episode["memory"] = jax.tree.map(
62lambda xs, x: jnp.concatenate ([xs, x[None ]]),
63episode["memory"],
64memory ,
65)
66
67return episode
68
69
70def get_num_actions(env):
71key = random.key(0)
72state = env.init(key)
73space = env.action_space(state)
74return space.mask.size

File rl_losses.py:

1import optax
2from jax import lax , nn
3from jax import numpy as jnp
4
5from lib.rl_utils import get_reach_probs , get_returns
6
7
8def mcts_action_loss(episode):
9predictions = episode["agent_extra"]["mcts_action_prediction"]
10targets = episode["agent_extra"]["mcts_action_target"]
11mask = episode["agent_extra"]["mcts_action_mask"]
12losses = optax.kl_divergence(
13nn.log_softmax(predictions , where=mask),
14lax.stop_gradient(targets),
15where=mask ,
16)
17return get_reach_probs(episode) @ losses
18
19
20def mcts_value_loss_mc(episode):
21""" Monte Carlo."""
22predictions = episode["agent_extra"]["mcts_value_prediction"]
23targets = get_returns(episode)
24losses = optax.squared_error(
25predictions ,
26lax.stop_gradient(targets),
27)
28return get_reach_probs(episode) @ losses
29
30
31def mcts_value_loss_dp(episode):
32""" Dynamic programming or self -bootstrapping."""
33predictions = episode["agent_extra"]["mcts_value_prediction"]
34targets = episode["agent_extra"]["mcts_value_target"]
35losses = optax.squared_error(
36predictions ,
37lax.stop_gradient(targets),
38)
39return get_reach_probs(episode) @ losses
40
41
42def alphazero_loss(episode):
43value_loss = mcts_value_loss_mc(episode)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

44action_loss = mcts_action_loss(episode)
45loss = value_loss + action_loss
46metrics = {
47"value_loss": value_loss ,
48"action_loss": action_loss ,
49"loss": loss ,
50}
51return loss , metrics
52
53
54def mcts_consistency_loss(episode):
55value_loss = mcts_value_loss_dp(episode)
56action_loss = mcts_action_loss(episode)
57loss = value_loss + action_loss
58metrics = {
59"value_loss": value_loss ,
60"action_loss": action_loss ,
61"loss": loss ,
62}
63return loss , metrics

File mcts.py:

1import jax
2import mctx
3from jax import lax , nn
4from jax import numpy as jnp
5
6
7def gumbel_muzero(
8state ,
9prediction_fn ,
10step_fn ,
11action_mask ,
12budget ,
13key ,
14algorithm="gumbel_muzero",
15**kwargs ,
16):
17def root_fn(state):
18value , logits = prediction_fn(state)
19return mctx.RootFnOutput(
20prior_logits=logits , # type: ignore
21value=value , # type: ignore
22embedding=state , # type: ignore
23)
24
25def recurrent_fn(params , key , action , state):
26reward , discount , new_state = step_fn(state , action)
27value , logits = prediction_fn(new_state)
28output = mctx.RecurrentFnOutput(
29reward=reward , # type: ignore
30discount=discount , # type: ignore
31prior_logits=logits , # type: ignore
32value=value , # type: ignore
33)
34return output , new_state
35
36algorithm_fn = {
37"gumbel_muzero": mctx.gumbel_muzero_policy ,
38"muzero": mctx.muzero_policy ,
39}[ algorithm]
40
41root = root_fn(state)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

42outputs = algorithm_fn(
43params =(),
44rng_key=key ,
45root=jax.tree.map(lambda x: jnp.expand_dims(x, 0), root),
46recurrent_fn=jax.vmap(recurrent_fn , [None , None , 0, 0]),
47num_simulations=budget + 1,
48invalid_actions=jax.tree.map(lambda x: jnp.expand_dims (~x, 0),

↪→ action_mask),
49**kwargs ,
50)
51summary = jax.tree.map(lambda x: x[0], outputs.search_tree.summary ())
52output = jax.tree.map(lambda x: x[0], outputs)
53return {
54"action": output.action ,
55"action_onehot": nn.one_hot(output.action , output.action_weights.

↪→ size),
56"action_weights": lax.stop_gradient(output.action_weights),
57"root_value": root.value ,
58"root_logits": root.prior_logits ,
59"root_state": state ,
60"search_tree": lax.stop_gradient(output.search_tree),
61"visit_counts": summary.visit_counts ,
62"visit_probs": summary.visit_probs ,
63"value": lax.stop_gradient(summary.value),
64"qvalues": summary.qvalues ,
65"action_mask": action_mask ,
66}

File alphazero.py:

1from functools import partial
2
3from lib import mcts
4
5
6class AlphaZero:
7
8def __init__(self , env , pred_fn , budget):
9self.env = env
10self.pred_fn = pred_fn
11self.budget = budget
12
13def init(self , params_key , state , key , memory):
14return self.pred_fn.init(params_key , state)
15
16def init_memory(self , key):
17return None
18
19def apply(self , params , state , key , memory):
20space = self.env.action_space(state)
21output = mcts.gumbel_muzero(
22state=state ,
23prediction_fn=partial(self.pred_fn.apply , params),
24step_fn=self.env.step ,
25budget=self.budget ,
26key=key ,
27action_mask=space.mask ,
28)
29return (
30output["action"],
31memory ,
32{
33"search_tree": output["search_tree"],
34"mcts_value_prediction": output["root_value"],

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

35"mcts_value_target": output["value"],
36"mcts_action_prediction": output["root_logits"],
37"mcts_action_target": output["action_weights"],
38"mcts_action_mask": space.mask ,
39},
40)

File predictors.py:

1import argparse
2
3from flax import linen as nn
4from jax import numpy as jnp
5
6from lib import envs , rl_utils
7
8
9class DensePredictor(nn.Module):
10args: argparse.Namespace
11env: envs.Env
12
13@nn.compact
14def __call__(self , state):
15x = self.env.observation_vector(state)
16x = nn.Dense(self.args.hidden_dim)(x)
17x = nn.relu(x)
18
19logits = nn.Dense(rl_utils.get_num_actions(self.env))(x)
20
21if hasattr(self.env , "players"):
22values = nn.Dense(self.env.players)(x)
23return values , logits
24else:
25(value ,) = nn.Dense (1)(x)
26return value , logits
27
28
29class DeepSetsPredictor(nn.Module):
30args: argparse.Namespace
31env: envs.Env
32
33@nn.compact
34def __call__(self , state):
35x, mask = self.env.observation_multiset(state)
36if mask is None:
37mask = jnp.ones(x.shape[0], bool)
38
39for _ in range(self.args.depth):
40x_skip = x
41x = nn.Dense(self.args.hidden_dim)(x)
42x = nn.relu(x)
43x1 = nn.Dense(self.args.hidden_dim)(x.sum(0, where=mask [...,

↪→ None]))
44x1 /= 1 + mask.sum(0)[..., None]
45x2 = nn.Dense(self.args.hidden_dim , use_bias=False)(x)
46x = x1 + x2
47x = nn.relu(x)
48if x_skip.shape == x.shape:
49x += x_skip
50
51match self.env:
52case (
53envs.EuclideanTSP ()
54| envs.Knapsack ()

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

55| envs.EuclideanFLP ()
56| envs.SubsetSum ()
57| envs.MaximumDiversityProblem ()
58| envs.MaxLengthTSP ()
59):
60logits = nn.Dense (1)(x)[..., 0]
61case envs.Sokoban () | envs.Reach():
62y = x.mean(0, where=mask [..., None])
63logits = nn.Dense(rl_utils.get_num_actions(self.env))(y)
64case _:
65breakpoint ()
66raise NotImplementedError(self.env)
67
68x = x.mean(0, where=mask [..., None])
69
70if hasattr(self.env , "players"):
71values = nn.Dense(self.env.players)(x)
72return values , logits
73else:
74(value ,) = nn.Dense (1)(x)
75return value , logits
76
77
78class AttentionPredictor(nn.Module):
79args: argparse.Namespace
80env: envs.Env
81
82@nn.compact
83def __call__(self , state):
84x, mask = self.env.observation_multiset(state)
85if mask is None:
86mask = jnp.ones(x.shape[0], bool)
87
88x = nn.Dense(self.args.hidden_dim)(x)
89
90for _ in range(self.args.depth):
91x_norm = nn.LayerNorm(use_bias=False , use_scale=False)(x)
92
93y = nn.Dense(self.args.hidden_dim)(x_norm)
94y = nn.relu(y)
95y = nn.Dense(self.args.hidden_dim , kernel_init=nn.

↪→ initializers.zeros)(y)
96
97z = nn.MultiHeadAttention(self.args.heads)(x_norm , mask=mask)
98
99x += y + z
100
101match self.env:
102case (
103envs.EuclideanTSP ()
104| envs.Knapsack ()
105| envs.EuclideanFLP ()
106| envs.SubsetSum ()
107| envs.MaximumDiversityProblem ()
108| envs.MaxLengthTSP ()
109):
110logits = nn.Dense (1)(x)[..., 0]
111case envs.Sokoban () | envs.Reach():
112y = x.mean(0, where=mask [..., None])
113logits = nn.Dense(rl_utils.get_num_actions(self.env))(y)
114case _:
115breakpoint ()
116raise NotImplementedError(self.env)
117
118readout = self.param(

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

119"readout", nn.initializers.normal (1), [self.args.hidden_dim]
120)
121x = nn.MultiHeadAttention(self.args.heads)(readout[None], x, mask

↪→ =mask).squeeze(
1220
123)
124
125if hasattr(self.env , "players"):
126values = nn.Dense(self.env.players)(x)
127return values , logits
128else:
129(value ,) = nn.Dense (1)(x)
130return value , logits
131
132
133class MixedPredictor(nn.Module):
134value: nn.Module
135policy: nn.Module
136
137@nn.compact
138def __call__(self , state):
139value , _ = self.value(state)
140_, logits = self.policy(state)
141return value , logits

File pseudogradient.py:

1from functools import partial
2
3import jax
4import optax
5from jax import lax , random
6from jax import numpy as jnp
7from jax.scipy import stats
8from optax import tree_utils as otu
9
10
11class Normal:
12def __init__(self , loc , scale):
13self.loc = loc
14self.scale = scale
15
16def sample(self , key):
17z = otu.tree_random_like(key , self.loc)
18return jax.tree.map(lambda l, z: l + self.scale * z, self.loc , z)
19
20def sample_antithetic(self , key):
21z = otu.tree_random_like(key , self.loc)
22return jax.tree.map(
23lambda l, z: l + self.scale * jnp.stack([z, -z]),
24self.loc ,
25z,
26)
27
28def logpdf(self , x):
29logpdfs = jax.tree.map(
30lambda l, x: stats.norm.logpdf(x, l, self.scale),
31self.loc ,
32x,
33)
34return otu.tree_sum(logpdfs)
35
36
37def smoothe(scale , distribution="normal"):

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

38match distribution:
39case "normal":
40distribution_cls = Normal
41case _:
42raise NotImplementedError
43
44def g(f, x, key):
45dist = distribution_cls(x, scale)
46
47key , subkey = random.split(key)
48samples = lax.stop_gradient(dist.sample_antithetic(subkey))
49
50outputs = jax.vmap(f, [0, None], axis_size =2)(samples , key)
51
52log_probs = jax.vmap(dist.logpdf , axis_size =2)(samples)
53assert log_probs.ndim == 1
54
55ones = jnp.exp(log_probs - lax.stop_gradient(log_probs))
56ones /= ones.size
57
58return jax.tree.map(lambda outputs: ones @ outputs , outputs)
59
60return lambda f: partial(g, f)

39


	Introduction
	Problem Formulation
	Related Work
	Proposed Method
	Planning Algorithm
	Prediction Function
	Training Procedure

	Experiments
	Navigation
	Sokoban
	TSP
	VKCP
	MDP

	Discussion
	Conclusions and Future Research
	Additional Figures
	Additional Related Work
	Agents that use neural networks and planning
	Machine learning for tuning integer programming and combinatorial optimization solvers

	Statistical tests
	Scalability
	Ablation
	Architecture comparison
	Failure modes for AlphaZero
	XOR environment
	Encrypted environment

	Varying the perturbation scale
	Code

