ALPHAZEROES: DIRECT SCORE MAXIMIZATION CAN OUTPERFORM PLANNING LOSS MINIMIZATION IN SINGLE-AGENT SETTINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

Planning at execution time has been shown to dramatically improve performance for AI agents. A well-known family of approaches to planning at execution time in single-agent settings and two-player zero-sum games are AlphaZero and its variants, which use Monte Carlo tree search together with a neural network that guides the search by predicting state values and action probabilities. AlphaZero trains these networks by minimizing a planning loss that makes the value prediction match the episode return, and the policy prediction at the root of the search tree match the output of the full tree expansion. AlphaZero has been applied to various single-agent environments that require careful planning, with great success. In this paper, we explore an intriguing question: in single-agent settings, can we outperform AlphaZero by directly maximizing the episode score instead of minimizing this planning loss, while leaving the MCTS algorithm and neural architecture unchanged? To directly maximize the episode score, we use evolution strategies, a family of algorithms for zeroth-order blackbox optimization. We compare both approaches across multiple single-agent environments. Our experiments suggest that directly maximizing the episode score tends to outperform minimizing the planning loss.

1 Introduction

Lookahead search and reasoning is a central paradigm in artificial intelligence, and has a long history (Newell and Ernst, 1965; Hart et al., 1968; Nilsson, 1971; Hart et al., 1972; Lanctot et al., 2017; Brown et al., 2018). In many domains, planning at execution time significantly improves performance. In domains like Sokoban, Pacman, and 2048, all state-of-the-art approaches use some form of planning by the agent. Many planning approaches use *Monte Carlo Tree Search (MCTS)*, which iteratively grows a search tree from the current state, and does so asymmetrically according to the information seen so far. A prominent subfamily of approaches in this category are AlphaZero and its variants, which leverage function approximation via neural networks to learn good heuristic predictions of the values and action distributions at each state, which can be used to guide the tree search. AlphaZero (and its variants) train this prediction function by minimizing a *planning loss* consisting of the sum of a *value loss* and a *policy loss*.

In this paper, we set out to explore whether we can outperform AlphaZero and its variants in single-agent environments by *directly maximizing the episode score* instead, while leaving all other aspects of the agent, MCTS algorithm, and neural architecture unchanged. Since MCTS is not differentiable, to maximize the episode score, we employ evolution strategies, a family of algorithms for zeroth-order black-box optimization.

The structure of the paper is as follows. In §2, we present a detailed formulation of the problem. In §3, we describe related work. In §4, we present our method. In §5, we describe our experimental benchmarks and present our results. In §6, we discuss the experimental results. In §7, we present our conclusion and suggest directions for future research.

2 PROBLEM FORMULATION

In this section, we formulate the problem in detail and introduce required notation. If \mathcal{X} is a set, $\triangle \mathcal{X}$ denotes the set of probability distributions on \mathcal{X} . An *environment* is a tuple $(\mathcal{S}, \mathcal{A}, \rho, \delta)$ where \mathcal{S} is a set of states, \mathcal{A} is a set of actions, $\rho: \triangle \mathcal{S}$ is an initial state distribution, and $\delta: \mathcal{S} \times \mathcal{A} \to \mathbb{R} \times \mathbb{R} \times \mathcal{S}$ is a transition function. A *policy* is a function $\mathcal{S} \to \triangle \mathcal{A}$ that maps a state to an action distribution. Given an environment and policy, an *episode* is a tuple (s, a, r, γ) that is generated as follows. First, an initial state $s_0 \sim \rho$ is sampled. Thereafter, on each timestep $t \in \mathbb{N}$, an action $a_t \sim \pi(s_t)$ is sampled, and a reward, discount factor, and new state $(r_t, \gamma_t, s_{t+1}) = \delta(s_t, a_t)$ are obtained. The discount factor represents the probability of the episode ending at that timestep. For a given episode, the *return* at timestep $t \in \mathbb{N}$ is defined recursively as $R_t = r_t + \gamma_t R_{t+1}$. The *score* is the return at the initial timestep, R_0 . Our goal is to find a policy $\pi: \mathcal{S} \to \triangle \mathcal{A}$ that maximizes the expected score $\mathbb{E} R_0$.

3 RELATED WORK

In this section, we describe related work. Monte Carlo methods are a wide class of computational algorithms that use repeated random sampling to estimate numerical quantities. In the setting of planning, Monte-Carlo evaluation estimates the value of a position by averaging the return of several random rollouts. *Monte-Carlo Tree Search (MCTS)* (Coulom, 2007) combines Monte-Carlo evaluation with tree search. Instead of backing-up the min-max value close to the root, and the average value at some depth, it uses a more general backup operator that progressively changes from averaging to min-max as the number of simulations grows. MCTS grows the search tree asymmetrically, focusing on more promising subtrees.

AlphaGo (Silver et al., 2016) used a variant of MCTS to tackle the two-player board game of Go. It used a neural network to evaluate board positions *and* select moves. These networks are trained using a combination of supervised learning from human expert games and reinforcement learning from self-play. It was the first computer program to defeat a human professional player. AlphaGo Zero (Silver et al., 2017a) used reinforcement learning alone, *without* any human data, guidance or domain knowledge beyond game rules. AlphaZero (Silver et al., 2018) generalized AlphaGo Zero into a single algorithm that achieved superhuman performance in many challenging domains.

MuZero (Schrittwieser et al., 2020) combined AlphaZero's tree-based search with a *learned dynamics model*. The latter allows it to plan in environments where the agent does *not* have access to a simulator of the environment at execution time. Gumbel MuZero (Danihelka et al., 2022) is a policy improvement algorithm based on sampling actions without replacement. It replaces the more heuristic mechanisms by which AlphaZero selects actions at root and non-root nodes. Empirically, it yields significantly better performance when planning with few simulations.

MCTS is a state-of-the-art general-purpose technique for search, planning, and optimization in single-agent settings. For example, in the papers that introduced them, the prominent MCTS-based methods MuZero and Gumbel MuZero were shown to be state of the art in single-agent settings, including 57 different Atari games, the canonical video game environment for testing AI techniques. Świechowski et al. (2023) note that "Automated planning is one of the major domains of application of the MCTS algorithm outside games." Vallati et al. (2015) note that winning approaches of the International Probabilistic Planning Competition were using MCTS. This competition included combinatorial optimization problems, such as the minimization of open stacks problem (Yanasse and Senne, 2010).

MCTS has also been used in other discrete combinatorial problems, such as polynomial evaluation (Kuipers et al., 2013), low latency communication (Jia et al., 2020), generating large-scale floor plans with adjacency constraints (Shi et al., 2020), query selection in kidney exchange (McElfresh et al., 2020), and preference elicitation (Martin et al., 2024). Abe et al. (2019) used AlphaZero to solve NP-hard problems on graphs, including min vertex cover and max cut. Fawzi et al. (2022) used an AlphaZero-based algorithm, AlphaTensor, to discover efficient and provably-correct algorithms for multiplication of arbitrary matrices. Xu and Lieberherr (2019) showed that neural MCTS can be used in a general way to solve combinatorial optimization problems.

4 PROPOSED METHOD

In this section, we present a detailed description of our proposed method, which we call AlphaZeroES. The essential difference to AlphaZero is described in §4.3.

4.1 PLANNING ALGORITHM

We use the implementation of Gumbel MuZero (Danihelka et al., 2022), which is the prior state of the art for this setting, found in the open-source Google DeepMind library Mctx (DeepMind et al., 2020). It iteratively constructs a search tree starting from a state s_0 . Each node in the tree contains a state, predicted value, predicted action probabilities, and, for each action, a visit count N, action value Q, reward, and discount factor. Each iteration of the algorithm consists of three phases: selection, expansion, and backpropagation.

During selection, we start at the root and traverse the tree until a leaf edge is reached. At internal nodes, we select actions according to the policy described in Danihelka et al. (2022). When we reach a leaf edge (s,a), we perform expansion as follows. We compute $(r,\gamma,s')=\delta(s,a)$, storing r and γ in the edge's parent node. We then query the agent's prediction function $(v,p)=f_{\theta}(s')$ to obtain the predicted value and action probabilities of s'. A new node is added to the tree containing this information, with action visit counts and action values initialized to zero. Finally, we perform backpropagation as follows. The new node's value estimate is backpropagated up the tree to the root in the form of an n-step return. Specifically, from t=T to 0, where T is the length of the trajectory, we compute an estimate of the cumulative discounted return G_t that bootstraps from the value estimate v: $G_T = v$ and $G_t = r_t + \gamma_t G_{t+1}$. For each such t, we update the statistics for the edge corresponding to (s_t, a_t) as follows: $Q(s_t, a_t) \leftarrow \frac{N(s_t, a_t)Q(s_t, a_t)+G_t}{N(s_t, a_t)+1}$, $N(s_t, a_t) \leftarrow N(s_t, a_t)+1$. The simulation budget is the total number of iterations, which is the number of times the search tree is expanded, and therefore the size of the tree.

4.2 PREDICTION FUNCTION

The prediction function of the agent takes an environment state as input and outputs a probability distribution over actions and value estimate. Following Silver et al. (2018), we use a single neural network that outputs both of these. Our experimental settings have states that are naturally modeled as *sets* of objects (such as sets of cities, facilities, targets, boxes, etc.), where each object can be described by a vector (e.g., the coordinates of a city and whether it has been visited or not). Therefore, we seek a neural network architecture that can process a *set* of vectors, rather than just a single vector. Early works on neural networks for processing set inputs include McGregor (2007; 2008).

In our experiments, we use *DeepSets* (*Zaheer et al.*, 2017), a neural network architecture that can process sets of inputs in a way that is equivariant or invariant (depending on the desired type of output) with respect to the inputs. It is known to be a universal approximator for continuous set functions, provided that the model's latent space is sufficiently high-dimensional (Wagstaff et al., 2022). DeepSets may be viewed as the most efficient incarnation of the Janossy pooling paradigm (Murphy et al., 2018), and can be generalized by Transformers (Vaswani et al., 2017; Kim et al., 2021). A permutation-equivariant layer of the DeepSets architecture has the form (Zaheer et al., 2017, Supplement p. 19) $\mathbf{Y} = \sigma(\mathbf{X} \cdot \mathbf{A} + \mathbf{1} \otimes \mathbf{b} + \mathbf{1} \otimes ((\mathbf{1} \cdot \mathbf{X}) \cdot \mathbf{C}))$ where $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{Y} \in \mathbb{R}^{n \times k}$, $\mathbf{A}, \mathbf{C} \in \mathbb{R}^{n \times k}$, $\mathbf{b} \in \mathbb{R}^k$, and $\mathbf{1}$ is the all-ones vector of appropriate dimensionality, and σ is a nonlinear activation function, such as ReLU. Here, n is the size of the set (i.e., number of inputs/outputs), d is the dimension of each input, and k is the dimension of each output. A permutation-invariant layer is simply a permutation-equivariant layer followed by global average pooling (yielding an output that is a vector rather than a matrix) followed by a nonlinearity.

In problems where the action space matches the set of inputs (such as cities in the TSP problem, or points in the vertex k-center and maximum diversity problems), the predicted action logits are read out via a dense layer following the permutation-equivariant layer, before global pooling. In problems where the action space is a fixed set of actions (such as Sokoban and the navigation problems), the predicted action logits are read out via a dense layer following the permutation-invariant layer. In both cases, the predicted value is read out via a dense layer from the output of the permutation-invariant layer.

For clarity, we emphasize that we use *the exact same architecture* for both AlphaZero and AlphaZeroES in each problem. This is an apples-to-apples comparison. The only thing that changes is the optimization objective. AlphaZero itself is largely agnostic to the particular neural architecture available to the agent. It has been used in conjunction with simple feedforward networks, convolutional networks, attention-based networks (which encode permutation invariance), and so on.

4.3 Training Procedure

We are now ready to present the essential difference between AlphaZero and our AlphaZeroES. The difference lies in the training objective, which in turn entails a difference in the training procedure. AlphaZero minimizes a planning loss, which is the sum of a value loss $\sum_t (R_t - v_t)^2$ and a policy loss $\sum_t H(w_t, p_t)$. Here, $(v_t, p_t) = f_\theta(s_t)$ is the predicted state value and action probabilities for s_t , respectively. $(R_t - v_t)^2$ is the squared difference between v_t and the actual episode return R_t . $H(w_t, p_t)$ is the cross entropy between the action weights w_t returned by the MCTS algorithm for s_t and p_t . Our approach keeps exactly the same architecture, hyperparameters, and MCTS algorithm as AlphaZero, but changes the optimization objective. Specifically, instead of minimizing the planning loss, we directly maximize the episode score. The parameters that are optimized are exactly those of AlphaZero, namely, the neural network parameters of the prediction function. Only the training objective is different.

One way to directly optimize the episode score is to use policy gradient methods, which yield an estimator of the gradient of the expected return with respect to the agent's parameters. There is a vast literature on policy gradient methods, which include REINFORCE (Williams, 1992) and actor-critic methods (Konda and Tsitsiklis, 1999; Grondman et al., 2012). However, there is a problem. Most of these methods assume that the policy is *differentiable*—more precisely, that its output action distribution is differentiable with respect to the parameters of the policy. However, our planning policy uses MCTS as a subroutine, and standard MCTS is not differentiable. Because our policy contains a non-differentiable submodule, we need to find an alternative way to optimize the policy's parameters. Furthermore, Metz et al. (2021) show that differentiation can fail to be useful when trying to optimize certain functions—specifically, when working with an iterative differentiable system with chaotic dynamics. Fortunately, we can turn to black-box (i.e., zeroth-order) optimization. Black-box optimization uses only function evaluations to optimize a function with respect to a set of inputs. In particular, it does not require gradients. In our case, the black-box function maps our policy's parameters to a sampled episode score.

There is a class of black-box optimization algorithms called *evolution strategies* (*ES*) (Rechenberg and Eigen, 1973; Schwefel, 1977; Rechenberg, 1978) that maintain and evolve a population of parameter vectors. *Natural evolution strategies* (*NES*) (Wierstra et al., 2014; Yi et al., 2009) represent the population as a distribution over parameters and maximize its average objective value using the score function estimator. For many parameter distributions, such as Gaussian smoothing, this is equivalent to evaluating the function at randomly-sampled points and estimating the gradient as a sum of estimates of directional derivatives along random directions (Duchi et al., 2015; Nesterov and Spokoiny, 2017; Shamir, 2017; Berahas et al., 2022).

ES is a scalable approach for reinforcement learning (Salimans et al., 2017), and a viable method for learning non-differentiable parameters of large supervised models (Lenc et al., 2019). We use OpenAI-ES (Salimans et al., 2017), an NES algorithm based on the identity $\nabla_{\mathbf{x}} \mathbf{E}_{\mathbf{z} \sim \mathcal{D}} f(\mathbf{x} + \sigma \mathbf{z}) = \frac{1}{\sigma} \mathbf{E}_{\mathbf{z} \sim \mathcal{D}} f(\mathbf{x} + \sigma \mathbf{z})\mathbf{z}$, where \mathcal{D} is the standard multivariate normal distribution. Like Salimans et al. (2017), we use antithetic sampling (Geweke, 1988), also called mirrored sampling (Brockhoff et al., 2010), to reduce variance. It works as follows. Let \mathcal{I} be a set of workers. For each $i \in \mathcal{I}$ in parallel, sample $\mathbf{z}_i \sim \mathcal{D}$ and compute $\delta_i = f(\mathbf{x} + \sigma \mathbf{z}_i)$. Compute the pseudogradient $\mathbf{g} = \frac{1}{\sigma|\mathcal{I}|} \sum_{i \in \mathcal{I}} \delta_i \mathbf{z}_i$. Pass \mathbf{g} to the optimizer to update the parameters.

This process is massively parallelizable, since each δ_i can be evaluated on a separate worker. Furthermore, communication between workers is minimal. All workers are initialized with the same random seed. Worker i evaluates δ_i , sends it to the remaining workers, and receives the other workers' values (this is called an all-gather operation in distributed computing). Thus the workers compute the same \mathbf{g} and stay synchronized. Again, each worker computes the δ_i corresponding to $its\ own\ index\ i$ and receives the others from the other workers, but generates the all workers' perturbation $vectors\ \{\mathbf{z}_j\}_{j\in\mathcal{I}}$, which is more efficient than communicating them. The shared random seed en-

Figure 1: Example states for each environment: Navigation, Sokoban, TSP, VKCP, and MDP.

sures that workers can compute identical perturbation vectors without communication. The only worker-dependent computation is δ_i .

The training process is summarized in Salimans et al. (2017, Algorithm 2). AlphaZeroES needs only the parameter perturbation vector **z** and the final episode score to update the parameters. In contrast, AlphaZero needs to compute gradients of the parameters via backpropagation (reverse-mode automatic differentiation) through the neural network and over the timesteps of the episode. In our experiments, AlphaZero and AlphaZeroES took about the same amount of time per iteration.

5 EXPERIMENTS

In this section, we describe our experiments. We use 10 trials per experiment, 1000 episodes per batch (for both training and evaluation at the end of each epoch), 1000 training batches per epoch, 4 hours of training time per trial, the AdaBelief (Zhuang et al., 2020) optimizer¹, a perturbation scale of 0.1 for OpenAI-ES, an MCTS simulation budget of 8,² hidden layer sizes of 16 for the DeepSets network, 1 equivariant plus 1 invariant hidden layer for the DeepSets network, and the ReLU activation function. We used an NVIDIA A100 SXM4 40GB GPU. Each trial uses 1 such GPU all to itself. This keeps the comparison between AlphaZero and AlphaZeroES as precise as possible. For our code, we use Python 3.12.2, JAX 0.4.28 (Bradbury et al., 2018), Flax 0.8.3 (Heek et al., 2024), Optax 0.2.2 (DeepMind et al., 2020), Mctx 0.0.5 (DeepMind et al., 2020), and Matplotlib 3.8.4 (Hunter, 2007). In our plots, we show the episode scores attained by AlphaZero (labeled es=0 in the plot legend) vs. AlphaZeroES (labeled es=1 in the plot legend). At any point along the X axis, AlphaZero and AlphaZeroES have undergone the same number of episodes of learning. To perform a fair comparison, since AlphaZero and AlphaZeroES optimize different objectives, we test both across a wide range of learning rates (labeled 1r in the plot legend). In addition, we show value and policy losses over the course of training. Though AlphaZeroES does not optimize these losses directly, we wish to observe what happens to them as a side-effect of maximizing the episode score. Solid lines show the mean across trials, and bands show the standard error of the mean. Our goal is not to develop the best special-purpose solver for any one of these domains. Rather, we are interested in a general-purpose approach that can tackle all of these domains and learn good heuristics on its own.

Navigation. In this environment, an agent navigates a gridworld to reach as many targets as possible within a given time limit. At the beginning of each episode, targets are placed uniformly at random in a 10×10 grid, as is the agent. On each timestep, the agent can move up, down, left, or right by one tile. The agent reaches a target when it moves into the same tile. The agent receives a reward of +0.05 when it reaches a target. Thus the agent is incentivized to reach as many targets as possible within the time limit. For our experiments, we use 20 targets and a time limit of 50 steps. The prediction network observes a set of vectors, one for each target, where each vector contains the coordinates of the target, a boolean 0-1 flag indicating whether it has already been reached, and the number of episode timesteps remaining. This environment has been used before as a benchmark by Oh et al. (2017, §4.2). It resembles a traveling salesman-like problem in which several "micro" actions are required to perform the "macro" actions of moving from one city to

¹Both AlphaZero and AlphaZeroES can be combined with any optimizer from the literature. Finding the best optimizer is not the focus of this paper. AdaBelief is a well-known optimizer with many citations. We chose it because it is (a) relatively well-known and (b) outperforms SGD and Adam.

²Gumbel Muzero, the AlphaZero variant we use, can learn reliably with as few as 2 simulations, and was evaluated in its paper with 2, 4, and 16 simulations (Danihelka et al., 2022, p. 8).

280281282283

284

285

286

287

288

289

290

291

292

293

295296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Figure 2: Navigation metrics.

another. (Also, the agent can visit cities multiple times and does not need to return to its starting city.) This models situations where several fine-grained actions are required to perform relevant tasks, such as moving a unit in a real-time strategy game a large distance across the map. An example state is shown in Figure 1. The blue circle is the agent. Red squares are unreached targets. Gray squares are reached targets. Experimental results are shown in Figure 2. AlphaZeroES dramatically outperforms AlphaZero. Unlike AlphaZero, it does not seem to minimize the value and policy losses by a noticeable amount. In fact, for AlphaZeroES, the value and policy losses seem to *increase* over time as training proceeds (and the mean episode score increases). This will be a recurring pattern across environments, as we will observe with the other benchmarks. This phenomenon suggests that maximizing "self-consistency" via planning loss minimization, as standard AlphaZero does, is not necessarily aligned as an objective with performing better in the environment, as measured by mean episode score.

Sokoban. Sokoban is a puzzle in which an agent pushes boxes around a warehouse to get them to storage locations. It is played on a grid of tiles. Each tile may be a floor or a wall, and may contain a box or the agent. Some floor tiles are marked as storage locations. The agent can move horizontally or vertically onto empty tiles. The agent can also move a box by walking up to it and push it to the tile beyond, if the latter is empty. Boxes cannot be pulled, and they cannot be pushed to squares with walls or other boxes. The number of boxes equals the number of storage locations. The puzzle is solved when all boxes are placed at storage locations. Planning ahead is crucial, since an agent can easily get stuck if it makes the wrong move. Sokoban has been studied in the field of computational complexity and shown to be PSPACE-complete (Culberson, 1997). It has received significant interest in artificial intelligence research because of its relevance to automated planning (e.g., for autonomous robots), and is used as a benchmark. Sokoban's large branching factor and search tree depth contribute to its difficulty. Skilled human players rely mostly on heuristics and can quickly discard several futile or redundant lines of play by recognizing patterns and subgoals, narrowing down the search significantly. Various automatic solvers have been developed in the literature (Junghanns and Schaeffer, 1997; 2001; Froleyks and Balyo, 2016; Shoham and Schaeffer, 2020), many of which rely on heuristics, but more complex Sokoban levels remain a challenge. Our environment is as follows. We use the unfiltered Boxoban training set (Guez et al., 2019), which contains 900,000 levels of size 10×10 each. At the beginning of each episode, we sample a level from this dataset. As a form of data augmentation, we sample one of the eight symmetries of the square (a horizontal flip, vertical flip, and/or 90-degree rotation) and apply it to the level. In each timestep, the agent has four actions available to it, for motion in each of the four cardinal directions. The level ends after a specified number of timesteps. (We use 50 timesteps.) The return at the end of an episode is the number of goals that are covered with boxes. Thus the agent is incentivized to cover all of the goals. The prediction network observes a set of vectors, one for each tile in the level, where each vector contains the 2 coordinates of the tile, 4 boolean flags indicating whether the tile contains a wall, goal, box, and/or agent, and the number of episode timesteps remaining. An example state is shown in Figure 1. This was rendered by JSoko (Meger, 2023), an open-source Sokoban implementation. The yellow vehicle is the agent, who must push the brown boxes into the goal squares marked with Xs. (Boxes tagged "OK" are on top of goal squares.) Experimental results are shown in Figure 3. AlphaZeroES dramatically outperforms AlphaZero. Unlike AlphaZero, it does not seem to minimize the value and policy losses by a noticeable amount.

Figure 4: TSP metrics.

TSP. The traveling salesman problem (TSP) is a classic combinatorial optimization problem. Given a set of cities and their pairwise distances, the goal is to find a shortest route that visits each city once and returns to the starting city. This problem has important applications in operations research, including logistics, computer wiring, vehicle routing, and various other planning problems (Matai et al., 2010). TSP is known to be NP-hard (Karp, 1972), even in the Euclidean setting (Papadimitriou, 1977). Various approximation algorithms and heuristics (Nilsson, 2003) have been developed for it. Our environment is as follows. We seek to learn to solve TSP in general, not just one particular instance of it. Thus, on every episode, a new problem instance is generated by sampling a matrix $\mathbf{X} \sim \mathrm{Uniform}([0,1]^{n \times 2})$, representing a sequence of $n \in \mathbb{N}$ cities. In our experiments, we use n=20. At timestep $t\in[n]$, the agent chooses a city $a_t\in[n]$ that has not been visited yet. At the end of the episode, the length of the tour through this sequence of cities (including the segment from the final city to the initial one) is computed, and treated as the *negative* score. Thus the agent is incentivized to find the shortest tour through all the cities. Formally, the final score is $-\sum_{t\leq n} d(\mathbf{X}_{a_t}, \mathbf{X}_{a_{t+1} \bmod n})$, where d is the Euclidean metric. The prediction network observes a set of vectors, one for each city, where each vector contains the coordinates of the city and 3 boolean 0-1 flags indicating whether it has already been visited, whether it is the initial city, and whether it is the current city. An example state is shown in Figure 1. Dots are cities. The red dot is the initial city. The lines connecting the dots constitute the constructed path. The dotted line is the last leg from the final city back to the initial city. Experimental results are shown in Figure 4. AlphaZeroES dramatically outperforms AlphaZero. Interestingly, as a side effect, it minimizes the policy loss about as much as AlphaZero does. It also minimizes the value loss (except at the highest learning rate), though to a lesser extent than AlphaZero.

VKCP. The *vertex k-center problem* (*VKCP*) is a classic combinatorial optimization problem that has applications in facility location and clustering. The problem is as follows. Given n points in \mathbb{R}^d , select a subset \mathcal{S} of k points that minimizes the distance from any point in the original set to its nearest point in \mathcal{S} . The n points can be interpreted as possible locations in which to build facilities (e.g., fire stations, police stations, supply depots, etc.), where \mathcal{S} is the set of locations in which such facilities are built, and the goal is to minimize the maximum distance from any location to its nearest facility. (There is also a variant of the problem that seeks to minimize the *mean* distance.) This problem was first proposed by Hakimi (1964). It is NP-hard, and various approximation algorithms have been proposed for it (Kariv and Hakimi, 1979; Gonzalez, 1985; Dyer and Frieze, 1985; Hochbaum and Shmoys, 1985; Shmoys, 1994). A survey and evaluation of approximation algorithms can be found in Garcia-Diaz et al. (2019). In our experiments, we sample n=40 locations uniformly at random from

Figure 5: VKCP metrics.

Figure 6: MDP metrics.

the unit square and let k=20. At any timestep t, the agent selects a location $a_t \in [n]$ that has not been selected yet to add a facility at that location. The final score is $-\max_{i \in [n]} \min_{j \in \mathcal{S}} d(\mathbf{x}_i, \mathbf{x}_j)$, where $\mathbf{x}_i \in [0,1]^2$ is the position of point $i \in [n]$ and d is the Euclidean metric. The prediction network observes a set of vectors, one for each point, where each vector contains the coordinates of the point and a single bit indicating whether it is in the subset \mathcal{S} . An example state is shown in Figure 1. Black dots are locations, red dots are facilities placed so far, and red lines connect locations to their nearest facility. Experimental results are shown in Figure 5. AlphaZeroES dramatically outperforms AlphaZero. In this environment, AlphaZeroES hardly minimizes the value and policy losses as a side effect.

MDP. In the *maximum diversity problem (MDP)*, we are given n points in \mathbb{R}^d , and we are asked to select a subset S of k points that maximizes the minimum distance between distinct points. (There is also a variant of the problem that seeks to maximize the *mean* distance between distinct points.) This problem is strongly NP-hard, as can be shown via reduction from the clique problem (Kuo et al., 1993; Ghosh, 1996). Various heuristics have been proposed for it (Glover et al., 1998; Katayama and Narihisa, 2005; Silva et al., 2007; Duarte and Martí, 2007; Martí et al., 2010; Lozano et al., 2011; Wu and Hao, 2013; Martí et al., 2013). This problem has applications in ecology, medical treatment, genetic engineering, capital investment, pollution control, system reliability, telecommunication services, molecular structure design, transportation system control, emergency service centers, and energy options, as cataloged by Glover et al. (1998, Table 1). For our experiments, we sample n=40locations uniformly at random from the unit square and let k=20. At any timestep t, the agent can select a point $a_t \in [n]$ that has not been selected yet to add to the set S. The final score is $\min_{i,j\in\mathcal{S},i\neq j}d(\mathbf{x}_i,\mathbf{x}_j)$, where $\mathbf{x}_i\in[0,1]^2$ is the position of point i and d is the Euclidean metric. The prediction network observes a set of vectors, one for each point, where each vector contains the coordinates of the point and a bit flag indicating whether it has been included in the set. An example state is shown in Figure 1. Black dots are points, red dots are points selected so far, and the red line connects the closest pair of points in the set selected so far. Experimental results are shown in Figure 6. AlphaZeroES dramatically outperforms AlphaZero. As a side effect, it minimizes the policy loss about as much as AlphaZero does. However, unlike AlphaZero, it does not seem to minimize the value loss.

6 DISCUSSION

Why does our method work? Our method did not drive value and policy losses down to zero, as standard AlphaZero does, suggesting that maximizing "self-consistency" is not necessarily aligned as an objective with performing better in the environment in terms of score. One reason might be that optimal or strong performance does not actually require *internal consistency* (of value and action predictions), and achieving *good performance* might be easier than achieving internal consistency. A definitive explanation of this phenomenon is beyond the scope of this paper.

That being said, a simple illustrative example might be the following. Consider an environment where there is a simple optimal policy, but the value function under that policy is complicated—that is, for any given state, it is easy to determine what the "right" action to take is, but difficult to predict the final return. AlphaZero's performance intrinsically depends on the accuracy of its learned value function, since that value function is used as an oracle inside the MCTS algorithm in a way that ultimately determines what action to take. If this value function is difficult to learn, AlphaZero might struggle. On the other hand, AlphaZeroES has the flexibility to simply optimize a policy directly, even if it has not learned an accurate value function for it. The value function being accurate might be helpful, but does not seem necessary.

In the appendix, we include an ablation study that investigates whether the improvement of AlphaZeroES over AlphaZero comes mostly from an improved value output or an improved policy output. Interestingly, the answer is environment-dependent.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we set out to study whether AlphaZero and its newest variants can be improved by maximizing the episode score directly instead of minimizing the standard planning loss. Since MCTS is not differentiable, we maximize the episode score by using evolution strategies. We conducted experiments across multiple domains, including standard combinatorial optimization problems and motion planning problems from the literature. In each setting, our approach yielded a dramatic improvement in performance over planning loss minimization.

Our work opens up new possibilities for tackling environments where planning is important. It does this by allowing agents to learn to leverage internal nondifferentiable planning algorithms, such as MCTS, in a purely blackbox way that does not depend on the internal details of those algorithms. Instead of training the agent's parameters to minimize some indirect proxy objective, such as a planning loss, we can now maximize the desired objective directly.

7.1 LIMITATIONS

The original AlphaZero and Gumbel MuZero MCTS algorithms are designed for fully-observable deterministic environments. Thus, so is our method. An extension to stochastic environments exists in the form of Stochastic MuZero (Antonoglou et al., 2022). If we replace the MCTS algorithm with that of Stochastic MuZero, it might be possible to extend our method to stochastic environments.

Another potential direction for future research might be to extend our work to adversarial or multiagent settings. Doing so would require introducing concepts from game theory and making modifications to our method. For example, our method uses ES to maximize the episode score. However, solving a two-player zero-sum game is not a pure *maximization* problem, but rather a *min-max* (saddle-point) problem. Solving such a problem requires more sophisticated gradient dynamics. It might be possible to use a modified version of ES to seek equilibria of the players' individual episode scores with respect to their parameters (see Bichler et al. (2021), Martin and Sandholm (2023), and Martin and Sandholm (2024)). That is outside the scope of this paper, but is potentially interesting for future research.

REFERENCES

- Allen Newell and George Ernst. The search for generality. In *Proc. IFIP Congress*, 1965.
- Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum cost paths. *IEEE transactions on Systems Science and Cybernetics*, 1968.
- Nils Nilsson. Problem-solving methods in artificial intelligence. Artificial Intelligence, 1971.
- Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Correction to "a formal basis for the heuristic determination of minimum cost paths". *ACM SIGART Bulletin*, 1972.
 - Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. *Conference on Neural Information Processing Systems (NeurIPS)*, 2017.
 - Noam Brown et al. Depth-limited solving for imperfect-information games. In NeurIPS, 2018.
 - Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In *Computers and Games*, 2007.
 - David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks and tree search. *Nature*, 2016.
 - David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of Go without human knowledge. *Nature*, 2017a.
 - David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. *Science*, 2018.
 - Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver. Mastering atari, Go, chess and shogi by planning with a learned model. *Nature*, 2020.
 - Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning with Gumbel. In *International Conference on Learning Representations (ICLR)*, 2022.
 - Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte Carlo tree search: a review of recent modifications and applications. *Artificial Intelligence Review*, 2023.
 - Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo McCluskey, Mark Roberts, and Scott Sanner. The 2014 international planning competition: Progress and trends. *AI Magazine*, 2015.
 - Horacio Yanasse and Edson Senne. The minimization of open stacks problem: A review of some properties and their use in pre-processing operations. *European Journal of Operational Research (EJOR)*, 2010.
 - Jan Kuipers, Aske Plaat, Jos A. M. Vermaseren, and H. Jaap van den Herik. Improving multivariate Horner schemes with Monte Carlo tree search. *Computer Physics Communications*, 2013.
 - Jie Jia, Jian Chen, and Xingwei Wang. Ultra-high reliable optimization based on Monte Carlo tree search over nakagami-m fading. *Applied Soft Computing*, 2020.
 - Feng Shi, Ranjith K. Soman, Ji Han, and Jennifer K. Whyte. Addressing adjacency constraints in rectangular floor plans using Monte-Carlo tree search. *Automation in Construction*, 2020.

- Duncan McElfresh, Michael Curry, Tuomas Sandholm, and John Dickerson. Improving policy constrained kidney exchange via pre-screening. *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
 - Carlos Martin, Craig Boutilier, Ofer Meshi, and Tuomas Sandholm. Model-free preference elicitation. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2024.
 - Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving NP-hard problems on graphs with extended AlphaGo Zero. *arXiv:1905.11623*, 2019.
 - Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforcement learning. *Nature*, 2022.
 - Ruiyang Xu and Karl Lieberherr. Learning self-game-play agents for combinatorial optimization problems. *arXiv*:1903.03674, 2019.
 - DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http://github.com/google-deepmind.
 - Simon McGregor. Neural network processing for multiset data. In *International Conference on Artificial Neural Networks*, 2007.
 - Simon McGregor. Further results in multiset processing with neural networks. *Neural networks*, 2008.
 - Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J. Smola. Deep Sets. *Conference on Neural Information Processing Systems (NeurIPS)*, 2017.
 - Edward Wagstaff, Fabian B. Fuchs, Martin Engelcke, Michael A. Osborne, and Ingmar Posner. Universal approximation of functions on sets. *Journal of Machine Learning Research*, 2022.
 - Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs. *arXiv:1811.01900*, 2018.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Conference on Neural Information Processing Systems (NeurIPS)*, 2017.
 - Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. Transformers generalize deepsets and can be extended to graphs & hypergraphs. *Conference on Neural Information Processing Systems* (NeurIPS), 2021.
 - Ronald Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*, 1992.
 - Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In *Conference on Neural Information Processing Systems (NeurIPS)*, 1999.
 - Ivo Grondman, Lucian Busoniu, Gabriel A. D. Lopes, and Robert Babuska. A survey of actor-critic reinforcement learning: standard and natural policy gradients. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 2012.
 - Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients are not all you need. *arXiv:2111.05803*, 2021.

- Ingo Rechenberg and Manfred Eigen. Evolutionsstrategie: Optimierung technischer Systeme nach
 Prinzipien der biologischen Evolution. Frommann-Holzboog Stuttgart, 1973.
 - Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie. Birkhäuser Basel, 1977.
 - Ingo Rechenberg. Evolutionsstrategien. In *Simulationsmethoden in der Medizin und Biologie*. Springer, 1978.
 - Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber. Natural evolution strategies. *Journal of Machine Learning Research*, 2014.
 - Sun Yi, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber. Stochastic search using the natural gradient. In *International Conference on Machine Learning (ICML)*, 2009.
 - John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for zero-order convex optimization: the power of two function evaluations. *IEEE Transactions on Information Theory*, 2015.
 - Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. *Foundations of Computational Mathematics*, 2017.
 - Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. *Journal of Machine Learning Research*, 2017.
 - Albert S. Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and empirical comparison of gradient approximations in derivative-free optimization. *Foundations of Computational Mathematics*, 2022.
 - Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable alternative to reinforcement learning. *arXiv:1703.03864*, 2017.
 - Karel Lenc, Erich Elsen, Tom Schaul, and Karen Simonyan. Non-differentiable supervised learning with evolution strategies and hybrid methods. *arXiv:1906.03139*, 2019.
 - John Geweke. Antithetic acceleration of Monte Carlo integration in Bayesian inference. *Journal of Econometrics*, 1988.
 - Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim Hohm. Mirrored sampling and sequential selection for evolution strategies. In *Parallel Problem Solving from Nature, PPSN XI*, 2010.
 - Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Papademetris, and James Duncan. AdaBelief optimizer: Adapting stepsizes by the belief in observed gradients. *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
 - James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.
 - Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL http://github.com/google/flax.
 - John Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 2007.
 - Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2017.
 - Joseph Culberson. Sokoban is PSPACE-complete. Technical report, University of Alberta, 1997.
 - Andreas Junghanns and Jonathan Schaeffer. Sokoban: A challenging single-agent search problem. In *IJCAI Workshop on Using Games as an Experimental Testbed for AI Reasearch*, 1997.

- Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-agent search methods using domain knowledge. *Artificial Intelligence*, 2001.
 - Nils Froleyks and Tomás Balyo. *Using an algorithm portfolio to solve Sokoban*. PhD thesis, Karlsruher Institut für Technologie (KIT), 2016.
 - Yaron Shoham and Jonathan Schaeffer. The FESS algorithm: A feature based approach to single-agent search. In *IEEE Conference on Games (CoG)*, 2020.
 - Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and Timothy Lillicrap. An investigation of model-free planning. In *International Conference on Machine Learning (ICML)*, pages 2464–2473. Proceedings of Machine Learning Research (PMLR), 2019.
 - Matthias Meger. JSoko website of the open source Sokoban game JSoko, 2023. URL https://jsokoapplet.sourceforge.io/.
 - Rajesh Matai, Surya Singh, and Murari Lal Mittal. Traveling salesman problem: an overview of applications, formulations, and solution approaches. *Traveling salesman problem, theory and applications*, 2010.
 - Richard Karp. Reducibility among combinatorial problems. Springer, 1972.
 - Christos Papadimitriou. The Euclidean travelling salesman problem is NP-complete. *Theoretical computer science*, 1977.
 - Christian Nilsson. Heuristics for the traveling salesman problem. *Linkoping University*, 2003.
 - S. Louis Hakimi. Optimum locations of switching centers and the absolute centers and medians of a graph. *Operations research*, 1964.
 - Oded Kariv and S. Louis Hakimi. An algorithmic approach to network location problems. I: The p-centers. *SIAM journal on applied mathematics*, 1979.
 - Teofilo Gonzalez. Clustering to minimize the maximum intercluster distance. *Theoretical computer science*, 1985.
 - Martin Dyer and Alan Frieze. A simple heuristic for the p-centre problem. *Operations Research Letters*, 1985.
 - Dorit Hochbaum and David Shmoys. A best possible heuristic for the k-center problem. *Mathematics of operations research*, 1985.
 - D. Shmoys. Computing near-optimal solutions to combinatorial optimization problems. Technical report, Cornell University Operations Research and Industrial Engineering, 1994.
 - Jesus Garcia-Diaz, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Saúl Pomares Hernández, Julio César Pérez-Sansalvador, and Noureddine Lakouari. Approximation algorithms for the vertex k-center problem: Survey and experimental evaluation. *IEEE Access*, 2019.
 - Ching-Chung Kuo, Fred Glover, and Krishna S. Dhir. Analyzing and modeling the maximum diversity problem by zero-one programming. *Decision Sciences*, 1993.
 - Jay Ghosh. Computational aspects of the maximum diversity problem. *Operations research letters*, 1996.
 - Fred Glover, Ching-Chung Kuo, and Krishna S. Dhir. Heuristic algorithms for the maximum diversity problem. *Journal of information and Optimization Sciences*, 1998.
 - Kengo Katayama and Hiroyuki Narihisa. An evolutionary approach for the maximum diversity problem. In *Recent advances in memetic algorithms*. Springer, 2005.
 - Geiza C. Silva, Marcos R. Q. De Andrade, Luiz S. Ochi, Simone L. Martins, and Alexandre Plastino. New heuristics for the maximum diversity problem. *Journal of Heuristics*, 2007.

- Abraham Duarte and Rafael Martí. Tabu search and grasp for the maximum diversity problem. European Journal of Operational Research (EJOR), 2007.
 - Rafael Martí, Micael Gallego, and Abraham Duarte. A branch and bound algorithm for the maximum diversity problem. *European Journal of Operational Research (EJOR)*, 2010.
 - Manuel Lozano, Daniel Molina, and C. Garcı. Iterated greedy for the maximum diversity problem. *European Journal of Operational Research (EJOR)*, 2011.
 - Qinghua Wu and Jin-Kao Hao. A hybrid metaheuristic method for the maximum diversity problem. *European Journal of Operational Research (EJOR)*, 2013.
 - Rafael Martí, Micael Gallego, Abraham Duarte, and Eduardo G. Pardo. Heuristics and metaheuristics for the maximum diversity problem. *Journal of Heuristics*, 2013.
 - Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and David Silver. Planning in stochastic environments with a learned model. In *International Conference on Learning Representations (ICLR)*, 2022.
 - Martin Bichler, Maximilian Fichtl, Stefan Heidekrüger, Nils Kohring, and Paul Sutterer. Learning equilibria in symmetric auction games using artificial neural networks. *Nature Machine Intelligence*, 2021.
 - Carlos Martin and Tuomas Sandholm. Finding mixed-strategy equilibria of continuous-action games without gradients using randomized policy networks. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2023.
 - Carlos Martin and Tuomas Sandholm. Joint-perturbation simultaneous pseudo-gradient. *arXiv:2408.09306*, 2024.
 - Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2016.
 - David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The predictron: end-to-end learning and planning. In *International Conference on Machine Learning (ICML)*, 2017b.
 - Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-augmented agents for deep reinforcement learning. *Conference on Neural Information Processing Systems* (NeurIPS), 2017.
 - Arthur Guez, Theophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wierstra, Remi Munos, and David Silver. Learning to search with MCTSnets. In *International Conference on Machine Learning (ICML)*, 2018.
 - Gregory Farquhar, Tim Rocktaeschel, Maximilian Igl, and Shimon Whiteson. TreeQN and ATreeC: Differentiable tree planning for deep reinforcement learning. In *International Conference on Learning Representations (ICLR)*, 2018.
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. *Nature*, 2015.
 - Xuxi Yang, Werner Duvaud, and Peng Wei. Continuous control for searching and planning with a learned model. *arXiv*:2006.07430, 2020.
 - Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon Schmitt, and David Silver. Learning and planning in complex action spaces. In *International Conference on Machine Learning (ICML)*, 2021.

- Alexander Schrijver. *Combinatorial optimization: polyhedra and efficiency*. Springer, 2003.
- John R. Rice. The algorithm selection problem. In Advances in computers. Elsevier, 1976.
 - Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions. In *The Handbook of Market Design*. Oxford University Press, 2013.
 - Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization algorithms over graphs. *Conference on Neural Information Processing Systems* (NeurIPS), 2017.
 - Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon. *European Journal of Operational Research (EJOR)*, 2021.
 - Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, and Andrea Lodi. Predicting solution summaries to integer linear programs under imperfect information with machine learning. *arXiv:1807.11876*, 2018.
 - Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combinatorial optimization: A survey. *Computers & Operations Research*, 2021.
 - Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial optimization problems. *Conference on Neural Information Processing Systems (NeurIPS)*, 2022.
 - Carlo Aironi, Samuele Cornell, and Stefano Squartini. A graph-based neural approach to linear sum assignment problems. *International Journal of Neural Systems*, 2024.
 - Dobrik Georgiev Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Liò. Neural algorithmic reasoning for combinatorial optimisation. In *Learning on Graphs Conference*, 2024.
 - Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch: Generalization guarantees and limits of data-independent discretization. *Journal of the ACM*, 2024. Early version in ICML-18.
 - Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of tree search configuration: Cutting planes and beyond. *Conference on Neural Information Processing Systems (NeurIPS)*, 2021.
 - Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural analysis of branch-and-cut and the learnability of Gomory mixed integer cuts. *Conference on Neural Information Processing Systems (NeurIPS)*, 2022.
 - Guangxiang Zhao, Xu Sun, Jingjing Xu, Zhiyuan Zhang, and Liangchen Luo. Muse: Parallel multi-scale attention for sequence to sequence learning. *arXiv*:1911.09483, 2019.
 - Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv:1607.06450*, 2016.
 - Guido Van Rossum and Fred L. Drake Jr. *Python reference manual*. Centrum voor Wiskunde en Informatica Amsterdam, 1995.

A ADDITIONAL RELATED WORK

In this section, we include additional related work that did not fit in the body of the paper.

AGENTS THAT USE NEURAL NETWORKS AND PLANNING

Value Iteration Network (VIN) (Tamar et al., 2016) is a fully differentiable network with a planning module embedded within. It can learn to plan and predict outcomes that involve planning-based reasoning, such as policies for reinforcement learning. It uses a differentiable approximation of the value-iteration algorithm, which can be represented as a convolutional network, and is trained end-to-end using standard backpropagation.

Predictron (Silver et al., 2017b) consists of a fully abstract model, represented by a Markov reward process, that can be rolled forward multiple "imagined" planning steps. Each forward pass accumulates internal rewards and values over multiple planning depths. The model is trained end-to-end so as to make these accumulated values accurately approximate the true value function.

Value Prediction Network (VPN) (Oh et al., 2017) integrates model-free and model-based RL methods into a single network. In contrast to previous model-based methods, it learns a dynamics model with abstract states that is trained to make action-conditional predictions of future returns rather than future observations. VIN performs value iteration over the entire state space, which requires that 1) the state space is small and representable as a vector with each dimension corresponding to a separate state and 2) the states have a topology with local transition dynamics (such as a 2D grid). VPN does not have these limitations. VPN is trained to make its predicted values, rewards, and discounts match up with those of the real environment (Oh et al., 2017, §3.3).

Imagination-Augmented Agent (I2A) (Racanière et al., 2017) augments a model-free agent with imagination by using environment models to simulate imagined trajectories, which are provided as additional context to a policy network. An environment model is any recurrent architecture which can be trained in an unsupervised fashion from agent trajectories. Given a past state and current action, the environment model predicts the next state and observation. The imagined trajectory is initialized with the current observation and rolled out multiple time steps into the future by feeding simulated observations.

MCTSnet (Guez et al., 2018) incorporates simulation-based search inside a neural network, by expanding, evaluating and backing-up a vector embedding. The parameters of the network are trained end-to-end using gradient-based optimization. When applied to small searches in the well-known planning problem Sokoban, it outperformed prior MCTS baselines.

TreeQN (Farquhar et al., 2018) is an end-to-end differentiable architecture that substitutes value function networks in discrete-action domains. Instead of directly estimating the state-action value from the current encoded state, as in *Deep Q-Networks (DQN)* (Mnih et al., 2015), it uses a learned dynamics model to perform planning up to some fixed-depth. The result is a recursive, tree-structured network between the encoded state and the predicted state-action values at the leafs. The authors also propose ATreeC, an actor-critic variant that augments TreeQN with a softmax layer to form a stochastic policy network. Unlike MCTS-based methods, the shape of the planning tree is fixed, and the agent cannot "focus" on more promising subtrees to expand during planning.

Yang et al. (2020) proposed Continuous MuZero, an extension of MuZero to continuous actions, and showed that it outperforms the *soft actor-critic (SAC)* algorithm. Hubert et al. (2021) proposed Sampled MuZero, an extension of the MuZero algorithm that is able to learn in domains with arbitrarily complex action spaces (including ones that are continuous and high-dimensional) by planning over sampled actions.

Stochastic MuZero (Antonoglou et al., 2022) extended MuZero to environments that are inherently stochastic, partially observed, or so large and complex that they appear stochastic to a finite agent. It learns a stochastic model incorporating after-states following an action, and uses this model to perform a stochastic tree search. It matches or exceeds the state of the art in a canonical set of environments, including 2048.

MACHINE LEARNING FOR TUNING INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION SOLVERS

Another, different, form of learning in search techniques is tuning *integer programming (IP)* and *combinatorial optimization (CO)* (Schrijver, 2003) techniques. The idea of automated algorithm tuning goes back at least to Rice (1976). It has been applied in industrial practice at least since 2001, when Sandholm (2013) started using machine learning to learn IP algorithm configurations (related to branching, cutting plane generation, *etc.*) and IP formulations based on problem instance features, in the context of combinatorial auction winner determination in large-scale sourcing auctions. In 2007, the leading commercial general-purpose IP solvers started shipping with such automated configuration tools.

IP solvers typically use a tree search algorithm called branch-and-cut. However, such solvers typically come with a variety of tunable parameters that are challenging to tune by hand. Research has demonstrated the power of using a data-driven approach to automatically optimize these parameters.

Similarly, real-world applications that can be formulated as CO problems often have recurring patterns or structure that can be exploited by heuristics. The design of good heuristics or approximation algorithms for NP-hard CO problems often requires significant specialized knowledge and trial-and-error, which can be a challenging and tedious process.

The rest of this section reviews some of the newer work on automated algorithm configuration in IP and CO.

Khalil et al. (2017) sought to automate the CO tuning process using a combination of reinforcement learning and graph embedding. They applied their framework to a diverse range of optimization problems over graphs, learning effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.

Bengio et al. (2021) surveyed recent attempts from the machine learning and operations research communities to leverage machine learning to solve IP and CO problems. According to the authors, "Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way." They cite Larsen et al. (2018), who train a neural network to predict the solution of a stochastic load planning problem for which a deterministic mixed integer linear programming formulation exists. The authors state that "The nature of the application requires to output solutions in real time, which is not possible either for the stochastic version of the load planning problem or its deterministic variant when using state-of-the-art MILP solvers. Then, ML turns out to be suitable for obtaining accurate solutions with short computing times because some of the complexity is addressed offline, *i.e.*, in the learning phase, and the run-time (inference) phase is extremely quick."

Another survey of reinforcement learning for CO can be found in Mazyavkina et al. (2021). According to the authors, "Many traditional algorithms for solving combinatorial optimization problems involve using hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed by domain experts and may often be suboptimal due to the hard nature of the problems. *Reinforcement learning (RL)* proposes a good alternative to automate the search of these heuristics by training an agent in a supervised or self-supervised manner."

To address the scalability challenge in large-scale CO, Qiu et al. (2022) propose an approach called *Differentiable Meta Solver (DIMES)*. Unlike previous deep reinforcement learning methods, which suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES introduces a compact continuous space for parameterizing the underlying distribution of candidate solutions. Such a continuous space allows stable REINFORCE-based training and fine-tuning via massively parallel sampling.

Aironi et al. (2024) proposed a graph-based neural approach to linear sum assignment problems, which are well-known CO problems with applications in domains such as logistics, robotics, and telecommunications. In general, obtaining an optimal solution to such problems is computationally infeasible even in small settings, so heuristic algorithms are often used to find near-optimal solutions. Their paper investigated a general-purpose learning strategy that uses a bipartite graph to describe the problem structure and a message-passing graph neural network model to learn the correct mapping.

The proposed graph-based solver, although sub-optimal, exhibited the highest scalability, compared with other state-of-the-art heuristic approaches.

Georgiev et al. (2024) note that "Solving NP-hard/complete combinatorial problems with neural networks is a challenging research area that aims to surpass classical approximate algorithms. The long-term objective is to outperform hand-designed heuristics for NP-hard/complete problems by learning to generate superior solutions solely from training data." The authors proposed leveraging recent advancements in neural algorithmic reasoning to improve learning of CO problems.

Balcan et al. (2024) provide the first sample complexity guarantees for tree search parameter tuning, bounding the number of samples sufficient to ensure that the average performance of tree search over the samples nearly matches its future expected performance on the unknown instance distribution. Balcan et al. (2021) prove the first guarantees for learning high-performing cut-selection policies tailored to the instance distribution at hand using samples. Balcan et al. (2022) derive sample complexity guarantees for using machine learning to determine which cutting planes to apply during branch-and-cut.

B STATISTICAL TESTS

We show statistical tests for each environment in Table 1. For each environment's comparison, we selected the best-performing learning rate for each method (AlphaZero vs. AlphaZeroES) under 10 trials, and compare the final mean scores. We used the same JAX PRNG key for each individual pair, that is, common random numbers.

	Wilcoxon signed-rank test		Paired t-test	
Environment	statistic	p-value	statistic	p-value
Navigation	55	0.000976562	24.1637	8.51516×10^{-10}
Sokoban	55	0.000976562	24.3562	7.93596×10^{-10}
TSP	55	0.000976562	6.89033	3.57182×10^{-5}
VKCP	55	0.000976562	13.4227	1.47451×10^{-7}
MDP	55	0.000976562	3.85802	0.00192935

Table 1: Statistical tests for each environment.

All pairwise differences were positive, so the Wilcoxon statistic maxed out at $n(n+1)/2 = 10 \times 11/2 = 55$. All p-values are well under 0.05. In conclusion, all the results are highly statistically significant.

C SCALABILITY

In this section, we run experiments that test the scalability of our method, AlphaZeroES, in comparison to standard AlphaZero. Specifically, we see which method performs best for various problem sizes (such as number of nodes for TSP problems). Each individual run received exactly 1 hour of training time on a single NVIDIA A100 SXM4 40GB GPU. Results are shown in Figures 7, 8, and 9. In the legends of these plots, loss=alphazero denotes AlphaZero and loss=score_es denotes AlphaZeroES. Likewise, in Figure 10, we compare the scalability of AlphaZero against AlphaZeroES in terms of the size of the network (specifically, the hidden layer size). In all figures, AlphaZeroES outperforms AlphaZero regardless of the scale of the problem.

Regarding the performance of OpenAI-ES vs. classical gradient-based methods on high-dimensional problems, Salimans et al. (2017) note the following: "The resemblance of ES to finite differences suggests the method will scale poorly with the dimension of the parameters θ . [...] However, it is important to note that this does not mean that larger neural networks will perform worse than smaller networks when optimized using ES: what matters is the difficulty, or intrinsic dimension, of the optimization problem [emphasis added]. To see that the dimensionality of our model can be completely separate from the effective dimension of the optimization problem, consider a regression problem where we approximate a univariate variable y with a linear model $\hat{y} = \mathbf{x} \cdot \mathbf{w}$: if we double the number of features and parameters in this model by concatenating x with itself (i.e. using features

 $\mathbf{x}' = (\mathbf{x}, \mathbf{x})$), the problem does not become more difficult. The ES algorithm will do exactly the same thing when applied to this higher dimensional problem, as long as we divide the standard deviation of the noise by two, as well as the learning rate."

Figure 7: TSP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom).

Figure 8: VKCP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom). The size of the choice set is half the number of points.

Figure 9: MDP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom). The size of the choice set is half the number of points.

Figure 10: Performance comparison for different network sizes. Left to right, top to bottom: TSP, VKCP, MDP, and Navigation.

Figure 11: Ablation. Left to right, top to bottom: TSP, VKCP, MDP, and Navigation.

D **ABLATION**

1269 1270

1271 1272

1273

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1293 1294 1295 To further investigate where the advantage of AlphaZeroES over AlphaZero comes from, and whether most of the improvement comes from a better value or policy output, we conducted an ablation study as follows. First, we train a combined policy/value network under the standard AlphaZero loss, as described in §4 and §5. Second, we create two copies of this network and use only the value output of one (henceforth, we call it the *value* network) and the policy output of the other (henceforth, we call it the *policy* network). We do this so that we can further train the value and policy outputs separately, starting from the parameters obtained by vanilla AlphaZero. Third, we *freeze* the value network (or policy network) and train *only* the policy network (or value network) under ES.

Results are shown in Figure 11. The original AlphaZero baseline is labeled with loss=alphazero. The subsequent training runs, which start from the final parameters of this baseline, are labeled with loss=score_es. The label freeze_policy denotes whether the policy network is frozen. The label freeze_value denotes whether the value network is frozen. As expected, allowing either (or both) of these to be further trained under ES improves performance over the AlphaZero baseline. Furthermore, allowing both of them to be trained yields maximum performance. In some environments, namely TSP, VKCP, and MDP, freezing only the value network outperforms freezing only the policy network, suggesting that improving the policy output is more important. In other environments, namely Navigation, freezing only the policy network outperforms freezing only the value network, suggesting that improving the value output is more important. Thus, interestingly, where most of the improvement of AlphaZeroES over vanilla AlphaZero comes from—a better value output or a better policy output—is environment-dependent.

Figure 12: Performance under the attention-based architecture on TSP, VKCP, MDP, and Navigation.

Ε ARCHITECTURE COMPARISON

To check whether our approach generalizes to architectures rather than DeepSets (Zaheer et al., 2017), we run experiments with a different architecture, namely one based on neural attention (Vaswani et al., 2017). A theoretical comparison of these two architectures can be found in Wagstaff et al. (2022). Our architecture starts by applying an affine layer mapping the multiset of inputs to a multiset of hidden vectors. Then, we apply a sequence of D attention blocks, where D is a depth hyperparameter. (We use D=2.) Each such block is a parallel attention block, as described in Zhao et al. (2019). It applies layer normalization (Ba et al., 2016), followed by a parallel application of (1) a pointwise feedforward multilayer perceptron with a single hidden layer and (2) a multi-head attention module (Vaswani et al., 2017). These two outputs are then combined with a skip connection from the input to the block, via simple addition. For reduction, we apply a many-to-one multi-head attention module on a learned readout vector initialized with random normal entries. After that, we apply the ReLU activation function followed by an affine layer. Results are shown in Figure 12. Our method, AlphaZeroES, continues to outperform AlphaZero on the new architecture.

F CODE

1323 1324 1325

1326 1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1338

1339 1340

1341 1342

1343

1344 1345

1346

1347

1348

1349

The following is an implementation of our method in the Python programming language (Van Rossum and Drake Jr., 1995). The libraries used here are described in §5 of the paper.

File rl_utils.py:

```
import jax
                                                                                 1
from jax import lax, random
                                                                                 3
from jax import numpy as jnp
                                                                                 4
                                                                                 5
```

```
1350
       def get_returns(episode):
                                                                                         6
1351
                                                                                         7
           def f(carry, reward_discount):
1352
               reward, discount = reward_discount
                                                                                         8
               new_carry = reward + discount * carry
                                                                                         9
1353
               return new_carry, new_carry
                                                                                         10
1354
                                                                                         11
1355
           rewards = episode["reward"]
                                                                                         12
1356
           discounts = episode["discount"]
                                                                                         13
1357
           init = jnp.zeros(rewards.shape[1:])
                                                                                         14
1358
           xs = rewards, discounts
                                                                                         15
           _, returns = lax.scan(f, init, xs, unroll=True, reverse=True)
                                                                                         16
1359
                                                                                         17
           return returns
1360
                                                                                         18
1361
                                                                                         19
1362
                                                                                         20
       def get_reach_probs(episode):
           discounts = episode["discount"]
                                                                                         21
1363
                                                                                         22
           reach_probs = jnp.cumprod(discounts[:-1])
1364
           reach_probs = jnp.insert(reach_probs, 0, 1)
                                                                                         23
1365
                                                                                         24
           return reach_probs
1366
                                                                                         25
1367
                                                                                         26
                                                                                         27
1368
       def get_score(episode):
           reach_probs = get_reach_probs(episode)
                                                                                         28
1369
           return reach_probs @ episode["reward"]
                                                                                         29
1370
                                                                                         30
1371
                                                                                         31
1372
       def sample_episode(env, agent, params, key, unroll=1):
                                                                                         32
                                                                                         33
1373
           def step(state_memory, key):
                                                                                         34
               state, memory = state_memory
1374
               action, new_memory, agent_extra = agent.apply(params, state, key,
                                                                                         35
1375
                 → memory)
1376
                                                                                         36
               reward, discount, new_state = env.step(state, action)
1377
                                                                                         37
               return (new_state, new_memory), {
                    "state": state,
                                                                                         38
1378
                    "action": action,
                                                                                         39
1379
                    "agent_extra": agent_extra,
                                                                                         40
1380
                    "reward": reward,
                                                                                         41
1381
                    "discount": discount,
                                                                                         42
1382
                    "memory": memory,
                                                                                         43
                                                                                         44
1383
                                                                                         45
1384
           key, subkey = random.split(key)
                                                                                         46
1385
                                                                                         47
           state = env.init(subkey)
1386
                                                                                         48
1387
           key, subkey = random.split(key)
                                                                                         49
                                                                                         50
           memory = agent.init_memory(subkey)
1388
                                                                                         51
1389
           keys = random.split(key, env.max_steps())
                                                                                         52
1390
           (state, memory), episode = lax.scan(step, (state, memory), keys,
                                                                                         53
1391
             → unroll=unroll)
1392
                                                                                         54
           episode["state"] = jax.tree.map(
                                                                                         55
1393
               lambda xs, x: jnp.concatenate([xs, x[None]]),
                                                                                         56
1394
               episode["state"],
                                                                                         57
1395
                                                                                         58
               state,
1396
           )
                                                                                         59
1397
                                                                                         60
           episode["memory"] = jax.tree.map(
                                                                                         61
1398
               lambda xs, x: jnp.concatenate([xs, x[None]]),
                                                                                         62
1399
               episode["memory"],
                                                                                         63
1400
                                                                                         64
               memory,
1401
                                                                                         65
1402
                                                                                         66
                                                                                         67
1403
           return episode
                                                                                         68
```

```
1404
                                                                                          69
1405
                                                                                         70
       def get_num_actions(env):
1406
                                                                                         71
           key = random.key(0)
           state = env.init(key)
                                                                                         72
1407
           space = env.action_space(state)
                                                                                         73
1408
                                                                                          74
           return space.mask.size
1409
1410
       File rl_losses.py:
1411
1412
       import optax
       from jax import lax, nn
                                                                                          2
1413
                                                                                         3
       from jax import numpy as jnp
1414
                                                                                         4
1415
                                                                                         5
       from lib.rl_utils import get_reach_probs, get_returns
1416
                                                                                         6
                                                                                         7
1417
                                                                                          8
       def mcts_action_loss(episode):
1418
                                                                                         9
           predictions = episode["agent_extra"]["mcts_action_prediction"]
1419
           targets = episode["agent_extra"]["mcts_action_target"]
                                                                                          10
1420
           mask = episode["agent_extra"]["mcts_action_mask"]
                                                                                          11
1421
           losses = optax.kl_divergence(
                                                                                          12
1422
               \verb"nn.log_softmax(predictions, where=mask)",
                                                                                          13
               lax.stop_gradient(targets),
                                                                                          14
1423
                                                                                          15
               where=mask,
1424
                                                                                          16
1425
           return get_reach_probs(episode) @ losses
                                                                                          17
1426
                                                                                          18
1427
                                                                                          19
       def mcts_value_loss_mc(episode):
                                                                                         20
1428
                                                                                         21
             ""Monte Carlo
1429
           predictions = episode["agent_extra"]["mcts_value_prediction"]
                                                                                         22
1430
                                                                                         23
           targets = get_returns(episode)
1431
           losses = optax.squared_error(
                                                                                         24
                                                                                         25
1432
               predictions,
                                                                                          26
1433
               lax.stop_gradient(targets),
                                                                                          27
           )
1434
           return get_reach_probs(episode) @ losses
                                                                                          28
1435
                                                                                         29
1436
                                                                                         30
                                                                                         31
1437
       def mcts_value_loss_dp(episode):
           """Dynamic programming or self-bootstrapping."""
                                                                                         32
1438
           predictions = episode["agent_extra"]["mcts_value_prediction"]
                                                                                          33
1439
                                                                                          34
           targets = episode["agent_extra"]["mcts_value_target"]
1440
                                                                                          35
           losses = optax.squared_error(
1441
               predictions,
                                                                                          36
1442
                                                                                          37
               lax.stop_gradient(targets),
                                                                                         38
1443
                                                                                         39
           return get_reach_probs(episode) @ losses
1444
                                                                                         40
1445
                                                                                         41
1446
       def alphazero_loss(episode):
                                                                                         42
                                                                                         43
1447
           value_loss = mcts_value_loss_mc(episode)
                                                                                          44
           action_loss = mcts_action_loss(episode)
1448
           loss = value_loss + action_loss
                                                                                          45
1449
           metrics = {
                                                                                         46
1450
                "value_loss": value_loss,
                                                                                         47
1451
               "action_loss": action_loss,
                                                                                         48
               "loss": loss,
1452
                                                                                         49
                                                                                          50
1453
           return loss, metrics
                                                                                          51
1454
                                                                                         52
1455
                                                                                         53
1456
       def mcts_consistency_loss(episode):
                                                                                          54
                                                                                         55
1457
           value_loss = mcts_value_loss_dp(episode)
```

```
1458
           action_loss = mcts_action_loss(episode)
                                                                                          56
1459
                                                                                          57
           loss = value_loss + action_loss
1460
           metrics = {
                                                                                          58
               "value_loss": value_loss,
                                                                                          59
1461
               "action_loss": action_loss,
                                                                                          60
1462
               "loss": loss,
                                                                                          61
1463
                                                                                          62
1464
                                                                                          63
           return loss, metrics
1465
1466
       File mcts.py:
1467
       import jax
1468
       import mctx
                                                                                          2
1469
       from jax import lax, nn
                                                                                          3
1470
                                                                                          4
       from jax import numpy as jnp
                                                                                          5
1471
                                                                                          6
1472
                                                                                          7
       def gumbel_muzero(
1473
                                                                                          8
           state,
1474
                                                                                          9
           prediction_fn,
1475
           step_fn,
                                                                                          10
1476
                                                                                          11
           action_mask,
                                                                                          12
           budget,
1477
                                                                                          13
           key,
1478
           algorithm="gumbel_muzero",
                                                                                          14
1479
                                                                                          15
           **kwargs,
1480
                                                                                          16
       ):
1481
           def root_fn(state):
                                                                                          17
               value, logits = prediction_fn(state)
                                                                                          18
1482
                                                                                          19
               return mctx.RootFnOutput(
1483
                                           # type: ignore
                    prior_logits=logits,
                                                                                          20
1484
                    value=value, # type: ignore
                                                                                          21
1485
                    embedding=state, # type: ignore
                                                                                          22
                                                                                          23
1486
               )
                                                                                          24
1487
           def recurrent_fn(params, key, action, state):
                                                                                          25
1488
               reward, discount, new_state = step_fn(state, action)
                                                                                          26
1489
                                                                                          27
               value, logits = prediction_fn(new_state)
1490
                                                                                          28
               output = mctx.RecurrentFnOutput(
                    reward=reward, # type: ignore
                                                                                          29
1491
                                                                                          30
                    discount=discount, # type: ignore
1492
                    prior_logits=logits, # type: ignore
                                                                                          31
1493
                    value=value, # type: ignore
                                                                                          32
1494
                                                                                          33
               )
1495
                                                                                          34
               return output, new_state
                                                                                          35
1496
           algorithm_fn = {
                                                                                          36
1497
                "gumbel_muzero": mctx.gumbel_muzero_policy,
                                                                                          37
1498
               "muzero": mctx.muzero_policy,
                                                                                          38
1499
                                                                                          39
           }[algorithm]
1500
                                                                                          40
           root = root_fn(state)
                                                                                          41
1501
           outputs = algorithm_fn(
                                                                                          42
1502
               params=(),
                                                                                          43
1503
                                                                                          44
               rng_key=key,
1504
                                                                                          45
               root=jax.tree.map(lambda x: jnp.expand_dims(x, 0), root),
1505
               recurrent_fn=jax.vmap(recurrent_fn, [None, None, 0, 0]),
                                                                                          46
1506
               num_simulations=budget + 1,
                                                                                          47
               invalid_actions=jax.tree.map(lambda x: jnp.expand_dims(~x, 0),
                                                                                          48
1507
                 → action_mask),
1508
                                                                                          49
               **kwargs,
1509
                                                                                          50
           )
1510
           summary = jax.tree.map(lambda x: x[0], outputs.search_tree.summary())
                                                                                          51
1511
           output = jax.tree.map(lambda x: x[0], outputs)
                                                                                          52
```

```
1512
           return {
                                                                                        53
1513
                                                                                        54
               "action": output.action,
1514
               "action_onehot": nn.one_hot(output.action, output.action_weights.
                                                                                        55
1515
               "action_weights": lax.stop_gradient(output.action_weights),
                                                                                        56
1516
               "root_value": root.value,
                                                                                        57
1517
               "root_logits": root.prior_logits,
                                                                                        58
1518
                                                                                        59
               "root_state": state,
1519
               "search_tree": lax.stop_gradient(output.search_tree),
                                                                                        60
1520
               "visit_counts": summary.visit_counts,
                                                                                        61
               "visit_probs": summary.visit_probs,
                                                                                        62
1521
               "value": lax.stop_gradient(summary.value),
                                                                                        63
1522
               "qvalues": summary.qvalues,
                                                                                        64
1523
               "action_mask": action_mask,
                                                                                        65
1524
           }
                                                                                        66
1525
```

File alphazero.py:

```
1527
       from functools import partial
1528
                                                                                          2
1529
                                                                                          3
       from lib import mcts
1530
                                                                                          4
                                                                                          5
1531
       class AlphaZero:
                                                                                          6
1532
                                                                                          7
1533
                                                                                          8
           def __init__(self, env, pred_fn, budget):
1534
                                                                                          9
                self.env = env
1535
                self.pred_fn = pred_fn
                                                                                          10
                self.budget = budget
                                                                                          11
1536
                                                                                          12
1537
           def init(self, params_key, state, key, memory):
                                                                                          13
1538
                return self.pred_fn.init(params_key, state)
                                                                                          14
1539
                                                                                          15
1540
           def init_memory(self, key):
                                                                                          16
                                                                                          17
1541
                return None
                                                                                          18
1542
           def apply(self, params, state, key, memory):
                                                                                          19
1543
                space = self.env.action_space(state)
                                                                                          20
1544
                                                                                          21
                output = mcts.gumbel_muzero(
                                                                                          22
1545
                    state=state,
                    prediction_fn=partial(self.pred_fn.apply, params),
                                                                                          23
1546
                    step_fn=self.env.step,
                                                                                          24
1547
                                                                                          25
                    budget=self.budget,
1548
                                                                                          26
                    key=key,
1549
                    action_mask=space.mask,
                                                                                          27
                                                                                          28
1550
                                                                                          29
                return (
1551
                    output["action"],
                                                                                          30
1552
                    memory,
                                                                                          31
1553
                                                                                          32
                    {
                        "search_tree": output["search_tree"],
                                                                                          33
                        "mcts_value_prediction": output["root_value"],
                                                                                          34
1555
                        "mcts_value_target": output["value"],
                                                                                          35
1556
                        "mcts_action_prediction": output["root_logits"],
                                                                                          36
1557
                         "mcts_action_target": output["action_weights"],
                                                                                          37
1558
                         "mcts_action_mask": space.mask,
                                                                                          38
1559
                                                                                          39
                    },
1560
               )
                                                                                          40
```

File predictors.py:

```
import argparse

from flax import linen as nn

3
```

```
1566
       from jax import numpy as jnp
                                                                                          4
1567
                                                                                          5
1568
       from lib import envs, rl_utils
                                                                                          6
                                                                                          7
1569
                                                                                          8
1570
                                                                                          9
       class DensePredictor(nn.Module):
1571
                                                                                          10
           args: argparse.Namespace
1572
           env: envs.Env
                                                                                          11
1573
                                                                                          12
1574
           @nn.compact
                                                                                          13
                                                                                          14
           def __call__(self, state):
1575
               x = self.env.observation_vector(state)
                                                                                          15
1576
               x = nn.Dense(self.args.hidden_dim)(x)
                                                                                          16
1577
               x = nn.relu(x)
                                                                                          17
1578
                                                                                          18
                                                                                          19
               logits = nn.Dense(rl_utils.get_num_actions(self.env))(x)
1579
                                                                                          20
1580
                if hasattr(self.env, "players"):
                                                                                          21
1581
                                                                                          22
                    values = nn.Dense(self.env.players)(x)
1582
                    return values, logits
                                                                                          23
1583
                else:
                                                                                          24
                                                                                          25
1584
                    (value,) = nn.Dense(1)(x)
                    return value, logits
                                                                                          26
1585
                                                                                          2.7
1586
                                                                                          28
1587
                                                                                          29
       class DeepSetsPredictor(nn.Module):
1588
                                                                                          30
           args: argparse.Namespace
           env: envs.Env
                                                                                          31
1589
                                                                                          32
1590
           @nn.compact
                                                                                          33
1591
                                                                                          34
           def __call__(self, state):
1592
                                                                                          35
               x, mask = self.env.observation_multiset(state)
1593
                                                                                          36
               if mask is None:
                                                                                          37
                    mask = jnp.ones(x.shape[0], bool)
1594
                                                                                          38
1595
                for _ in range(self.args.depth):
                                                                                          39
1596
                                                                                          40
                    x_skip = x
1597
                                                                                          41
                    x = nn.Dense(self.args.hidden_dim)(x)
1598
                    x = nn.relu(x)
                                                                                          42
                    x1 = nn.Dense(self.args.hidden_dim)(x.sum(0, where=mask[...,
                                                                                          43
1599
                      → None]))
1600
                    x1 /= 1 + mask.sum(0)[..., None]
                                                                                          44
1601
                                                                                          45
                    x2 = nn.Dense(self.args.hidden_dim, use_bias=False)(x)
1602
                                                                                          46
                    x = x1 + x2
1603
                    x = nn.relu(x)
                                                                                          47
                    if x_skip.shape == x.shape:
                                                                                          48
1604
                                                                                          49
                        x += x_skip
1605
                                                                                          50
1606
                match self.env:
                                                                                          51
1607
                                                                                          52
                    case (
                                                                                          53
                        envs.EuclideanTSP()
                         | envs.Knapsack()
                                                                                          54
1609
                          envs.EuclideanFLP()
                                                                                          55
1610
                          envs.SubsetSum()
                                                                                          56
1611
                                                                                          57
                         | envs.MaximumDiversityProblem()
1612
                         | envs.MaxLengthTSP()
                                                                                          58
1613
                                                                                          59
                    ):
                        logits = nn.Dense(1)(x)[..., 0]
                                                                                          60
1614
                    case envs.Sokoban() | envs.Reach():
                                                                                          61
1615
                                                                                          62
                        y = x.mean(0, where=mask[..., None])
1616
                        logits = nn.Dense(rl_utils.get_num_actions(self.env))(y)
                                                                                          63
1617
                    case _:
                                                                                          64
1618
                                                                                          65
                        breakpoint()
                                                                                          66
1619
                        raise NotImplementedError(self.env)
                                                                                          67
```

```
1620
               x = x.mean(0, where=mask[..., None])
                                                                                          68
1621
                                                                                          69
1622
                if hasattr(self.env, "players"):
                                                                                          70
                    values = nn.Dense(self.env.players)(x)
                                                                                          71
1623
                    return values, logits
                                                                                          72
                else:
                                                                                          73
1625
                    (value,) = nn.Dense(1)(x)
                                                                                          74
1626
                    return value, logits
                                                                                          75
1627
                                                                                          76
1628
                                                                                          77
                                                                                          78
       class AttentionPredictor(nn.Module):
1629
                                                                                          79
           args: argparse.Namespace
1630
                                                                                          80
           env: envs.Env
1631
                                                                                          81
1632
           @nn.compact
                                                                                          82
                                                                                          83
           def __call__(self, state):
1633
               x, mask = self.env.observation_multiset(state)
                                                                                          84
1634
                                                                                          85
               if mask is None:
1635
                    mask = jnp.ones(x.shape[0], bool)
                                                                                          86
1636
                                                                                          87
1637
               x = nn.Dense(self.args.hidden_dim)(x)
                                                                                          88
                                                                                          89
1638
                for _ in range(self.args.depth):
                                                                                          90
1639
                    x_norm = nn.LayerNorm(use_bias=False, use_scale=False)(x)
                                                                                          91
1640
                                                                                          92
1641
                                                                                          93
                    y = nn.Dense(self.args.hidden_dim)(x_norm)
1642
                                                                                          94
                    y = nn.relu(y)
                                                                                          95
                    y = nn.Dense(self.args.hidden_dim, kernel_init=nn.
1643
                      → initializers.zeros)(y)
1644
                                                                                          96
1645
                    z = nn.MultiHeadAttention(self.args.heads)(x_norm, mask=mask)
                                                                                          97
1646
                                                                                          98
1647
                                                                                          99
                    x += y + z
                                                                                          100
1648
                match self.env:
                                                                                          101
1649
                    case (
                                                                                          102
1650
                                                                                          103
                        envs.EuclideanTSP()
1651
                                                                                          104
                         envs.Knapsack()
1652
                         | envs.EuclideanFLP()
                                                                                          105
                         | envs.SubsetSum()
                                                                                          106
1653
                         | envs.MaximumDiversityProblem()
                                                                                          107
1654
                                                                                          108
                         | envs.MaxLengthTSP()
1655
                                                                                          109
                    ):
1656
                        logits = nn.Dense(1)(x)[..., 0]
                                                                                          110
1657
                    case envs.Sokoban() | envs.Reach():
                                                                                          111
                        y = x.mean(0, where=mask[..., None])
                                                                                          112
1658
                        logits = nn.Dense(rl_utils.get_num_actions(self.env))(y)
                                                                                          113
1659
                                                                                          114
                    case :
1660
                                                                                          115
                        breakpoint()
1661
                        raise NotImplementedError(self.env)
                                                                                          116
                                                                                          117
                readout = self.param(
                                                                                          118
1663
                    "readout", nn.initializers.normal(1), [self.args.hidden_dim]
                                                                                          119
1664
                                                                                          120
1665
                x = nn.MultiHeadAttention(self.args.heads)(readout[None], x, mask
                                                                                          121
1666
                 → =mask).squeeze(
1667
                                                                                          122
                                                                                          123
1668
                                                                                          124
1669
                if hasattr(self.env, "players"):
                                                                                          125
1670
                    values = nn.Dense(self.env.players)(x)
                                                                                          126
1671
                    return values, logits
                                                                                          127
1672
                else:
                                                                                          128
                    (value,) = nn.Dense(1)(x)
                                                                                          129
1673
                    return value, logits
                                                                                          130
```

```
1674
                                                                                            131
1675
                                                                                            132
1676
       class MixedPredictor(nn.Module):
                                                                                            133
           value: nn.Module
                                                                                            134
1677
           policy: nn.Module
                                                                                            135
1678
                                                                                            136
1679
                                                                                            137
            @nn.compact
1680
            def __call__(self, state):
                                                                                            138
1681
                value, _ = self.value(state)
                                                                                            139
1682
                _, logits = self.policy(state)
                                                                                            140
                return value, logits
                                                                                            141
1683
1684
```

File pseudogradient.py:

```
1685
1686
       from functools import partial
1687
                                                                                          2
                                                                                          3
       import jax
1688
       {\color{red} \text{import optax}}
                                                                                          4
1689
       from jax import lax, random
                                                                                          5
1690
       from jax import numpy as jnp
                                                                                          6
1691
                                                                                          7
       from jax.scipy import stats
1692
       from optax import tree_utils as otu
                                                                                          8
                                                                                          9
1693
                                                                                           10
1694
       class Normal:
                                                                                           11
1695
           def __init__(self, loc, scale):
                                                                                           12
1696
                self.loc = loc
                                                                                           13
1697
                self.scale = scale
                                                                                           14
                                                                                           15
1698
           def sample(self, key):
                                                                                           16
1699
                z = otu.tree_random_like(key, self.loc)
                                                                                           17
1700
                return jax.tree.map(lambda 1, z: 1 + self.scale * z, self.loc, z)
                                                                                           18
1701
                                                                                           19
                                                                                          20
1702
           def sample_antithetic(self, key):
                                                                                          21
                z = otu.tree_random_like(key, self.loc)
1703
                                                                                           22
                return jax.tree.map(
1704
                    lambda 1, z: 1 + self.scale * jnp.stack([z, -z]),
                                                                                          23
1705
                                                                                          24
                    self.loc,
1706
                                                                                          25
                    Ζ,
                                                                                          26
                )
1707
                                                                                          27
1708
           def logpdf(self, x):
                                                                                          28
1709
                                                                                          29
                logpdfs = jax.tree.map(
1710
                                                                                          30
                    lambda 1, x: stats.norm.logpdf(x, 1, self.scale),
1711
                    self.loc,
                                                                                           31
1712
                                                                                           32
                                                                                          33
                )
1713
                                                                                          34
                return otu.tree_sum(logpdfs)
1714
                                                                                          35
1715
                                                                                          36
1716
       def smoothe(scale, distribution="normal"):
                                                                                          37
1717
           # Evolution Strategies as a Scalable Alternative to Reinforcement
                                                                                          38
             → Learning
1718
           # https://arxiv.org/abs/1703.03864
                                                                                           39
1719
           # DiCE: The Infinitely Differentiable Monte-Carlo Estimator
                                                                                          40
1720
                                                                                          41
           # https://arxiv.org/abs/1802.05098
1721
           # Gradients are Not All You Need
                                                                                          42
1722
           # https://arxiv.org/abs/2111.05803
                                                                                          43
                                                                                          44
1723
           match distribution:
                                                                                          45
1724
                                                                                          46
                case "normal":
1725
                    distribution_cls = Normal
                                                                                          47
1726
                case _:
                                                                                          48
1727
                    raise NotImplementedError
                                                                                          49
```

```
1728
                                                                                       50
1729
                                                                                       51
           def g(f, x, key):
1730
               dist = distribution_cls(x, scale)
                                                                                       52
1731
                                                                                       53
                                                                                       54
               key, subkey = random.split(key)
1732
               samples = lax.stop_gradient(dist.sample_antithetic(subkey))
                                                                                       55
1733
                                                                                       56
1734
               outputs = jax.vmap(f, [0, None], axis_size=2)(samples, key)
                                                                                       57
                                                                                       58
1735
               log_probs = jax.vmap(dist.logpdf, axis_size=2)(samples)
                                                                                       59
1736
                                                                                       60
               assert log_probs.ndim == 1
1737
                                                                                       61
1738
               ones = jnp.exp(log_probs - lax.stop_gradient(log_probs))
                                                                                       62
1739
               ones /= ones.size
                                                                                       63
1740
                                                                                       64
               return jax.tree.map(lambda outputs: ones @ outputs, outputs)
                                                                                       65
1741
                                                                                       66
1742
           return lambda f: partial(g, f)
                                                                                       67
1743
```