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ABSTRACT

Planning at execution time has been shown to dramatically improve performance
for AI agents. A well-known family of approaches to planning at execution time
in single-agent settings and two-player zero-sum games are AlphaZero and its
variants, which use Monte Carlo tree search together with a neural network that
guides the search by predicting state values and action probabilities. AlphaZero
trains these networks by minimizing a planning loss that makes the value prediction
match the episode return, and the policy prediction at the root of the search tree
match the output of the full tree expansion. AlphaZero has been applied to various
single-agent environments that require careful planning, with great success. In this
paper, we explore an intriguing question: in single-agent settings, can we outper-
form AlphaZero by directly maximizing the episode score instead of minimizing
this planning loss, while leaving the MCTS algorithm and neural architecture
unchanged? To directly maximize the episode score, we use evolution strategies,
a family of algorithms for zeroth-order blackbox optimization. We compare both
approaches across multiple single-agent environments. Our experiments suggest
that directly maximizing the episode score tends to outperform minimizing the
planning loss.

1 INTRODUCTION

Lookahead search and reasoning is a central paradigm in artificial intelligence, and has a long
history (Newell and Ernst, 1965; Hart et al., 1968; Nilsson, 1971; Hart et al., 1972; Lanctot et al.,
2017; Brown et al., 2018). In many domains, planning at execution time significantly improves
performance. In domains like Sokoban, Pacman, and 2048, all state-of-the-art approaches use some
form of planning by the agent. Many planning approaches use Monte Carlo Tree Search (MCTS),
which iteratively grows a search tree from the current state, and does so asymmetrically according to
the information seen so far. A prominent subfamily of approaches in this category are AlphaZero
and its variants, which leverage function approximation via neural networks to learn good heuristic
predictions of the values and action distributions at each state, which can be used to guide the tree
search. AlphaZero (and its variants) train this prediction function by minimizing a planning loss
consisting of the sum of a value loss and a policy loss.

In this paper, we set out to explore whether we can outperform AlphaZero and its variants in single-
agent environments by directly maximizing the episode score instead, while leaving all other aspects
of the agent, MCTS algorithm, and neural architecture unchanged. Since MCTS is not differentiable,
to maximize the episode score, we employ evolution strategies, a family of algorithms for zeroth-order
black-box optimization.

The structure of the paper is as follows. In §2, we present a detailed formulation of the problem. In
§3, we describe related work. In §4, we present our method. In §5, we describe our experimental
benchmarks and present our results. In §6, we discuss the experimental results. In §7, we present our
conclusion and suggest directions for future research.
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2 PROBLEM FORMULATION

In this section, we formulate the problem in detail and introduce notation. If X is a set,△X denotes
the set of probability distributions on X . An environment is a tuple (S,A, ρ, δ) where S is a set of
states, A is a set of actions, ρ : △S is an initial state distribution, and δ : S ×A → R× R× S is a
transition function. A policy is a function S → △A that maps a state to an action distribution. Given
an environment and policy, an episode is a tuple (s, a, r, γ) that is generated as follows. First, an
initial state s0 ∼ ρ is sampled. Thereafter, on each timestep t ∈ N, an action at ∼ π(st) is sampled,
and a reward, discount factor, and new state (rt, γt, st+1) = δ(st, at) are obtained. The discount
factor represents the probability of the episode ending at that timestep. For a given episode, the return
at timestep t ∈ N is defined recursively as Rt = rt + γtRt+1. The score is the return at the initial
timestep, R0. Our goal is to find a policy π : S → △A that maximizes the expected score ER0.

3 RELATED WORK

In this section, we describe related work. Monte Carlo methods are a wide class of computational
algorithms that use repeated random sampling to estimate numerical quantities. In the setting
of planning, Monte-Carlo evaluation estimates the value of a position by averaging the return of
several random rollouts. Monte-Carlo Tree Search (MCTS) (Coulom, 2007) combines Monte-Carlo
evaluation with tree search. Instead of backing-up the min-max value close to the root, and the
average value at some depth, it uses a more general backup operator that progressively changes
from averaging to min-max as the number of simulations grows. MCTS grows the search tree
asymmetrically, focusing on more promising subtrees.

AlphaGo (Silver et al., 2016) used a variant of MCTS to tackle the two-player board game of Go.
It used a neural network to evaluate board positions and select moves. These networks are trained
using a combination of supervised learning from human expert games and reinforcement learning
from self-play. It was the first computer program to defeat a human professional player. AlphaGo
Zero (Silver et al., 2017a) used reinforcement learning alone, without any human data, guidance or
domain knowledge beyond game rules. AlphaZero (Silver et al., 2018) generalized AlphaGo Zero
into a single algorithm that achieved superhuman performance in many challenging domains.

MuZero (Schrittwieser et al., 2020) combined AlphaZero’s tree-based search with a learned dynamics
model. The latter allows it to plan in environments where the agent does not have access to a
simulator of the environment at execution time. Gumbel MuZero (Danihelka et al., 2022) is a policy
improvement algorithm based on sampling actions without replacement. It replaces the more heuristic
mechanisms by which AlphaZero selects actions at root and non-root nodes. Empirically, it yields
significantly better performance when planning with few simulations.

MCTS is a state-of-the-art general-purpose technique for search, planning, and optimization in single-
agent settings. For example, in the papers that introduced them, the prominent MCTS-based methods
MuZero and Gumbel MuZero were shown to be state of the art in single-agent settings, including 57
different Atari games, the canonical video game environment for testing AI techniques. Świechowski
et al. (2023) note that “Automated planning is one of the major domains of application of the MCTS
algorithm outside games.” Vallati et al. (2015) note that winning approaches of the International
Probabilistic Planning Competition were using MCTS. This competition included combinatorial
optimization problems, such as the minimization of open stacks problem (Yanasse and Senne, 2010).

MCTS has also been used in other discrete combinatorial problems, such as polynomial evaluation
(Kuipers et al., 2013), low latency communication (Jia et al., 2020), generating large-scale floor plans
with adjacency constraints (Shi et al., 2020), query selection in kidney exchange (McElfresh et al.,
2020), and preference elicitation (Martin et al., 2024). Abe et al. (2019) used AlphaZero to solve
NP-hard problems on graphs, including min vertex cover and max cut. Fawzi et al. (2022) used an
AlphaZero-based algorithm, AlphaTensor, to discover efficient and provably-correct algorithms for
multiplication of arbitrary matrices. Xu and Lieberherr (2019) showed that neural MCTS can be used
in a general way to solve combinatorial optimization problems.
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4 PROPOSED METHOD

In this section, we present a detailed description of our proposed method, which we call AlphaZeroES.
The essential difference to AlphaZero is described in §4.3.

4.1 PLANNING ALGORITHM

We use the implementation of Gumbel MuZero (Danihelka et al., 2022), which is the prior state of the
art for this setting, found in the open-source Google DeepMind library Mctx (DeepMind et al., 2020).
It iteratively constructs a search tree starting from a state s0. Each node in the tree contains a state,
predicted value, predicted action probabilities, and, for each action, a visit count N , action value
Q, reward, and discount factor. Each iteration of the algorithm consists of three phases: selection,
expansion, and backpropagation.

During selection, we start at the root and traverse the tree until a leaf edge is reached. At internal
nodes, we select actions according to the policy described in Danihelka et al. (2022). When we
reach a leaf edge (s, a), we perform expansion as follows. We compute (r, γ, s′) = δ(s, a), storing
r and γ in the edge’s parent node. We then query the agent’s prediction function (v, p) = fθ(s

′) to
obtain the predicted value and action probabilities of s′. A new node is added to the tree containing
this information, with action visit counts and action values initialized to zero. Finally, we perform
backpropagation as follows. The new node’s value estimate is backpropagated up the tree to the root
in the form of an n-step return. Specifically, from t = T to 0, where T is the length of the trajectory,
we compute an estimate of the cumulative discounted return Gt that bootstraps from the value
estimate v: GT = v and Gt = rt + γtGt+1. For each such t, we update the statistics for the edge
corresponding to (st, at) as follows: Q(st, at)← N(st,at)Q(st,at)+Gt

N(st,at)+1 , N(st, at)← N(st, at) + 1.
The simulation budget is the total number of iterations, which is the number of times the search tree
is expanded, and therefore the size of the tree.

4.2 PREDICTION FUNCTION

The prediction function of the agent takes an environment state as input and outputs a probability
distribution over actions and value estimate. Following Silver et al. (2018), we use a single neural
network that outputs both of these. Our experimental settings have states that are naturally modeled
as sets of objects (such as sets of cities, facilities, targets, boxes, etc.), where each object can be
described by a vector (e.g., the coordinates of a city and whether it has been visited or not). Therefore,
we seek a neural network architecture that can process a set of vectors, rather than just a single vector.
Early works on neural networks for processing set inputs include McGregor (2007; 2008).

In our experiments, we use DeepSets (Zaheer et al., 2017), a neural network architecture that
can process sets of inputs in a way that is equivariant or invariant (depending on the desired type
of output) with respect to the inputs. It is known to be a universal approximator for continuous
set functions, provided that the model’s latent space is sufficiently high-dimensional (Wagstaff
et al., 2022). DeepSets may be viewed as the most efficient incarnation of the Janossy pooling
paradigm (Murphy et al., 2018), and can be generalized by Transformers (Vaswani et al., 2017; Kim
et al., 2021). A permutation-equivariant layer of the DeepSets architecture has the form (Zaheer
et al., 2017, Supplement p. 19) Y = σ(X ·A + 1 ⊗ b + 1 ⊗ ((1 ·X) · C)) where X ∈ Rn×d,
Y ∈ Rn×k, A,C ∈ Rn×k, b ∈ Rk, and 1 is the all-ones vector of appropriate dimensionality,
and σ is a nonlinear activation function, such as ReLU. Here, n is the size of the set (i.e., number
of inputs/outputs), d is the dimension of each input, and k is the dimension of each output. A
permutation-invariant layer is simply a permutation-equivariant layer followed by global average
pooling (yielding an output that is a vector rather than a matrix) followed by a nonlinearity.

In problems where the action space matches the set of inputs (such as cities in the TSP problem, or
points in the vertex k-center and maximum diversity problems), the predicted action logits are read
out via a dense layer following the permutation-equivariant layer, before global pooling. In problems
where the action space is a fixed set of actions (such as Sokoban and the navigation problems), the
predicted action logits are read out via a dense layer following the permutation-invariant layer. In both
cases, the predicted value is read out via a dense layer from the output of the permutation-invariant
layer.
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For clarity, we emphasize that we use the exact same architecture for both AlphaZero and AlphaZe-
roES in each problem. This is an apples-to-apples comparison. The only thing that changes is the
optimization objective. AlphaZero itself is largely agnostic to the particular neural architecture avail-
able to the agent. It has been used in conjunction with simple feedforward networks, convolutional
networks, attention-based networks (which encode permutation invariance), and so on.

4.3 TRAINING PROCEDURE

We are now ready to present the essential difference between AlphaZero and our AlphaZeroES. The
difference lies in the training objective, which in turn entails a difference in the training procedure.
AlphaZero minimizes a planning loss, which is the sum of a value loss

∑
t(Rt − vt)

2 and a policy
loss

∑
t H(wt, pt). Here, (vt, pt) = fθ(st) is the predicted state value and action probabilities for

st, respectively. (Rt − vt)
2 is the squared difference between vt and the actual episode return Rt.

H(wt, pt) is the cross entropy between the action weights wt returned by the MCTS algorithm for st
and pt. Our approach keeps exactly the same architecture, hyperparameters, and MCTS algorithm as
AlphaZero, but changes the optimization objective. Specifically, instead of minimizing the planning
loss, we directly maximize the episode score. The parameters that are optimized are exactly those
of AlphaZero, namely, the neural network parameters of the prediction function. Only the training
objective is different.

One way to directly optimize the episode score is to use policy gradient methods, which yield an
estimator of the gradient of the expected return with respect to the agent’s parameters. There is a vast
literature on policy gradient methods, which include REINFORCE (Williams, 1992) and actor-critic
methods (Konda and Tsitsiklis, 1999; Grondman et al., 2012). However, there is a problem. Most
of these methods assume that the policy is differentiable—more precisely, that its output action
distribution is differentiable with respect to the parameters of the policy. However, our planning
policy uses MCTS as a subroutine, and standard MCTS is not differentiable. Because our policy
contains a non-differentiable submodule, we need to find an alternative way to optimize the policy’s
parameters. Furthermore, Metz et al. (2021) show that differentiation can fail to be useful when trying
to optimize certain functions—specifically, when working with an iterative differentiable system with
chaotic dynamics. Fortunately, we can turn to black-box (i.e., zeroth-order) optimization. Black-box
optimization uses only function evaluations to optimize a function with respect to a set of inputs.
In particular, it does not require gradients. In our case, the black-box function maps our policy’s
parameters to a sampled episode score.

There is a class of black-box optimization algorithms called evolution strategies (ES) (Rechenberg
and Eigen, 1973; Schwefel, 1977; Rechenberg, 1978) that maintain and evolve a population of
parameter vectors. Natural evolution strategies (NES) (Wierstra et al., 2014; Yi et al., 2009) represent
the population as a distribution over parameters and maximize its average objective value using the
score function estimator. For many parameter distributions, such as Gaussian smoothing, this is
equivalent to evaluating the function at randomly-sampled points and estimating the gradient as a
sum of estimates of directional derivatives along random directions (Duchi et al., 2015; Nesterov
and Spokoiny, 2017; Shamir, 2017; Berahas et al., 2022). ES can be used to learn non-differentiable
parameters of large supervised models, such as sparsity masks for weights (Lenc et al., 2019).

We use OpenAI-ES (Salimans et al., 2017), an NES algorithm that has been shown to be effective
for reinforcement learning (Salimans et al., 2017), including training large language models (Qiu
et al., 2025). It is based on the identity ∇x Ez∼D f(x+ σz) = 1

σ Ez∼D f(x+ σz)z, where D is the
standard multivariate normal distribution. This algorithm is shown in Algorithm 1. Like Salimans
et al. (2017), we use antithetic sampling (Geweke, 1988), also called mirrored sampling (Brockhoff
et al., 2010), to reduce variance. It samples antithetic pairs of perturbations (zi,−zi).
This algorithm is massively parallelizable, since each δi can be evaluated on a separate worker.
Furthermore, communication between workers is minimal. All workers are initialized with the same
random seed. Worker i evaluates δi, sends it to the remaining workers, and receives the other workers’
values (this is called an all-gather operation in distributed computing). Thus the workers compute
the same g and stay synchronized. Again, each worker computes the δi corresponding to its own
index i and receives the others from the other workers, but generates the all workers’ perturbation
vectors {zj}j∈I itself, which is more efficient than communicating them. The shared random seed
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Algorithm 1 Evolution strategies (with a vanilla SGD optimizer).

Input: Initial parameters x ∈ Rd, noise scale σ ∈ R, learning rate α ∈ R, set of workers I.
for t = 0, 1, 2, . . . do

Sample perturbations z1, . . . , zn ∼ N (0d, Id)
For each i ∈ I, let worker i compute δi ← f(x+ σzi)
Compute pseudogradient g← 1

σ|I|
∑

i∈I δizi
Update parameters x← x+ αg

Figure 1: Example states for each environment: Navigation, Sokoban, TSP, VKCP, and MDP.

ensures that workers can compute identical perturbation vectors without communication. The only
worker-dependent computation is δi.

Notably, AlphaZeroES needs only the parameter perturbation vector z and the final episode score
to update the parameters. In contrast, AlphaZero needs to compute gradients of the parameters via
backpropagation (reverse-mode automatic differentiation) through the neural network and over the
timesteps of the episode. In our experiments, AlphaZero and AlphaZeroES took about the same
amount of time per iteration.

5 EXPERIMENTS

In this section, we describe our experiments. We use 10 trials per experiment, 1000 episodes per
batch (for both training and evaluation at the end of each epoch), 1000 training batches per epoch,
4 hours of training time per trial, the AdaBelief (Zhuang et al., 2020) optimizer1, a perturbation
scale of 0.1 for OpenAI-ES, an MCTS simulation budget of 8,2 hidden layer sizes of 16 for the
DeepSets network, 1 equivariant plus 1 invariant hidden layer for the DeepSets network, and the
ReLU activation function. We used an NVIDIA A100 SXM4 40GB GPU. Each trial uses 1 such GPU
all to itself. This keeps the comparison between AlphaZero and AlphaZeroES as precise as possible.
For our code, we use Python 3.12.2, JAX 0.4.28 (Bradbury et al., 2018), Flax 0.8.3 (Heek et al.,
2024), Optax 0.2.2 (DeepMind et al., 2020), Mctx 0.0.5 (DeepMind et al., 2020), and Matplotlib
3.8.4 (Hunter, 2007). In our plots, we show the episode scores attained by AlphaZero (labeled es=0
in the plot legend) vs. AlphaZeroES (labeled es=1 in the plot legend). At any point along the X axis,
AlphaZero and AlphaZeroES have undergone the same number of episodes of learning. To perform
a fair comparison, since AlphaZero and AlphaZeroES optimize different objectives, we test both
across a wide range of learning rates (labeled lr in the plot legend). In addition, we show value
and policy losses over the course of training. Though AlphaZeroES does not optimize these losses
directly, we wish to observe what happens to them as a side-effect of maximizing the episode score.
Solid lines show the mean across trials, and bands show the standard error of the mean. Our goal is
not to develop the best special-purpose solver for any one of these domains. Rather, we are interested
in a general-purpose approach that can tackle all of these domains and learn good heuristics on its
own. Due to space constraints, we relegate the plots showing value and policy loss to the appendix.

1Both AlphaZero and AlphaZeroES can be combined with any optimizer from the literature. Finding the
best optimizer is not the focus of this paper. AdaBelief is a well-known optimizer with many citations. We chose
it because it is (a) relatively well-known and (b) outperforms SGD and Adam.

2Gumbel Muzero, the AlphaZero variant we use, can learn reliably with as few as 2 simulations, and was
evaluated in its paper with 2, 4, and 16 simulations (Danihelka et al., 2022, p. 8).
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Figure 2: Navigation score. Figure 3: Sokoban score.

5.1 NAVIGATION

In this environment, an agent navigates a gridworld to reach as many targets as possible within a
given time limit. At the beginning of each episode, targets are placed uniformly at random in a
10× 10 grid, as is the agent. On each timestep, the agent can move up, down, left, or right by one tile.
The agent reaches a target when it moves into the same tile. The agent receives a reward of +0.05
when it reaches a target. Thus the agent is incentivized to reach as many targets as possible within
the time limit. For our experiments, we use 20 targets and a time limit of 50 steps. The prediction
network observes a set of vectors, one for each target, where each vector contains the coordinates
of the target, a boolean 0-1 flag indicating whether it has already been reached, and the number of
episode timesteps remaining. This environment has been used before as a benchmark by Oh et al.
(2017, §4.2). It resembles a traveling salesman-like problem in which several “micro” actions are
required to perform the “macro” actions of moving from one city to another. (Also, the agent can
visit cities multiple times and does not need to return to its starting city.) This models situations
where several fine-grained actions are required to perform relevant tasks, such as moving a unit in a
real-time strategy game a large distance across the map.

An example state is shown in Figure 1. The blue circle is the agent. Red squares are unreached targets.
Gray squares are reached targets. Experimental results are shown in Figure 2 and 7. AlphaZeroES
dramatically outperforms AlphaZero. Unlike AlphaZero, it does not seem to minimize the value
and policy losses by a noticeable amount. In fact, for AlphaZeroES, the value and policy losses
seem to increase over time as training proceeds (and the mean episode score increases). This will
be a recurring pattern across environments, as we will observe with the other benchmarks. This
phenomenon suggests that maximizing “self-consistency” via planning loss minimization, as standard
AlphaZero does, is not necessarily aligned as an objective with performing better in the environment,
as measured by mean episode score.

5.2 SOKOBAN

Sokoban is a puzzle in which an agent pushes boxes around a warehouse to get them to storage
locations. It is played on a grid of tiles. Each tile may be a floor or a wall, and may contain a box
or the agent. Some floor tiles are marked as storage locations. The agent can move horizontally or
vertically onto empty tiles. The agent can also move a box by walking up to it and push it to the tile
beyond, if the latter is empty. Boxes cannot be pulled, and they cannot be pushed to squares with walls
or other boxes. The number of boxes equals the number of storage locations. The puzzle is solved
when all boxes are placed at storage locations. Planning ahead is crucial, since an agent can easily get
stuck if it makes the wrong move. Sokoban has been studied in the field of computational complexity
and shown to be PSPACE-complete (Culberson, 1997). It has received significant interest in artificial
intelligence research because of its relevance to automated planning (e.g., for autonomous robots),
and is used as a benchmark. Sokoban’s large branching factor and search tree depth contribute to its
difficulty. Skilled human players rely mostly on heuristics and can quickly discard several futile or
redundant lines of play by recognizing patterns and subgoals, narrowing down the search significantly.
Various automatic solvers have been developed in the literature (Junghanns and Schaeffer, 1997;
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2001; Froleyks and Balyo, 2016; Shoham and Schaeffer, 2020), many of which rely on heuristics, but
more complex Sokoban levels remain a challenge.

Our environment is as follows. We use the unfiltered Boxoban training set (Guez et al., 2019), which
contains 900,000 levels of size 10× 10 each. At the beginning of each episode, we sample a level
from this dataset. As a form of data augmentation, we sample one of the eight symmetries of the
square (a horizontal flip, vertical flip, and/or 90-degree rotation) and apply it to the level. In each
timestep, the agent has four actions available to it, for motion in each of the four cardinal directions.
The level ends after a specified number of timesteps. (We use 50 timesteps.) The return at the end
of an episode is the number of goals that are covered with boxes. Thus the agent is incentivized
to cover all of the goals. The prediction network observes a set of vectors, one for each tile in the
level, where each vector contains the 2 coordinates of the tile, 4 boolean flags indicating whether
the tile contains a wall, goal, box, and/or agent, and the number of episode timesteps remaining. An
example state is shown in Figure 1. This was rendered by JSoko (Meger, 2023), an open-source
Sokoban implementation. The yellow vehicle is the agent, who must push the brown boxes into the
goal squares marked with Xs. (Boxes tagged “OK” are on top of goal squares.) Experimental results
are shown in Figure 3 and 8. AlphaZeroES dramatically outperforms AlphaZero. Unlike AlphaZero,
it does not seem to minimize the value and policy losses by a noticeable amount.

5.3 TSP

The traveling salesman problem (TSP) is a classic combinatorial optimization problem. Given a
set of cities and their pairwise distances, the goal is to find a shortest route that visits each city
once and returns to the starting city. This problem has important applications in operations research,
including logistics, computer wiring, vehicle routing, and various other planning problems (Matai
et al., 2010). TSP is known to be NP-hard (Karp, 1972), even in the Euclidean setting (Papadimitriou,
1977). Various approximation algorithms and heuristics (Nilsson, 2003) have been developed for
it. Our environment is as follows. We seek to learn to solve TSP in general, not just one particular
instance of it. Thus, on every episode, a new problem instance is generated by sampling a matrix
X ∼ Uniform([0, 1]n×2), representing a sequence of n ∈ N cities. In our experiments, we use
n = 20. At timestep t ∈ [n], the agent chooses a city at ∈ [n] that has not been visited yet. At
the end of the episode, the length of the tour through this sequence of cities (including the segment
from the final city to the initial one) is computed, and treated as the negative score. Thus the
agent is incentivized to find the shortest tour through all the cities. Formally, the final score is
−
∑

t≤n d(Xat ,Xat+1 mod n), where d is the Euclidean metric. The prediction network observes a
set of vectors, one for each city, where each vector contains the coordinates of the city and 3 boolean
0-1 flags indicating whether it has already been visited, whether it is the initial city, and whether it is
the current city.

An example state is shown in Figure 1. Dots are cities. The red dot is the initial city. The lines
connecting the dots constitute the constructed path. The dotted line is the last leg from the final city
back to the initial city. Experimental results are shown in Figure 4 and 9. AlphaZeroES dramatically
outperforms AlphaZero. Interestingly, as a side effect, it minimizes the policy loss about as much as
AlphaZero does. It also minimizes the value loss (except at the highest learning rate), though to a
lesser extent than AlphaZero.

5.4 VKCP

The vertex k-center problem (VKCP) is a classic combinatorial optimization problem that has
applications in facility location and clustering. The problem is as follows. Given n points in Rd,
select a subset S of k points that minimizes the distance from any point in the original set to its nearest
point in S . The n points can be interpreted as possible locations in which to build facilities (e.g., fire
stations, police stations, supply depots, etc.), where S is the set of locations in which such facilities
are built, and the goal is to minimize the maximum distance from any location to its nearest facility.
(There is also a variant of the problem that seeks to minimize the mean distance.) This problem was
first proposed by Hakimi (1964). It is NP-hard, and various approximation algorithms have been
proposed for it (Kariv and Hakimi, 1979; Gonzalez, 1985; Dyer and Frieze, 1985; Hochbaum and
Shmoys, 1985; Shmoys, 1994). A survey and evaluation of approximation algorithms can be found
in Garcia-Diaz et al. (2019).
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Figure 4: TSP score. Figure 5: VKCP score.

We sample n = 40 locations uniformly at random from the unit square and let k = 20. At any
timestep t, the agent selects a location at ∈ [n] that has not been selected yet to add a facility at
that location. The final score is −maxi∈[n] minj∈S d(xi,xj), where xi ∈ [0, 1]2 is the position of
point i ∈ [n] and d is the Euclidean metric. The prediction network observes a set of vectors, one
for each point, where each vector contains the coordinates of the point and a single bit indicating
whether it is in the subset S. An example state is shown in Figure 1. Black dots are locations, red
dots are facilities placed so far, and red lines connect locations to their nearest facility. Experimental
results are shown in Figure 5 and 10. AlphaZeroES dramatically outperforms AlphaZero. In this
environment, AlphaZeroES hardly minimizes the value and policy losses as a side effect.

5.5 MDP

Figure 6: MDP score.

In the maximum diversity problem (MDP), we
are given n points in Rd, and we are asked to
select a subset S of k points that maximizes
the minimum distance between distinct points.
(There is also a variant of the problem that seeks
to maximize the mean distance between dis-
tinct points.) This problem is strongly NP-hard,
as can be shown via reduction from the clique
problem (Kuo et al., 1993; Ghosh, 1996). Vari-
ous heuristics have been proposed for it (Glover
et al., 1998; Katayama and Narihisa, 2005; Silva
et al., 2007; Duarte and Martí, 2007; Martí et al.,
2010; Lozano et al., 2011; Wu and Hao, 2013;
Martí et al., 2013). This problem has applica-
tions in ecology, medical treatment, genetic en-
gineering, capital investment, pollution control,
system reliability, telecommunication services,
molecular structure design, transportation sys-
tem control, emergency service centers, and energy options, as cataloged by Glover et al. (1998,
Table 1).

For our experiments, we sample n = 40 locations uniformly at random from the unit square and
let k = 20. At any timestep t, the agent can select a point at ∈ [n] that has not been selected yet
to add to the set S. The final score is mini,j∈S,i̸=j d(xi,xj), where xi ∈ [0, 1]2 is the position of
point i and d is the Euclidean metric. The prediction network observes a set of vectors, one for each
point, where each vector contains the coordinates of the point and a bit flag indicating whether it
has been included in the set. An example state is shown in Figure 1. Black dots are points, red dots
are points selected so far, and the red line connects the closest pair of points in the set selected so
far. Experimental results are shown in Figure 6 and 11. AlphaZeroES dramatically outperforms
AlphaZero. As a side effect, it minimizes the policy loss about as much as AlphaZero does. However,
unlike AlphaZero, it does not seem to minimize the value loss.
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6 DISCUSSION

Why does our method work? Our method did not drive value and policy losses down to zero, as
standard AlphaZero does, suggesting that maximizing “self-consistency” is not necessarily required
to perform better in the environment in terms of score. One reason might be that optimal or strong
performance does not actually require internal consistency (of value and action predictions), and
achieving good performance might be easier than achieving internal consistency.

There are situations where learning a good policy is easy, but learning a good function is hard.
Consider an environment where there is a simple optimal policy, but the value function under that
policy is complicated—that is, for any given state, it is easy to determine what the “right” action
to take is, but difficult to predict the final return. AlphaZero’s performance intrinsically depends
on the accuracy of its learned value function, since that value function is used as an oracle inside
the MCTS algorithm in a way that ultimately determines what action to take. If this value function
is difficult to learn, AlphaZero might struggle. In fact, even being semi-accurate with respect to
values does not, in and of itself, guarantee good action selection. The value estimates also need to be
order-accurate—that is, accurate with respect to their relative rankings or differences—since this
ultimately determines which actions MCTS chooses.

On the other hand, AlphaZeroES has the flexibility to simply optimize a policy directly, even if it has
not learned an accurate value function for it. The value function being accurate might be helpful, but
is not necessary. In summary, direct policy methods sometimes succeed where value-based methods
fail. This can happen when a good policy is more easily representable (and learnable) than a good
value function. In those cases, direct policy improvement can easily yield a good policy. Conversely,
relying on a poorly-approximated critic can actually hamper performance. To illustrate this point,
in the appendix, we give concrete examples of simple environments where AlphaZero fails while
AlphaZeroES succeeds. In the appendix, we also include an ablation study that investigates whether
the improvement of AlphaZeroES over AlphaZero comes mostly from an improved value output or
an improved policy output. Interestingly, the answer is environment-dependent.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we set out to study whether AlphaZero and its newest variants can be improved by
maximizing the episode score directly instead of minimizing the standard planning loss. Since MCTS
is not differentiable, we maximize the episode score by using evolution strategies. We conducted
experiments across multiple domains, including standard combinatorial optimization problems and
motion planning problems from the literature. In each setting, our approach yielded a dramatic
improvement in performance over planning loss minimization.

Our work opens up new possibilities for tackling environments where planning is important. It does
this by allowing agents to learn to leverage internal nondifferentiable planning algorithms, such as
MCTS, in a purely blackbox way that does not depend on the internal details of those algorithms.
Instead of training the agent’s parameters to minimize some indirect proxy objective, such as a
planning loss, we can now maximize the desired objective directly.

Limitations The original AlphaZero and Gumbel MuZero MCTS algorithms are designed for
fully-observable deterministic environments. Thus, so is our method. An extension to stochastic
environments exists in the form of Stochastic MuZero (Antonoglou et al., 2022). By replacing the
MCTS algorithm with that of Stochastic MuZero, it might be possible to extend our method to
stochastic environments. Another potential direction for future research might be to extend our work
to adversarial or multiagent settings. Doing so would require introducing concepts from game theory
and making modifications to our method. For example, our method uses ES to maximize the episode
score. However, solving a two-player zero-sum game is not a pure maximization problem, but rather
a min-max (saddle-point) problem. Solving such a problem requires more sophisticated gradient
dynamics. It might be possible to use a modified version of ES to seek equilibria of the players’
individual episode scores with respect to their parameters. Related works for this include Bichler
et al. (2021), Martin and Sandholm (2023), and Martin and Sandholm (2025). This is outside the
scope of this paper, but potentially interesting for future research.
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Figure 7: Navigation losses.

Figure 8: Sokoban losses.

A ADDITIONAL FIGURES

In this section, we include additional figures that did not fit in the body of the paper.
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Figure 9: TSP losses.

Figure 10: VKCP losses.

Figure 11: MDP losses.
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B ADDITIONAL RELATED WORK

In this section, we include additional related work that did not fit in the body of the paper.

B.1 AGENTS THAT USE NEURAL NETWORKS AND PLANNING

Value Iteration Network (VIN) (Tamar et al., 2016) is a fully differentiable network with a planning
module embedded within. It can learn to plan and predict outcomes that involve planning-based
reasoning, such as policies for reinforcement learning. It uses a differentiable approximation of
the value-iteration algorithm, which can be represented as a convolutional network, and is trained
end-to-end using standard backpropagation.

Predictron (Silver et al., 2017b) consists of a fully abstract model, represented by a Markov reward
process, that can be rolled forward multiple “imagined” planning steps. Each forward pass accumu-
lates internal rewards and values over multiple planning depths. The model is trained end-to-end so
as to make these accumulated values accurately approximate the true value function.

Value Prediction Network (VPN) (Oh et al., 2017) integrates model-free and model-based RL methods
into a single network. In contrast to previous model-based methods, it learns a dynamics model
with abstract states that is trained to make action-conditional predictions of future returns rather than
future observations. VIN performs value iteration over the entire state space, which requires that 1)
the state space is small and representable as a vector with each dimension corresponding to a separate
state and 2) the states have a topology with local transition dynamics (such as a 2D grid). VPN does
not have these limitations. VPN is trained to make its predicted values, rewards, and discounts match
up with those of the real environment (Oh et al., 2017, §3.3).

Imagination-Augmented Agent (I2A) (Racanière et al., 2017) augments a model-free agent with
imagination by using environment models to simulate imagined trajectories, which are provided as
additional context to a policy network. An environment model is any recurrent architecture which can
be trained in an unsupervised fashion from agent trajectories. Given a past state and current action,
the environment model predicts the next state and observation. The imagined trajectory is initialized
with the current observation and rolled out multiple time steps into the future by feeding simulated
observations.

MCTSnet (Guez et al., 2018) incorporates simulation-based search inside a neural network, by
expanding, evaluating and backing-up a vector embedding. The parameters of the network are trained
end-to-end using gradient-based optimization. When applied to small searches in the well-known
planning problem Sokoban, it outperformed prior MCTS baselines.

TreeQN (Farquhar et al., 2018) is an end-to-end differentiable architecture that substitutes value
function networks in discrete-action domains. Instead of directly estimating the state-action value
from the current encoded state, as in Deep Q-Networks (DQN) (Mnih et al., 2015), it uses a learned
dynamics model to perform planning up to some fixed-depth. The result is a recursive, tree-structured
network between the encoded state and the predicted state-action values at the leafs. The authors
also propose ATreeC, an actor-critic variant that augments TreeQN with a softmax layer to form a
stochastic policy network. Unlike MCTS-based methods, the shape of the planning tree is fixed, and
the agent cannot “focus” on more promising subtrees to expand during planning.

Yang et al. (2020) proposed Continuous MuZero, an extension of MuZero to continuous actions,
and showed that it outperforms the soft actor-critic (SAC) algorithm. Hubert et al. (2021) proposed
Sampled MuZero, an extension of the MuZero algorithm that is able to learn in domains with
arbitrarily complex action spaces (including ones that are continuous and high-dimensional) by
planning over sampled actions.

Stochastic MuZero (Antonoglou et al., 2022) extended MuZero to environments that are inherently
stochastic, partially observed, or so large and complex that they appear stochastic to a finite agent.
It learns a stochastic model incorporating after-states following an action, and uses this model to
perform a stochastic tree search. It matches or exceeds the state of the art in a canonical set of
environments, including 2048.
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B.2 MACHINE LEARNING FOR TUNING INTEGER PROGRAMMING AND COMBINATORIAL
OPTIMIZATION SOLVERS

Another, different, form of learning in search techniques is tuning integer programming (IP) and
combinatorial optimization (CO) (Schrijver, 2003) techniques. The idea of automated algorithm
tuning goes back at least to Rice (1976). It has been applied in industrial practice at least since
2001, when Sandholm (2013) started using machine learning to learn IP algorithm configurations
(related to branching, cutting plane generation, etc.) and IP formulations based on problem instance
features, in the context of combinatorial auction winner determination in large-scale sourcing auctions.
In 2007, the leading commercial general-purpose IP solvers started shipping with such automated
configuration tools.

IP solvers typically use a tree search algorithm called branch-and-cut. However, such solvers typically
come with a variety of tunable parameters that are challenging to tune by hand. Research has
demonstrated the power of using a data-driven approach to automatically optimize these parameters.

Similarly, real-world applications that can be formulated as CO problems often have recurring patterns
or structure that can be exploited by heuristics. The design of good heuristics or approximation
algorithms for NP-hard CO problems often requires significant specialized knowledge and trial-and-
error, which can be a challenging and tedious process.

The rest of this section reviews some of the newer work on automated algorithm configuration in IP
and CO.

Khalil et al. (2017) sought to automate the CO tuning process using a combination of reinforcement
learning and graph embedding. They applied their framework to a diverse range of optimization
problems over graphs, learning effective algorithms for the Minimum Vertex Cover, Maximum Cut
and Traveling Salesman problems.

Bengio et al. (2021) surveyed recent attempts from the machine learning and operations research
communities to leverage machine learning to solve IP and CO problems. According to the authors,
“Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics
for making decisions that are otherwise too expensive to compute or mathematically not well defined.
Thus, machine learning looks like a natural candidate to make such decisions in a more principled
and optimized way.” They cite Larsen et al. (2018), who train a neural network to predict the solution
of a stochastic load planning problem for which a deterministic mixed integer linear programming
formulation exists. The authors state that “The nature of the application requires to output solutions
in real time, which is not possible either for the stochastic version of the load planning problem or its
deterministic variant when using state-of-the-art MILP solvers. Then, ML turns out to be suitable for
obtaining accurate solutions with short computing times because some of the complexity is addressed
offline, i.e., in the learning phase, and the run-time (inference) phase is extremely quick.”

Another survey of reinforcement learning for CO can be found in Mazyavkina et al. (2021). According
to the authors, “Many traditional algorithms for solving combinatorial optimization problems involve
using hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed by
domain experts and may often be suboptimal due to the hard nature of the problems. Reinforcement
learning (RL) proposes a good alternative to automate the search of these heuristics by training an
agent in a supervised or self-supervised manner.”

To address the scalability challenge in large-scale CO, Qiu et al. (2022) propose an approach called
Differentiable Meta Solver (DIMES). Unlike previous deep reinforcement learning methods, which
suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES
introduces a compact continuous space for parameterizing the underlying distribution of candidate
solutions. Such a continuous space allows stable REINFORCE-based training and fine-tuning via
massively parallel sampling.

Aironi et al. (2024) proposed a graph-based neural approach to linear sum assignment problems,
which are well-known CO problems with applications in domains such as logistics, robotics, and
telecommunications. In general, obtaining an optimal solution to such problems is computationally
infeasible even in small settings, so heuristic algorithms are often used to find near-optimal solutions.
Their paper investigated a general-purpose learning strategy that uses a bipartite graph to describe the
problem structure and a message-passing graph neural network model to learn the correct mapping.
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The proposed graph-based solver, although sub-optimal, exhibited the highest scalability, compared
with other state-of-the-art heuristic approaches.

Georgiev et al. (2024) note that “Solving NP-hard/complete combinatorial problems with neural
networks is a challenging research area that aims to surpass classical approximate algorithms. The
long-term objective is to outperform hand-designed heuristics for NP-hard/complete problems by
learning to generate superior solutions solely from training data.” The authors proposed leveraging
recent advancements in neural algorithmic reasoning to improve learning of CO problems.

Balcan et al. (2024) provide the first sample complexity guarantees for tree search parameter tuning,
bounding the number of samples sufficient to ensure that the average performance of tree search over
the samples nearly matches its future expected performance on the unknown instance distribution.
Balcan et al. (2021) prove the first guarantees for learning high-performing cut-selection policies
tailored to the instance distribution at hand using samples. Balcan et al. (2022) derive sample
complexity guarantees for using machine learning to determine which cutting planes to apply during
branch-and-cut.

C STATISTICAL TESTS

We show statistical tests for each environment in Table 1. For each environment’s comparison, we
selected the best-performing learning rate for each method (AlphaZero vs. AlphaZeroES) under 10
trials, and compare the final mean scores. We used the same JAX PRNG key for each individual pair,
that is, common random numbers.

Wilcoxon signed-rank test Paired t-test
Environment statistic p-value statistic p-value

Navigation 55 0.000976562 24.1637 8.51516 ×10−10

Sokoban 55 0.000976562 24.3562 7.93596 ×10−10

TSP 55 0.000976562 6.89033 3.57182 ×10−5

VKCP 55 0.000976562 13.4227 1.47451 ×10−7

MDP 55 0.000976562 3.85802 0.00192935

Table 1: Statistical tests for each environment.

All pairwise differences were positive, so the Wilcoxon statistic maxed out at n(n + 1)/2 =
10 × 11/2 = 55. All p-values are well under 0.05. In conclusion, all the results are highly
statistically significant.

D SCALABILITY

In this section, we run experiments that test the scalability of our method, AlphaZeroES, in comparison
to standard AlphaZero. Specifically, we see which method performs best for various problem sizes
(such as number of nodes for TSP problems). Each individual run received exactly 1 hour of training
time on a single NVIDIA A100 SXM4 40GB GPU. Results are shown in Figures 12, 13, and 14.
In the legends of these plots, loss=alphazero denotes AlphaZero and loss=score_es denotes
AlphaZeroES. Likewise, in Figure 15, we compare the scalability of AlphaZero against AlphaZeroES
in terms of the size of the network (specifically, the hidden layer size). In all figures, AlphaZeroES
outperforms AlphaZero regardless of the scale of the problem.

Regarding the performance of OpenAI-ES vs. classical gradient-based methods on high-dimensional
problems, Salimans et al. (2017) note the following: “The resemblance of ES to finite differences
suggests the method will scale poorly with the dimension of the parameters θ. [...] However, it is
important to note that this does not mean that larger neural networks will perform worse than smaller
networks when optimized using ES: what matters is the difficulty, or intrinsic dimension, of
the optimization problem [emphasis added]. To see that the dimensionality of our model can be
completely separate from the effective dimension of the optimization problem, consider a regression
problem where we approximate a univariate variable y with a linear model ŷ = x ·w: if we double
the number of features and parameters in this model by concatenating x with itself (i.e. using features
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x′ = (x,x)), the problem does not become more difficult. The ES algorithm will do exactly the same
thing when applied to this higher dimensional problem, as long as we divide the standard deviation of
the noise by two, as well as the learning rate.”
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Figure 12: TSP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom).
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Figure 13: VKCP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom). The size
of the choice set is half the number of points.
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Figure 14: MDP with 8, 12, 16, 20, 24, 28, 32, and 36 points (left to right, top to bottom). The size of
the choice set is half the number of points.
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Figure 15: Performance comparison for different network sizes. Left to right, top to bottom: TSP,
VKCP, MDP, and Navigation.
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Figure 16: Ablation. Left to right, top to bottom: TSP, VKCP, MDP, and Navigation.

E ABLATION

To further investigate where the advantage of AlphaZeroES over AlphaZero comes from, and whether
most of the improvement comes from a better value or policy output, we conducted an ablation study
as follows. First, we train a combined policy/value network under the standard AlphaZero loss, as
described in §4 and §5. Second, we create two copies of this network and use only the value output of
one (henceforth, we call it the value network) and the policy output of the other (henceforth, we call
it the policy network). We do this so that we can further train the value and policy outputs separately,
starting from the parameters obtained by vanilla AlphaZero. Third, we freeze the value network (or
policy network) and train only the policy network (or value network) under ES.

Results are shown in Figure 16. The original AlphaZero baseline is labeled with loss=alphazero.
The subsequent training runs, which start from the final parameters of this baseline, are labeled
with loss=score_es. The label freeze_policy denotes whether the policy network is frozen.
The label freeze_value denotes whether the value network is frozen. As expected, allowing
either (or both) of these to be further trained under ES improves performance over the AlphaZero
baseline. Furthermore, allowing both of them to be trained yields maximum performance. In some
environments, namely TSP, VKCP, and MDP, freezing only the value network outperforms freezing
only the policy network, suggesting that improving the policy output is more important. In other
environments, namely Navigation, freezing only the policy network outperforms freezing only the
value network, suggesting that improving the value output is more important. Thus, interestingly,
where most of the improvement of AlphaZeroES over vanilla AlphaZero comes from—a better value
output or a better policy output—is environment-dependent.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 17: Performance under the attention-based architecture on TSP, VKCP, MDP, and Navigation.

F ARCHITECTURE COMPARISON

To check whether our approach generalizes to architectures rather than DeepSets (Zaheer et al., 2017),
we run experiments with a different architecture, namely one based on neural attention (Vaswani et al.,
2017). A theoretical comparison of these two architectures can be found in Wagstaff et al. (2022). Our
architecture starts by applying an affine layer mapping the multiset of inputs to a multiset of hidden
vectors. Then, we apply a sequence of D attention blocks, where D is a depth hyperparameter. (We
use D = 2.) Each such block is a parallel attention block, as described in Zhao et al. (2019). It applies
layer normalization (Ba et al., 2016), followed by a parallel application of (1) a pointwise feedforward
multilayer perceptron with a single hidden layer and (2) a multi-head attention module (Vaswani
et al., 2017). These two outputs are then combined with a skip connection from the input to the block,
via simple addition. For reduction, we apply a many-to-one multi-head attention module on a learned
readout vector initialized with random normal entries. After that, we apply the ReLU activation
function followed by an affine layer. Results are shown in Figure 17. Our method, AlphaZeroES,
continues to outperform AlphaZero on the new architecture.
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Figure 18: XOR environment metrics.

G FAILURE MODES FOR ALPHAZERO

In this section, we give concrete examples of simple environments where AlphaZero fails while
AlphaZeroES succeeds.

G.1 XOR ENVIRONMENT

Consider the following environment. A state is a triple (b, c, t) where b, c ∈ {0, 1} are bits and t ∈ N
is the timestep. At the beginning of an episode, b ∈ {0, 1} is sampled uniformly at random, c = b,
and t = 0. An action is a bit a ∈ {0, 1}.
Letting a be the current action, the transition function yields (b, c′, t+ 1), where c′ = b⊕ a if t = 0
and c′ = c otherwise. In other words, c = b⊕ a0 for the remainder of the episode, where a0 is the
initial action. At the end of the episode, the reward is b⊕ c = b⊕ (b⊕ a0) = a0. Therefore, after the
initial step, the value of state (b, c, t) is just a0.

Therefore, this environment has an optimal policy that is very simple: always play a = 1. This
constant policy should be easily discoverable by optimizing episode score via ES.

Suppose that we use AlphaZero with a linear function approximator for its prediction network. At
the initial timestep, MCTS inspects the two successor states (b, b, 1) and (b, b⊕ 1, 1), and potentially
their descendants, to decide which action to play. However, with a linear function approximator,
AlphaZero’s prediction network is unable to extract the key information b⊕ c = b⊕ (b⊕ a0) = a0,
which determines the value of the state being examined.

Therefore, when AlphaZero is trained with the standard planning loss, it has no way to determine
which action it should take at the initial timestep. (Provided that the episode is long enough that
MCTS does not expand all the way to the terminal nodes.) On the other hand, AlphaZeroES can
simply learn to always put all of the predicted prior probability on a = 1, which causes it to always
be chosen by MCTS. Thus, we predict that AlphaZero consistently fails to learn any useful policy in
this environment, while AlphaZeroES does.

In practice, we observe that this is the case. We set the number of timesteps to 32 and deployed each
agent. We use only a linear (or more precisely, affine) layer for the AlphaZero prediction network,
directly mapping the state to a value scalar and logits vector. Other hyperparameters are the same as
in the rest of the experiments. Results are shown in Figure 18. As expected, AlphaZero fails to learn
any useful policy, while AlphaZeroES learns the optimal policy.

G.2 ENCRYPTED ENVIRONMENT

Consider the environment. Suppose that the states of the environment are “encrypted” counters.
In any state, action A decrypts the counter with a secret key, increments it, and re-encrypts it. In
contrast, action B does nothing. At the end of an episode, the agent receives the value of the counter.
The optimal policy is very simple: always choose A. But learning a good value function is nearly
impossible from the perspective of the agent, given that it is unable to “decrypt” states. While this
example may seem extreme, given its reliance on cryptography, it is an illustrative analogy: an
environment can look “encrypted” from the perspective of an agent that is not sophisticated enough
(at least at the beginning of training) to “understand” what the states mean.
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Figure 19: Encrypted environment metrics.

We implement a simple example of such an environment. For n ∈ N, let [n] = {0, . . . , n − 1}.
The environment’s encryption function is simply a permutation e : [256]→ [256]. We sample this
permutation uniformly at random from the set of all permutations. Likewise, the environment’s
decryption function is the inverse permutation e−1.

Each state is a pair (c, t), where c ∈ [256] is the encrypted counter and t ∈ [256] is the timestep.
Given such a state, the agent observes the 8 bits of c, concatenated with t/255. The initial state is
(e(0), 0). Given action a ∈ {0, 1}, state (c, t) is mapped to (e(e−1(c) + a), t+ 1). The environment
terminates when t = 255, and the reward is e−1(c).

Results are shown in Figure 19. As expected, AlphaZeroES easily learns the trivial optimal policy,
while AlphaZero struggles to learn. This is because AlphaZero essentially needs to learn a big lookup
table that maps each arbitrary 8-bit pattern to an arbitrary value.
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Figure 20: Sokoban.

Figure 21: TSP.

H VARYING THE PERTURBATION SCALE

In this section, we explore what happens with different perturbation scales for AlphaZeroES. Results
are shown in Figures 20–23. The results are qualitatively similar across different scales.
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Figure 22: VKCP.

Figure 23: MDP.
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I CODE

The following is an implementation of our method in the Python programming language (Van Rossum
and Drake Jr., 1995). The libraries used here are described in §5 of the paper.

File rl_utils.py:

1import jax
2from jax import lax , random
3from jax import numpy as jnp
4
5
6def get_returns(episode):
7def f(carry , reward_discount):
8reward , discount = reward_discount
9new_carry = reward + discount * carry
10return new_carry , new_carry
11
12rewards = episode["reward"]
13discounts = episode["discount"]
14init = jnp.zeros(rewards.shape [1:])
15xs = rewards , discounts
16_, returns = lax.scan(f, init , xs, unroll=True , reverse=True)
17return returns
18
19
20def get_reach_probs(episode):
21discounts = episode["discount"]
22reach_probs = jnp.cumprod(discounts [:-1])
23reach_probs = jnp.insert(reach_probs , 0, 1)
24return reach_probs
25
26
27def get_score(episode):
28reach_probs = get_reach_probs(episode)
29return reach_probs @ episode["reward"]
30
31
32def sample_episode(env , agent , params , key , unroll =1):
33def step(state_memory , key):
34state , memory = state_memory
35action , new_memory , agent_extra = agent.apply(params , state , key ,

↪→ memory)
36reward , discount , new_state = env.step(state , action)
37return (new_state , new_memory), {
38"state": state ,
39"action": action ,
40"agent_extra": agent_extra ,
41"reward": reward ,
42"discount": discount ,
43"memory": memory ,
44}
45
46key , subkey = random.split(key)
47state = env.init(subkey)
48
49key , subkey = random.split(key)
50memory = agent.init_memory(subkey)
51
52keys = random.split(key , env.max_steps ())
53(state , memory), episode = lax.scan(step , (state , memory), keys ,

↪→ unroll=unroll)
54
55episode["state"] = jax.tree.map(
56lambda xs, x: jnp.concatenate ([xs, x[None ]]),
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57episode["state"],
58state ,
59)
60
61episode["memory"] = jax.tree.map(
62lambda xs, x: jnp.concatenate ([xs, x[None ]]),
63episode["memory"],
64memory ,
65)
66
67return episode
68
69
70def get_num_actions(env):
71key = random.key(0)
72state = env.init(key)
73space = env.action_space(state)
74return space.mask.size

File rl_losses.py:

1import optax
2from jax import lax , nn
3from jax import numpy as jnp
4
5from lib.rl_utils import get_reach_probs , get_returns
6
7
8def mcts_action_loss(episode):
9predictions = episode["agent_extra"]["mcts_action_prediction"]
10targets = episode["agent_extra"]["mcts_action_target"]
11mask = episode["agent_extra"]["mcts_action_mask"]
12losses = optax.kl_divergence(
13nn.log_softmax(predictions , where=mask),
14lax.stop_gradient(targets),
15where=mask ,
16)
17return get_reach_probs(episode) @ losses
18
19
20def mcts_value_loss_mc(episode):
21""" Monte Carlo."""
22predictions = episode["agent_extra"]["mcts_value_prediction"]
23targets = get_returns(episode)
24losses = optax.squared_error(
25predictions ,
26lax.stop_gradient(targets),
27)
28return get_reach_probs(episode) @ losses
29
30
31def mcts_value_loss_dp(episode):
32""" Dynamic programming or self -bootstrapping."""
33predictions = episode["agent_extra"]["mcts_value_prediction"]
34targets = episode["agent_extra"]["mcts_value_target"]
35losses = optax.squared_error(
36predictions ,
37lax.stop_gradient(targets),
38)
39return get_reach_probs(episode) @ losses
40
41
42def alphazero_loss(episode):
43value_loss = mcts_value_loss_mc(episode)
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44action_loss = mcts_action_loss(episode)
45loss = value_loss + action_loss
46metrics = {
47"value_loss": value_loss ,
48"action_loss": action_loss ,
49"loss": loss ,
50}
51return loss , metrics
52
53
54def mcts_consistency_loss(episode):
55value_loss = mcts_value_loss_dp(episode)
56action_loss = mcts_action_loss(episode)
57loss = value_loss + action_loss
58metrics = {
59"value_loss": value_loss ,
60"action_loss": action_loss ,
61"loss": loss ,
62}
63return loss , metrics

File mcts.py:

1import jax
2import mctx
3from jax import lax , nn
4from jax import numpy as jnp
5
6
7def gumbel_muzero(
8state ,
9prediction_fn ,
10step_fn ,
11action_mask ,
12budget ,
13key ,
14algorithm="gumbel_muzero",
15**kwargs ,
16):
17def root_fn(state):
18value , logits = prediction_fn(state)
19return mctx.RootFnOutput(
20prior_logits=logits , # type: ignore
21value=value , # type: ignore
22embedding=state , # type: ignore
23)
24
25def recurrent_fn(params , key , action , state):
26reward , discount , new_state = step_fn(state , action)
27value , logits = prediction_fn(new_state)
28output = mctx.RecurrentFnOutput(
29reward=reward , # type: ignore
30discount=discount , # type: ignore
31prior_logits=logits , # type: ignore
32value=value , # type: ignore
33)
34return output , new_state
35
36algorithm_fn = {
37"gumbel_muzero": mctx.gumbel_muzero_policy ,
38"muzero": mctx.muzero_policy ,
39}[ algorithm]
40
41root = root_fn(state)
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42outputs = algorithm_fn(
43params =(),
44rng_key=key ,
45root=jax.tree.map(lambda x: jnp.expand_dims(x, 0), root),
46recurrent_fn=jax.vmap(recurrent_fn , [None , None , 0, 0]),
47num_simulations=budget + 1,
48invalid_actions=jax.tree.map(lambda x: jnp.expand_dims (~x, 0),

↪→ action_mask),
49**kwargs ,
50)
51summary = jax.tree.map(lambda x: x[0], outputs.search_tree.summary ())
52output = jax.tree.map(lambda x: x[0], outputs)
53return {
54"action": output.action ,
55"action_onehot": nn.one_hot(output.action , output.action_weights.

↪→ size),
56"action_weights": lax.stop_gradient(output.action_weights),
57"root_value": root.value ,
58"root_logits": root.prior_logits ,
59"root_state": state ,
60"search_tree": lax.stop_gradient(output.search_tree),
61"visit_counts": summary.visit_counts ,
62"visit_probs": summary.visit_probs ,
63"value": lax.stop_gradient(summary.value),
64"qvalues": summary.qvalues ,
65"action_mask": action_mask ,
66}

File alphazero.py:

1from functools import partial
2
3from lib import mcts
4
5
6class AlphaZero:
7
8def __init__(self , env , pred_fn , budget):
9self.env = env
10self.pred_fn = pred_fn
11self.budget = budget
12
13def init(self , params_key , state , key , memory):
14return self.pred_fn.init(params_key , state)
15
16def init_memory(self , key):
17return None
18
19def apply(self , params , state , key , memory):
20space = self.env.action_space(state)
21output = mcts.gumbel_muzero(
22state=state ,
23prediction_fn=partial(self.pred_fn.apply , params),
24step_fn=self.env.step ,
25budget=self.budget ,
26key=key ,
27action_mask=space.mask ,
28)
29return (
30output["action"],
31memory ,
32{
33"search_tree": output["search_tree"],
34"mcts_value_prediction": output["root_value"],
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35"mcts_value_target": output["value"],
36"mcts_action_prediction": output["root_logits"],
37"mcts_action_target": output["action_weights"],
38"mcts_action_mask": space.mask ,
39},
40)

File predictors.py:

1import argparse
2
3from flax import linen as nn
4from jax import numpy as jnp
5
6from lib import envs , rl_utils
7
8
9class DensePredictor(nn.Module):
10args: argparse.Namespace
11env: envs.Env
12
13@nn.compact
14def __call__(self , state):
15x = self.env.observation_vector(state)
16x = nn.Dense(self.args.hidden_dim)(x)
17x = nn.relu(x)
18
19logits = nn.Dense(rl_utils.get_num_actions(self.env))(x)
20
21if hasattr(self.env , "players"):
22values = nn.Dense(self.env.players)(x)
23return values , logits
24else:
25(value ,) = nn.Dense (1)(x)
26return value , logits
27
28
29class DeepSetsPredictor(nn.Module):
30args: argparse.Namespace
31env: envs.Env
32
33@nn.compact
34def __call__(self , state):
35x, mask = self.env.observation_multiset(state)
36if mask is None:
37mask = jnp.ones(x.shape[0], bool)
38
39for _ in range(self.args.depth):
40x_skip = x
41x = nn.Dense(self.args.hidden_dim)(x)
42x = nn.relu(x)
43x1 = nn.Dense(self.args.hidden_dim)(x.sum(0, where=mask [...,

↪→ None]))
44x1 /= 1 + mask.sum(0)[..., None]
45x2 = nn.Dense(self.args.hidden_dim , use_bias=False)(x)
46x = x1 + x2
47x = nn.relu(x)
48if x_skip.shape == x.shape:
49x += x_skip
50
51match self.env:
52case (
53envs.EuclideanTSP ()
54| envs.Knapsack ()
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55| envs.EuclideanFLP ()
56| envs.SubsetSum ()
57| envs.MaximumDiversityProblem ()
58| envs.MaxLengthTSP ()
59):
60logits = nn.Dense (1)(x)[..., 0]
61case envs.Sokoban () | envs.Reach():
62y = x.mean(0, where=mask [..., None])
63logits = nn.Dense(rl_utils.get_num_actions(self.env))(y)
64case _:
65breakpoint ()
66raise NotImplementedError(self.env)
67
68x = x.mean(0, where=mask [..., None])
69
70if hasattr(self.env , "players"):
71values = nn.Dense(self.env.players)(x)
72return values , logits
73else:
74(value ,) = nn.Dense (1)(x)
75return value , logits
76
77
78class AttentionPredictor(nn.Module):
79args: argparse.Namespace
80env: envs.Env
81
82@nn.compact
83def __call__(self , state):
84x, mask = self.env.observation_multiset(state)
85if mask is None:
86mask = jnp.ones(x.shape[0], bool)
87
88x = nn.Dense(self.args.hidden_dim)(x)
89
90for _ in range(self.args.depth):
91x_norm = nn.LayerNorm(use_bias=False , use_scale=False)(x)
92
93y = nn.Dense(self.args.hidden_dim)(x_norm)
94y = nn.relu(y)
95y = nn.Dense(self.args.hidden_dim , kernel_init=nn.

↪→ initializers.zeros)(y)
96
97z = nn.MultiHeadAttention(self.args.heads)(x_norm , mask=mask)
98
99x += y + z
100
101match self.env:
102case (
103envs.EuclideanTSP ()
104| envs.Knapsack ()
105| envs.EuclideanFLP ()
106| envs.SubsetSum ()
107| envs.MaximumDiversityProblem ()
108| envs.MaxLengthTSP ()
109):
110logits = nn.Dense (1)(x)[..., 0]
111case envs.Sokoban () | envs.Reach():
112y = x.mean(0, where=mask [..., None])
113logits = nn.Dense(rl_utils.get_num_actions(self.env))(y)
114case _:
115breakpoint ()
116raise NotImplementedError(self.env)
117
118readout = self.param(
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119"readout", nn.initializers.normal (1), [self.args.hidden_dim]
120)
121x = nn.MultiHeadAttention(self.args.heads)(readout[None], x, mask

↪→ =mask).squeeze(
1220
123)
124
125if hasattr(self.env , "players"):
126values = nn.Dense(self.env.players)(x)
127return values , logits
128else:
129(value ,) = nn.Dense (1)(x)
130return value , logits
131
132
133class MixedPredictor(nn.Module):
134value: nn.Module
135policy: nn.Module
136
137@nn.compact
138def __call__(self , state):
139value , _ = self.value(state)
140_, logits = self.policy(state)
141return value , logits

File pseudogradient.py:

1from functools import partial
2
3import jax
4import optax
5from jax import lax , random
6from jax import numpy as jnp
7from jax.scipy import stats
8from optax import tree_utils as otu
9
10
11class Normal:
12def __init__(self , loc , scale):
13self.loc = loc
14self.scale = scale
15
16def sample(self , key):
17z = otu.tree_random_like(key , self.loc)
18return jax.tree.map(lambda l, z: l + self.scale * z, self.loc , z)
19
20def sample_antithetic(self , key):
21z = otu.tree_random_like(key , self.loc)
22return jax.tree.map(
23lambda l, z: l + self.scale * jnp.stack([z, -z]),
24self.loc ,
25z,
26)
27
28def logpdf(self , x):
29logpdfs = jax.tree.map(
30lambda l, x: stats.norm.logpdf(x, l, self.scale),
31self.loc ,
32x,
33)
34return otu.tree_sum(logpdfs)
35
36
37def smoothe(scale , distribution="normal"):
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38match distribution:
39case "normal":
40distribution_cls = Normal
41case _:
42raise NotImplementedError
43
44def g(f, x, key):
45dist = distribution_cls(x, scale)
46
47key , subkey = random.split(key)
48samples = lax.stop_gradient(dist.sample_antithetic(subkey))
49
50outputs = jax.vmap(f, [0, None], axis_size =2)(samples , key)
51
52log_probs = jax.vmap(dist.logpdf , axis_size =2)(samples)
53assert log_probs.ndim == 1
54
55ones = jnp.exp(log_probs - lax.stop_gradient(log_probs))
56ones /= ones.size
57
58return jax.tree.map(lambda outputs: ones @ outputs , outputs)
59
60return lambda f: partial(g, f)
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