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ABSTRACT
Advection-dominated dynamical systems, characterized by partial differential equations, are found in applications ranging from weather
forecasting to engineering design where accuracy and robustness are crucial. There has been significant interest in the use of techniques
borrowed from machine learning to reduce the computational expense and/or improve the accuracy of predictions for these systems.
These rely on the identification of a basis that reduces the dimensionality of the problem and the subsequent use of time series and
sequential learning methods to forecast the evolution of the reduced state. Often, however, machine-learned predictions after reduced-
basis projection are plagued by issues of stability stemming from incomplete capture of multiscale processes as well as due to error
growth for long forecast durations. To address these issues, we have developed a non-autoregressive time series approach for predicting
linear reduced-basis time histories of forward models. In particular, we demonstrate that non-autoregressive counterparts of sequen-
tial learning methods such as long short-term memory (LSTM) considerably improve the stability of machine-learned reduced-order
models. We evaluate our approach on the inviscid shallow water equations and show that a non-autoregressive variant of the stan-
dard LSTM approach that is bidirectional in the principal component directions obtains the best accuracy for recreating the nonlinear
dynamics of partial observations. Moreover—and critical for many applications of these surrogates—inference times are reduced by three
orders of magnitude using our approach, compared with both the equation-based Galerkin projection method and the standard LSTM
approach.

https://doi.org/10.1063/5.0019884., s

I. INTRODUCTION

Recently, researchers have shown sustained interest in using
machine learning methods for bypassing traditional numerical
methods.1–11 This is due to the promise such methods hold in
multiple applications ranging from engineering design to climate
modeling, where forward model solves rely on nonlinear partial
differential equations (PDEs). Frequently, these systems exhibit
multiscale and advective behavior, which leads to very fine spa-
tiotemporal discretization requirements. Consequently, PDE-based
solutions of these systems become computationally expensive, caus-
ing a significant bottleneck in design and forecast tasks.12 Data-
driven reduced-order methods (ROMs) are promising since they
allow for rapid predictions of nonlinear dynamics unencumbered
by the limitations of numerical discretizations.3,13 In almost all ROM

applications, forecasts must be conditioned on time and several con-
trol parameters such as the initial conditions or the physical prop-
erties of the governing laws. Moreover, most systems need to be
integrated in time for a large duration, and stable predictions
throughout the lifetime of the dynamical system are essential. We
address issues related to the stability of conditional surrogates by
introducing physics-informed non-autoregressive methods for time
series prediction. To that end, we propose a novel long short-
term memory (LSTM) network method that performs bidirec-
tional14 gating in the dimension of the principal component anal-
ysis (PCA) coefficients while being globally connected in time. This
method is compared with standard techniques such as the traditional
LSTM,15 a non-autoregressive version of a temporal convolutional
network,16 and a non-autoregressive multilayered perceptron. Our
testing results show lower testing and reconstruction errors from
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the proposed method as well as significant improvement in model
stability compared with that of the traditional LSTM. Assessments
are also made against the Galerkin projection (GP),17 and our pro-
posed approach is seen to provide more accurate results with shorter
inference times. To summarize, the contributions of this article are
as follows:

● A novel non-autoregressive LSTM-based method is pro-
posed that performs bidirectional gating in the PCA dimen-
sion while remaining fully connected in time for predicting
the spatiotemporal dynamics of the shallow water equations.

● We demonstrate that the proposed method can provide
more accurate results for learning the trajectory of the non-
linear dynamical systems in addition to providing much
lower inference times and exhibiting greater stability.

● We advance the state of the art for forecasting nonlinear
dynamical systems from the point of view of stability and
the ability to handle incomplete data.

II. RELATED WORK
Neural networks have been used for ROMs for decades. One

of the earliest examples18 used a simple fully connected network for
forecasting meteorological information. More recently, researchers
have incorporated a single-layered feed-forward neural network
into a nonlinear dynamical system and built a surrogate model for
a high-dimensional aerodynamics problem;19 radial basis function
networks have been used to make forecasts for a nonlinear unsteady
aerodynamics task;20,21 and a simple fully connected network has
been used for learning the dynamics of an advection-dominated sys-
tem.22,23 Data generated from PDE simulations can often be inter-
preted as images on a square grid, so convolutional neural net-
works have also been applied.24–28 Forecast models constructed from
data alone are often categorized as non-intrusive, and in recent
times, several such techniques have been proposed to address sit-
uations with insufficient knowledge of the underlying governing
equations.23,29–36

Although other ways can be used to reduce the dimension-
ality of dynamical system data, using the PCA projection means
that the latent space can be interpreted as evolving coefficients in
terms of physically relevant spectral content. Since 2018, there has
been major growth in the use of LSTMs after projecting dynamical
systems into latent space.26,34,37–44 Since errors from the neural net-
work model accumulate, the autoregressive approach may be unsta-
ble for long-term predictions. Most studies do not report on the
robustness and stability of their trained networks for long prediction
horizons.

In addition, such studies assume that all dependent variables
(i.e., the full state of the dynamical system) are observable. This
assumption limits the application of these methods to realistic fore-
casting scenarios where not all of the physical processes are observ-
able. In practice, training recurrent networks for adhering to physi-
cal manifolds is nontrivial,45 and it is made doubly difficult by having
incomplete access to all the relevant information. Recent articles
have tried to address these limitations46–48 by constructing physics-
aware networks that learn conservation laws, but their exten-
sion to complicated systems with incomplete observations remains
unclear.

The method proposed in this article represents an improve-
ment in the state of the art for nonintrusive ROMs based on recur-
rent neural networks. We find that a non-autoregressive approach
improves long-term stability and inference time. It also allows a
novel use of an LSTM where gating is performed in the PCA dimen-
sion instead of the time dimension. The error is further decreased
by using a bidirectional LSTM. We perform a thorough analysis of
the stability and robustness of the proposed framework, and we find
improved performance in comparison with that of traditional meth-
ods. We also assess the performance of the framework for incom-
plete observations. GP, an intrusive and equation-based method,17 is
used as a baseline for the purpose of an additional comparison. We
note that GP requires the solution of a partial differential equation
in latent space and complete observations of the system dynam-
ics. We demonstrate that our proposed method, which operates on
incomplete observations, outperforms GP as well.

III. METHODS
The parameterized forecasting of a high-dimensional advection-

dominated problem can be formulated as a supervised sequential
learning problem. A common approach for solving this problem
comprises four steps:

1. Collect time series data u1,u2, . . . ,uN ∈ Rm, evenly spaced in
time. For example, the data could be from a spatiotemporal
system governed by a PDE. However, we do not assume that
we have “complete information” in the sense of measuring all
the dependent variables of the original system.

2. Reduce the dimensionality of the problem by projecting data
into the latent space defined by the first r PCA components of
the data, producing z1, z2, . . . , zN ∈ Rr.

3. Train a time series model in this latent space. The inputs are a
historical sequence of inputs zn−k, zn−k+1, . . ., zn and control
variables w, such as the initial conditions. A trained model is
tasked with predicting the sequence of outputs zn+1, zn+2, . . .,
zn+T, where T is the total number of forecast steps.

4. Project the predictions zt at any future time step t back to Rm

using the saved PCA bases to assess reconstruction fidelity.

A. Galerkin projection
For comparison of all our machine-learned predictive strate-

gies, we utilize the Galerkin projection49,50 methodology, which has
been used extensively for advection-dominated systems including
the shallow water equations.51,52 Briefly, GP involves the projection
of the governing partial differential equations onto the truncated
PCA space. The orthonormality of the PCA bases leads to a sig-
nificant reduction in the number of coupled ordinary differential
equations (for instance, the retention of r basis vectors implies that
r coupled systems must be solved). However, some severe limita-
tions are associated with this approach that hamper its utility as a
surrogate model for dynamical systems. First, the utilization of GP
necessitates complete observation of all dependent variables in the
system. Second, the projection of the governing equations to the
PCA space leads to a drop in accuracy since higher-order interac-
tions between the truncated PCA bases are lost. Third, when the
number of retained components grows, the computational cost of
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GP becomes prohibitive.53 These factors have contributed to grow-
ing interest in the use of machine learning methods for time series
data for bypassing equation-based surrogates. GP results serve as a
benchmark comparison for our proposed method against a state-of-
the-art analytical technique, and a full formulation of the same for
this test case may be found in our previous work.54

B. Time-series learning methods
Here, we introduce some common methods for the prediction

of time series data, such as the LSTM network, and we describe our
proposed non-autoregressive adaptation to these methods to achieve
our goal of stable and accurate predictions on test datasets. Table I
shows the nomenclature adopted in this study for the various time-
series learning methods.

1. Autoregressive methods
Our first method is the traditional LSTM network.15 In this

method, gating is applied in the time dimension, and the frame-
work seeks to predict the time-varying coefficients of the PCA
bases. In addition, the outputs of the network are fed back into the
window required for predicting the next step. This sliding-window
prediction strategy is denoted autoregressive. A vast majority of
nonintrusive surrogate modeling strategies employ this method-
ology for one-step-ahead prediction of dynamics. The choice is
motivated primarily by the methodological similarities with most
ordinary differential integration techniques,55 which integrate
dynamics one step at a time because of issues of numerical sta-
bility. We denote this method A-LSTM-T (short for autoregres-
sive LSTM with gating in time and prediction in PCA space).
The evolution equations for a standard LSTM are given as
follows:

TABLE I. Methods starting with “A-” are those where outputs are fed back into the
network for recursive prediction, “NA-” methods directly forecast all dynamics at once,
and “T/P” indicates which dimension is being gated (time/PCA, respectively). Here, N
refers to the total number of timesteps in the time-series and k refers to an input
window of available data.

Gating Gating Prediction
Method space type steps

Autoregressive

A-LSTM-T Time Standard 1
A-LSTM-T-R Time Standard 2

Non-autoregressive

NA-LSTM-T Time Standard N–k
NA-TCN N/A N/A N–k
NA-LSTM-P PCA Standard N–k
NA-BLSTM-P PCA Bidirectional N–k
NA-MLP N/A N/A N–k

Analytical

GP N/A N/A 1

input gate: Gi = φS ○FNc
i (zn),

forget gate: Gf = φS ○FNc
f (zn),

output gate: Go = φS ○FNc
o (zn),

internal state: sn = Gf ⊙ sn−1 + Gi ⊙ (φT ○FNc
is (z)),

output: hn+1 = Go ○ φT(sn),

(1)

where zn is an input at a current time step and a○b refers to a
Hadamard product of two vectors. The above set of operations are
unrolled in the temporal dimension to allow for the effect of zn−k,
zn−k+1, . . ., zn−1 on zn for making a prediction for zn+1. Note that
φS and φL refer to tangent sigmoid and tangent hyperbolic activa-
tion functions, respectively, and Nc is the number of hidden layer
units in the LSTM network. F n refers to a linear operation given by
a matrix multiplication and subsequent bias addition, i.e.,

F n(x) =Wx + B, (2)

where W ∈ Rn×m and B ∈ Rn for x ∈ Rm. Conventionally, the output
of the standard LSTM hn+1 may be fed into another set of LSTM
operations if multiple cells are stacked. If there is only one cell or
these operations represent those for the final one, the output is acted
upon by another operation akin to a linear operation followed by
tangent sigmoid activation to obtain zn+1, i.e.,

zn+1 = φT(F r
ophn+1). (3)

A key disadvantage of the autoregressive time series models is
that they suffer from problems related to error propagation during
recursive predictions. This often results from a lack of an analyti-
cal notion of stability43 as opposed to the use of an equation-based
method where several numerical techniques (such as filtering or
adaptive time-stepping) may be used to ensure that error growth is
arrested. Some recent attempts at characterizing the chaotic behav-
ior of the A-LSTM-T include a study to assess the Lyapunov spectra
of these types of networks56 to quantify the error propagation rate.
Other time-series methods have also looked at using the Lyapunov
coefficient57 for accurate evolution of dynamical systems over long
horizons.

Therefore, we consider a modified version of the A-LSTM-T
method where the training involves a metamodeling strategy allow-
ing for output feedback in the training process. The computational
graph is set up in such a way that any error propagation due to
prediction feedback is penalized. This may be represented as

zn+1 =MA(zn-k, zn-k+1, . . . , zn),
zn+2 =MA(zn-k+1, zn-k+2, . . . , zn+1), (4)

where MA is an aggregation of the LSTM operations and the com-
putation of zn+2 depends on the prediction of zn+1 by the current
state of the network. We note that this technique has previously
been utilized for training latent space representations for nonlinear
dynamical systems.58 We assess whether it can enhance the stability
of the standard A-LSTM-T. We denote this method as A-LSTM-T-
R. Both A-LSTM-T and A-LSTM-T-R require a window of inputs
to make a one-step prediction. In addition, parameter information
(i.e., w) is concatenated to this window-augmented state vector. To
summarize, our training dataset for the autoregressive methods has
multiple examples of inputs of a window of state vectors. The output
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from these methods is a forecast of the state of the dynamical system
at the next time step.

2. Non-autoregressive methods
Here, we present non-autoregressive methods that help

improve the stability and accuracy of surrogate models. For this
reason, the methods are prepended with “NA.” The equations of a
general non-autoregressive method are given by a direct prediction
as follows:

zn+1, zn+2, . . . , zn+T =MNA(zn−k, zn−k+1, . . . , zn), (5)

where MNA is a non-autoregressive map. A schematic outlining the
difference between autoregressive and non-autoregressive methods
is provided in Fig. 1.

Our first approach is to introduce the NA counterpart of the
A-LSTM-T method. Here, a standard LSTM is configured to return
a sequence of all forecasts, given a burn-in sequence of k inputs
and parameter information. A direct prediction of the dynamics
precludes the necessity for any autoregressive feedback. We denote
this method NA-LSTM-T, and the sole difference from the auto-
regressive methods of Sec. III B 1 is due to the final operation on
the LSTM output, i.e.,

zNA = φT(F r×N-k
op hn+1), (6)

where zNA is a vector that stacks the states at different time steps
into one target. Effectively, we predict all future states at once by
managing the output dimension of the standard LSTM.

More importantly, the non-autoregressive formulation allows
one to explore alternative strategies in terms of the interpretation of
the dataset. For instance, we may interpret the dataset to be sequen-
tial in PCA space rather than time. A framework leveraging this
interpretation can be devised simply by switching the gating dimen-
sion of the dataset. This aligns with the sequential nature of the PCA
coefficients in terms of the proportion of variance capture of the
dataset. The first method that leverages this is thus called NA-LSTM-
P. The equations of the NA-LSTM-P method are given as follows.
First, let us consider a matrix Z ∈ Rk×r where each row corresponds

to the r-dimensional reduced state at each time step k of the burn-in
window k. We may transpose this matrix to obtain Z′ ∈ Rr×k where
each row now corresponds to the PCA coefficient r (of a total of r
coefficients) of our reduced state. Our NA-LSTM-P method would
then perform the following operations:

input gate: Gi = φS ○FNc
i (z′r),

forget gate: Gf = φS ○FNc
f (z′r),

output gate: Go = φS ○FNc
o (z′r),

internal state: sr = Gf ⊙ sr−1 + Gi ⊙ (φT ○FNc
is (z′r)),

output: hr+1 = Go ○ φT(sr),

(7)

where z′r ∈ Rk is row r of r rows in matrix Z′. The above set of opera-
tions are unrolled in the PCA dimension to allow for the effect of his-
tory. At this point, we have interpreted data in the PCA dimension
to be sequential, which align with the well-known variance-ordered
nature of principal components obtained from snapshot data. We
may now use this directional information to predict the dynamics at
all future time steps at once (contained in the vectors h0, h1, . . ., hr).
This is represented as

ZNA = φT(FN-k
op [h1,h2, . . . ,hr+1]), (8)

where the double brackets imply column vector concatenation. The
final output of this framework, ZNA ∈ RN-k×r, contains all the infor-
mation of the evolution of the r-dimensional state for all future
time steps N–k. Note that the length of hr ∈ RNc is a function
of the number of hidden-layer neurons Nc in this LSTM cell. In
a manner similar to that demonstrated in the autoregressive case,
parameter information w is concatenated into the gating (i.e., PCA)
dimension. We then extend the implementation of the NA-LSTM-
P formulation allowing for a bidirectional gating mechanism in the
PCA dimension.14 Through the use of this augmentation, any output
hr is affected by all inputs z′1, z′2, . . ., z′r. This decision is physics-
informed due to the common knowledge of energy interchange

FIG. 1. Schematic outlining the difference between autoregressive and non-autoregressive methods for forecasting. The solid rectangles in each data matrix indicate the
state of the dynamical system, and their dotted versions indicate states that need to be predicted. Non-autoregressive methods have been proposed to deal with issues of
noise accumulation in regular time-series forecasting techniques.
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between the different frequencies (and correspondingly, the differ-
ent PCA basis vectors) in multiscale nonlinear dynamical systems.59

We denote this method by NA-BLSTM-P.
The sequential in PCA space interpretation of the dataset also

allows for the use of a comparable architecture given by the one-
dimensional temporal convolution network,16 where convolutions
are performed on the parametric information and the PCA coeffi-
cients comprising the k input time steps. The reader may find an
excellent review of the temporal convolutional network and its appli-
cations for reduced-order modeling in Ref. 60. As in the previous
case, we then obtain a sequence of PCA coefficients for all future
time steps as the output of the network. We denote this method
by NA-TCN. As a baseline, we also use a fully connected network
for predicting from the input time steps and PCA coefficients. In
essence, the PCA coefficients for all input time steps are flattened
and concatenated with parameter information to obtain an input
signal that is used to directly predict a flattened vector of PCA coef-
ficients. We denote this method by NA-MLP. To summarize this
section, given a burn-in sequence of k inputs and control variables
w, these frameworks produce the PCA coefficients for all future time
steps directly.

IV. EXPERIMENTS
We describe the data generation methodology from the invis-

cid shallow water equations of an advection-dominated system
and present the experimental results comparing different learning
methods.

A. Data generation for training and inference
The inviscid shallow water equations belong to a prototypical

system of equations for geophysical flows. In particular, the shal-
low water equations admit solutions where advection dominates
dissipation and poses challenges for conventional ROMs.59 These
governing equations are given by

∂(ρη)
∂t

+
∂(ρηu)
∂x

+
∂(ρηv)
∂y

= 0, (9)

∂(ρηu)
∂t

+
∂

∂x
(ρηu2 +

1
2
ρgη2) +

∂(ρηuv)
∂y

= 0, (10)

∂(ρηv)
∂t

+
∂(ρηuv)

∂x
+

∂

∂y
(ρηv2 +

1
2
ρgη2) = 0, (11)

where η corresponds to the total fluid column height; (u, v) is the
fluid’s horizontal flow velocity, averaged across the vertical column;
g is acceleration due to gravity; and ρ is the fluid density, typically
set to 1.0. Here, t, x, and y are the independent variables: time and
the spatial coordinates of the two-dimensional system. Equation (9)
captures the law of mass conservation, whereas Eqs. (10) and (11)
denote the conservation of momentum. The initial conditions of the
problem are given by

ρη(x, y, t = 0) = 1 + e
−( (x−x̄)2

2(5e+4)2 + (y−ȳ)2

2(5e+4)2 ), (12)

ρηu(x, y, t = 0) = 0, (13)

ρηv(x, y, t = 0) = 0, (14)

i.e., a Gaussian perturbation at a particular location on the grid
[x̄, ȳ] ≡ w. We solve the system of equations until t = 0.5 with
a time step of 0.001 s on a square two-dimensional grid with 64
collocation points to completely capture the advection and grad-
ual decay of this perturbation. Note that these numbers may vary
according to the forecasting and fidelity requirements of a particu-
lar problem and perturbation. An additional challenge is introduced
when we seek to build predictive models solely from observations of
ρη conditioned on w mimicking a real-world scenario where com-
plete observations of all relevant variables (in this case, velocities) are
unavailable. Equation-based models are thus impossible to construct
because of the absence of information from the other variables of the
partial differential equation.

Five hundred snapshots of ρ and η each are generated from 20
different vectors w obtained by Latin hypercube sampling from w.
In this case, since w corresponds to the physical location of the ini-
tial Gaussian pulse, the two-dimensional domain for sampling was
restricted between −0.5 and 0.5 in both x and y. These snapshots
are used to obtain the global PCA bases that span all these simu-
lations. The PCA bases constructed from field (or image) snapshot
data capture information in a linear least-squares sense.61 Linear
combinations of PCA bases may be used to reconstruct the dynamics
of the partial differential equation with the use of projection meth-
ods. A schematic detailing the generation of training and testing data
is shown in Fig. 2. At this juncture, we provide some remarks on
the nature of the system that is emulated. The initial and bound-
ary conditions for this particular shallow-water equation experiment
represent a tightly controlled traveling wave problem that is trans-
lation invariant. Different realizations of the initial condition lead

FIG. 2. Schematic outlining the generation of training and testing data for the fore-
casting problem. Multiple simulations are used to generate training and testing
snapshots. The training snapshots are used to compute a set of PCA bases on
which individual snapshots are projected to obtain time-varying PCA coefficients.
These coefficients are predicted for the testing simulation by a data-driven method.
Here, z, t, and w ≡ [x̄, ȳ] are the PCA coefficients, time, and control parameters,
respectively.
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to translationally shifted trajectories. We also note the presence of
mirror symmetries with respect to x = x̄ and y = ȳ coupled with a
rotational symmetry of π/2 radians about the origin. However, our
motivation for a first assessment of our emulators on this system
stems from the well-known fact that proper orthogonal decompo-
sition (POD)-based methods are severely limited in their ability to
forecast on these simple traveling-wave systems32,62 and require spe-
cial treatment with intrinsic knowledge of the flow dynamics. Con-
tours representing the final time flow-field for various choices of w
are shown in Fig. 3.

Instead of utilizing all possible PCA bases, because of issues
of computational complexity (20 simulations × 500 time steps
= 10 000 components), only r = 40 PCA bases corresponding to
the most energetic structures in the data are retained. Therefore,
only r coefficients are required in order to reconstruct a field, given
these bases. We note that the choice to set r = 40 coefficients is
made by assessing the reconstruction error in the transformed bases.
This number allows us to reconstruct the original solution with
root mean square errors (RMSEs) around the order of 1 × 10−5

and captures more than 95% of the total variance by measuring the

magnitude of singular values in the PCA decomposition. In addi-
tion, the coefficients we retain are conditioned on w as well as time.
This study seeks to learn the underlying trends of their evolution in
time and assesses this learning for different time-series prediction
methods.

For testing, assessments are made on an unseen w, and a suc-
cessful reconstruction of the dynamics for these parameters implies
that a viable surrogate has been obtained. Moreover, we assume that
a short duration of observations, z1, z2, . . ., zk, is available (corre-
sponding to a first window of inputs to our methods). This burn-in
window k corresponds to a very small observation set compared with
the full 500 time steps. We set k = 20 for all experiments. This choice
was determined through manual experimentation with the objective
of having the shortest burn-in duration. We observed that values
less than k = 20 led to very high deterioration in the results for each
method. For training, the time sequence of each PCA component is
scaled by the minimum and maximum value of all its counterparts
using only the training dataset. We also note that the data gener-
ated from these finite-volume simulations can be interpreted to be
images on a square grid. While this lends to the use of convolutional

FIG. 3. Final time contours [(a)–(d)] of various choices of w. The symmetries inherent in this problem are visible as the contours are translationally and rotationally shifted
across the periodic boundaries.
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neural networks for modeling dynamics,24,25,63,64 the choice of the
PCA projection allows for interpretability of the evolving coefficients
in terms of physically relevant spectral content.

B. Experimental setup
All the learning methods investigated here utilized only two

hidden layers to allow for low training and inference times. All our
data generation and trained model assessments used Python 3.6.8
and TensorFlow 1.14.0 on an Ubuntu 18.04 operating system with
8 GB of RAM.

An asynchronous hyperparameter optimization of the meth-
ods that we consider was performed on 256 Intel Knights Land-
ing compute nodes for 6 h with the best models being chosen by
their validation loss. Subsequent evaluations of the trained models
were performed on an eighth-generation Intel Core-I7 processor.
For optimizing the hyperparameters of the different methods, we
use DeepHyper,65 a hyperparameter search package that leverages
Bayesian black-box optimization from scikit-optimize.66 This also
allows for more confident conclusions about the results of our mod-
els and removes bias due to default or manual parameter settings.
While the total computational cost for obtaining the optimal hyper-
parameters prior to training an emulator represents a prohibitive
one-time cost, we emphasize that the use of the hyperparameter
search is to determine the best-suited emulation technique among
the different methods studied in this article. In practice, the devel-
opment of the ML-ROM would be satisfactory with manual tuning.
Online costs, to be outlined later, demonstrate that the ML methods
outperform POD-GP.

The search space for all hyperparameters was limited to the
number of neurons (for each of two hidden layers), the batch
size, and the learning rate. A smaller search space ensured more
model evaluations to allow for effective search-space exploration.
Our search-space bounds are [10 200] for the hidden-layer neurons
and [1 × 10−4, 1 × 10−1] for the learning rates. Batch size bounds
were set according to the choice of method: autoregressive meth-
ods have batch sizes between 64 and 256, and non-autoregressive
methods have batch sizes between 1 and 10. Two hyperparameter
optimization experiments are performed for each method in this
study. The first utilizes a standard training, and the second incor-
porates dropout regularization67 for stability analyses of methods.
Both searches utilize the same bounds. On average, each method was

evaluated for more than 400 unique hyperparameter configurations.
The high-performing hyperparameters obtained by using DeepHy-
per are shown in Table II. Models were trained with convergence
callbacks based on training loss (less than 1 × 10−5 RMSE) or
training time out (corresponding to 5000 epochs).

C. Comparison of different methods
Here, we compare the different autoregressive and non-

autoregressive learning methods with GP and show that non-
autoregressive methods are superior to other methods with respect
to forecasting accuracy and stability.

The different methods are compared based on the mean
squared error (MSE) of PCA coefficient predictions for the test
simulation. We also show error variance for each method. The
training loss, testing error, and field reconstruction error results
are shown in Table II. First, we compare the autoregressive vari-
ants. We observe that both A-LSTM-T and the A-LSTM-T-R per-
form poorly. While the latter exhibits a saturation after a certain
prediction horizon, the former displays compounding errors that
diverge from the true trajectory. These results are reflected in their
test MSEs of 2.26 × 10−1 and 8.77 × 10−3, the two highest in our
set of experiments. We also note that A-LSTM-T shows a very
low training loss of around 5.03 × 10−4, which is far lower than
those obtained by the other methods; however, its testing perfor-
mance is poor, hinting at issues of stability for long-term feedback
predictions.

Next, we look at the non-autoregressive methods. For these
methods, testing MSEs show that the proposed method NA-BLSTM-
P has the lowest magnitude of error (1.26 × 10−5) compared with
NA-LSTM-T, NA-LSTM-P, NA-TCN, and NA-MLP (1.79 × 10−3,
1.41 × 10−3, 2.10 × 10−3, and 1.36 × 10−3, respectively). This may
be attributed to the physics-aware nature of the gating in PCA space
where information from multiple PCA coefficients interacts glob-
ally across the r = 40 components. The gating in PCA space has a
positive effect on the performance of the non-autoregressive meth-
ods, with both NA-LSTM-P and NA-BLSTM-P showing the two best
test results. The sequential nature of the ordered PCA coefficients is
thus leveraged successfully. In terms of training losses, NA-LSTM-P
has the lowest training loss among non-autoregressive methods of
2.35 × 10−3, whereas NA-BLSTM-P has the next best (but compara-
ble) training loss of 2.81 × 10−3. These are followed by NA-LSTM-T

TABLE II. High-performing hyperparameter values obtained by DeepHyper and corresponding training, test, and final-time reconstruction errors. The proposed method NA-
BLSTM-P can be seen to provide the lowest mean squared error (MSE) for this problem.

Method Neurons Batch size Learning rate Training loss MSE Testing loss MSE/variance Field error MSE

GP N/A N/A N/A N/A 2.85 × 10−3/6.15 × 10−5 0.000 146
A-LSTM-T 88 152 0.000 258 0.000 503 2.26 × 10−1/4.59 × 10−3 0.000 794
A-LSTM-T-R 29 178 0.651 0.018 7 8.77 × 10−3/5.61 × 10−4 0.000 352
NA-LSTM-T 102 6 0.034 2 0.003 98 1.79 × 10−3/2.15 × 10−5 5.77 × 10−5

NA-LSTM-P 88 9 0.000 258 0.002 35 1.41 × 10−3/1.26 × 10−5 4.12 × 10−5

NA-BLSTM-P 145 6 0.005 23 0.002 81 1.26 × 10−5/5.23 × 10−6 3.96 × 10−5

NA-TCN 145 6 0.005 23 0.004 55 2.10 × 10−3/2.02 × 10−5 4.33 × 10−5

NA-MLP 72 4 0.001 84 0.004 77 1.36 × 10−3/1.18 × 10−5 5.23 × 10−5
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FIG. 4. Predictive ability for the assessed frameworks for PCA component 1. Non-autoregressive methods are seen to be better than their autoregressive counterparts. Note
that in order to build a model, GP requires the solution of a partial differential equation in addition to greater observations from the true system.

(3.98 × 10−3), NA-TCN (4.55 × 10−3), and NA-MLP (4.77 × 10−3).
As expected, non-autoregressive methods exhibit lower testing
errors than their autoregressive counterparts.

We also note that all the non-autoregressive methods dis-
play lower testing errors than GP does (which has a testing error
of 2.85 × 10−3). The comparison is made more favorable by the
fact that GP requires an equation-based evolution of all vari-
ables in the system, whereas our data-driven methods are built
solely for ρη. In addition, GP requires the PCA of the other
variables to identify the latent space for evolution. These results
are displayed in Fig. 4, which shows testing predictions for the
normalized coefficients of the first PCA coefficient for ρη. Sim-
ilar results are obtained for higher-order coefficients, as shown
in Figs. 5–7.

We plot final time fields of ρη in Fig. 8. Field reconstructions,
compared to the truth, show that final time predictions of non-
autoregressive frameworks are more successful in stable predictions.

Observe that GP proves less accurate than the NAT methods in addi-
tion to requiring an equation-based evolution of all variables via a set
of coupled ODEs.

D. Further validation for different datasets
In this section, we compare the NA-BLSTM-P and A-

LSTM-T methods for the non-intrusive model-order reduction
of the viscous Burgers equation (as introduced and explained in
Ref. 43). The purpose of this assessment is to determine if the
non-autoregressive methods can outperform the standard LSTM
for problems on which the latter have been deployed success-
fully. The reader is directed to the aforementioned reference for
a thorough explanation of the data generation and model reduc-
tion process. In the following, we provide a high-level expla-
nation of the training and testing datasets and the subsequent
assessment.

FIG. 5. Predictive ability for the assessed frameworks for PCA component 2. Non-autoregressive methods are seen to be better than their autoregressive counterparts. Note
that in order to build a model, GP requires the solution of a partial differential equation in addition to greater observations from the true system.
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FIG. 6. Predictive ability for the assessed frameworks for PCA component 3. Non-autoregressive methods are seen to be better than their autoregressive counterparts. Note
that in order to build a model, GP requires the solution of a partial differential equation in addition to greater observations from the true system.

The viscous Burgers equations described by the solution given
in Eq. (36) of Maulik et al.43 may be utilized to generate multiple
trajectories at different viscosities. Following this, we may perform a
POD-based data compression to obtain coefficients that are condi-
tioned on time as well as the control parameter (in this case, solely
the Reynolds number Re = 1/ν, where ν is the viscosity). The task
of our forecasting techniques would be to predict coefficient trajec-
tories given an initial burn-in of k inputs and to predict for N–k
time steps. For simplicity, we utilize the best architectures obtained
from the deterministic hyperparameter search in Sec. IV B and use
the previously defined values for N, k, and r. We use 18 different
viscosities obtained by sampling evenly in reciprocal space (given
by values of 0.000 526 32, 0.000 555 56, 0.000 588 24, 0.000 625,
0.000 666 67, 0.000 714 29, 0.000 769 23, 0.000 833 33, 0.000 909 09,
0.001, 0.001 111 11, 0.001 25, 0.001 428 57, 0.001 666 67, 0.002,
0.0025, 0.003 333 33, 0.005) for generating our training data and
use an identical criterion for training termination as introduced
previously. We assess our trained A-LSTM-T and NA-BLSTM-P

networks on test parameters given by viscosities of 0.0004 and 0.004.
The results for the former are shown in Fig. 9 in terms of the time
evolution of the first four POD modal coefficients. From a visual
assessment, it is seen that the NA-BLSTM-P method provides a
closer agreement with the true trajectory. This is also seen in Fig. 10
for a viscosity of 0.004. The final time fields for both these test-
ing simulations are shown in Fig. 11 where the NA-BLSTM-P is
able to capture the true solution profile accurately. The A-LSTM-T
approach does obtain a qualitative agreement but has a poorer accu-
racy. Reconstruction metrics over time are L2 errors of 6.56 × 10−5,
3.972 × 10−5 for A-LSTM-T and 8.08 × 10−7, 2.82 × 10−6 for NA-
BLSTM-P for the low and high viscosity cases, respectively.

E. Stability analysis
Analyzing the stability of ROM models is a critical step in the

development and deployment of such models. To that end, we per-
turb the model through the incorporation of dropout67 and ana-
lyze its stability with respect to these perturbations. Dropout is a

FIG. 7. Predictive ability for the assessed frameworks for PCA component 4. Non-autoregressive methods are seen to be better than their autoregressive counterparts. Note
that in order to build a model, GP requires the solution of a partial differential equation in addition to greater observations from the true system.
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FIG. 8. Predicted fields at final time. We remind the reader that GP requires the solution of a partial differential equation in addition to greater observations from the true
system to build a model.

well-known machine learning regularization technique where ran-
domly selected neurons in a neural network are set to zero during
training. This prevents a neural network from overfitting. Recently,
dropout has also been used to represent model uncertainty in deep
learning,68 where random neurons are switched off during several
predictions. Moments may then be generated from these multiple
predictions. In this section, we shall use dropout during training
to ascertain the effect of regularization on our forecast methods.
Dropout during inference will be utilized to analyze the sensitivity of
the surrogate models to error accumulation. Our hypothesis is that
greater sensitivity to perturbations of the machine-learned models
will lead to greater forecasting error. This analysis is also motivated
by the fact that few reduced-order modeling techniques include

notions of model-form uncertainty or sensitivity analyses during
forecasting.

We perform the stability analysis with the incorporation of
dropout during both training and inference with the former aimed at
avoiding overfitting. The purpose of incorporating dropout during
inference is to assess the effect of perturbations on the trained frame-
works. This assessment can provide further validation of the conclu-
sions made in Sec. IV C, where low training losses for autoregressive
methods were not correlated with good testing performance. We
believe that the error growth over a long-term prediction horizon
was the cause of model inaccuracy in testing. Predictions obtained by
using dropout at inference time allow for multiple time-series pre-
dictions by a trained network. A slight perturbation to the model (by
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FIG. 9. Representative modal coefficient evolution for the viscous Burgers equation at a testing viscosity of 0.0004. NA-BLSTM-P (closely superimposed on the true trajectory)
is seen to be superior to standard A-LSTM-T demonstrated in previous literature.43

switching off a subcomponent) would lead to error accumulation
for autoregressive methods, whereas the non-autoregressive meth-
ods would bypass this effectively. We therefore use this technique to
perform a stability analysis of the trained networks.

We run a hyperparameter search for all the learning methods
with dropout for each hidden layer. As a default, we used a dropout
probability of 0.2. The results are shown in Table III. Once trained,
each method is tasked with predicting on the test dataset 1000
times. Then, the mean of all these predictions and their variance are

calculated. The mean of the predictions is then compared with
the true data (which is deterministic) to obtain testing errors. Fig-
ure 12 shows the predicted mean and variance of these 1000 infer-
ences for all assessed methods on the first principal component.
Results for this analysis on other higher-order PCA components are
shown in Figs. 13–15. Note that the GP method is equation-based
and deterministic. The A-LSTM-T method saturates as predictions
evolve in time. However, the A-LSTM-T-R cannot match the right
phase or frequency of the oscillations for any PCA coefficients and

FIG. 10. Representative modal coefficient evolution for the viscous Burgers equation at a testing viscosity of 0.004. NA-BLSTM-P (closely superimposed on the true trajectory)
is seen to be superior to standard A-LSTM-T demonstrated in previous literature.43
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FIG. 11. Final time solution fields obtained by emulators using A-LSTM-T and NA-BLSTM-P for two testing viscosities. It is observed that the non-autoregressive method is
superior and closely matches the true final time solution field.

TABLE III. Optimal hyperparameters obtained by DeepHyper with dropout during training and inference. Non-autoregressive methods are seen to perform better than their
autoregressive counterparts. In addition, the proposed method (NA-BLSTM-P) can be seen to provide the lowest mean squared error (MSE) for this problem.

Method Neurons Batch size Learning rate Training loss MSE Testing loss MSE/variance Trainable parameters

GP N/A N/A N/A N/A 2.85 × 10−3/6.15 × 10−5 N/A
A-LSTM-T 197 186 2.68× 10−2 2.11× 10−1 1.43 × 10−2/1.42 × 10−3 508 300
A-LSTM-T-R 101 217 7.67× 10−1 1.86× 10−2 1.39 × 10−1/9.24 × 10−3 144 472
NA-LSTM-T 145 6 5.23× 10−3 4.23× 10−3 1.32 × 10−3/1.06 × 10−5 3 081 020
NA-LSTM-P 88 9 2.58× 10−4 3.23× 10−3 1.96 × 10−3/2.06 × 10−5 143 392
NA-BLSTM-P 145 6 5.23× 10−3 2.37× 10−3 8.38 × 10−4/5.71 × 10−6 838 000
NA-TCN 88 9 2.58× 10−4 4.94× 10−3 1.86 × 10−3/1.26 × 10−5 504 544
NA-MLP 119 4 9.62× 10−4 4.73× 10−3 1.53 × 10−3/1.44 × 10−5 2 413 837

generates a random noisy signal. In contrast, the NA methods are
able to match the phase of the predictions appropriately. These
trends are repeated for the other coefficients as well. Quantitative
comparisons across all coefficients are given in Table III and show

that the proposed methods NA-BLSTM-P and NA-LSTM-P out-
perform their counterparts. We also show the number of trainable
parameters for each architecture in this table. One can note that
the proposed methods NA-BLSTM-P and NA-LSTM-P require a

FIG. 12. Predictive ability for the assessed frameworks for PCA component 1. Note that GP requires the solution of a partial differential equation in addition to complete
observations from the true system to build a model. In addition, GP is deterministic.
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FIG. 13. Predictive ability for the assessed frameworks for PCA component 2. Note that GP requires the solution of a partial differential equation in addition to complete
observations from the true system to build a model. In addition, GP is deterministic.

FIG. 14. Predictive ability for the assessed frameworks for PCA component 3. Note that GP requires the solution of a partial differential equation in addition to complete
observations from the true system to build a model. In addition, GP is deterministic.

FIG. 15. Predictive ability for the assessed frameworks for PCA component 4. Note that GP requires the solution of a partial differential equation in addition to complete
observations from the true system to build a model. In addition, GP is deterministic.
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FIG. 16. Ablation study focusing on the effect of dropout probability on the NA-BLSTM-P method. Testing mean-squared errors/error variance for the four models were (from
left to right) 8.40 × 10−5/5.23 × 10−6, 8.53 × 10−4/5.08 × 10−6, 1.01 × 10−3/5.44 × 10−6, and 1.50 × 10−3/8.59 × 10−6.

comparable number of trainable parameters compared to NA-TCN
and far fewer than the NA-LSTM-T and NA-MLP methods. We note
here that the latter two algorithms do not interpret the data to be
sequential in PCA space.

Non-autoregressive methods, in general, provide several orders
of magnitude acceleration over GP and the autoregressive meth-
ods, thereby proving suitable for their ultimate application in
cost reduction. For instance, the average time-to-solution for a
non-autoregressive method was around 0.01 s, whereas the

autoregressive methods required ∼3 s for forecasting. The equation-
based GP model required around 20 s for a complete simulation. The
readers may note that the large cost of the GP model stems from
the need to retain 40 principal components, which causes greater
computational demands due to the complexity of the nonlinear term
computation.

For another validation, we take the best hyperparameters
obtained for NA-BLSTM-P and perform an ablation study for
the magnitude of the dropout probability, as shown in Fig. 16.

FIG. 17. Predictive ability for the NA-BLSTM-P method equipped with a MLP-based meta-model to predict the burn-in sequence given w.
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FIG. 18. Predictive ability for the NA-BLSTM-P method equipped with a MLP-based meta-model. The meta-model predicts the burn-in sequence given w, which may then
be used as an input to the non-autoregressive surrogate.

The network was deployed four times with dropout probability val-
ues of 0.0, 0.1, 0.3, and 0.5; 1000 inferences were made on the test
dataset for each value of the dropout probability. As the dropout
probabilities of neurons increase during inference, the network is
seen to display increased variability. However, mean predictions for
the ensemble show good agreement with the underlying truth. We
note that this model was trained without dropping out neurons and
the role of dropout during inference is to simulate error accumula-
tion. The viable performance for different dropout magnitudes indi-
cates that the model is robust to error forcing at different magnitudes
for the entire length of the forecast, thereby displaying robustness for
long-term forecasts.

F. Parametric meta-model for latent space
initialization

In this section, we assess further possibilities for accelerating
our reduced-order model by removing the dependence on the pre-
viously introduced burn-in duration. We remind the reader that our
experiments, thus far, assume the availability of a slice of the trajec-
tory for a test initial condition (from a numerical solver) to initialize
the deployment of the data-driven forecast methods. This represents
a potential bottleneck for physical systems where large lead-times
may be necessary for the effect of control parameters to cause learn-
able differences in trajectories. To that end, we propose the use of
a meta-modeling strategy that predicts the initial burn-in trajectory
from w alone. Essentially, our meta-model learns to predict the tra-
jectory for the first k time steps by observing w; following this, our
time-series method predicts the trajectory for the N–k time steps.

For simplicity, we select a 3-layer perceptron with 20, 40, and
20 neurons in hidden layers 1, 2, and 3, respectively. Each hidden
layer is also equipped with a rectified linear activation function. This
architecture is used to map from w to z1, z2, . . ., zk. Our dataset
remains unchanged, with 20 training points being used to train this
map. Note that the paucity of training data also motivates the use
of such a simple framework. We train our framework with an L1-
regularization strategy where the objective function of our training
is penalized by the sum of absolute values of trainable parameters.

PCA coefficient predictions from a deployment of the NA-
BLSTM-P model trained in Sec. IV B are shown in Fig. 17. In

contrast to the results obtained previously, the initial burn-in win-
dow is not available from a numerical simulation but is predicted
by our meta-model. One can observe that the combination of the
two data-driven maps allows for the direct prediction of a trajectory,
given solely initial conditions from w. Contours for the associated
trajectory are shown in Fig. 18 where the final time flow-field is
reconstructed accurately.

V. CONCLUSIONS AND FUTURE WORK
We introduce a novel methodology for the accurate predic-

tion of nonlinear dynamical systems solely from data. The dataset is
interpreted to be sequential in PCA space due to the ordered nature
of the PCA bases. Consequently, this allows for gating in the PCA
coefficient dimension. Through this interpretation of the nonlin-
ear dynamics, the introduced methods address challenges related to
the stability of traditional time-series learning methods such as the
LSTM for advection-dominated problems.

Our results show that the incorporation of a bidirectional gat-
ing in the PCA coefficient dimension leads to the lowest testing
and reconstruction errors for the nonlinear dynamics of the shallow
water equations. In addition, the choice of the bidirectional gating
is physics-informed since the PCA coefficients are ordered according
to decreasing spectral content capture. In physics, this variance cor-
responds to the amount of spectral content captured by the different
bases. The bidirectional LSTM allows for the output to be influ-
enced by relevant spectral content from multiple PCA bases and may
be the cause of the best performance among the methods studied
here. We compare these results with other non-autoregressive meth-
ods such as the non-autoregressive temporal convolutional network
and the non-autoregressive multilayered perceptron where supe-
rior performance is observed. The novel interpretation of nonlinear
dynamics also allows for rapid inference with orders of magnitude
reduction in inference times in comparison with the benchmark GP
and autoregressive methods. We also note that the model size of the
proposed non-autoregressive bidirectional LSTM is comparatively
lower than that of the other non-autoregressive methods. These fea-
tures are useful for lightweight deployments of the proposed meth-
ods for applications in control, data assimilation, and parametric
forecasting.
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A few limitations of the non-autoregressive methods need to
be explored. While these methods aid in bypassing issues of sta-
bility and slow inference times, their efficacy for forecasting (for
unseen t) remains to be seen. Our current problem is purely tran-
sient in nature, and precise prediction beyond 500 time steps is
not desired to avoid extrapolation. However, these methods must
be assessed for datasets where self-similar temporal information
can be leveraged to make forecasts. Another limitation may arise
from the nature of training these non-autoregressive methods. Since
each nonlinear dynamical system solve is considered a sample,
much larger datasets may need to be generated for effective learn-
ing. Training times (given in Table III) show that these meth-
ods may be costly to train on large datasets. Our future work
is aimed at addressing these issues. We should also caution the
reader that when a considerable amount of underlying knowledge
about a system is available, such as through a thorough understand-
ing of the governing equations and the availability of exceptional
observational data, projection-based ROMs may still be very com-
petitive. Indeed, machine-learned ROMs may also suffer from the
presence of data with observational biases (such as non-Gaussian
noise) for which equation-based techniques may prove superior.
We advocate for computational workflows that utilize the strengths
of several ROM methodologies for mitigating their individual
weaknesses.
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