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ABSTRACT

With upcoming sample return missions across the solar system and the increas-
ing availability of mass spectrometry data, there is an urgent need for methods
that analyze such data within the context of existing astrobiology literature and
generate plausible hypotheses regarding the emergence of life on Earth. Hypoth-
esis generation from mass spectrometry data is challenging due to factors such
as environmental contaminants, the complexity of spectral peaks, and difficulties
in cross-matching these peaks with prior studies. To address these challenges,
we introduce AstroAgents, a large language model-based, multi-agent AI system
for hypothesis generation from mass spectrometry data. AstroAgents is structured
around eight collaborative agents: a data analyst, a planner, three domain scien-
tists, an accumulator, a literature reviewer, and a critic. The system processes mass
spectrometry data alongside user-provided research papers. The data analyst in-
terprets the data, and the planner delegates specific segments to the scientist agents
for in-depth exploration. The accumulator then collects and deduplicates the gen-
erated hypotheses, and the literature reviewer identifies relevant literature using
Semantic Scholar. Finally, the critic evaluates the hypotheses, offering rigorous
suggestions for improvement. To assess AstroAgents, an astrobiology expert eval-
uated the novelty and plausibility of more than a hundred hypotheses generated
from data obtained from eight meteorites and ten soil samples. Of these hypothe-
ses, surprisingly, 36% were identified as plausible, and among those, 66% were
novel.

1 INTRODUCTION

The rapid growth of spectrometry data from sample return missions the solar system where traces
of past, extinct, or present life can be found necessitates methods to analyze this massive, high-
dimensional data and generate plausible hypothesis on one of the most fundamental questions in
astrobiology: How did life emerge on Earth? Lahav et al. (2001); Pross & Pascal (2013) Analyzing
mass spectrometry data in astrobiology is challenged by the presence of terrestrial contaminants
Glavin et al. (2025), the complexity of spectral peaks, and the lack of a systematic approach for
hypothesis generation by comparing and contrasting to existing mass spectrometry data Kitano
(2021). Hypothesis generation by human experts is often biased, time-consuming, and limited to
the literature that the individual has expertise in Nissen et al. (2016). Computational methods,
on the other hand, are challenged by the sparsity of peaks relevant to the dimension of the mass
spectrometry data, which makes identifying patterns extremely difficult Guo et al. (2022).

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in
scientific reasoning Truhn et al. (2023) and hypothesis generation Zhou et al. (2024); Zhang et al.
(2024). However, these models face inherent limitations when deployed individually: they strug-
gle with consistent reasoning over complex datasets, lack specialized domain expertise, and cannot
independently validate their outputs against scientific literature Kaddour et al. (2023). These limita-
tions become particularly apparent in origins of life research, where hypotheses must bridge multiple
disciplines and incorporate complex molecular evidence from mass spectrometry data.

Multi-agent architectures have emerged as a promising approach to overcome the limitations of
LLMs. Recent work has shown how multiple AI agents, each with specialized roles, can collab-
orate to enhance scientific discovery. SciAgents Ghafarollahi & Buehler (2024), a multi-agent AI
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Add relevant research papers

Mass Spectrometry Data:

ID M/Z RTs Compound Samples

1 128.17 (68 min, 1.2s)
Naphthalene

Orgueil
Lignite

Instructions:

I have conducted an experiment using GCxGC to
analyze biotic (terrestrial) and abiotic (meteorite)
samples.
I want you to analyze the table and come up
with interesting conclusions and hypotheses.
Note that your hypotheses should be novel and
specific.

a

AstroAgents

b c

d

e f g

Delegates specific areas within
the input data across a team of
three scientists for in-depth 
exploration and investigation

Planner

Analyze PAH distribution
patterns in meteorites,
focus on IDs 1, 2 ...

Investigate sulfur-containing
and oxygen-containing
compounds (IDs 14, 27, 30, 44)...

Study the distribution patterns
of complex alkylated aromatics 
and their derivatives (IDs 15, 23) ... 

Identifies significant patterns

Highlights unexpected findings

Data Analyst

Discover possible contamination

CriticAccumulator Agent

Concatenate hypotheses

Discard repetitive hypotheses

Scientist 1 Scientist 2 Scientist 3

Literature Review
Provides a summary
based on literature
for each hypothesis.

Evaluates the generated
hypotheses and suggests
improvements.

Figure 1: AstroAgents is a multi-agent system designed to generate and evaluate hypotheses about
the molecular distribution in meteoritic and terrestrial samples based on mass spectrometry data.
a, The input interface allows users to upload mass spectrometry data (in this case, coupled with
gas chromatography (GC)), relevant research papers, and specific instructions to follow. b, The data
processing agent analyzes mass spectrometry data, identifies significant patterns, detects unexpected
findings, and recognizes potential environmental contamination. c, The planner agent intelligently
delegates specific segments of the input data to a team of three scientist agents for in-depth analysis.
d, The scientist agents generate hypotheses based on distinct aspects of the data, as assigned by the
planner agent. In this illustration, the first scientist focuses on unsubstituted polycyclic aromatic
hydrocarbons (PAHs), the second examines sulfur and oxygen-containing compounds, and the third
investigates alkylated PAHs. e, The accumulator agent consolidates hypotheses generated by the
scientist agents, eliminating duplicates. f, The literature review agent searches Semantic Scholar
for relevant papers corresponding to each hypothesis and provides summarized findings. g, The
critic agent evaluates the generated hypotheses alongside their corresponding literature reviews,
offering rigorous critique and suggestions for improvement. The critic agent’s feedback is then
sent to the data analyst, facilitating an iterative refinement process to enhance subsequent analyses
and hypothesis generation.

system that combines ontological knowledge graphs, LLMs, and in-situ learning capabilities to au-
tomate scientific discovery. Similarly, HypoRefine Liu et al. (2025) offers an iterative approach to
hypothesis refinement by synthesizing insights from scientific literature and empirical data. How-
ever, existing multi-agent systems often lack the specialized knowledge and structured workflows
needed for analyzing complex mass spectrometry data in astrobiology.

Herein, we develop AstroAgents (Fig. 1), a multi-agent system developed to assist astrobiologists in
generating hypotheses and uncovering subtle patterns within large-scale mass spectrometry datasets.
AstroAgents comprises eight specialized agents working collaboratively: a data analyst, responsible
for processing mass spectrometry data, identifying significant patterns, detecting unexpected find-
ings, and recognizing potential environmental contamination; a planner, who delegates specific seg-
ments of the input data to a team of three Scientist Agents for in-depth exploration; an accumulator
agent, which consolidates hypotheses generated by the scientist agents and eliminates duplicates;
a literature review agent searches Semantic Scholar Kinney et al. (2023) for relevant papers corre-
sponding to each hypothesis and provides summarized findings; and a critic agent, which evaluates
the generated hypotheses alongside their corresponding literature reviews, offering rigorous critique
and suggestions for improvement. The critic agent’s feedback is then sent to the data analyst, en-
abling an iterative refinement process to enhance the next analyses and hypothesis generation.

We conducted two experiments using AstroAgents powered by different large language models that
varied in agentic collaboration ability Vallinder & Hughes (2024) and context length. In the first
experiment, we used Claude Sonnet 3.5, which was supplied with 10 carefully selected research

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

papers for astrobiological context. This configuration generated 48 hypotheses and achieved an av-
erage expert evaluation score of 6.58 ± 1.7 (out of 10) while exhibiting fewer logical errors and
demonstrating stronger consistency with the literature. In the second experiment, we employed
Gemini 2.0 Flash, which was provided with an expanded astrobiological context comprising the
same 10 research papers plus an entire book. This model produced 101 hypotheses, achieved an
average score of 5.67 ± 0.64, and displayed a higher rate of logical errors, although it tended to
generate more novel ideas. Notably, 36 of Gemini 2.0 Flash’s hypotheses met the plausibility crite-
ria, with 24 considered novel, whereas none of the hypotheses generated by Claude Sonnet 3.5 were
flagged as novel. AstroAgents has shown promising results in facilitating the interpretation of mass
spectrometry data and generating hypotheses.

2 METHODS

In this section, we begin by outlining the user input format, then detail the responsibilities of each
agent within AstroAgents, and finally describe our approach to evaluating the quality of the generated
hypotheses. For every agent, we present both the system prompt and its initial output from the first
iteration. Note that these outputs were generated using Claude 3.5 Sonnet. For the complete system
prompts, see the appendix.

2.1 USER INPUT

AstroAgents begins by prompting the user to select research papers and books that are closely related
to the hypotheses the domain expert aims to generate (Fig. 1a) . In the absence of these targeted
references, the system tends to generate hypotheses that, while data-supported, are overly general,
for example:

“The presence of diverse organic compounds in meteorite samples indicates that these ma-
terials could have played a significant role in prebiotic chemistry on early Earth.”

Although such a hypothesis is supported by literature, its lack of specificity diminishes its novelty.
To mitigate this issue, we require users to provide relevant research papers (see Table S1). Each
paper is then converted into Markdown format using the pymupdf4llm Python package, and the re-
sulting text is used as background knowledge for the data analyst and scientist agents. Following
this, users input their mass spectrometry data, which details the identified compounds and the cor-
responding samples in which they are found, in a LaTeX-formatted table. Finally, users provide
additional instructions and detailed descriptions of the data to guide the subsequent analysis.

2.2 DATA ANALYST AGENT

The data analyst agent (Fig. 1.b) examines mass spectrometry data to uncover key patterns, highlight
anomalies, and identify potential environmental contamination. It employs a structured prompt
template that provides access to mass spectrometry data, astrobiological context extracted from
academic papers, and user instructions. After the initial analysis, the agent refines its findings based
on feedback from the critic agent.

Data Analyst Prompt

You are a sophisticated analytical scientist specializing in
astrobiological data analysis... Background Context:
[SELECTED PAPERS GOES HERE] Your tasks in-
clude:

1. Identifying significant patterns and trends in the
dataset...

Input Data:
[INPUT DATA GOES HERE]
Critic Feedback:
[CRITIC FEEDBACK GOES HERE]
Provide a refined analysis based on the above, with special
emphasis on addressing critic feedback...

Data Analyst Output

Based on the data and sample descriptions provided, I’ll
analyze key patterns and develop specific hypotheses,...
Key Observations and Patterns:
1. PAH Distribution Patterns: Unsubstituted PAHs (naph-
thalene, fluoranthene, pyrene) are predominantly found in
meteorite samples...
2. Contamination Indicators: Phthalates (IDs 9, 24) appear
exclusively in soil samples and newer meteorite finds ...
3. Unique Molecular Patterns: Sulfur-containing com-
pounds (dibenzothiophene, trithiolane) appear predomi-
nantly in meteorite samples. Terpene-like compounds (IDs
4, 17, 18) are exclusively found in soil samples. Complex
alkylated aromatics..
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2.3 PLANNER AGENT

The planner agent (Fig. 1c), based on data analysis from the data analyst agent, delegates specific
segments of the input data to a team of three scientist agents for in-depth exploration. This agent is
responsible for generating instructions for each of the three scientist agents in JSON format.

Planner Prompt

You are an experienced scientific planner and coordinator.
Based on the data analysis provided below, your task is to
delegate specific areas within the input data across a team
of three scientists for in-depth exploration and investiga-
tion.
Input Data:
[INPUT DATA GOES HERE]
Data Analysis:
[DATA ANALYST OUTPUT]
Your response must be ONLY a valid JSON object with
the following format...

{
"Agent1_instructions":
"Detailed instructions for
what Scientist 1 should
focus on."

}

Planner Output

{
"Agent1_instructions": "Focus on

analyzing PAH distribution
patterns in meteorite samples,
specifically examining: 1)
Basic PAHs like naphthalene
(ID 1), fluoranthene (ID 12),
and pyrene (ID 13), 2)
Methylated PAHs including
2-methyl naphthalene (ID 2),
1-methyl naphthalene (ID 8),
and trimethyl naphthalene (ID
15), 3) The relationship
between these compounds
specifically in CM2 chondrites
(Murchison, ALH 83100, LON
94101)...",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

}

2.4 HYPOTHESIS GENERATION AGENTS

The expanding volume of data makes it increasingly difficult for individual scientists to identify
all potentially significant patterns and relationships. To address this limitation, we developed a
system that enables concurrent analysis of different data segments by multiple artificial researchers.
The workflow begins with a planner agent that generates specific instructions for three scientist
agents, each assigned to analyze distinct research areas and focus on designated compound IDs for
hypothesis generation.

Each scientist agent (Fig. 1d), operating within its assigned domain, generates hypotheses in a struc-
tured JSON format. Each hypothesis entry contains two key components: a statement describing the
proposed hypothesis and supporting evidence in the form of key data points that substantiate the
hypothesis.

Scientist Prompt

You are a sophisticated astrobiologist and prebiotic
chemist specializing in meteoritic organic compounds.
You are Scientist AGENT ID.
Instructions: AGENT INSTRUCTION.
IMPORTANT: Only focus on the data that is assigned to
you.
Background Context: [SELECTED PAPERS]
Input Data: [INPUT DATA ]
Based on the above, generate new hypotheses and conclu-
sions as necessary. You must respond ONLY with a valid
JSON object in the following format, with no additional
text before or after:

{
"id": "Format it like H_one,

H_two, etc.",↪→
"statement": "Explain the

hypothesis fully and in detail
here.",

↪→
↪→
"key_datapoints": "List of

compounds and samples that
support the hypothesis,
directly point to ID or
compound/sample name.",

↪→
↪→
↪→
↪→

}

Scientist 1 Output

[{
"id": "H_one",
"statement": "The presence of

methylated naphthalenes (2-methyl
naphthalene, 1-methyl naphthalene,
trimethyl naphthalene) exclusively
in meteorite samples but not in
soil samples suggests that
alkylation of PAHs occurs through
abiotic processes in space rather
than through biological
activity.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"key_datapoints": "IDs 2, 8, 15 found

in meteorites (Orgueil, ALH 83100,
LON 94101, Murchison, Jbilet
Winselwan, LEW 85311) but absent
in all soil samples"

↪→
↪→
↪→
↪→
},
{
"id": "H_two",
"statement": "The co-occurrence of

fluoranthene and pyrene (IDs
12,13) specifically in Antarctic
meteorites suggests these..."

↪→
↪→
↪→
}]
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Following the hypotheses generation phase, an accumulator agent (Fig. 1.e) processes the combined
output from all three scientist agents. This agent performs hypothesis deduplication by identifying
and consolidating substantially similar hypotheses, ensuring a streamlined and non-redundant set of
hypotheses for further investigation.

2.5 LITERATURE REVIEW AND CRITIC AGENT

AstroAgents features an integrated literature review and critique process (Fig. 1 f,g). It utilizes
the Semantic Scholar Kinney et al. (2023) to locate relevant research papers for each hypothesis,
retrieving and analyzing up to five pertinent paper snippets per query. The literature review agent
then processes the search results by extracting key insights, synthesizing information, and presenting
a clear, concise summary while highlighting significant findings and potential conflicts.

Literature Review Prompt

You are a specialized literature review agent analyzing sci-
entific literature search results.
Your tasks include:

1. Analyzing the search results provided below.

2. Extracting and synthesizing key insights.

3. Formatting your summary clearly and concisely.

4. Highlighting significant findings and noting any con-
flicting evidence.

Query:
THE LIST OF HYPOTHESES GOES HERE.
Search Results:
SEARCH RESULTS GOES HERE.

Literature Review Output

Hypothesis H final one: Here’s my analysis of the search
results regarding methylated naphthalenes in meteorites
versus soil samples:
Key Findings: 1. Origin and Formation:PAHs are gener-
ally not produced by living organisms and are ”essentially
in...
===
Hypothesis H final two: Here’s my synthesized analysis
of the search results regarding the co-occurrence of fluo-
ranthene and pyrene in Antarctic meteorites:
Key Findings: 1. Formation Mechanisms & Condi-
tions - Recent isotopic analysis of asteroid Ryugu suggests
that two- and four-ring PAHs (including fluoranthene and
pyrene) likely formed in low-temperature interstellar envi-
ronments...

The critic agent evaluates each hypothesis based on its consistency with experimental data, scientific
rigor, theoretical basis from the selected papers, and integration with external literature gathered by
literature review agents. The critic particularly focuses on assessing the novelty and specificity of
the claims, providing structured feedback to guide the next round of hypothesis refinement. Finally,
the critic’s response is passed to the Data Analyst agent for further iterative improvements.

Critic Prompt

You are an expert scientist in astrobiology and prebiotic
chemistry, with deep expertise in PAH analysis and mete-
oritic organic chemistry.
Background Context:

SELECTED PAPERS

Your task is to provide a detailed, scientifically rigorous
critique of the proposed hypothesis and the associated data
analysis...
Your critique must include:

1. Alignment with the data...

Input Data:

INPUT DATA

Literature Review:

LITERATURE REVIEW GOES HERE

Hypothesis:

ACCUMULATED HYPOTHESES GOES HERE

Critic Output

Thank you for providing the detailed hypotheses and data.
I’ll provide a structured critique of each hypothesis:

H final one - Methylated Naphthalenes:
Strengths:
- Clear correlation between methylated naphthalenes and
meteoritic samples...
Critical Weaknesses:

1. Oversimplified causation - The exclusive presence in
meteorites doesn’t necessarily prove abiotic forma-
tion

2. Ignores potential preservation bias - Methylated
naphthalenes may form biologically but preserve
better in meteoritic matrices ...

H final two - Fluoranthene/Pyrene:
Critical Flaws:
1. Correlation ̸= Causation - Co-occurrence doesn’t prove
similar formation mechanisms
2. Sample bias - Only examines Antarctic meteorites
3. Ignores temperature history - Antarctic storage condi-
tions may affect PAH distributions
4. No mechanistic evidence provided for ion-molecule re-
actions
This hypothesis should be rejected due to insufficient
evidence.
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Table 1: Selected High-Scoring Hypotheses. This table presents four hypotheses generated by
AstroAgents that received high ratings from astrobiology experts. Each hypothesis is accompanied
by the key data points that AstroAgents identified as supporting evidence.

# Statement Key Datapoints Evaluation Score

1 Gemini 2.0 Flash: The presence of 1H-
Phenalen-1-one or 9H-Fluoren-9-one (ID 44,
MW 180) exclusively in Orgueil and LEW
85311, and the presence of Biphenyl (ID 43,
MW 154) also in the same meteorites, suggests
a unique chemical environment or alteration
history shared by these samples, potentially in-
dicating a similar formation region within the
early solar system. Given their related struc-
tures, this may indicate a similar source.

1H-Phenalen-1-one
or 9H-Fluoren-9-
one (ID 44, MW
180): Orgueil, LEW
85311; Biphenyl
(ID 43, MW 154):
Orgueil, LEW
85311.

Novelty: 7/10

Literature: 9/10

Clarity/Precision: 9/10

Empirical Support: 9/10

Generalizability: 9/10

Predictive Power: 8/10

2 Gemini 2.0 Flash: The co-occurrence of mul-
tiple unknown compounds in Iceland Soil, At-
acama, and GSFC soil suggests that these
soils share similar depositional environments
and/or source material. This is based on the
fact that they all contain ID 4, 5, and 10, which
are uncharacterized species.

An unknown com-
pound with m/z
154.0 is present in
both Green River
Shale soil and Lig-
nite Soil.

Novelty: 7/10

Literature: 10/10

Clarity/Precision: 10/10

Empirical Support: 8/10

Generalizability: 8/10

Predictive Power: 8/10

3 Gemini 2.0 Flash: The detection of toluene,
methylnaphthalenes, acenaphthene, diben-
zothiophene, and trimethylnaphthalene in
Orgueil and LEW 85311 suggests a common
origin or similar formation pathways for these
PAHs in both samples. The presence of these
compounds suggests that these PAHs are rel-
atively stable and can be preserved under dif-
ferent environmental conditions.

Toluene, Methyl-
naphthalenes,
Acenaphthene,
Dibenzo thiophene,
Trimethyl naphtha-
lene, Orgueil, LEW
85311

Novelty: 7/10

Literature: 10/10

Clarity/Precision: 10/10

Empirical Support: 8/10

Generalizability: 8/10

Predictive Power: 8/10

4 Claude 3.5 Sonnet: The exclusive detection
of 1,2,3,4-tetrahydro phenanthrene (ID 36)
in Orgueil and Jbilet Winselwan, along with
phenanthrene/anthracene (ID 42), suggests a
specific hydrogenation pathway in certain me-
teorite parent bodies that resulted in partial re-
duction of aromatic systems. This indicates
distinct redox conditions in different parent
bodies during organic synthesis.

ID 36 (1,2,3,4-
tetrahydro phenan-
threne) in Orgueil
and Jbilet Win-
selwan; ID 42
(phenanthrene/an-
thracene) in Orgueil,
LEW 85311

Novelty: 4/10

Literature: 8/10

Clarity/Precision: 8/10

Empirical Support: 7/10

Generalizability: 8/10

Predictive Power: 8/10

5 Claude 3.5 Sonnet: The detection of possi-
ble terpenes exclusively in soil samples indi-
cates that complex branched isoprenoid struc-
tures require enzymatic biosynthesis and are
not readily formed through abiotic processes
in space, making them reliable biomarkers.

IDs 4, 17, 18 (pos-
sible terpenes) found
only in soil sam-
ples (Iceland Soil,
Atacama, Utah soil,
GSFC soil)

Novelty: 3/10

Literature: 10/10

Clarity/Precision: 10/10

Empirical Support: 10/10

Generalizability: 10/10

Predictive Power: 10/10
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2.6 DOMAIN EXPERT EVALUATION

To assess the quality of hypotheses generated by AstroAgents, an astrobiology expert performed a
systematic evaluation using six criteria: novelty, consistency with existing knowledge, clarity and
precision, empirical support, scope and generalizability, and predictive power. Each criterion was
rated on a scale from 0 to 10, where 0 signifies a complete lack of the quality (e.g., a novelty score
of 0 indicates no originality) and 10 represents the highest possible level. The criteria were defined
as follows:

• Novelty: How original is the hypothesis compared to existing literature?

• Consistency with the literature: Does the hypothesis align with established astrobiology re-
search?

• Clarity and precision: Is the hypothesis clearly stated, specific, and unambiguous?

• Empirical Support: To what extent do the mass spectrometry data support the hypothesis?

• Scope & Generalizability: Can the hypothesis explain broader phenomena or be applied to
wider contexts?

• Predictive Power: Does the hypothesis make clear, testable predictions?

3 EXPERIMENTAL SETUP

In this section, we describe in detail the experimental setup used to evaluate our AstroAgents, includ-
ing the acquisition and utilization of mass spectrometry data, the design of our hypothesis-generation
experiments, and the configuration of the employed Large Language Model (LLM) agents. Notably,
the total cost of all experiments was less than $100.

3.1 MASS SPECTROMETRY DATA ACQUISITION

The data were obtained from a suite of eight meteoric and ten terrestrial samples, which were sys-
tematically analyzed to assess differences in the molecular distributions of their organic compounds.
We employed state-of-the-art mass spectrometric techniques called two-dimensional gas chromatog-
raphy coupled with high-resolution mass spectrometry (GC×GC-HRTOF-MS). This analysis pro-
duced a list of 48 compounds along with their peak information, including retention times (RTs),
mass-to-charge ratios (M/Z), and the samples in which they were detected.

3.2 LLM AGENTS AND CONFIGURATION

We conducted two sets of experiments, each comprising 10 iterations. In each experiment, the
AstroAgents system utilizes multiple LLM agents powered by either Claude 3.5 Sonnet or Gemini
2.0 Flash. The choice of models is motivated by distinct capabilities. Claude 3.5 Sonnet was selected
for its proven cooperation ability, which is critical for effective multi-agent collaboration Vallinder
& Hughes (2024). In contrast, Gemini 2.0 Flash was chosen for its extended context window (up to
1M tokens), which enables the inclusion of a more comprehensive astrobiological context derived
from a wide array of scientific literature. The primary objective of comparing these two models is
to investigate how the balance between cooperative ability and the capacity for extended contextual
input affects the quality and coherence of generated hypotheses.

3.3 ASTROBIOLOGICAL CONTEXT INTEGRATION

To enrich the hypothesis-generation process, both Claude Sonnet 3.5 and Gemini 2.0 Flash were
provided with astrobiological context extracted from a curated collection of research papers. Ad-
ditionally, Gemini 2.0 Flash received a 400-page book. For a complete list of referenced sources,
please refer to Table S1. This contextual information is intended to ground the agents in relevant
domain knowledge and is crucial for interpreting the mass spectrometry data and generating hy-
potheses in the field of astrobiology.
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4 RESULTS

Traditional approaches to analyzing large datasets often fail to uncover nuanced patterns and gener-
ate sophisticated hypotheses, typically identifying only basic correlations and trends while missing
deeper insights. To address these limitations, we developed a multi-agent framework that orches-
trates specialized AI agents each bringing distinct expertise to the analysis. By carefully crafting
prompts, providing relevant research context, and assigning focused analytical objectives to each
agent, our system can generate novel hypotheses that might be overlooked using conventional meth-
ods, as demonstrated in our analysis of mass spectrometry data using AstroAgents.

We selected 10 research papers closely related to the hypotheses that the domain expert aimed to
generate. These papers were used as astrobiological knowledge input for Claude Sonnet 3.5. For
the Gemini model, we included not only the 10 related papers but also a complete book, taking
advantage of Gemini’s large 1M input token capacity. We conducted two separate experiments with
AstroAgents over 10 iterations: one powered by Claude 3.5 Sonnet, which generated 48 hypothe-
ses, and another powered by Gemini 2.0 Flash, which generated 101 hypotheses. Subsequently, an
astrobiology expert evaluated each hypothesis on six distinct criteria: novelty, consistency with the
literature, clarity and precision, empirical support, scope & generalizability, and predictive power,
with scores ranging from 0-10. AstroAgents powered by Claude Sonnet 3.5 achieved an average
score of 6.58± 1.7, outperforming Gemini 2.0 Flash’s average score of 5.67± 0.64. Claude Sonnet
3.5 demonstrated fewer logical errors and greater consistency with the literature, although the Gem-
ini 2.0 Flash model tended to generate more novel ideas on average.We considered a hypothesis to
be novel if its novelty score was greater than or equal to 5, and plausible if the average scores of
other criteria were greater than or equal to 8. Among the 101 hypotheses generated by Gemini 2.0
Flash, 36 were determined to be plausible by the expert, and of these, 24 were flagged as novel.
Among the 48 hypotheses generated by Claude Sonnet 3.5, 24 were determined to be plausible by
the expert, with none flagged as novel. See Table 2 for detailed scores across all criteria per model.

Table 2: Human Expert Evaluation. This table presents the average scores and their corresponding
standard deviation assigned by astrobiology experts to hypotheses generated by two models: Claude
Sonnet 3.5 and Gemini 2.0 Flash. Over 10 iterations of AstroAgents, Claude Sonnet 3.5 produced 48
hypotheses while Gemini 2.0 Flash produced 101. Each hypothesis was evaluated on a 0–10 scale
across six distinct criteria.

Criteria Claude Sonnet 3.5 Gemini 2.0 Flash
Novelty 2.75± 0.75 4.26± 1.87
Consistency with the literature 7.60± 1.91 6.19± 2.88
Clarity and precision 7.20± 2.30 5.92± 2.86
Empirical Support 6.75± 2.63 5.79± 2.86
Scope & Generalizability 7.60± 1.91 6.01± 2.80
Predictive Power 7.60± 1.91 5.86± 2.68

Overall Average 6.58± 1.74 5.67± 0.64

5 DISCUSSION

AstroAgents introduces a novel paradigm that leverages the capabilities of large language models
(LLMs) to analyze mass spectrometry data for origin-of-life research. Although this paper primar-
ily focuses on a gas chromatography dataset, our methodology is versatile and can be applied to a
wide range of datasets. The comparative performance of Claude 3.5 Sonnet and Gemini 2.0 Flash
reveals important insights about the trade-offs between contextual capacity and collaborative abil-
ity in multi-agent systems. Claude 3.5 Sonnet’s superior performance in consistency and clarity
suggests that stronger agent collaboration capabilities may be more valuable than expanded context
windows for generating reliable scientific hypotheses. However, Gemini 2.0 Flash’s higher novelty
scores indicate that larger context windows might facilitate more creative connections across broader
knowledge bases.
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Despite these promising results, several limitations remain. The system’s reliance on pre-selected
research papers for context means its performance is heavily influenced by the quality and relevance
of the provided literature. Future work could benefit from dynamic literature selection capabilities,
allowing the system to autonomously identify and incorporate relevant research based on emerging
patterns in the data. AstroAgents holds promise for broader applications across various domains that
require the interpretation of complex, high-dimensional data.
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A APPENDIX

We organize the appendix section as follows:

1. System Prompts: Tables displaying the hypotheses generated by AstroAgents during each iter-
ation.

2. Tables: Generated hypotheses during each iteration.

The outputs from each agent for 10 iterations are available in our GitHub repository here.

A.1 SYSTEM PROMPTS

Data Analyst Agent

You are a sophisticated analytical scientist specializing
in astrobiological data analysis, with deep expertise in
meteorites. Your knowledge is based on but not limited to the
following:
Background Context:
SELECTED PAPERS FOR BACKGROUND CONTEXT GOES HERE
Your tasks include:

1. Identifying significant patterns and trends in the dataset,
especially PAH distributions and alkylation patterns.

2. Identifying possible environmental contamination in the
samples, considering terrestrial vs. extraterrestrial
signatures.

3. Highlighting unexpected or unusual findings, particularly
regarding temperature indicators.

4. Comparing data subsets where relevant, especially between
different meteorite classes.

5. MOST IMPORTANTLY: Incorporating critic feedback to guide your
analysis.

Input Data:
INPUT DATA GOES HERE
Critic Feedback:
CRITIC FEEDBACK GOES HERE
Provide a refined analysis based on the above, with special
emphasis on addressing critic feedback. Pay particular
attention to rewarded aspects and avoid patterns similar to
criticized aspects.

Literature Review Agent

You are a specialized literature review agent analyzing
scientific literature search results.
Your tasks include:

1. Analyzing the search results provided below.

2. Extracting and synthesizing key insights.

3. Formatting your summary clearly and concisely.

4. Highlighting significant findings and noting any conflicting
evidence.

Query:
THE LIST OF HYPOTHESIS STATEMENTS GOES HERE.
Search Results:
SEARCH RESULTS GOES HERE.
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Provide a well-organized summary addressing the query, key
discoveries, research gaps, and include any relevant citations.

Astrobiology Scientist Agent

You are a sophisticated astrobiologist and prebiotic chemist
specializing in meteoritic organic compounds.

You are Scientist AGENT ID.

Instructions: AGENT INSTRUCTION.

IMPORTANT: Only focus on the data that is assigned to you.
Your job is to:

1. Generate all hypotheses and conclusions from the **Input
Data**.

2. You must be original and novel, while considering established
formation mechanisms.

3. Make conclusions ONLY based on the **Input Data** and the
**Instructions**.

4. DO NOT include GC or environmental contamination in your
hypothesis, the user already knows about it.

5. DO NOT recommend any hypothesis about making the data better.

Background Context:
SELECTED PAPERS FOR BACKGROUND CONTEXT GOES HERE
**Input Data**:
INPUT DATA GOES HERE
Based on the above, generate new hypotheses and conclusions as
necessary. You must respond ONLY with a valid JSON object in
the following format, with no additional text before or after:

{{
"hypothesis": [

{{
"id": "Format it like H_one, H_two, etc.",
"statement": "Explain the hypothesis fully and in

detail here.",↪→

"key_datapoints": "List of compounds and samples
that support the hypothesis, directly point to
ID or compound/sample name.",

↪→

↪→

}}
]

}}

Ensure the JSON is properly formatted.

Accumulator Agent

You are an expert astrobiologist and scientific reviewer tasked
with evaluating multiple hypotheses generated by different
astrobiology scientists. Your job is to combine concatenate
the hypotheses and conclusions from the three scientists and
discard any repetitive hypotheses.
You have received the following hypotheses from three separate
scientists:
A JSON LISTING ALL HYPOTHESES GENERATED GOES HERE.

Your task is to:
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1. Review each hypothesis critically

2. Concatenate the hypotheses and conclusions from the three
scientists

3. Discard repetitive hypotheses

4. Make sure to include more than one hypothesis in the final
hypothesis list

5. DO NOT include GC or environmental contamination in your
hypothesis, the user already knows about it.

6. DO NOT recommend any hypothesis about making the data better.

Provide your response ONLY as a valid JSON object in the
following format, with no additional text before or after:

{{
"hypothesis": [

{{
"id": "Use a format like H_final_one, H_final_two,

etc.",↪→

"statement": "Don't change the hypothesis
statement",↪→

"key_datapoints": "Don't change the key datapoints",
}}

]
}}

Ensure the JSON is properly formatted.

Planner Agent

You are an experienced scientific planner and coordinator.
Based on the data analysis provided below, your task is to
delegate specific areas within the input data across a team of
three scientists for in-depth exploration and investigation.
Input Data:
INPUT DATA GOES HERE
**Data Analysis:**
DATA ANALYST OUTPUT GOES HERE
IMPORTANT:

1. Just focus on the data analysis and divide the among three
agents.

2. The agents are not able to run tools, they only generate
hypotheses based on the area that you delegate to them.

3. Make sure to include the ID of the compounds in the task
split.

4. DO NOT include GC or environmental contamination in your task
split, the user already knows about it.

5. DO NOT assign any tasks about making the data better and
doing further analysis.

Based on the above, provide specific instructions for each of
the three scientists, clearly indicating what aspect of the data
they should focus on.

Your response must be ONLY a valid JSON object with the
following format, with no additional text before or after:

{{
"Agent1_instructions": "Detailed instructions for what

Scientist 1 should focus on.",↪→
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"Agent2_instructions": "Detailed instructions for what
Scientist 2 should focus on.",↪→

"Agent3_instructions": "Detailed instructions for what
Scientist 3 should focus on."↪→

}}

Ensure the JSON is properly formatted.

Critic Agent

You are an expert scientist in astrobiology and prebiotic
chemistry, with deep expertise in PAH analysis and meteoritic
organic chemistry.
Background Context:

SELECTED PAPERS FOR BACKGROUND CONTEXT GOES HERE

Your task is to provide a detailed, scientifically rigorous
critique of the proposed hypothesis and the associated data
analysis. Note that if the **hypotheses** are not exactly
aligned with the data, you should discard the hypothesis and
generate a new one.
Your critique must include:

1. Alignment with the data:

• Assess the alignment of the hypothesis with the data.
• Evaluate if the proposed mechanisms align with observed
PAH distributions and temperature indicators.

• Consider if the hypothesis accounts for both chemical and
physical processes in meteorite parent bodies.

• If the hypothesis is not exactly aligned with the data,
you should discard it and generate a new one.

2. Scientific Evaluation:

• Assess the theoretical foundations and empirical basis of
each hypothesis.

• Evaluate temperature constraints implied by PAH
distributions.

• Consider parent body processes like aqueous alteration.
• Identify any assumptions that may not be well supported by
the data.

• Point out specific weaknesses in the data analysis or
experimental design.

3. Integration with Literature:

• Critically compare the hypothesis against current research
findings.

• Evaluate consistency with known PAH formation mechanisms.
• Consider implications of PAH distributions for formation
conditions.

• Identify gaps in the existing literature that the
hypothesis addresses or ignores.

• Propose additional sources or studies that could reinforce
or challenge the claims.

4. IMPORTANT: Novelty and originality are highly rewarded based
on literature review. Punish **hypotheses** that are not
novel or original.
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5. Punish hypothesis statements that are vague and too general.
Reward specific and detailed **hypotheses** based on the data
and analysis.

6. Avoid suggesting any improvements to the input data. Only
critique the **hypotheses**.

Input Data:

INPUT DATA

Literature Review:

LITERATURE REVIEW GOES HERE

**Hypothesis**:

ACCUMULATED HYPOTHESES GOES HERE

Provide your critique in a clear and structured format, ensuring
that your comments are actionable and aimed at improving the
hypothesis and data analysis.
Your scientific critique:
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A.2 TABLES

Table S1: The list of research papers provided as astrobiological context to Claude Sonnet 3.5 and
Gemini 2.0 Flash models. The checkmarks indicate which papers were included in each model’s
context, with paper #4 (Strategies of Life Detection) being excluded from Claude Sonnet 3.5’s con-
text due to length constraints.

# Paper Title Pages Claude
Sonnet 3.5

Gemini
2.0 Flash

1
Isotopic evidence from an Antarctic carbonaceous
chondrite for two reaction pathways of extrater-
restrial PAH formation Naraoka et al. (2000)

7

2
Alkylation of polycyclic aromatic hydrocarbons in
carbonaceous chondrites Elsila et al. (2005) 9

3
Ultraviolet irradiation of the polycyclic aromatic
hydrocarbon (PAH) naphthalene in H2O. Implica-
tions for meteorites and biogenesis Bernstein et al.
(2002)

8

4 Strategies of Life Detection Botta et al. (2008) 373

5
A combined crossed molecular beam and theoret-
ical investigation of the reaction of the meta-tolyl
radical with vinylacetylene – toward the formation
of methylnaphthalenes Yang et al. (2015)

12

6
A robust, agnostic molecular biosignature based
on machine learning Cleaves et al. (2023) 7

7
Polycyclic aromatic hydrocarbons and amino
acids in meteorites and ice samples from LaPaz
Icefield, Antarctica BOTTA et al. (2008)

16

8
Low temperature formation of naphthalene and its
role in the synthesis of PAHs (Polycyclic Aro-
matic Hydrocarbons) in the interstellar medium
Parker et al. (2012)

6

9
PAHs, hydrocarbons, and dimethylsulfides in As-
teroid Ryugu samples A0106 and C0107 and the
Orgueil (CI1) meteorite Aponte et al. (2023)

14

10
Link between Polycyclic Aromatic Hydrocarbon
Size and Aqueous Alteration in Carbonaceous
Chondrites Revealed by Laser Mass Spectrome-
try Slavicinska et al. (2022)

21

11
Molecular indicators (biomarkers) of past life Si-
moneit (2002) 10
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A.3 GENERATED HYPOTHESES

Table S2: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 1.

# Statement Key Datapoints

1 The presence of methylated naphthalenes (2-methyl naph-
thalene, 1-methyl naphthalene, trimethyl naphthalene) exclu-
sively in meteorite samples but not in soil samples suggests
that alkylation of PAHs occurs through abiotic processes in
space rather than through biological activity.

IDs 2, 8, 15 found in mete-
orites (Orgueil, ALH 83100,
LON 94101, Murchison,
Jbilet Winselwan, LEW
85311) but absent in all soil
samples

2 The co-occurrence of fluoranthene and pyrene (IDs 12,13)
specifically in Antarctic meteorites suggests these PAHs
form through similar abiotic mechanisms under cold condi-
tions, possibly through ion-molecule reactions in interstellar
ice analogs.

IDs 12,13 found together
in Antarctic meteorites ALH
83100, LON 94101, LEW
85311

3 The presence of organosulfur compounds (dibenzo thio-
phene, 1,2,4-trithiolane) exclusively in meteorites indicates
that sulfur incorporation into organic compounds occurs
through unique abiotic pathways in space, possibly catalyzed
by mineral surfaces.

IDs 14,27 found only in
meteorite samples Orgueil,
ALH 83100, LEW 85311,
Aguas Zarcas

4 The detection of terpene-like compounds exclusively in
soil samples but not in meteorites suggests these complex
branched molecules require biological processes for their
synthesis and are reliable biomarkers for distinguishing bi-
otic from abiotic samples.

IDs 4,17,18 found only in
soil samples (Iceland, Ata-
cama, Utah, GSFC soils)

5 The presence of oxidized PAHs (1H-Phenalen-1-one/9H-
Fluoren-9-one) specifically in Orgueil and LEW 85311 mete-
orites suggests these compounds form through unique parent
body aqueous alteration processes rather than biological ac-
tivity.

ID 44 found only in Orgueil
and LEW 85311 meteorites
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Table S3: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 2.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes)
predominantly in meteorite samples but not in soil samples
suggests that abiotic methylation of PAHs occurs through
distinct chemical pathways in space that are not common in
terrestrial environments.

ID 2 (2-methylnaphthalene),
ID 8 (1-methylnaphthalene),
ID 15 (trimethylnaph-
thalene) found mainly in
meteorites Orgueil, ALH
83100, Murchison, and
LEW 85311, but absent in
soil samples

2 The co-occurrence of organosulfur compounds (dibenzoth-
iophene, trithiolane) specifically in meteorites suggests that
sulfur incorporation into aromatic structures was an impor-
tant abiotic process in the early solar system, possibly cat-
alyzed by mineral surfaces under reducing conditions.

ID 14 (dibenzothiophene) in
Orgueil/ALH 83100/LEW
85311, ID 27 (1,2,4-
trithiolane) in Aguas
Zarcas/LEW 85311

3 The exclusive presence of high molecular weight PAHs (fluo-
ranthene, pyrene, dimethylpyrene) in meteorites but not soils
indicates that extended PAH structures preferentially formed
and survived in space environments, possibly through step-
wise molecular growth via acetylene additions under cosmic
ray exposure.

ID 12 (fluoranthene),
ID 13 (pyrene), ID 45
(dimethylpyrene) found
only in meteorites like
Orgueil, ALH 83100, LON
94101, LEW 85311

4 The exclusive presence of certain cyclic compounds (indane,
methylindan, tetrahydrophenanthrene) in meteorites suggests
a specific abiotic synthetic pathway involving sequential ring
formation and reduction that is unique to space chemistry and
distinct from biological aromatic synthesis.

ID 11 (indane), ID 23
(methylindan), ID 36
(tetrahydrophenanthrene)
found only in meteorite
samples

5 The detection of ergostene exclusively in soil samples sug-
gests it serves as a reliable biomarker for distinguishing bi-
otic from abiotic organic matter, as its complex structure
likely requires enzymatic biosynthesis rather than abiotic
processes.

ID 28 (ergost-14-ene) found
only in Lignite Soil and
Murchison Soil samples
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Table S4: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 3.

# Statement Key Datapoints

1 The presence of methylated naphthalenes (IDs 2, 8, 15) in
meteorites but not in terrestrial soils suggests that abiotic
methylation of PAHs occurs through distinct chemical path-
ways in space that are not prevalent in Earth’s biosphere.
This indicates a potential chemical marker for distinguish-
ing abiotic from biotic organic matter.

ID 2 (2-Methyl naphtha-
lene), ID 8 (1-Methyl
naphthalene), ID 15
(Trimethyl naphthalene)
found in Orgueil, ALH
83100, Murchison, LEW
85311 meteorites but absent
in all soil samples

2 The co-occurrence of sulfur-containing aromatics (diben-
zothiophene, trithiolane) exclusively in meteorite samples
suggests that sulfur incorporation into PAHs was a significant
abiotic process in the early solar system, possibly catalyzed
by mineral surfaces under reducing conditions.

ID 14 (Dibenzothiophene)
in Orgueil, ALH 83100,
LEW 85311; ID 27 (1,2,4-
Trithiolane) in Aguas
Zarcas, LEW 85311

3 The presence of fluoranthene and pyrene (IDs 12, 13) exclu-
sively in meteorites, coupled with their absence in terrestrial
samples, suggests these 4-ring PAHs formed through spe-
cific high-temperature gas-phase reactions in the solar nebula
rather than through biological processes.

ID 12 (Fluoranthene) in
ALH 83100, LON 94101,
LEW 85311; ID 13 (Pyrene)
in Orgueil, LON 94101,
LEW 85311; absent in all
soil samples

4 The exclusive presence of ergost-14-ene (ID 28) in soil sam-
ples suggests it serves as a reliable biomarker for distinguish-
ing between biotic and abiotic organic matter sources, as it is
likely derived from biological steroid synthesis pathways.

ID 28 found only in Lignite
Soil and Murchison Soil, ab-
sent in all meteorite samples

5 The presence of terpene-like compounds exclusively in soil
samples suggests these complex branched molecules require
biological synthesis pathways and cannot form through abi-
otic processes in meteoritic parent bodies.

ID 4, ID 17, ID 18 (possi-
ble terpenes) found only in
Iceland Soil, Atacama, Utah
soil, GSFC soil
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Table S5: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 4.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes,
trimethylnaphthalenes) predominantly in meteorite samples
but not in soil samples suggests that alkylation of PAHs oc-
curs through abiotic processes in space rather than through
biological activity.

IDs 2,8 (methylnaph-
thalenes) found in me-
teorites Orgueil, ALH
83100, Murchison; ID 15
(trimethylnaphthalene) in
Orgueil, Jbilet Winselwan,
LEW 85311; notably absent
in soil samples

2 The presence of both fluoranthene (ID 12) and pyrene (ID
13) exclusively in meteorite samples, coupled with their
dimethylated derivative (ID 45), indicates a high-temperature
PAH formation pathway specific to extraterrestrial environ-
ments. The absence of these compounds in soil samples sug-
gests they are not products of biological processes or terres-
trial contamination.

ID 12 (fluoranthene)
in ALH 83100, LON
94101, LEW 85311; ID
13 (pyrene) in Orgueil,
LON 94101, LEW 85311;
ID 45 (dimethylpyrene) in
Orgueil, LEW 85311

3 The exclusive detection of 1,2,3,4-tetrahydro phenanthrene
(ID 36) in Orgueil and Jbilet Winselwan, along with phenan-
threne/anthracene (ID 42), suggests a specific hydrogenation
pathway in certain meteorite parent bodies that resulted in
partial reduction of aromatic systems. This indicates distinct
redox conditions in different parent bodies during organic
synthesis.

ID 36 (1,2,3,4-tetrahydro
phenanthrene) in Orgueil
and Jbilet Winselwan; ID 42
(phenanthrene/anthracene)
in Orgueil, LEW 85311

4 The exclusive presence of certain terpenes and sesquiter-
penes in extreme environment soils (Iceland, Atacama) but
not in meteorites indicates these compounds are reliable
biomarkers for extremophilic life, even in harsh conditions
that might resemble early Mars.

IDs 4, 17, 18 (terpenes/s-
esquiterpenes) found only in
Iceland Soil, Atacama, and
Rio Tinto Soil samples

5 The detection of ergost-14-ene exclusively in soil samples
indicates it is a reliable biomarker for eukaryotic life, as it is
a degradation product of ergosterol found in fungi and some
protists.

ID 28 (ergost-14-ene) found
only in Lignite Soil and
Murchison Soil
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Table S6: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 5.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes,
trimethylnaphthalenes) predominantly in meteorite samples
but not in soil samples suggests that alkylation of PAHs oc-
curs through abiotic processes in space rather than through
biological activity.

ID 2 (2-methylnaphthalene),
ID 8 (1-methylnaphthalene),
ID 15 (trimethylnaph-
thalene) found mainly in
meteorites Orgueil, ALH
83100, Murchison, LEW
85311

2 The co-occurrence of organosulfur compounds (dibenzothio-
phene, trithiolane) exclusively in meteorite samples suggests
that sulfur incorporation into organic compounds was an im-
portant abiotic process in the early solar system, possibly cat-
alyzed by metal sulfides present in the meteorite parent bod-
ies.

ID 14 (dibenzothiophene)
in Orgueil, ALH 83100,
LEW 85311; ID 27 (1,2,4-
trithiolane) in Aguas Zarcas,
LEW 85311

3 The presence of high molecular weight PAHs (fluoranthene,
pyrene) exclusively in meteorites suggests that these com-
pounds form through high-temperature gas-phase reactions
in space rather than biological processes, as evidenced by
their absence in biologically active soil samples.

ID 12 (fluoranthene) and
ID 13 (pyrene) found only
in meteorites ALH 83100,
LON 94101, Orgueil, LEW
85311

4 The presence of both ketone-containing PAHs (1H-
Phenalen-1-one) and reduced PAHs in meteorites indicates
alternating oxidizing and reducing conditions during PAH
formation in the solar nebula or on parent bodies.

ID 44 (1H-Phenalen-1-
one) and ID 36 (1,2,3,4-
tetrahydrophenanthrene) in
Orgueil and other meteorites

5 The presence of partially hydrogenated PAHs (like 1,2,3,4-
tetrahydrophenanthrene) alongside their fully aromatic coun-
terparts (phenanthrene) in meteorites suggests a low-
temperature formation pathway for PAHs in the early so-
lar system, rather than high-temperature combustion which
would favor fully aromatic species.

ID 36 (1,2,3,4-
tetrahydrophenanthrene)
and ID 42 (phenanthrene) in
Orgueil and other meteorites
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Table S7: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 6.

# Statement Key Datapoints

1 The presence of methylated naphthalenes (IDs 2, 8, 15)
in meteorites but not in soil samples suggests that abiotic
methylation of PAHs occurs through distinct chemical path-
ways in space that are not prevalent in Earth’s biotic systems.
This indicates a potential chemical marker for distinguishing
abiotic from biotic origins of PAHs.

IDs 2 (2-Methyl naph-
thalene), 8 (1-Methyl
naphthalene), and 15
(Trimethyl naphthalene)
found in Orgueil, ALH
83100, Murchison, and
other meteorites but absent
in soil samples

2 The co-occurrence of dibenzothiophene with fluoranthene
and pyrene specifically in meteorite samples suggests that
sulfur incorporation into PAHs in space requires high-energy
conditions that also favor the formation of 4-ring PAHs, po-
tentially through radical mechanisms in cold environments.

ID 14 (dibenzothiophene),
ID 12 (fluoranthene), ID 13
(pyrene) found together in
Orgueil, ALH 83100, LON
94101, LEW 85311

3 The presence of phenanthrene/anthracene (ID 42) and 1H-
Phenalen-1-one/9H-Fluoren-9-one (ID 44) exclusively in
Orgueil and LEW 85311 suggests a unique oxidative path-
way in these meteorites that converts PAHs to their oxy-
genated derivatives, potentially indicating distinct parent
body processing conditions.

IDs 42 and 44 found only
in Orgueil and LEW 85311;
related to oxidation of PAH
structures

4 The detection of possible terpenes exclusively in soil sam-
ples indicates that complex branched isoprenoid structures
require enzymatic biosynthesis and are not readily formed
through abiotic processes in space, making them reliable
biomarkers.

IDs 4, 17, 18 (possible ter-
penes) found only in soil
samples (Iceland Soil, Ata-
cama, Utah soil, GSFC soil)
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Table S8: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 7.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes,
trimethylnaphthalenes) predominantly in meteorite samples
but not in soil samples suggests that alkylation of PAHs oc-
curs through abiotic processes in space rather than through
biological activity.

ID 2 (2-methylnaphthalene),
ID 8 (1-methylnaphthalene),
ID 15 (trimethylnaph-
thalene) found mainly in
meteorites Orgueil, ALH
83100, Murchison, LEW
85311

2 The co-occurrence of organosulfur compounds (dibenzothio-
phene, trithiolane) specifically in meteorite samples suggests
that sulfur incorporation into organic compounds was an im-
portant abiotic process in the early solar system, possibly cat-
alyzed by metal sulfides present in the meteorite parent bod-
ies.

ID 14 (dibenzothiophene)
in Orgueil, ALH 83100,
LEW 85311; ID 27 (1,2,4-
trithiolane) in Aguas Zarcas,
LEW 85311

3 The presence of 1,2,3,4-tetrahydro phenanthrene (ID 36) ex-
clusively in Orgueil and Jbilet Winselwan, along with their
unique dimethylpyrene content (ID 45), suggests these mete-
orites experienced similar parent body processing conditions
that were distinct from other carbonaceous chondrites.

ID 36 (1,2,3,4-tetrahydro
phenanthrene) and ID 45
(dimethylpyrene) in Orgueil
and Jbilet Winselwan; Dis-
tribution pattern distinct
from other meteorites

4 The co-occurrence of phenanthrene/anthracene with their
oxygenated derivatives (1H-Phenalen-1-one/9H-Fluoren-9-
one) specifically in meteorites suggests an abiotic oxidation
pathway that operates in space but not in terrestrial environ-
ments.

ID 42 (phenanthrene/an-
thracene) and ID 44
(1H-Phenalen-1-one/9H-
Fluoren-9-one) found
together in Orgueil and
LEW 85311
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Table S9: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 8.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes,
trimethylnaphthalene) predominantly in meteorite samples
but not in soil samples suggests that alkylation of PAHs oc-
curs through abiotic processes in space rather than through
biological activity.

ID 2 (2-methylnaphthalene),
ID 8 (1-methylnaphthalene),
ID 15 (trimethylnaph-
thalene) found mainly in
meteorites Orgueil, ALH
83100, Murchison, LEW
85311

2 The co-occurrence of organosulfur compounds (dibenzothio-
phene, trithiolane) specifically in meteorite samples suggests
that sulfur incorporation into organic compounds was an im-
portant abiotic process in the early solar system, possibly cat-
alyzed by metal sulfides present in the meteorite parent bod-
ies.

ID 14 (dibenzothiophene)
in Orgueil, ALH 83100,
LEW 85311; ID 27 (1,2,4-
trithiolane) in Aguas Zarcas,
LEW 85311; notably absent
in all soil samples

3 The presence of high molecular weight PAHs (fluoranthene,
pyrene) exclusively in meteorites but not in soil samples in-
dicates that these compounds form through high-temperature
gas-phase reactions in space rather than through biological
processes.

ID 12 (fluoranthene) and
ID 13 (pyrene) found only
in meteorites ALH 83100,
LON 94101, Orgueil, LEW
85311

4 The presence of partially hydrogenated aromatic compounds
(indane, acenaphthene, tetrahydrophenanthrene) specifically
in meteorites suggests a stepwise PAH formation process in
space involving both aromatic ring formation and partial hy-
drogenation steps.

ID 11 (indane) in ALH
83100, LON 94101,
LEW 85311; ID 33
(acenaphthene) in ALH
83100, LEW 85311; ID 36
(tetrahydrophenanthrene) in
Orgueil, Jbilet Winselwan

5 The presence of terpene-like compounds exclusively in soil
samples (particularly from extreme environments like Ice-
land and Atacama) suggests these molecules are reliable
biosignatures even in harsh conditions that might be analo-
gous to other planetary environments.

ID 4, ID 17, ID 18 (possi-
ble terpenes/sesquiterpenes)
found only in soil sam-
ples from Iceland, Atacama,
Utah, and GSFC
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Table S10: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 9.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes,
trimethylnaphthalenes) predominantly in meteorite samples
but not in soil samples suggests that alkylation of PAHs oc-
curs through abiotic processes in the early solar system rather
than through biological activity.

ID 2,8 (methylnaph-
thalenes) in Orgueil, ALH
83100, Murchison; ID 15
(trimethylnaphthalene) in
Orgueil, Jbilet Winselwan,
LEW 85311; Notably absent
in soil samples

2 The co-occurrence of fluoranthene and pyrene (IDs 12,13)
exclusively in meteorites, combined with their absence in all
soil samples, indicates these 4-ring PAHs are formed through
specific high-temperature abiotic processes in space rather
than biological processes on Earth.

ID 12 (fluoranthene) in ALH
83100, LON 94101, LEW
85311; ID 13 (pyrene) in
Orgueil, LON 94101, LEW
85311

3 The presence of organosulfur compounds (1,2,4-trithiolane
and dibenzothiophene) exclusively in meteoritic samples
suggests that sulfur incorporation into organic compounds
occurred through unique chemical pathways in the early solar
system, possibly catalyzed by mineral surfaces under reduc-
ing conditions.

ID 14 (dibenzothiophene) in
Orgueil, ALH 83100, LEW
85311; ID 27 (trithiolane) in
Aguas Zarcas, LEW 85311

4 The exclusive detection of terpene-like compounds in soil
samples but not in meteorites indicates these compounds are
reliable biomarkers for distinguishing biological from abiotic
organic matter sources.

ID 4,17,18 (possible ter-
penes) found only in Iceland
Soil, Atacama, Utah soil,
GSFC soil

5 The presence of partially hydrogenated PAHs (like indane
and acenaphthene) specifically in meteorites suggests a step-
wise PAH formation process in space involving hydrogena-
tion steps, rather than direct synthesis of fully aromatic sys-
tems.

ID 11 (indane) in ALH
83100, LON 94101,
LEW 85311; ID 33
(acenaphthene) in ALH
83100, LEW 85311; ID 36
(tetrahydrophenanthrene) in
Orgueil, Jbilet Winselwan
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Table S11: Generated hypotheses by AstroAgents powered by Claude Sonnet 3.5 - Iteration 10.

# Statement Key Datapoints

1 The presence of methylated PAHs (e.g., methylnaphthalenes,
trimethylnaphthalenes) predominantly in meteorite samples
but not in soil samples suggests that abiotic methylation of
PAHs occurs through unique chemical pathways in space that
are distinct from biological methylation processes on Earth.

ID 2,8 (methylnaphthalenes)
found in meteorites Orgueil,
ALH 83100, Murchison; ID
15 (trimethylnaphthalene) in
Orgueil, Jbilet Winselwan,
LEW 85311; Notably absent
in most soil samples

2 The co-occurrence of dibenzothiophene (C12H8S) and
1,2,4-trithiolane (C2H4S3) exclusively in meteorite samples
suggests a distinct sulfur incorporation pathway in abiotic
PAH formation, possibly linked to cosmic ray or UV-induced
sulfurization of organic matter in space.

ID 14 (dibenzothiophene)
in Orgueil, ALH 83100,
LEW 85311; ID 27 (1,2,4-
trithiolane) in Aguas Zarcas,
LEW 85311

3 The presence of high molecular weight PAHs (fluoranthene
and pyrene) exclusively in meteorites suggests that abiotic
PAH formation in space favors condensation reactions lead-
ing to larger ring systems, while biological PAH production
on Earth tends toward smaller aromatic compounds.

ID 12 (fluoranthene) and
ID 13 (pyrene) found only
in meteorites ALH 83100,
LON 94101, LEW 85311,
Orgueil; Smaller PAHs like
ID 7 (toluene) more com-
mon in soil samples

4 The exclusive presence of terpene-like compounds in soil
samples but not in meteorites indicates these compounds are
reliable biomarkers for distinguishing biological from abiotic
organic matter sources.

ID 4, 17, 18 (possible ter-
penes) found only in bio-
logical samples like Iceland
Soil, Atacama, Utah soil;
absent in all meteorite sam-
ples

5 The co-occurrence of phenanthrene/anthracene with their
oxygenated derivatives (1H-Phenalen-1-one/9H-Fluoren-9-
one) specifically in meteorites suggests an abiotic oxidation
pathway that operates in space but not in terrestrial environ-
ments.

ID 42 (phenanthrene/an-
thracene) and ID 44
(1H-Phenalen-1-one/9H-
Fluoren-9-one) found
together in Orgueil and
LEW 85311 meteorites
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