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Abstract

While deep networks have achieved broad success in analyzing natural images,1

when applied to medical scans, they often fail in unexcepted situations. We2

investigate this challenge and focus on model sensitivity to domain shifts, such as3

data sampled from different hospitals or data confounded by demographic variables4

such as sex, race, etc, in the context of chest X-rays and skin lesion images.5

A key finding we show empirically is that existing visual backbones lack an6

appropriate prior from the architecture for reliable generalization in these settings.7

Taking inspiration from medical training, we propose giving deep networks a prior8

grounded in explicit medical knowledge communicated in natural language. To this9

end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept10

bottleneck models that incorporates knowledge priors that constrain it to reason11

with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses12

retrieval-augmented language models to design an appropriate concept space paired13

with an automatic training procedure for recognizing the concept. We evaluate14

different resources of knowledge and recognition architectures on a broad range15

of domain shifts across 20 datasets. In our comprehensive evaluation with two16

imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets17

by 32.4 % on average. Finally, evaluations reveal that PubMed is a promising18

resource for making medical models less sensitive to domain shift, outperforming19

other resources on both diversity of information and final prediction performance.20

1 Introduction21

Robustness to domain shifts is a key property for models operating on medical images because22

transfer scenarios arise widely. Deep networks have achieved broad success in analyzing natural23

images (everyday human contexts), but when applied to medical scans, they often substantially24

degrade under distribution shift [86, 15]. Medical datasets are small, and unidentified confounds in25

them combined with model misspecification can dramatically degrade performance [46, 21, 24]. Such26

failure erodes confidence as models do not learn the right information from training data, hampering27

adoption by medical professionals. We study such problems by investigating the performance of28

systems in the presence of confounded data and address a main shortcoming we discover.29

Model sensitivity to domain shift can be measured by introducing synthetic confounds into data30

and evaluating on samples where the confound misleads the model. For example, in Figure 1, we31

introduce confounded datasets for chest X-ray and skin lesion images where, during training, positive32

data is sampled from one group and negative from another. This association is reversed at testing33

time, creating an adversarial out-of-distribution (OOD) evaluation. In 5 such constructed confounds34

per modality, covering scenarios of race, sex, age, scan position, and hospital, we find models unable35

to generalize well, dropping over 63% on average over an in-distribution (ID) evaluation.36
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Figure 1: In-domain (ID), out-of-domain (OOD), and average of ID and OOD (Avg) performance on
confounded medical image datasets. Our interpretable Knowledge-enhanced Bottlenecks (KnoBo)
are more robust to domain shifts (e.g., race, hospital, etc) than fine-tuned vision transformers [17].

Priors are an important signal allowing models to adopt appropriate hypotheses in low or misleading37

data regimes. We hypothesize that existing visual backbones lack an appropriate prior for robust38

generalization in medicine. Like previous work identifying that vision backbones have a deep39

image prior even when entirely untrained [72, 78], we compare the quality of image representations40

produced by untrained networks on natural versus medical images. Given the output from a frozen41

untrained visual backbone, we train a linear classifier for predicting a diversity of labels (see Figure42

2). Across architecture, these untrained models are higher quality featurizers of natural images than43

directly using pixels as features. In contrast, across multiple medical modalities, the deep image44

prior in current major visual backbones is no more effective than using pixels (and often worse).45

To address the lack of an effective deep image prior for medical images, we propose using an46

inherently interpretable model design. We draw inspiration from medical education, where students47

first learn from textbooks and later in a more practical setting during the residency with an attending48

doctor. Our models mimic this pattern: first, documents are used to identify important knowledge,49

and then they learn by example from data. We employ concept bottleneck models (CBMs) [41]50

and enrich them with information derived from resources broadly accessible to medical students.51

CBMs are a class of inherently interpretable models that factor model decisions into human-readable52

concepts that are combined linearly. Our methods build on recent approaches for language model53

(LM) guided bottleneck construction where LMs are prompted for discriminative attributes [90].54

We introduce Knowledge-enhanced Bottlenecks (KnoBo) to incorporate knowledge priors that55

encourage reasoning with factors found in medical documents. KnoBo extends CBMs to medical56

imaging and employs retrieval-augmented generation into concept design. For example, we extract57

concepts from medical textbooks as natural language questions like Is there ground-glass opacity?58

to help the model classify whether an X-ray is positive for a respiratory infection. As illustrated in59

Figure 3, KnoBo factors learning into three parts: (1) an interpretable bottleneck predictor, (2) a prior60

over the structure of the bottleneck, and (3) a prior over predictor parameters. This factorization61

allows us to guide the model with a prior rooted in medical documents. The approach relies on an62

iterative retrieval process where an LM summarizes documents to propose concepts, forming our63

medical image prior (Sec 4.2). Given the concepts, a pretraining corpus of reports and images is64

used to construct a classifier for a concept (Sec 4.3). Finally, a CBM is learned using predictions65

from classifiers on data while regularized by a prior formed from LM generations. (Sec 4.4).66

We evaluate KnoBo on our benchmark of confounded tasks. Averaged over confounds, KnoBo67

increases OOD performance by 41.8% and 22.9% on X-ray and skin lesion datasets, respectively.68

KnoBo’s success in OOD performance comes at little sacrifice in ID settings, providing a better model69

overall when averaging the two data settings. We also explore 5 different sources of knowledge and70

reveal that PubMed outperforms other resources in terms of both diversity of information and final71

prediction performance. Overall, our work demonstrates that a key missing ingredient for robustness72

to distribution shift in medical imaging models is a prior rooted in knowledge.73
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Figure 2: Classification performance on natural and medical images through linear probing using
features extracted from untrained and frozen models versus pixels features (See Sec 3 for details).
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2 Related Work74

The rapid advancement in medical foundation models offers the opportunity to develop healthcare75

AI [55, 49]. However, their lack of transparency presents risks in real-world applications [5].76

Interpretability is crucial for using models in high-stakes domains [30, 79, 87]. Previous work77

has primarily focused on post-hoc interpretability [76, 95, 29, 75], which may not provide faithful78

explanations [69]. As an alternative, inherently interpretable methods produce explanations that79

align with the model’s reasoning processes [8, 3]. In this work, we build upon Concept Bottleneck80

Models (CBMs) [41], which predict by linearly combining human-designed concepts. Recent work81

[91, 60, 90] scales the applications of CBMs by aligning concepts and images with CLIP [64]82

and prompting language models to generate concept bottlenecks automatically. In our work, we83

treat CBMs as the architecture to incorporate knowledge priors for mitigating medical domain shift84

problems. Our bottlenecks, built from the medical corpus, are attributable and more trustworthy.85

Domain Generalization and Robustness are critical in medical domains where the distribution86

of imaging protocols, devices, and patient populations can significantly vary [25]. A line of work87

studies various domain-shift problems [42, 2], proposing algorithms to learn invariant representations88

[57, 22, 80, 63] and employing domain/group information for reweighting [71, 93, 44, 96]. However,89

many studies show those methods do not improve over standard Empirical Risk Minimization (ERM)90

[67, 26, 33, 27]. Fine-tuning the last layer [68, 40] or selectively fine-tuning a few layers [47] is91

sufficient for robustness against spurious correlations in those datasets. We address domain shifts in92

medical imaging from a novel perspective by employing interpretable models to integrate knowledge93

priors. Our approach encourages models to adhere to diagnostic rules similar to those doctors use94

rather than relying on spurious correlations. Concurrent work shows bottleneck models can perform95

well on out-of-domain X-ray data but severely reduced in-domain performance as a consequence [89].96

In contrast, we demonstrate a significantly better compromise between OOD and ID performance,97

using a broader set of modalities and constructing our bottlenecks from medical documents.98

Knowledge Rich Multimodal Reasoning. Knowledge plays an important role in clinical diagnosis99

[6]. Some multimodal tasks [82, 53, 74] require models to use explicit outside knowledge to make100

correct predictions. Previous methods [52, 50, 31] retrieve documents for each example from the101

external knowledge base as context for models to generate the answer. Our work focuses on leveraging102

knowledge in medical image classification. Retrieval-Augmented Generation [48, 23] has been103

shown to be beneficial for knowledge-intensive tasks [38], including biomedicine [20, 84]. The104

retrieved medical documents are either used as context during inference [88] or data for pretraining105

[94]. In constrast, we treat documents as background knowledge for large language models to build106

concept bottlenecks. Instead of retrieving documents for every input, we build a global knowledge107

prior from a medical document corpus, which is shared across all examples.108

3 Deep Image Priors for Medical Images109

This section revisits the concept of deep image priors [72, 78], i.e., some data-agnostic assumptions110

from model structure, in the context of image classification across various domains. By comparing111

linear probing using features extracted by untrained deep networks against pixel-based features, we112

observe that existing vision backbones lack suitable priors for medical domains. This observation113

motivates our knowledge-enhanced bottlenecks (Sec 4) to integrate more robust priors into models.114

Setup. Consider a dataset of image-label pairs, D =
{
(I, y)

}
, where I is an image and y ∈ Y115

denotes the label from one of N classes. The model learns to predict P
(
y|I, θ

)
, where θ is the model116

parameters. We employ a frozen, untrained vision backbone V to extract features from I , producing a117

feature vector x = V(I), where x ∈ Rd. A linear mapping function fθ : Rd → Y is then trained to118

classify these features into label spaces. In this case, the model parameters θ will inherit the implicit119

architectural priors of V . As a baseline, we extract a subset of d pixels directly from the image as120

the feature without any model-based priors, represented as xp ∈ Rd. We compare the classification121

performance using x versus xp to probe the efficacy of the vision backbone’s priors.122

Experiments. We evaluate two state-of-the-art vision backbones, ViT-L/14 [17] and ConvNext-L123

[51], on three categories of images: natural photos (e.g., ImageNet [70]), X-rays (e.g., NIH-CXR124

[83]), and skin lesion images (e.g., HAM10000 [77]). Each image category has 5 datasets, and we125

report their average performance in Figure 2 (see Table 9 in the Appendix C.1 for full results).126
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Figure 3: Overview of Knowledge-enhanced Bottlenecks (KnoBo) for medical image classification,
comprising three main components: (1) Structure Prior (Sec 4.2) constructs the trustworthy knowl-
edge bottleneck by leveraging medical documents; (2) Bottleneck Predictor (Sec 4.3) grounds the
images onto concepts which are used as input for the linear layer and ; (3) Parameter Prior (Sec
4.4) constrains the learning of linear layer with parameters predefined by doctors or LLMs.

Figure 2 (left) shows vision backbones have effective priors for natural images, with ViT notably127

outperforming pixel by 14.7%. However, pixel features surpass those extracted by vision backbones128

for specialized domains such as X-ray and skin lesion images. This underscores these deep networks’129

lack of image priors appropriate for these domains, which can hamper model learning and hurt130

generalizability. Without guidance from appropriate priors, models can overly rely on data, risking131

catastrophic failures. We aim to overcome this by injecting additional priors into models.132

4 Knowledge-enhanced Bottlenecks133

In this section, we present Knowledge-enhanced Bottlenecks (KnoBo), a class of CBMs that134

incorporate knowledge priors that address the failures we identified in Section 3. Figure 3 presents an135

overview of our method, from left to right, we optimize three terms: (1) Structure Prior (Sec 4.2)136

induces bottleneck structures from medical corpus to incorporate human knowledge as concepts, (2)137

Bottleneck Predictor (Sec 4.3) projects input image onto bottleneck concepts and then feed concept138

predictions into the linear layer for label prediction, and (3) Parameter Prior (Sec 4.4) aligns the139

learned parameters with known associative information to further enhance priors.140

4.1 Problem Formulation141

Preliminary on Concept Bottleneck Model. Given a bottleneck C with NC concepts, CBMs142

optimize two functions for predictions: ŷ = f
(
G(x)

)
, where G : Rd → RNC maps image features143

into concept space, and f : RNC → Y uses concept predictions for final label predictions.144

Formulation. Our goal is to incorporate priors over C, the concept structure, into the learning of the145

joint probability
∑

(I,y)∈D logP
(
y, C, θ|I

)
, which can be decomposed into three factors:146

logP
(
y, C, θ|I

)
= logP

(
y|I, C, θ

)︸ ︷︷ ︸
bottleneck predictor

+ logP (C)︸ ︷︷ ︸
structure prior

+ logP (θ)︸ ︷︷ ︸
parameter prior

(1)

where we assume the priors over structure C and parameters θ are independent. The structure147

prior P (C) (Sec 4.2) is formulated as the construction of a bottleneck with NC concepts, C =148 {
c1, c2, ..., cNC

}
, derived from a background corpus B. Each concept is a factor that humans will use149

when solving the same task. The bottleneck predictor P
(
y|I, C, θ

)
(Sec 4.3) is a concept bottleneck150

model that predicts the label conditioned on the input image, bottleneck, and learned parameters.151

The bottleneck predictor is inherently interpretable, and each parameter in θ has semantics, denoting152

the association between concepts and labels. The parameter prior P (θ) (Sec 4.4) regularizes the153

learning of model parameters θ with information derived from human knowledge. Jointly optimizing154

over structure and model parameters is intractable, so we first select a high-quality concept space and155

then optimize the parameters of the bottleneck jointly with the parameter prior.156
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4.2 Structural Prior157

Algorithm 1 Retrival Augmented Iterative
Concept Bottleneck Generation

Y, set of target class names
B, set of background documents
Q← Y, class names as initial queries
C ← [] , concepts in the bottleneck
while |C| < NC do
Q′← [] , set of new queries
for q inQ do
B′ = Retrieve (B, q)
C′ = LLM (B′)
C ← C + C′,Q′ ← Q′ + C′

end for
Q ← Q′ /* update queries */

end while

Given a background corpus B that spans various documents,158

we aim to identify a bottleneck structure containing concepts159

beneficial for classifying labels y ∈ Y . As outlined in160

Algorithm 1, we use the class names Y as initial queries161

to retrieve relevant documents B′ ⊂ B. Large Language162

Models (LLMs) are then prompted to generate concepts163

using these retrieved documents as context: C ′ = LLM(B′).164

These newly generated concepts are added to the bottleneck165

and used as new queries to retrieve additional documents.166

This iterative process continues to expand the bottleneck167

until a predetermined number of concepts NC is reached.168

Such concept structures have high likeleehood under the169

language model, conditioned on the background corpus, and170

the language model probability serves as an implicit prior.171

4.3 Bottleneck Predictor172

With the structure prior from the background corpus, we optimize (1) the grounding function173

G : Rd → RNC , which maps the input image to the concept space, and (2) a linear layer f : RNC → Y174

that projects concept predictions onto labels. In practice, we implement G as a set of grounding175

functions: G = {gc}c∈C where each gc predicts the probability of an image I having the concept176

c, P (c|I) = gc(x), and x ∈ Rd is the image feature. Specifically, we derive training examples for177

grounding functions from a pretraining dataset of image-text pairs. We use the language model to178

estimate the presence of a concept in the image based on the information in the accompanying text.179

Concept Grounding. Suppose we have a pretraining dataset Dpre of image-text pairs
{
(I, t)

}
, where180

t is a textual description (such as a clinical report) of the image. Based on t, we can infer if a concept181

c is present in the image. This can be automated by prompting a large language model to generate a182

response indicating whether the text implies the concept. This way, we label our pretraining data as183

positive and negative examples for each concept c, which can be used to train its grounding function.184

With those annotated training examples, we implement each grounding function as a binary logistic185

regression classifier: gc(x) = σ
(
x ·W⊤

c

)
, where W c ∈ Rd is the weights of grounding function186

and σ is the sigmoid activation. Finally, we form a collection of grounding functions G = {gc}c∈C187

to map an image feature x into NC probabilities over all bottleneck concepts, with G(x) ∈ RNC .188

Linear Layer. Using concept probabilities G(x) as input, we train a simple linear function f to make189

the final label prediction: ŷ = f
(
G(x)

)
= G(x) ·W⊤, where W ∈ RN×NC is the linear weight190

matrix, with N the number of classes and NC the number of concepts.191

4.4 Parameter Prior192

The bottleneck predictor is inherently interpretable because the parameters of the linear layer encode193

the affinity between labels and concepts. Therefore, we can guide the parameters based on prior194

knowledge, i.e., if the label y is positively related to concept c based on background knowledge, the195

weight wy,c ∈ W should be high. We hope the learned parameters do not deviate too much from this196

assumption, otherwise, the model may capture spurious correlations in the data.197

To enforce this, we let language models define a weight matrix of priors W prior ∈ RN×NC , with198

each element wy,c ∈ {−1,+1} indicating the sign of a preferred correlation between the label y and199

concept c. The prior loss is calculated as the L1 distance between between W and W prior:200

Lprior =
1

N ·NC
· ||tanh (W )−W prior||1 (2)

in which we apply tanh activation on W to scale the linear weights to (−1, 1), matching the scale of201

the weights in the prior matrix. This adjustment aligns the model’s parameters with the expected sign202

of the correlations based on prior knowledge. The final loss function to train the linear layer is the203

sum of the cross-entropy loss and the prior loss: L = LCE + Lprior.204
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In summary, we search for a structure C that is consistent with prior knowledge from a background205

corpus B to severe as the bottleneck for the predictor P
(
y|I, C, θ

)
. The parameters θ are aligned206

with the predefined correlations between labels and concepts identified by language models.207

5 Experimental Setup208

This section introduces (1) the confounded and unconfounded medical datasets to evaluate the209

robustness of our knowledge-enhanced bottlenecks (Sec 5.1), (2) the black-box and interpretable210

baselines for comparison (Sec 5.2), and (3) the implementation details of our method (Sec 5.3).211

5.1 Datasets212

We evaluate on two groups of datasets for each modality: (1) the confounded datasets, which aim to213

assess the robustness of models by creating splits with spurious correlations; (2) the unconfounded214

datasets are randomly split to measure the models’ performance in natural settings.215

Confounded Datasets. As illustrated on the left of Figure 1, we formulate the confounded datasets216

as binary classification tasks, where each class is confounded with one factor. The confounding217

combinations are reversed for in-domain (train and validation) and out-of-domain (test) splits.218

The confounded datasets of chest X-ray are constructed from NIH-CXR [83] and CheXpert [35] with219

their provided attributes: (1) NIH-sex uses sex (male, female) as the confounding factor; (2) NIH-age220

confounds the data with age (young, old); (3) NIH-pos analyzes the patient’s position (standing, lying221

down) during X-ray examinations; (4) CheXpert-race splits the data based on patient’s race (white,222

black or African American); (5) NIH-CheXpert confounds X-rays across datasets (NIH, CheXpert).223

The confounded datasets of skin lesion are derived from the International Skin Imaging Collaboration224

(ISIC): (1) ISIC-sex and (2) ISIC-age are set up similarly to the X-ray datasets mentioned previously;225

(3) ISIC-site studies lesions developed on different sites of the body (head, extremities); (4) ISIC-226

color evaluates examples with different skin colors (light, dark); and (5) ISIC-hospital uses instances227

sampled from hospitals in different cities (Barcelona, Vienna).228

Unconfounded datasets. We evaluate 10 datasets with random splits, 5 for each modality. X-ray:229

Pneumonia [39], COVID-QU [9], NIH-CXR [83], Open-i [16], and VinDr-CXR [58]. Skin Lesion:230

HAM10000 [77], BCN20000 [14], PAD-UFES-20 [62], Melanoma [36], and UWaterloo [45].231

All datasets are split into train/validation/test and ensure the validation and test set are balanced across232

classes. Detailed statistics and additional information on each dataset are provided in Appendix A.233

Pretraining Datasets. The training of vision backbones and concept grounding functions utilizes234

datasets with image-text pairs. For X-rays, we choose MIMIC-CXR [37], which contains 377,110235

X-ray images with accompanying clinical reports. Since there is no existing text-annotated dataset236

for skin lesion images, we employ GPT-4V [61] to generate captions (see examples in Figure 9) for a237

subset of 56,590 images from ISIC, without overlap of the confounded and unconfounded datasets.238

5.2 Baselines239

We compare KnoBo against both black-box models and interpretable concept bottleneck models.240

Black-box Models. We include two end-to-end fine-tuning baselines: (1) ViT-L/14 [17] and (2)241

DenseNet121 [32], both pretrained on the pretraining datasets mentioned earlier. Additionally, (3)242

Linear Probe extracts visual features with the frozen ViT-L/14 encoder and learns a linear layer243

for classification. (4) Language-shaped Learning (LSL) [56] aims to disentangle the impact of244

knowledge and interpretable structure. Inspired by LSL via captioning, we finetune a ViT-L/14 with245

the same data used for concept grounding functions and apply a linear layer (see Appendix B.2).246

Concept Bottleneck Models. (1) Post-hoc CBM (PCBM-h) [91] ensembles concept bottleneck247

models with black-box residual predictors. We let PCBM-h use the same bottlenecks as our KnoBo248

method; (2) LaBo [90] applies language models to generate concepts, followed by the submodular249

selection to identify a subset that enhances performance. Following their original settings, PCBM-h250

and LaBo use CLIP (fine-tuned on medical pretraining datasets) to align concepts with images.251
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Method NIH-sex NIH-age NIH-pos CheXpert-race NIH-CheXpert
ID OOD Avg ID OOD Avg ID OOD Avg ID OOD Avg ID OOD Avg

ViT-L/14 97.0 30.9 64.0 97.4 3.2 50.3 99.7 2.7 51.2 89.4 48.2 68.8 99.9 0.1 50.0
DenseNet 91.4 32.1 61.8 90.6 15.6 53.1 99.3 1.0 50.2 85.0 55.4 70.2 99.9 0.2 50.1
Linear Probe 94.2 46.7 70.5 95.0 11.4 53.2 99.3 17.0 58.2 87.8 71.4 79.6 99.6 6.8 53.2
LSL 84.0 74.3 79.2 79.8 53.8 66.8 95.3 39.0 67.2 80.4 76.4 78.4 95.0 31.8 63.4

PCBM-h 94.2 45.6 69.9 95.0 10.8 52.9 99.3 17.0 58.2 88.0 71.4 79.7 99.6 8.2 53.9
LaBo 91.4 51.3 71.4 92.8 14.4 53.6 98.0 24.3 61.2 86.8 69.2 78.0 98.4 14.9 56.7

KnoBo (ours) 88.6 78.6 83.6 88.8 38.8 63.8 95.7 45.3 70.5 84.0 79.0 81.5 91.6 52.3 72.0

Method ISIC-sex ISIC-age ISIC-site ISIC-color ISIC-hospital
ID OOD Avg ID OOD Avg ID OOD Avg ID OOD Avg ID OOD Avg

ViT-L/14 92.0 69.0 80.5 95.0 61.3 78.2 94.8 38.3 66.6 96.9 59.2 78.1 99.2 10.0 54.6
DenseNet 85.3 76.0 80.7 93.7 61.3 77.5 81.7 54.5 68.1 93.9 44.6 69.2 98.4 15.1 56.8
Linear Probe 86.0 69.7 77.8 92.7 60.7 76.7 90.2 37.2 63.7 90.8 65.8 78.3 100.0 27.1 63.6
LSL 82.7 78.3 80.5 90.3 66.0 78.2 84.3 50.2 67.3 87.3 73.1 80.2 99.6 27.9 63.8

PCBM-h 86.7 69.0 77.8 93.0 59.3 76.2 90.0 38.5 64.3 91.2 66.5 78.9 100.0 26.8 63.4
LaBo 83.0 69.3 76.2 91.3 61.0 76.2 88.0 39.3 63.7 86.9 78.9 82.9 100.0 8.6 54.3

KnoBo (ours) 84.0 79.7 81.8 88.0 67.7 77.8 80.7 58.8 69.8 89.2 75.8 82.5 88.2 77.5 82.9

Table 1: Results on 10 confounded datasets of two modalities (top-5 are X-ray and bottom-5 are
skin lesion). We report in-domain (ID), out-of-domain (OOD), and average of ID and OOD (Avg)
accuracy. The best score of each column is bold, and the second best is underlined.

All baselines use backbones trained on the same pretraining data as our method to ensure a fair252

comparison. Appendix B.2 provides additional details about the baselines.253

Evaluation Metrics. We use accuracy as the metric since all evaluated datasets are single-label254

classification tasks with balanced validation and test sets. For confounded datasets, we report in-255

domain (ID, validation), out-of-domain (OOD, test), and domain-average (mean of ID and OOD)256

accuracies, along with domain gaps (∆ = |ID − OOD|), where a lower ∆ indicates better robustness.257

For unconfounded datasets, we report test accuracy. A robust and performant model must achieve258

a good compromise between confounded and unconfounded datasets. For all the baselines and our259

KnoBo method, the checkpoints with the highest validation accuracy are evaluated on the test set.260

5.3 Implementation Details261

Pretraining of Medical CLIP. We fine-tune OpenCLIP [34] (ViT-L/14 pretrained on LAION-2B262

[73]) on the pretraining medical data for each modality. Unlike previous work [18, 85, 92] that263

directly pairs medical images with sentences from clinical reports, we preprocess the reports by264

employing GPT-4 [1] to extract short phrases. Our CLIP models perform the best for both X-ray and265

skin lesion datasets in zero-shot and linear probing, as shown in Table 7 in the Appendix.266

Medical Corpus. We download 5.5 million articles from PubMed and segment them into 156.9267

million snippets to serve as documents for retrieval. Alternatively, we take the medical corpus268

organized by MEDRAG [88], including documents from Wikipedia, StatPearls, and medical textbooks.269

We employ BM25 [66] as the ranking function for document retrieval.270

KnoBo Details. We select GPT-4 (gpt-4-0613) as the underlying LLM for retrieval-augmented271

concept generation (Sec 4.2). For training concept grounding functions (Sec 4.3), we opt for Flan-T5-272

XXL [10] to annotate clinical reports for each concept, considering cost-efficiency. Unless otherwise273

specified, KnoBo uses bottlenecks constructed from PubMed, each containing 150 concepts. Figure 5274

shows our prompt, and during concept generation, we apply several heuristic filters (Appendix B.3).275

6 Results276

In this section, we discuss KnoBo’s performance on confounded and unconfounded medical image277

datasets (Sec 6.1) and analyze different knowledge resources and our model design (Sec 6.2).278
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Method Chest X-ray Datasets Skin Lesion Datasets
ID OOD ∆ ↓ Avg Unconfd Overall ID OOD ∆ ↓ Avg Unconfd Overall

ViT-L/14 96.7 17.0 79.7 56.8 70.2 63.5 95.6 47.6 48.0 71.6 84.3 77.9
DenseNet 93.2 20.9 72.4 57.1 66.0 61.5 90.6 50.3 40.3 70.4 71.0 70.7
Linear Probe 95.2 30.7 64.5 62.9 73.8 68.4 91.9 52.1 39.8 72.0 82.8 77.4
LSL 86.9 55.1 31.8 71.0 67.0 69.0 88.9 59.1 29.8 74.0 77.2 75.6

PCBM-h 95.2 30.6 64.6 62.9 74.7 68.8 92.2 52.0 40.1 72.1 81.7 76.9
LaBo 93.5 34.8 58.7 64.2 72.1 68.1 89.9 51.4 38.4 70.6 80.0 75.3

KnoBo (ours) 89.7 58.8 30.9 74.3 73.1 73.7 86.0 70.5 14.1 78.3 78.1 78.2

Table 2: Averaged results across all datasets, including in-domain (ID), out-of-domain (OOD),
domain-gap (∆, lower is better), and mean of ID and OOD (Avg) accuracy for confounded datasets.
For unconfounded datasets (Unconfd), we report test accuracy. Overall performance is calculated as
the mean of the Avg and Unconfd, the overall tradeoff between data conditions.

Knowledge
Source

Chest X-ray Datasets Skin Lesion Datasets

Confd Unconfd Overall Diversity Confd Unconfd Overall Diversity

PROMPT 72.9 72.8 72.9 0.542 78.4 77.0 77.7 0.332

TEXTBOOKS 72.0 72.9 72.4 0.585 77.5 78.3 77.9 0.350
WIKIPEDIA 72.8 72.7 72.8 0.542 77.6 77.9 77.8 0.356
STATPEARLS 73.4 72.0 72.7 0.598 77.1 79.1 78.1 0.379
PUBMED 74.3 73.1 73.7 0.619 78.3 78.1 78.2 0.341

Table 3: Comparison of concept bottlenecks built from different knowledge sources. PROMPT is our
baseline without retrieving documents for concept generation. We report the accuracy of confounded
(Confd, average over ID and OOD), unconfounded (Unconfd) datasets, and the overall performance
of all datasets. Diversity measures the difference between the concepts in a bottleneck.

6.1 Main Results279

KnoBo is more robust to domain shifts. Table 1 shows the results on 10 confounded datasets of280

X-ray and skin lesions. Black-box models excel at in-domain (ID) data but drop significantly on out-281

of-domain (OOD) data, especially in datasets confounded by hospitals/resources (NIH-CheXpert and282

ISIC-hospital), which can be common when collecting medical datasets [12, 81]. KnoBo outperforms283

baselines in OOD and domain-average accuracy by large margins, ranking top-1 in eight datasets and284

second-best in the other two. End-to-end models (ViT-L/14, DenseNet) exhibit larger domain gaps285

than linear probes, as they have more parameters to optimize performance on in-domain data and286

capture spurious correlations. Shaping the visual representations with knowledge (LSL) improves287

robustness but underperforms KnoBo, with lower ID, OOD, and average performance across most288

datasets. PCBM-h combines interpretable and black-box predictions but exhibits behaviors similar to289

black-box models with severe drops across domains. Unlike KnoBo, which uses medical documents290

to create one global bottleneck for each modality, LaBo builds a bottleneck for each dataset using291

the in-domain data, which can be biased and affected by confounding factors, and so performs more292

poorly. In summary, KnoBo mitigates the catastrophic failures in domain shifts encountered by293

black-box models and is more robust against various confounding factors across modalities.294

KnoBo performs the best across confounded and unconfounded data. Table 2 illustrates the295

performance averaged across confounded and unconfounded datasets. For both types of medical296

images, KnoBo achieves the best out-of-domain (OOD) and domain-average performance (Avg)297

with minimal domain gaps (∆), outperforming the strongest end-to-end baseline (ViT-L/14) by298

41.8% (X-ray) and 22.9% (skin lesion) in OOD accuracy. KnoBo achieves competitive performance299

for unconfounded X-ray datasets, trailing the best-performing black-box model (Linear Probe) by300

only 0.7%. While KnoBo is less competitive on skin lesion datasets due to the lack of large-scale301

pretraining data for accurate concept grounding, it still maintains performance comparable to the302

baselines. By calculating the mean accuracy across both confounded and unconfounded datasets,303

KnoBo ranks top across all models, confirming that our knowledge-enhanced, interpretable approach304

is a promising direction for building more robust and performant systems for medical imaging.305
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Figure 4: Ablation of bottleneck sizes on X-ray datasets. The x-axis is the number of randomly
selected concepts (KnoBo) or visual features (Linear Probe).

Method Chest X-ray Datasets Skin Lesion Datasets

ID OOD ∆ ↓ Avg Unconfd Overall ID OOD ∆ ↓ Avg Unconfd Overall

KnoBo 89.7 58.8 30.9 74.3 73.1 73.7 86.0 70.5 14.1 78.3 78.1 78.2

w/o G 87.8 51.5 36.3 69.6 70.1 69.9 83.7 69.4 11.5 76.6 70.2 73.4
w/o Lprior 91.6 48.1 43.5 69.8 73.6 71.7 86.5 69.1 16.6 77.8 78.4 78.1

Table 4: Ablation studies on concept grounding (G; Sec 4.3) and parameter prior (Lprior; Sec 4.4).

6.2 Analysis306

In this section, we compare the bottlenecks constructed from different knowledge resources. We307

evaluate the impact of each component of KnoBo on the final performance, including bottleneck size,308

concept grounding function, and parameter prior. Additional analyses are available in Appendix C.309

Knowledge Sources. Besides the empirical results on confounded and unconfounded datasets, we310

measure the diversity of bottleneck C as Diversity(C) = 1
|C|2−|C|

∑
ci∈C

∑i ̸=j
cj∈C

(
1− sim(ci, cj)

)
,311

where the sim(·) is the cosine similarity of concept features encoded by sentence transformer [65].312

The Diversity computes the distance between each concept and every other concept in the bottleneck.313

Table 3 compares different knowledge sources. The retrieval-augmented bottlenecks perform better314

than those generated by prompting, especially for skin lesions, where more specific knowledge is315

required because prompting lacks diversity. Across both modalities, PubMed is the best overall,316

performing better for the X-ray modality than other knowledge sources and among the best for skin317

lesion modalities. In evaluations by two medical students, information from all knowledge sources318

is rated as highly relevant and groundable (see Appendix C.4). Moreover, shown in Table 12, our319

retrieval-augmented concepts are attributable, which allows doctors to verify the source of knowledge.320

Bottleneck Size. Figure 4 compares KnoBo and linear probes while varying the number of con-321

cepts/features. KnoBo consistently outperforms linear probes across all metrics when given the same322

quota of features, and KnoBo can obtain good performance with fewer features. This demonstrates323

that interpretable concept scores have more effective priors than black-box visual features.324

Ablations. Table 4 summarizes experiments ablating major components of our approach. Row325

2 shows the performance of using dot-products from prompted CLIP models as concepts, which326

markedly reduces performance. This shows the importance of knowledge grounding in ensuring327

KnoBo’s effectiveness. However, this step can be simplified as more advanced medical foundation328

models are available. Row 3 shows performance omitting the parameter prior. It is an important329

mechanism for constraining the final phase of learning, resulting in consistent OOD improvements.330

7 Conclusion and Limitation331

In this paper, we analyze domain-shift problems in medical image analysis and identify a missing332

medical deep image prior as a main contributor of poor performance. To address this, we introduce333

knowledge-enhanced bottlenecks (KnoBo) to integrate knowledge priors from medical documents.334

Across two medical image modalities under various domain shifts, KnoBo signficantly improves335

robustness. KnoBo assumes the avialability of medical multimodal datasets limiting applications to336

rare conditions. While our work improves robustness, medical experts do not fail in these ways and337

they should be used to conjunction with models.338
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A Dataset625

Dataset
Name

Confounding
Factor

n. of
Class Class Names n. of Images

train val test

NIH-sex sex 2 Atelectasis, Effusion 3000 500 1000
NIH-age age 2 No finding, Has findings 3000 500 500
NIH-pos position 2 Atelectasis, Effusion 3000 300 300
CheXpert-race race 2 No finding, Has findings 4000 500 500
NIH-CheXpert dataset 2 Atelectasis, Effusion 5000 1000 1000

Pneumonia [39] - 2 Normal, Pneumonia 5216 16 624

COVID-QU [9] - 4 COVID, Lung Opacity, 16930 2115 2114Normal, Viral Pneumonia

NIH-CXR [83] - 6 Atelectasis, Cardiomegaly, Effusion 8066 1140 2317Consolidation, Edema, Pneumonia
Open-i [16] - 3 Cardiomegaly, Lung Opacity, Normal 884 438 890

VinDr-CXR [58] - 7
Aortic enlargement, Cardiomegaly,

1400 175 175Pulmonary fibrosis, Lung Opacity,
Pleural thickening, Nodule, Normal

Table 5: Detailed statistics of the 10 Chest X-ray datasets evaluated in this work.

Dataset
Name

Confounding
Factor

n. of
Class Class Names n. of Images

train val test

ISIC-sex sex 2 Benign, Malignant 2400 300 300
ISIC-age age 2 Benign, Malignant 2800 300 300
ISIC-site body site 2 Benign, Malignant 2000 600 600
ISIC-color skin color 2 Benign, Malignant 1800 260 260
ISIC-hospital hospital 2 Benign, Malignant 2400 280 280

HAM10000 [77] - 7
Actinic Keratoses, Basal Cell Carcinoma,

8010 1000 1000Benign Keratosis-like Lesions, Dermatofibroma,
Melanocytic Nevi, Melanoma, Vascular Lesions

BCN20000 [14] - 4 Nevus, Basal Cell Carcinoma 4800 800 800Melanoma, Actinic/Seborrheic Keratosis

PAD-UFES-20 [62] - 2 Basal/Squamous Cell Carcinoma, 1602 200 200Actinic/Seborrheic Keratosis
Melanoma [36] - 2 Benign, Malignant 8605 1000 1000
UWaterloo [45] - 2 melanoma, not melanoma 166 20 20

Table 6: Detailed statistics of the 10 Skin Lesion datasets evaluated in this work.

Table 5 and 6 show the detailed statistics for all 20 datasets evaluated in this paper, where we list the626

number of classes with class names, the number of images for training, validation, and testing. For627

confounded datasets, here we explain some details about how we define the confounding factors:628

• NIH-sex and ISIC-sex are built based on the patient sex from NIH-CXR [83] and ISIC.629

• NIH-age defines young as patient’s age ≤ 30 and old as patient’s age ≥ 60.630

• NIH-pos refers to the patient’s position during an X-ray procedure. The standard position, Posterior631

Anterior (PA), involves the patient standing, while the Anterior-Posterior (AP) view is used when632

the patient cannot stand and must lie down.633

• CheXpert-race selects racial subgroups (White, Black or African American) from CheXpert [35].634

• NIH-CheXpert confounds classes by sourcing X-rays from either the NIH-CXR or CheXpert635

datasets. Specifically, data for one disease is obtained from one dataset, while data for a different636

disease is sourced from the other dataset.637
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Model Pneumonia COVID-QU NIH-CXR Open-i VinDr-CXR Average
ZS LP ZS LP ZS LP ZS LP ZS LP ZS LP

Random 50.0 50.0 25.0 25.0 16.7 16.7 33.0 33.0 14.3 14.3 27.8 27.8
DenseNet - 83.8 - 82.9 - 53.0 - 63.8 - 27.4 - 62.2
OpenAI-CLIP 62.5 82.4 6.7 91.0 35.0 49.6 21.6 60.3 16.0 33.1 28.4 63.3
OpenCLIP 62.5 77.4 6.3 90.0 7.5 47.9 21.6 58.7 15.4 34.9 22.7 61.8
PubMedCLIP 63.3 72.9 22.0 87.7 30.4 47.7 26.4 59.6 15.4 26.9 31.5 58.9
BioMedCLIP 74.0 85.4 11.8 90.3 31.4 58.7 56.0 67.6 22.3 36.6 39.1 67.7
PMC-CLIP 57.7 84.9 48.1 94.9 40.4 60.6 57.6 67.4 16.0 42.3 43.9 70.0
MedCLIP 84.9 89.9 68.6 87.4 25.1 64.8 70.2 71.9 24.6 40.0 54.7 70.8

Ours 77.7 88.6 60.6 94.9 47.4 68.4 67.5 73.3 29.1 44.0 56.5 73.8
− Extraction 57.2 88.8 46.0 95.3 41.4 68.2 62.9 72.1 21.1 46.0 45.7 74.3

Model HAM10000 BCN20000 PAD-UFS-20 Melanoma UWaterloo Average
ZS LP ZS LP ZS LP ZS LP ZS LP ZS LP

Random 14.3 14.3 25.0 25.0 50.0 50.0 50.0 50.0 50.0 50.0 37.9 37.9
DenseNet - 79.0 - 69.6 - 69.5 - 91.9 - 45.0 - 71.0
OpenAI-CLIP 3.6 79.9 28.3 67.9 47.0 84.5 50.9 91.6 50.0 60.0 35.9 76.8
OpenCLIP 5.2 82.2 25.0 67.8 45.0 83.5 50.1 92.6 55.0 80.0 36.1 81.2
PubMedCLIP 4.8 76.3 28.9 64.4 50.5 85.5 48.8 92.2 50.0 60.0 36.6 75.7
BioMedCLIP 60.4 75.2 27.5 61.8 61.0 84.5 57.3 90.0 50.0 65.0 51.2 75.3
PMC-CLIP 25.1 82.4 24.8 67.6 55.0 86.0 66.1 92.7 55.0 55.0 45.2 76.7
MedCLIP 8.5 71.4 22.6 55.1 50.0 71.0 50.1 89.9 50.0 50.0 36.2 67.5

Ours 61.5 82.9 53.0 71.0 56.5 86.5 84.0 93.5 75.0 80.0 66.0 82.8
− Extraction 50.9 83.3 46.5 72.0 52.0 86.5 80.1 96.0 70.0 70.0 59.9 81.6

Table 7: Zero-shot (ZS) and Linear Probe (LP) results of different models on five chest X-ray and
five skin lesion datasets (not confounded, random split). The best score is bold, and the second best
is underlined. − Extraction stands for not using LLM to extract findings from clinical reports.

• ISIC-age thresholds young as patient’s age ≤ 30 and old as patient’s age ≥ 70.638

• ISIC-site focuses on lesions located either on the head or an extremity.639

• ISIC-color organizes images based on the Fitzpatrick scale of skin tones [19]. Fitzpatrick I is640

classified as light skin, and III, IV, and V as dark skin, according to the annotations from [4].641

• ISIC-hospital introduces confounds in classes by using lesion images exclusively from either the642

Hospital Clínic de Barcelona or the Medical University of Vienna.643

B Implementation Details644

B.1 CLIP Pretraining645

We experimented with existing CLIP models in the medical domain and found their performance to646

be unreliable. Therefore, we decide to train our own CLIP models for X-ray and skin lesion images.647

Pretraining Dataset. For X-rays, we utilize the MIMIC-CXR dataset [37], specifically selecting648

only the PA and AP X-rays, which results in 243,334 images, each accompanied by a clinical report649

written by doctors. For Skin Lesion images, we employ the ISIC dataset and use GPT-4V [61] to650

generate clinical reports for 56,590 images, examples are shown in Figure 9. We preprocess these651

reports by extracting medically relevant findings, each described in a short and concise term. The652

example below demonstrates a report alongside the findings captured by GPT-4. In total, we assemble653

953K image-text pairs for X-rays and 438K for skin lesion images.654

FINAL REPORT HISTORY: Unresponsive. Evaluate for pneumonia.
COMPARISON: Chest radiographs ___ and ___. CT thoracic spine ___.
FINDINGS: Portable frontal view of the chest. The lung volumes are low. No pleural effusion or pneumothorax. There is
bibasilar atelectasis, left greater than right. Heart size is normal. Mediastinal and hilar structures are unremarkable. The
configuration of the trachea is unchanged from prior cross-sectional imaging.
IMPRESSION: Low lung volumes without an acute cardiopulmonary process.
FINDINGS (GPT-4): low lung volumes, bibasilar atelectasis, left greater than right, normal heart size, trachea unchanged

655
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Training Details. We utilize the training script from OpenCLIP [34] and select ViT-L/14 as the656

backbone. Training is performed on 4 RTX A6000 GPUs for 10 epochs with a batch size of 128 and a657

learning rate of 1e−5. We choose checkpoints based on the lowest contrastive loss on validation sets.658

CLIP Baselines. We compare various CLIP models across unconfounded datasets for two modalities,659

including OpenAI-CLIP [64], OpenCLIP [34], PubMedCLIP [18], BioMedCLIP [92], PMC-CLIP1660

and MedCLIP [85]. We evaluate these models in both zero-shot and linear probe scenarios. In661

zero-shot, GPT-4 generates prompts for each class, and we use the ensemble of cosine similarities662

between the image and prompts as the score for each class. In linear probing, we use the CLIP models663

as image encoders to extract features for logistic regression. Additionally, we include DenseNet-121664

[32] (fine-tuned on the pretraining datasets with cross-entropy loss) as a baseline for linear probing.665

Results. Figure 7 shows that our CLIP models perform best in both zero-shot and linear probing666

scenarios for both modalities. We find that preprocessing the text data with an LLM significantly667

enhances zero-shot performance. Existing medical CLIP models outperform general CLIP models on668

X-ray datasets but not on skin lesion images, possibly because X-ray data are more prevalent and669

accessible in the medical domain. While our CLIP models excel with careful data curation, training670

converges quickly, suggesting the current contrastive objective might not fully exploit the information671

from the data, potentially taking shortcuts, such as comparing images from different patients instead672

of focusing on diseases. Future research should explore more suitable objectives and larger-scale673

data collections to develop more robust medical foundation models.674

B.2 Baselines675

This section outlines the implementation details of all baselines compared with our knowledge676

bottlenecks for medical image classification. All baselines are run on a single RTX A6000 GPU.677

• ViT-L/14: We utilize the visual encoders from the CLIP models we pretrained in Sec B.1 and add678

a classification head for downstream classification datasets. We unfreeze the ViT-L/14 backbone679

and train all parameters with a learning rate of 1e−6 and a batch size of 64 for 20 epochs.680

• DenseNet-121: Similarly to ViT-L/14, we add a classification head to the pretrained DenseNet and681

train the entire network end-to-end. For X-rays, we use the DenseNet pretrained on MIMIC-CXR682

by TorchXRayVision [13]. For skin lesion images, we pre-train the DenseNet from scratch on ISIC683

using a cross-entropy loss. When fine-tuned for downstream classification datasets, we train the684

DenseNet with a learning rate of 1e−5, a batch size of 64, and also for 20 epochs.685

• Linear Probe: We employ visual encoders (ViT-L/14) from pretrained CLIP models to extract686

features for images in downstream classification datasets. We train a linear layer to map these687

features into labels for 200 epochs with a learning rate of 1e−3 and a batch size of 64.688

• LSL [56]: We fine-tune the pretrained CLIP with contrastive loss on annotated concept data689

(PubMed bottleneck), using the same data as for concept grounding functions (4.3). Training690

instances are triplets (I, c, y), where I is the image, c is a textual concept, and y ∈ {0, 1} is a691

binary label indicating whether the image contains this concept. Given the visual encoder V and692

textual encoder T of the CLIP, the cosine similarity between an image and a concept is s (I, c) =693

cos
(
V(I), T (c)

)
. The contrastive loss function is defined as Lcontrast = y ·max

(
0,m− s (I, c)

)
+694

(1− y) · s (I, c), where m = 0.6 is the margin. We fine-tune the CLIP with concept annotations695

for 20 epochs with a learning rate of 1e−6 and a batch size of 64. After obtaining the fine-tuned696

CLIP, we extract features and train a linear probe in the same manner as the linear probe baseline.697

• PCBM-h [91] and LaBo [90]: We use their codebases to implement these baselines. The concept698

alignment in both models is achieved using CLIP to compute the dot product between image and699

concept features. PCBM-h uses the same bottleneck as KnoBo, which is generated from PubMed.700

For LaBo, we employ GPT-4 to generate candidate concepts for submodular selection.701

B.3 KnoBo Details702

This section provides additional details about the implementation of KnoBo.703

Medical Corpus. We utilize a comprehensive medical corpus for retrieval-augmented generation,704

detailed as follows: (1) PubMed (5.5M docs, 156.9M snippets); (2) StatPearls (9.3K docs, 301.2K705

1https://huggingface.co/ryanyip7777/pmc_vit_l_14
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You are an experienced radiologist [dermatologist]. You are summarizing knowledge about ’QUERY’ from chest X-rays [skin
lesion images]. Here are the documents retrieved from the corpus:

RETRIEVED_DOCUMENTS

I want you to filter and summarize the information in these documents and generate knowledge in the form of *bi-
nary questions*, e.g., "Is there lung opacity?" ["Is the lesion asymmetric?"].
Please follow instructions below strictly:
1. Those knowledge will be used to guide the diagnosis on chest X-rays [skin lesion images], so they must be *visually
identifiable* from chest X-ray [skin lesion images] only.
2. The binary questions should be concise and not too specific which can be reused for different cases.
3. The binary questions must not contain the class(disease) name, e.g., you *must not* generate "Is there cardiomegaly?" ["Is
the lesion malignant?"] as the knowledge for "Cardiomegaly" ["Malignant Lesion"].
4. If there is not much information in the some documents, you can ignore those documents. If none of the documents contain
useful information, you can skip this task by typing ’skip’.
5. Answer with the following format: question | document ID | reference sentence, e.g., Is there lung opacity? | 1234 | lung
opacity is a common finding for ... [Is the lesion asymmetric? | 1234 | asymmetric lesion is a common finding for ...]

Please answer without additional information and do not add numbers or bullet points in the answer.

Figure 5: Prompt template for retrieval-augmented concept bottleneck generation. The text in the
square brackets is words that need to be changed when using this prompt for skin lesion images.

LLM Chest X-ray Datasets Skin Lesion Datasets

ID OOD ∆ ↓ Avg Unconfound Overall ID OOD ∆ ↓ Avg Unconfound Overall

Flan-T5 89.7 58.8 30.9 74.3 73.1 73.7 86.0 70.5 14.1 78.3 78.1 78.2
GPT-4 89.9 56.8 33.1 73.3 72.9 73.1 86.0 71.6 14.4 78.8 78.5 78.6

Table 8: Comparison of using different LLM annotating concepts on clinical reports.

snippets); (3) Textbooks (18 docs, 125.8K snippets); (4) Wikipedia (6.5M docs, 29.9M snippets).706

The StatPearls, Textbooks, and Wikipedia sources are obtained from MEDRAG [88]. Unlike the707

abstract-only approach of PubMed in MEDRAG, we utilize full articles from PubMed, including all708

paragraphs. We employ the retrieval codebase of MEDRAG and select BM25 as the ranking function.709

Retrieval-augmented Concept Bottleneck Generation. Figure 5 illustrates the prompt template710

we use to generate concepts from documents. We retrieve the top 10 documents for each query as711

context for the large language model (GPT-4) to generate concepts. After generating concepts, we712

validate each concept based on three criteria before inclusion in the bottleneck: (1) the concept must713

be distinct from existing concepts; (2) it must be visually identifiable from the image; and (3) there714

must be sufficient positive and negative instances in the pretraining corpus to support training its715

grounding function. A concept is added to the bottleneck only if it meets all three criteria, as judged716

by another language model (GPT-4). We initially target 200 concepts per bottleneck but ultimately717

select the top 150 with the highest grounding accuracy for inclusion. This selection is due to some718

concepts lacking sufficient reports to effectively train their grounding functions, making 150 the719

minimum size for all the bottlenecks we construct. Table 12 shows examples of generated concepts.720

Concept Grounding. We use a language model to annotate 2,000 clinical reports for each concept721

from the pretraining corpus. To efficiently label reports and achieve a balance of positive and negative722

examples, we retrieve the top 1,000 reports showing high textual similarity (measured by Sentence723

Transformer [65]) to the concept as its potential positive examples and randomly sample another724

1,000 for potential negatives. We use Flan-T5-XXL [10] as the underlying large language model.725

Specifically, the annotation task is treated as a next token prediction, similar to the approach proposed726

by McInerney et al. [54], where we compare the probabilities of the next token being Yes or No to727

determine if the report contains the concept. Figure 8 shows no big difference in final classification728

performance when using Flan-T5 versus GPT-4 for annotating concepts on reports.729

C Additional Analysis730

This section presents additional analysis and ablation studies on our method.731

C.1 Details about Deep Image Priors732

We provide further details about the deep image prior experiments in Sec 3.733
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Feature Natural Image Datasets

CIFAR-10 STL-10 ImageNet-10 Food-101 Flower-102 Average

Random 10.0 10.0 10.0 1.0 1.0 6.4
Pixel Value 21.2 24.7 22.4 3.0 8.5 16.0
ConvNext-L∗ 25.6 29.1 32.6 3.7 11.3 20.5
ViT-L/14∗ 33.3 40.6 47.2 8.9 23.6 30.7

Feature X-ray Datasets

Pneumonia COVID-QU NIH-CXR Open-i VinDr-CXR Average

Random 50.0 25.0 16.7 33.0 14.3 27.8
Pixel Value 77.6 66.9 43.1 58.3 20.0 53.2
ConvNext-L∗ 62.5 59.2 38.9 57.5 20.0 47.6
ViT-L/14∗ 67.6 68.0 40.4 57.2 20.0 50.6

Feature Skin Lesion Datasets

HAM10000 BCN20000 PAD-UFS-20 Melanoma UWaterloo Average

Random 14.3 25.0 50.0 50.0 50.0 37.9
Pixel Value 65.9 39.4 58.0 74.5 70.0 61.6
ConvNext-L∗ 66.9 37.1 53.5 68.3 50.0 55.8
ViT-L/14∗ 67.3 45.9 54.0 84.8 50.0 61.5

Table 9: Linear Probe results of different features on five natural image datasets, five X-ray datasets,
and five skin lesion datasets. ∗ denotes the network is randomly initialized without any training.

Datasets. We evaluate the deep image prior on three categories of images. The X-ray and skin lesion734

images are the same as those described in the unconfounded datasets section (Sec A). For natural735

images, we select five datasets: (1) CIFAR-10 [43], (2) STL-10 [11], (3) ImageNet-10 [70]2, (4)736

Food-101 [7], and (5) Flower-102 [59].737

Setup. We employ the vision backbones ViT-L/14 [17] and ConvNext-L [51], both implemented by738

OpenCLIP [34], and initialize them using Kaiming initialization [28] following PyTorch’s default739

settings3. Both backbones extract feature vectors of size 768. For the pixel value baseline, we convert740

the image to grayscale, resize it to 28× 28, and then flatten it into a vector of 784 dimensions. We741

use the first 768 values of this pixel vector to match the size of the deep features. All features are742

passed through a linear layer to predict the labels with a learning rate of 1e−3, a batch size of 64 for743

200 epochs. Additionally, we include a random baseline for comparison.744

Results. Table 9 displays the full results of all methods across the three image categories. ViT-L/14745

excels on natural datasets with significant gains over pixel baselines. ConvNext-L performs worse746

than ViT-L/14 but is still notably more effective than pixel-based methods. For X-ray images, the747

pixel baseline clearly surpasses the two networks on almost all datasets, indicating that deep models748

lack priors or even have harmful priors for X-ray imaging. For skin lesion images, which are closer to749

natural images, the pixel value baseline performs comparably to ViT-L/14 and better than ConvNext-L.750

Overall, the results suggest that deep networks lack sufficient priors for medical domains, potentially751

affecting their generalizability.752

C.2 Full Results on Unconfounded Datasets753

Table 10 shows the comprehensive results of all baselines across the 10 unconfounded medical754

datasets. KnoBo performs competitively in the X-ray category, securing top-1 positions for two755

datasets and achieving an average ranking of third among all methods. For skin lesion datasets,756

KnoBo’s performance is limited by the smaller scale and lower quality of the pretraining corpus,757

which is annotated by GPT-4V rather than by human experts. This affects the effectiveness of the758

grounding functions for lesion concepts. With access to larger-scale and higher-quality pretraining759

data, KnoBo could potentially close the performance gap with black-box baselines.760

2We use the 10 classes selected by Imagenette: https://github.com/fastai/imagenette.
3https://pytorch.org/docs/stable/nn.init.html
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Figure 6: Ablation of bottleneck sizes on Skin Lesion datasets. The x-axis is the number of randomly
selected concepts (KnoBo) or visual features (Linear Probe). We report the ID, OOD, and domain-
average performance on confounded datasets and test the accuracy of the unconfounded datasets.

Method Chest X-ray Standard Datasets

Pneumonia COVID-QU NIH-CXR Open-i VinDr-CXR Average

ViT-L/14 84.6 96.5 66.0 67.0 37.1 70.2
DenseNet 85.1 92.4 56.9 63.5 32.0 66.0
Linear Probe 88.6 94.9 68.4 73.3 44.0 73.8
LSL 87.0 86.9 58.4 64.8 37.7 67.0

PCBM-h 87.7 94.9 68.6 73.2 49.1 74.7
LaBo 88.3 91.8 66.8 68.9 44.6 72.1

KnoBo (ours) 90.1 88.0 66.5 73.5 47.4 73.1

Method Skin Lesion Standard Datasets

HAM10000 BCN20000 PAD-UFS-20 Melanoma UWaterloo Average

ViT-L/14 87.1 76.6 88.5 94.1 75.0 84.3
DenseNet 79.0 69.6 69.5 91.9 45.0 71.0
Linear Probe 82.9 71.0 86.5 93.5 80.0 82.8
LSL 81.5 67.5 84.5 92.5 60.0 77.2

PCBM-h 82.9 70.9 86.0 93.6 75.0 81.7
LaBo 80.6 68.5 82.5 93.6 75.0 80.0

KnoBo (ours) 78.2 65.6 80.0 91.5 75.0 78.1

Table 10: Test accuracy on 10 unconfounded datasets of two modalities.

C.3 Ablate Bottleneck Size for Skin Lesion761

Figure 6 compares the performance of KnoBo and a Linear Probe across different feature sizes on762

skin lesion datasets. Mirroring the trends observed in X-rays shown in Figure 4, our interpretable763

bottleneck representations consistently outperform black-box visual features.764

C.4 Human Evaluation on Bottlenecks765

Table 11: Relevance and Groundability of con-
cepts in bottlenecks generated from different re-
sources, as evaluated by student doctors.

Knowledge
Source

Relevance Groundability

X-ray Skin X-ray Skin

PROMPT 3.83 3.93 3.03 3.00

TEXTBOOKS 3.70 3.80 2.90 3.27
WIKIPEDIA 3.80 3.67 2.83 3.33

STATPEARLS 3.87 3.80 2.70 2.97
PUBMED 3.70 3.83 2.77 3.20

Two medical students evaluated the quality of bot-766

tlenecks using two metrics: (1) Relevance mea-767

sures the concept’s relevance to diagnosing dis-768

eases on a scale from 1 (not at all relevant) to 4769

(mostly relevant), and (2) Groundability assesses770

the verifiability of the concept from the image on771

a scale from 1 to 4. We evaluated 30 randomly772

sampled concepts from each bottleneck. Table 11773

presents these metrics for bottlenecks constructed774

from five different knowledge sources. While all775

bottlenecks show good relevance, groundability776

scores are lower, reflecting the challenge of deriv-777

ing visual concepts from text-only data.778
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Figure 7: Compare CLIP and our concept grounding function in retrieving images based on a text
query. Images marked with green checkmarks are correct retrievals as assessed by medical students.
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o Does the lesion present as a flat 
pigmented area?

o Does the lesion adhere to the ABCD 
dermoscopy rule?

o Does the lesion show central 
ulceration-crust?

Figure 8: Top-3 concepts for a class ranked by their weights in the linear layer of KnoBo.

D Qualitative Examples779

Figure 7 compares the CLIP dot product and our concept grounding functions for retrieving images780

based on text queries. Our method demonstrates superior recall of correct examples compared to781

CLIP alignments. Figure 8 showcases the top concepts selected based on the linear weights learned782

by KnoBo, which are most correlated with the corresponding disease class. These examples highlight783

that the top concepts utilized by KnoBo are essential features doctors use for diagnosing targeted784

diseases. Table 12 displays examples of concepts generated by our retrieval-augmented approach.785

Each concept can be traced back to its source document to verify its accuracy. Figure 9 presents786

examples of GPT-4V-annotated clinical reports for skin lesion images. Notably, the second example787

demonstrates GPT-4V’s capability to assess lesion size using the scale provided in the image.788
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Bottleneck Concept Query Reference Document

X-ray (PubMed) Is there lung col-
lapse?

Atelectasis Atelectasis and pneumonia were diagnosed
on radiological and clinical criteria. Atelec-
tasis was diagnosed when a finding of lung
collapse was made on chest X-ray, chest
CT and/or lung ultrasound. [Source]

X-ray (StatPearls) Is there a widened
mediastinum on
chest X-ray?

Aortic Enlarge-
ment

On chest x-ray (CXR), findings that may in-
dicate aortic pathology include a widened
mediastinum, loss of the aortic knob con-
tour, inferiorly displaced left bronchus, and
left pleural effusion. [Source]

Skin (Textbook) Does the lesion
have a waxy appear-
ance?

Seborrheic Ker-
atosis

Lesions have no malignant potential but may
be a cosmetic problem. Present as exo-
phytic, waxy brown papules and plaques
with prominent follicle openings. [In the
book: First Aid Step-2]

Skin (Wikipedia) Are there small
blood vessels run-
ning over the skin
lesion?

Basal Cell Car-
cinoma

BCC, also known as basal-cell cancer, is
the most common type of skin cancer. It
often appears as a painless raised area of
skin, which may be shiny with small blood
vessels running over it. [Source]

Table 12: We show concepts from various bottlenecks by image modality (corpus), with the queries
for retrieval and the corresponding reference documents to generate the concept. Every concept is
attributable, allowing medical professionals to verify its origin in the supporting documentation.

Location: Lower extremity
Lesion Description: Macroscopic Characteristics: The lesion presents as a solitary macule with a relatively 
homogeneous area centrally and a slightly irregular periphery.
Color: Tan to light brown background with several shades of light to dark brown pigmentation centrally.
Networks: A faint reticular pattern is seen in portions of the lesion, with the network fading towards the edges.
Structures and Patterns: Focal areas exhibit a more globular pattern, while the majority of the lesion lacks 
specific structural components.
Symmetry: The lesion exhibits asymmetry in both color and structure.
Borders: Borders are ill-defined, with the pigment diffusing into the surrounding skin.

The lesion presents as a well-circumscribed, ovoid macule measuring approximately 2.7mm in its largest 
diameter, located on the posterior torso. Dermoscopically, it is characterized by a homogenous pattern with a 
central brown pigmentation that shows a subtle variegation in color intensity, ranging from light to darker 
brown. The peripheral area of the lesion transitions to a lighter, more tan hue, with discrete fading into the 
surrounding normal skin without evidence of a sharp border. 
Vascular structures are not prominent within the lesion itself; however, the background skin exhibits a reticular 
pattern of superficial blood vessels which is consistent with the anatomical site and possibly the patient's age. 
There is no evidence of atypical pigment networks, blue-whitish veils, regression structures, or other sinister 
features typically associated with malignancy.

General Appearance: The lesion appears as a well-defined, round to oval macule with a notable central darker 
area and a lighter peripheral zone. It measures approximately 1 cm in diameter.
Color: The lesion exhibits a heterogeneous mix of dark brown and tan shades. The central area is densely 
pigmented, surrounded by a less intensely colored periphery.
Texture: The surface texture cannot be precisely determined from the image alone, but there appears to be no 
significant elevation or depression compared to the surrounding skin.
Distribution and Symmetry: The lesion is solitary with a symmetrical appearance.
Additional Observations: No visible scales, ulcers, or signs of bleeding are present. Hair follicles can be 
observed within and around the lesion, suggesting it is not disrupting normal skin structures significantly.

Figure 9: Examples of clinical reports on skin lesion images generated by GPT-4V [61].
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NeurIPS Paper Checklist789

1. Claims790

Question: Do the main claims made in the abstract and introduction accurately reflect the791

paper’s contributions and scope?792

Answer: [Yes]793

Justification: The main claims are limited to our specific experiments and focus on the794

behavior of our models.795

Guidelines:796

• The answer NA means that the abstract and introduction do not include the claims797

made in the paper.798

• The abstract and/or introduction should clearly state the claims made, including the799

contributions made in the paper and important assumptions and limitations. A No or800

NA answer to this question will not be perceived well by the reviewers.801

• The claims made should match theoretical and experimental results, and reflect how802

much the results can be expected to generalize to other settings.803

• It is fine to include aspirational goals as motivation as long as it is clear that these goals804

are not attained by the paper.805

2. Limitations806

Question: Does the paper discuss the limitations of the work performed by the authors?807

Answer: [Yes]808

Justification: Limitations are discussed in the corresponding section.809

Guidelines:810

• The answer NA means that the paper has no limitation while the answer No means that811

the paper has limitations, but those are not discussed in the paper.812

• The authors are encouraged to create a separate "Limitations" section in their paper.813

• The paper should point out any strong assumptions and how robust the results are to814

violations of these assumptions (e.g., independence assumptions, noiseless settings,815

model well-specification, asymptotic approximations only holding locally). The authors816

should reflect on how these assumptions might be violated in practice and what the817

implications would be.818

• The authors should reflect on the scope of the claims made, e.g., if the approach was819

only tested on a few datasets or with a few runs. In general, empirical results often820

depend on implicit assumptions, which should be articulated.821

• The authors should reflect on the factors that influence the performance of the approach.822

For example, a facial recognition algorithm may perform poorly when image resolution823

is low or images are taken in low lighting. Or a speech-to-text system might not be824

used reliably to provide closed captions for online lectures because it fails to handle825

technical jargon.826

• The authors should discuss the computational efficiency of the proposed algorithms827

and how they scale with dataset size.828

• If applicable, the authors should discuss possible limitations of their approach to829

address problems of privacy and fairness.830

• While the authors might fear that complete honesty about limitations might be used by831

reviewers as grounds for rejection, a worse outcome might be that reviewers discover832

limitations that aren’t acknowledged in the paper. The authors should use their best833

judgment and recognize that individual actions in favor of transparency play an impor-834

tant role in developing norms that preserve the integrity of the community. Reviewers835

will be specifically instructed to not penalize honesty concerning limitations.836

3. Theory Assumptions and Proofs837

Question: For each theoretical result, does the paper provide the full set of assumptions and838

a complete (and correct) proof?839

Answer: [NA]840
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Justification: The paper contains no theoretical results or proofs.841

Guidelines:842

• The answer NA means that the paper does not include theoretical results.843

• All the theorems, formulas, and proofs in the paper should be numbered and cross-844

referenced.845

• All assumptions should be clearly stated or referenced in the statement of any theorems.846

• The proofs can either appear in the main paper or the supplemental material, but if847

they appear in the supplemental material, the authors are encouraged to provide a short848

proof sketch to provide intuition.849

• Inversely, any informal proof provided in the core of the paper should be complemented850

by formal proofs provided in appendix or supplemental material.851

• Theorems and Lemmas that the proof relies upon should be properly referenced.852

4. Experimental Result Reproducibility853

Question: Does the paper fully disclose all the information needed to reproduce the main ex-854

perimental results of the paper to the extent that it affects the main claims and/or conclusions855

of the paper (regardless of whether the code and data are provided or not)?856

Answer: [Yes]857

Justification: Major details are supplied in the main body, while more minor ones are in the858

appendix.859

Guidelines:860

• The answer NA means that the paper does not include experiments.861

• If the paper includes experiments, a No answer to this question will not be perceived862

well by the reviewers: Making the paper reproducible is important, regardless of863

whether the code and data are provided or not.864

• If the contribution is a dataset and/or model, the authors should describe the steps taken865

to make their results reproducible or verifiable.866

• Depending on the contribution, reproducibility can be accomplished in various ways.867

For example, if the contribution is a novel architecture, describing the architecture fully868

might suffice, or if the contribution is a specific model and empirical evaluation, it may869

be necessary to either make it possible for others to replicate the model with the same870

dataset, or provide access to the model. In general. releasing code and data is often871

one good way to accomplish this, but reproducibility can also be provided via detailed872

instructions for how to replicate the results, access to a hosted model (e.g., in the case873

of a large language model), releasing of a model checkpoint, or other means that are874

appropriate to the research performed.875

• While NeurIPS does not require releasing code, the conference does require all submis-876

sions to provide some reasonable avenue for reproducibility, which may depend on the877

nature of the contribution. For example878

(a) If the contribution is primarily a new algorithm, the paper should make it clear how879

to reproduce that algorithm.880

(b) If the contribution is primarily a new model architecture, the paper should describe881

the architecture clearly and fully.882

(c) If the contribution is a new model (e.g., a large language model), then there should883

either be a way to access this model for reproducing the results or a way to reproduce884

the model (e.g., with an open-source dataset or instructions for how to construct885

the dataset).886

(d) We recognize that reproducibility may be tricky in some cases, in which case887

authors are welcome to describe the particular way they provide for reproducibility.888

In the case of closed-source models, it may be that access to the model is limited in889

some way (e.g., to registered users), but it should be possible for other researchers890

to have some path to reproducing or verifying the results.891

5. Open access to data and code892

Question: Does the paper provide open access to the data and code, with sufficient instruc-893

tions to faithfully reproduce the main experimental results, as described in supplemental894

material?895
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Answer: [Yes]896

Justification: The code is provided in the submission as a zip file, and we will release the897

code and data on Git Hub after review.898

Guidelines:899

• The answer NA means that paper does not include experiments requiring code.900

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/901

public/guides/CodeSubmissionPolicy) for more details.902

• While we encourage the release of code and data, we understand that this might not be903

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not904

including code, unless this is central to the contribution (e.g., for a new open-source905

benchmark).906

• The instructions should contain the exact command and environment needed to run to907

reproduce the results. See the NeurIPS code and data submission guidelines (https:908

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.909

• The authors should provide instructions on data access and preparation, including how910

to access the raw data, preprocessed data, intermediate data, and generated data, etc.911

• The authors should provide scripts to reproduce all experimental results for the new912

proposed method and baselines. If only a subset of experiments are reproducible, they913

should state which ones are omitted from the script and why.914

• At submission time, to preserve anonymity, the authors should release anonymized915

versions (if applicable).916

• Providing as much information as possible in supplemental material (appended to the917

paper) is recommended, but including URLs to data and code is permitted.918

6. Experimental Setting/Details919

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-920

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the921

results?922

Answer: [Yes]923

Justification: All details for experiments are supplied in the main body and appendix.924

Guidelines:925

• The answer NA means that the paper does not include experiments.926

• The experimental setting should be presented in the core of the paper to a level of detail927

that is necessary to appreciate the results and make sense of them.928

• The full details can be provided either with the code, in appendix, or as supplemental929

material.930

7. Experiment Statistical Significance931

Question: Does the paper report error bars suitably and correctly defined or other appropriate932

information about the statistical significance of the experiments?933

Answer: [Yes]934

Justification: Figure 4 and 6 have error bars. Broadly, the paper covers many datasets935

and reports each individually. This provides enough information about the variance of936

the approach. We do not rerun methods on each dataset as this would be computationally937

wasteful.938

Guidelines:939

• The answer NA means that the paper does not include experiments.940

• The authors should answer "Yes" if the results are accompanied by error bars, confi-941

dence intervals, or statistical significance tests, at least for the experiments that support942

the main claims of the paper.943

• The factors of variability that the error bars are capturing should be clearly stated (for944

example, train/test split, initialization, random drawing of some parameter, or overall945

run with given experimental conditions).946
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• The method for calculating the error bars should be explained (closed form formula,947

call to a library function, bootstrap, etc.)948

• The assumptions made should be given (e.g., Normally distributed errors).949

• It should be clear whether the error bar is the standard deviation or the standard error950

of the mean.951

• It is OK to report 1-sigma error bars, but one should state it. The authors should952

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis953

of Normality of errors is not verified.954

• For asymmetric distributions, the authors should be careful not to show in tables or955

figures symmetric error bars that would yield results that are out of range (e.g. negative956

error rates).957

• If error bars are reported in tables or plots, The authors should explain in the text how958

they were calculated and reference the corresponding figures or tables in the text.959

8. Experiments Compute Resources960

Question: For each experiment, does the paper provide sufficient information on the com-961

puter resources (type of compute workers, memory, time of execution) needed to reproduce962

the experiments?963

Answer: [Yes]964

Justification: This information is provided in the appendix B.965

Guidelines:966

• The answer NA means that the paper does not include experiments.967

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,968

or cloud provider, including relevant memory and storage.969

• The paper should provide the amount of compute required for each of the individual970

experimental runs as well as estimate the total compute.971

• The paper should disclose whether the full research project required more compute972

than the experiments reported in the paper (e.g., preliminary or failed experiments that973

didn’t make it into the paper).974

9. Code Of Ethics975

Question: Does the research conducted in the paper conform, in every respect, with the976

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?977

Answer: [Yes]978

Justification: Having reviewed the policy, we follow all bullets across the three areas.979

Guidelines:980

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.981

• If the authors answer No, they should explain the special circumstances that require a982

deviation from the Code of Ethics.983

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-984

eration due to laws or regulations in their jurisdiction).985

10. Broader Impacts986

Question: Does the paper discuss both potential positive societal impacts and negative987

societal impacts of the work performed?988

Answer: [Yes]989

Justification: This information is provided in the last section of the paper in the main body.990

Guidelines:991

• The answer NA means that there is no societal impact of the work performed.992

• If the authors answer NA or No, they should explain why their work has no societal993

impact or why the paper does not address societal impact.994

• Examples of negative societal impacts include potential malicious or unintended uses995
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(e.g., deployment of technologies that could make decisions that unfairly impact specific997
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11. Safeguards1014
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Answer: [Yes]1037
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models, and methods in a way consistent with their terms.1039
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• The authors should cite the original paper that produced the code package or dataset.1042

• The authors should state which version of the asset is used and, if possible, include a1043

URL.1044
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14. Crowdsourcing and Research with Human Subjects1072
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Answer: [NA]1076

Justification: There is no crowdsourcing or human subject research in this work.1077
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