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DECIPHERING PERSONALIZATION: TOWARDS FINE-
GRAINED EXPLAINABILITY IN NATURAL LANGUAGE
FOR PERSONALIZED IMAGE GENERATION MODELS

ABSTRACT

Image generation models are usually personalized in practical uses in order to bet-
ter meet the individual users’ heterogeneous needs, but most personalized models
lack explainability about how they are being personalized. Such explainability
can be provided via visual features in generated images, but is difficult for hu-
man users to understand. Explainability in natural language is a better choice,
but the existing approaches to explainability in natural language are limited to
be coarse-grained. They are unable to precisely identify the multiple aspects of
personalization, as well as the varying levels of personalization in each aspect. To
address such limitation, in this paper we present a new technique, namely FineXL,
towards Fine-grained eXplainability in natural Language for personalized image
generation models. FineXL can provide natural language descriptions about each
distinct aspect of personalization, along with quantitative scores indicating the
level of each aspect of personalization. Experiment results show that FineXL can
improve the accuracy of explainability by 56%, when different personalization
scenarios are applied to multiple types of image generation models.

1 INTRODUCTION

Open-sourced image generation models [6], including diffusion models [19; 31; 46; 49], generative
adversarial networks (GANs) [16; 41] and auto-regressive models [47; 60], have been widely used
in various applications, ranging from image stylization [30; 56], artistic content creation [27; 33],
to virtual character design [28; 55]. In these applications, to meet the different users’ personalized
needs, pre-trained models are usually fine-tuned with stylized data to derive personalized models
[53; 26; 20; 29]. A large quantity of such personalized models have been made available online1

for others to use, but most of these models offer limited explainability regarding how they are being
personalized. More specifically, being different from the current practices in explainable AI that
explore the correlation between model’s input, output and intermediate features [14; 7], such ex-
plainability interprets how an image generation model’s output changes after personalization [22],
in aspects such as specific subjects or styles. For example, a personalized model could generate
more stylized images in different ways (e.g., more vivid, artistic, historic, etc). Details about the
fine-tuning process, such as the statistical properties of the training data, could provide useful in-
formation about explainability, but are also inadequately documented or even missing in the online
repositories of most published models online.
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Figure 1: Importance of explainability for personalized
image generation models to be used by human users

Such explainability is important to real-
world usage of those personalized im-
age generation models published on-
line. As shown in Figure 1, many users
nowadays do not opt to personalize
models by themselves with their own
datasets, but instead select the most
suitable model from those personalized
models available online. In these cases,
users rely on clear and interpretable ex-
planations for model selection. With-
out such explanations, users will have
to manually prompt each model and
empirically compare different models’ outputs, which is time-consuming or even infeasible con-
sidering the large number of available models. On the other hand, even for well-documented and
close-sourced image generation models, such explainability could also help the model publisher’s

1On HuggingFace, there are >80,000 personalized text-to-image models made and uploaded by individuals.
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fine-tuning process, as it offers insights into each fine-tuned model’s outputs and helps adjust the
training data if the fine-tuned model’s behavior diverges from expectation.

Intuitively, mechanistic AI explainability [5; 15] can be applied to image generation models, and in-
terpret the functionality of different neurons by learning interpretable features using another model,
such as a sparse autoencoder [8]. However, these approaches are expensive and are limited to specific
types of model structures [59] or labeled data [4; 32]. Alternatively, techniques of visual concept
discovery can be used to identify the difference in model’s outputs before and after personalization
through visual features [21; 63], but it is still difficult for human users to explicitly summarize such
differences. As shown in Appendix F, when the model is personalized to generate images with more
motion blur, images with more motion blur can be computationally identified as significant [63], but
the commonality among these images may not be identified as “more motion blur” in human eyes.

Instead, a better way is to explain the difference of personalized model’s output distribution in
natural language, by leveraging vision-language models (VLMs) for image understanding and in-
terpretation [3]. One can obtain natural language explanations of how models are personalized via
image captioning [10; 66], or prompting a VLM to summarize the differences between images gen-
erated by the pre-trained model and personalized model [3]. Such summarization can be scaled to
an unlimited number of comparisons [23; 71], ensuring that explanation is not biased.
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Figure 2: Personalized image genera-
tion in multiple aspects with varying
levels

The key limitation of these techniques is that the natural
language explanations they provide are coarse-grained.
In most cases, an image generation model is personalized
in multiple aspects, depending on the training data being
used. The VLM’s summarization, when being used as the
explanation of personalized models, is mostly vague and
cannot precisely distinguish one aspect from others. For
example, when personalization covers both aspects of vi-
vidity and abstractionism as shown in Figure 2, the VLM
summarization could be “a modern artistic style”, from
which the two aspects cannot be clearly identified. Simi-
larly, personalization in one aspect could also be done at
varying levels [17], which cannot be precisely quantified
by the existing techniques.

To address these limitations, in this paper, we present a
new technique, namely FineXL, towards Fine-grained eXplainability in natural Language for per-
sonalized image generation models. More specifically, as shown in Figure 3, we aim to explicitly
identify each aspect of how the model is being personalized and provide natural language explana-
tion, along with quantitative scores indicating the level of each aspect of personalization.
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Figure 3: FineXL: fine-grained
explanations of a personalized
image generation model

To achieve this objective, in the design of FineXL, we first use
an image encoder (e.g., the CLIP encoder [44]) to map the diver-
gence between output distributions of the personalized model and
the pre-trained model into a high-level representation in a semanti-
cally rich representation space, to make the divergence is quantifi-
able. Then, to further interpret this representation, we leverage a
VLM with sufficient representation power (e.g., GPT-4o) to gener-
ate multiple low-level natural language concepts, and convert them
into vectors in the same representation space. To ensure that these
low-level concepts correctly correspond to different aspects of per-
sonalization, we only select those concepts whose corresponding
vectors are orthogonal in the embedding space. In this way, based
on the linear representation hypothesis [61; 35], the high-level rep-
resentation of the distribution divergence is compositional [57; 62],
i.e., vectors of these low-level concepts linearly combine to ap-
proximate the overall divergence. The corresponding coefficients
of these concepts in the composition, then, serve as scores quantifying the level of personalization
in different aspects.

We evaluated FineXL over different types of image generation models, including diffusion models,
GANs and auto-regressive models, which are personalized using 1) a synthetic dataset with 400
images in 15 unique styles, 2) the image Style Transfer dataset [37] with 2,500 images in 50 unique
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styles and 3) the WikiArt dataset [2] with 81,444 images of paintings from 129 artists. From the
evaluation results, our main findings are as follows:

• When image generation models are personalized in one aspect with varying levels, FineXL
can improve the accuracy of explanation by 56% compared to the baselines.

• In a more challenging scenario where models are personalized in multiple aspects with
varying levels, FineXL can reduce explanation error by at least 50% compared to baselines.

• FineXL is completely training-free and generically applicable to all major types of image
generation models.

2 RELATED WORK

Explainability of data distributional differences. Earlier work suggested that the difference be-
tween two text datasets can be explained in natural language [69], by fine-tuning a LLM to generate
explanations using text data from the two datasets and evaluate their correctness with additional data
[68]. This approach was also extended to images [23; 71] and audio [18], by adopting multimodal
LLMs. However, these explanations are limited to be coarse-grained and qualitative as shown in
Section 1, and such limitation motivates us to further enhance the explainability to be fine-grained.

Interpreting representations in the embedding space. Well-trained multimodal foundation mod-
els can transform input data into representations within a rich semantic space [13; 65; 54]. For
example, an LLM can project tokens into its embedding space [35]. However, such representations
are not inherently interpretable. Concept-based interpretability methods propose that a high-level
representation (e.g., a green house) consists of multiple low-level concepts (e.g., green and house)
[36; 70; 57], and the linear representation hypothesis [43; 45] further suggests that a high-level rep-
resentation in the model’s embedding space can be expressed as a linear combination of vectors
corresponding to these low-level concepts. Such correspondence, then, highlights the possibility of
achieving explainability from such embedding representation if the low-level concepts are known in
advance, and motivates our design of FineXL that linearly decomposes the such representation into
a set of low-level concepts, which correspond to orthogonal vectors in the same embedding space.

3 PROBLEM FORMULATION

Let G denote an image generation model that generates image x ∈ X conditioned on a text prompt
t ∈ T , the model’s output distribution can be described as:

x ∼ p(x|t) = G(t, z), (1)

where z indicates random noise. Then, given a pre-trained model (Gbase) and a personalized model
(Gpersonal), our objective is to quantify the divergence between these two models’ output distri-
butions, i.e., Div[ppersonal(x|t)||pbase(x|t)], and explain such divergence using a set of low-level
concepts C = {C1, C2, . . . , CN} in natural language and their associated scores. In practice, a suf-
ficient number of concepts will be involved to ensure that the divergence of output distributions can
be precisely explained. More details of deciding the value of N can be found in Section 4.5.

To ensure that each of these concepts represents an aspect of model personalization, we will need
to map these concepts into the same representation space as Div[ppersonal(x|t)||pbase(x|t)] using
a mapping function f : C → V , which should also ensure the linear additivity among the mapped
concepts, i.e., for any Ci, Cj ∈ C, there exist wi and wj , such that

f(Ci ∪ Cj) = wif(Ci) + wjf(Cj). (2)

We have fine-grained explanation of Div[ppersonal(x|t)||pbase(x|t)] via decomposition in Eq. (2):

Div[ppersonal(x|t)||pbase(x|t)] =
∑N

i=1
wif(Ci), (3)

where wi is the score that indicates how much the model is personalized in the aspect of Ci.

4 METHOD

In this section, we present our FineXL design, as illstrated in Figure 4. First, we use an image
encoder to quantify the divergence between the output distributions of the pre-trained model and
personalized model into a high-level representation (Section 4.1). Afterwards, a VLM and a text
encoder are utilized to automatically discover a set of orthogonal low-level concepts in natural lan-
guage related to personalization (Section 4.2–4.4), which are then used to interpret the high-level
representation by decomposing it into a linear combination of these low-level concepts (Section 4.5).
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Figure 4: Our design of FineXL: the divergence between pre-trained and personalized models’
output distributions is first converted into a high-level representation, which is then linearly decom-
posed into a set of low-level concepts in natural language about personalization that are suggested
by a VLM. More details about this design and each step can be found in Algorithm 1.

4.1 QUANTIFYING THE DISTRIBUTIONAL DIVERGENCE

A simple way to evaluate the divergence between two data distributions is to compute their distances
in data space. For instance, images can be converted into color histograms and compared using the
Earth Mover’s Distance (EMD) [52]. However, this captures only low-level features like color [50;
51] and fails to represent styles or complex structural patterns.

Instead, in FineXL, our approach is to utilize an image encoder (Encimg) to extract such divergence
into a vector representation (Vdiv), such that

Vdiv =Et∈T {Encimg[Gpersonal(t, z)]−Encimg[Gbase(t, z)]}. (4)

In practice, FineXL can adopt any well-trained image encoder for such extraction. However, since
in later stages of FineXL we need to further convert the text descriptions of low-level concepts into
the image encoder’s representation space (see Section 4.3), it is better for the image encoder to share
an aligned representation space with a corresponding text encoder. For example, the image encoder
from text-image alignment models, such as CLIP [44] and ALIGN [34], is a good choice.

To practically calculate Vdiv , we estimate the expectation in Eq. (4) by sampling the corpus of input
prompt texts, so that for n text samples t1, t2, ...tn (the number of text samples needed can be found
in Appendix E.), we have

Vdiv =
∑n

i=1
{Encimg[Gpersonal(ti, z)]−Encimg[Gbase(ti, z)]}. (5)

4.2 DISCOVERY OF LOW-LEVEL CONCEPTS
Given the two image below, which image style is more 
characteristic of Image 1 than Image 2? Reply with a list 
of single-word adjectives or simple phrases.

Image 1: Image 2:

Figure 5: The prompt template for
the VLM to summarize divergence
of model’s output distributions

To automatically discover a set of low-level concepts (C) in
natural language related to the divergence of models’ output
distributions, FineXL utilizes a VLM to summarize the di-
vergence with different pairs of generated outputs from the
pre-trained model and personalized model. To ensure suffi-
cient explainability, the VLM will generate summaries mul-
tiple times using different pairs of images and take the union
of summarized concepts as C. Besides, since each concept
should correspond to only one aspect of the divergence, we constrain the VLM’s summary to a list
of single-word adjectives or simple phrases, by explicitly adding instruction into the prompt for
VLM, as shown in Figure 5. Sensitivity analysis on the template can be found in Appendix G.

4.3 CONVERTING LOW-LEVEL CONCEPTS TO REPRESENTATION SPACE

In order to interpret the distributional divergence (Vdiv) extracted in Section 4.1 using the set of
low-level concepts, these concepts in natural language will have to be converted into the same rep-
resentation space as Vdiv . To do this, we use a text encoder, which is aligned with the image
encoder used in Section 4.1, to serve as the mapping function f that maps the low-level concepts to
a corresponding set of vectors in this embedding space.
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Instead of directly using low-level concepts in natural language as the input to the text encoder, a
better approach is to represent each concept as the distributional divergence between two sets of
plain texts, being similar to divergence of two image data distributions described in Section 4.1,
such that

f(C) =
∑n

i=1
{Enctext[ti ∪ C]−Enctext[ti]}, (6)

where t1, ...tn are the set of sampled prompts in Section 4.1.

To ensure that these vectors f(C) can be used to linearly decompose Vdiv , we need to ensure that
the representation space of these vectors is aligned with the space of Vdiv and also follows the
linear representation hypothesis. In the following, we describe our methods of verifying these two
properties, and evaluation results about these two properties are in Section 6.7.

Alignment. To evaluate the alignment between the two representation spaces, the ground truth of
such conversion of low-level concepts needed to be computed with an ideal model (Gideal) whose
outputs are perfectly aligned with the inputs. If the two spaces are well-aligned, then f(C) should
be similar to that computed with Gideal, which is

Et∈T {Encimg[Gideal(t ∪ C, z)]−Encimg[Gideal(t, z)]}. (7)

In practice, we estimate Eq. (7) using a text-to-image model with sufficient representational ca-
pacity, such as Stable Diffusion 3.5, and then employ it to select the encoders that best align with
our method. The representational capacity of Stable Diffusion 3.5 and the corresponding selection
results are presented in Appendix A and Section 6.7, respectively.

Linearity. As stated in Eq. (2), if the representation space follows the linear representation hypoth-
esis, the concept vectors should be linearly additive. Therefore, we can verify the linearity using the
difference between f(Ci ∪ Cj) and wif(Ci) + wjf(Cj). More specifically, each concept (Ci, Cj)
is represented by a natural language description, allowing us to form a union of concepts (Ci ∪ Cj)
by simply combining their descriptions. For example, if Ci corresponds to “vibrant” and Cj to “ab-
stract”, then the union of Ci and Cj becomes “vibrant and abstract”. As for the coefficients wi and
wj , we optimize them to minimize the difference between f(Ci ∪ Cj) and wif(Ci) + wjf(Cj),
thereby verifying linearity through the smallest possible discrepancy.

4.4 ORTHOGONALITY OF CONCEPTS

Many concepts discovered in C may have similar meanings (e.g., “vivid” and “vibrant”). To ensure
effective and unambiguous explainability, we will exclude concepts that are redundant with each
other but only retain the ones with distinct meanings. In particular, existing works showed that in a
representation space that satisfies the linear representation hypothesis, concept vectors with distinct
meaning should be orthogonal to each other [43]. Therefore, we can constrain the concepts with

f(Ci) ⊥ f(Cj), ∀Ci, Cj ∈ C. (8)

However, enforcing perfect orthogonality among all the discovered concept vectors may be imprac-
tical. Instead, we assess a concept vector’s orthogonality by measuring its projections into other
vectors. If the total projection exceeds a certain threshold, we consider this concept as redundant.
The orthogonality of concept Ci can be computed as

orthogonality(Ci) =
∑

j ̸=i,Cj∈C

⟨f(Ci), f(Cj)⟩
∥f(Ci)∥∥f(Cj)∥

, (9)

where ⟨f(Ci), f(Cj)⟩ indicates the inner product between f(Ci) and f(Cj).

4.5 DECOMPOSING DISTRIBUTIONAL DIVERGENCE

As the final step, we decompose Vdiv as a linear combination of the retained concept vectors:

Vdiv =
∑N

i=1
wi · f(Ci). (10)

In practical cases, such decomposition could usually be imperfect due to the error in representation
estimation [24]. Instead, we constraint the residual to be smaller than a threshold (edecomp):

|Vdiv −
∑N

i=1
wif(Ci)| < edecomp, (11)

and more concepts will be involved until such decomposition residual is smaller than edecomp. Ab-
lation studies about this threshold can be found in Appendix B.

Based on steps described in Section 4.1-4.5, our design of FineXL is described by Algorithm 1.
5
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Algorithm 1 Fine-grained eXplainability in natural Language (FineXL)

Require: Base model Gbase, Personalized model Gpersonal, a set of probing text prompts T ,
threshold for identifying concept vector orthogonality eortho and threshold for decompotistion
error edecomp

Vdiv ← 0, C ← ∅ // Compute distribution divergence and discover low-level concepts
for ti ∈ T do

Ipersonal ← Gpersonal(ti, z) , Ibase ← Gbase(ti, z)
Vdiv ← Vdiv +Encimg[Ipersonal]−Encimg[Ibase]
Prompt VLM to propose a subset of low-level concepts Csub given (Ipersonal, Ibase)
C ← C ∪ Csub

end for
Vdiv ← Vdiv/|T | // Low-level concepts conversion and distribution divergence decomposition
Cortho ← ∅ // The set of orthogonal concepts
for Ci = C do

f(Ci) =
∑

tj∈T {Enctext[tj ∪ Ci]−Enctext[tj ]}

orthogonality(Ci) =
∑|Cortho|

j=1

⟨f(Ci),f(C
ortho
j )⟩

∥f(Ci)∥∥f(Cortho
j )∥

if orthogonality(Ci) < eortho then
Cortho ← Ci ∪ Cortho
e← min ∥Vdiv −

∑|Cortho|
i=1 wjf(C

ortho
j )∥

if e < edecomp then
break

end if
end if

end for
Return Cortho, wi, ...w|Cortho|

5 EXPERIMENT SETTINGS

Image generation models. Our experiments primarily focus on personalization of diffusion-based
image generation models, which are the most commonly used models for image generation nowa-
days. Specifically, our experiments fine-tune the U-Net structures in the Stable Diffusion v2.1 model
[48] using the Adam optimizer with a learning rate of 1e-4. Besides, to demonstate the generaliz-
ability of FineXL, our experiments also involved other types of image generation models, including
ControlGAN [38] and Anole-7B [11] (an auto-regressive image generation model): we fine-tune all
the parameters of ControlGAN and only fine-tune the image detokenizer of Anole-7B.

Datasets. We mainly use image datasets for art style personalization because it is the most common
personalization and results can be easily visualized. We first generate a synthetic dataset with diverse
image styles and the ground truth explanations to verify the correctness of FineXL’s explanations.
Then, we use two real-world datasets (image Style Transfer dataset [37] and WikiArt dataset [2]) to
assess FineXL’s generalizability. More details about these three datasets are in Appendix D.

Baselines. Our baselines, as listed below, include a naive method of explainability and 4 existing
approaches on explaining images in natural language. We did not include those using visual features
as explanations [21; 63; 23], as such explanations are difficult to be interpreted in natural language.

• Naive method asks GPT-4o [3] to summarize the difference into aspects with scores.
• Diff Caption [66] is a training-based scheme for captioning difference between images via

contrastive learning.
• Chg2Cap [10] uses a CNN to extract image features and fine-tunes an encoder-decoder

transformer to convert the relationship between image embeddings into text description.
• VisDiff [23] identifies differences in images using natural language through a two-stage

approach: candidate description generation and re-ranking.
• GSCLIP [71] provides a variety of coherent shift explanations in natural language and

quantitatively evaluate them at scale.

Evaluation methods and metrics. Since no benchmark exists for fine-grained explanations with
quantitative measures, we develop an evaluation metric by simulating personalized model selection
and measuring selection error. We evaluate two scenarios: (1) personalization along a single aspect
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Figure 6: FineXL’s fine-grained explanations when models are personalized in one aspect with
varying levels (low-level concepts with small scores are omitted)

with varying levels, assessed by mean absolute error (MAE) against ground-truth levels; and (2)
personalization across multiple aspects, assessed by model selection accuracy (ACC). For baselines
using qualitative text explanations, we use GPT-4o to generate quantitative scores in both scenarios.
Details of the setup and metric are provided in Appendix C.

VLMs and Text/Image Encoders. Correctness of explanation also depends on VLM and text/image
encoders being used. We evaluated the performance of different VLMs, including GPT-4o [3],
Llama-3.2-11B-Vision [1] and Qwen2-VL-7B-Instruct [64]. Multiple choices of the aligned en-
coders, including CLIP [44], ALIGN [34], OpenCLIP [12] and EVA-CLIP [58], are also evaluated.

6 EXPERIMENT RESULTS

We first use GPT-4o as the VLM and CLIP as the text/image encoders in FineXL, and compare the
explanations of FineXL with baselines (Section 6.1 and Section 6.2). Then, we evaluate how differ-
ent choices of VLMs and text/image encoders affect FineXL’s explanations (Section 6.6 and 6.7).
Finally in Section 6.5, we demonstrate FineXL’s generality on GAN and auto-regressive models.

6.1 EXPLANATIONS TO ONE ASPECT OF PERSONALIZATION

Base Personalized
Base Personalized

Explain difference

Chg2Cap:

Diff Caption:
some trees have been removed 
and a road appears at the top

No difference VisDiff:

GSCLIP:

artistic renderings of scenes

stylized or illustrated portraits

A single pair of images Multiple pairs of images

Explain difference

Figure 7: Natural language explanations
made by the baseline methods

In the first scenario with personalization in one aspect,
Figure 6 shows that, when different explanations are
generated for personalization, the quantitative scores
of personalization computed by FineXL are consistent
with personalization levels. Table 1 shows that FineXL
can correctly identify the varying levels of personaliza-
tion, and reduce the explanation error by 56% compared
to baselines in both synthetic and real-world datasets.

Dataset Synthetic Style transfer WikiArt

Naive method 2.2 2.1 2.5
Diff Caption 3.1 3.7 3.3

Chg2Cap 3.0 3.3 2.7
VisDiff 1.6 2.5 2.2
GSCLIP 1.8 2.6 2.5
FineXL 0.7 1.6 1.4

Table 1: Error (MAE) of identifying the vary-
ing levels of personalization in one aspect

# of personalization levels 3 5 8 10

Naive method 0.4 1.2 1.9 2.2
Diff Caption 0.5 1.9 2.6 3.1

Chg2Cap 0.5 1.6 2.4 3.0
VisDiff 0.2 0.7 1.3 1.6
GSCLIP 0.3 0.7 1.2 1.8
FineXL 0.2 0.4 0.5 0.7

Table 2: Errors in explanations with different
numbers of levels using the synthetic dataset

Among the baselines, DiffCaption and Chg2Cap perform the worst as they summarize differences
based on a single pair of images, which may not capture the overall differences between two dis-
tributions. VisDiff and GSCLIP perform better, as they employ a similar approach to summarizing
differences from multiple image pairs and selecting the best summarization from multiple trials.
However, as shown in Figure 7, due to the ambiguity in natural language, these methods fail in
precisely quantifying personalization levels.

We also evaluated the errors in explaining personalization with different numbers of levels in per-
sonalization. In Table 2, with more levels in personalization, all methods exhibit higher errors in
explanation, but FineXL retain lower errors compared to baselines. Especially when there are many
varying levels in personalization that are to be distinguished, FineXL’s capability of fine-grained
explanation further results in bigger advantages compared to baselines.

6.2 EXPLANATIONS TO MULTI-ASPECT PERSONALIZATION
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Figure 8: FineXL’s fine-grained explanations when models are personal-
ized in multiple aspects

We also conduct exper-
iments in a more chal-
lenging scenario where
models are personalized
in multiple aspects with
varying levels on each
aspect. As shown in Fig-
ure 8, when models are
personalized for multi-
ple aspects, the quantita-
tive scores for different
low-level concepts change accordingly compared to the cases where the model is only personalized
for one aspect, showing that FineXL can correctly capture the multiple aspects of personalization.

Dataset Synthetic Style transfer WikiArt

Naive method 72.2% 61.1% 66.7%
Diff Caption 55.6% 38.9% 44.4%

Chg2Cap 50.0% 44.4% 44.4%
VisDiff 77.8% 88.9% 83.3%
GSCLIP 77.8% 83.3% 72.2%
FineXL 94.4% 94.4% 88.8%

Table 3: The performance of FineXL and
baseline methods when models are personal-
ized in different aspects with varying levels

Further, we evaluated the performance of different
baseline methods in such scenario, using the eval-
uation metric in Figure 11. As shown in Table 3,
FineXL surpassed the baselines by reducing the es-
timation error by at least 50%, when there are only 2
aspects of personalization and each aspect contains
3 varying levels of personalization. Based on the
conclusion from the previous scenario, FineXL will
outperform the baselines even more in more fine-
grained scenarios, i.e., with more personalization as-
pects and more varying levels in each aspect.

6.3 EXPLANATIONS TO OTHER TYPES OF PERSONALIZATION

Editing scale 
(ground truth)

Coefficient 
in FineXL:

1 3 5 7 9

0.04 0.34 0.83 0.87 0.90

Figure 9: Comparing coefficients in FineXL with
editing scales as ground truth

FineXL’s framework is adaptable to any form
of personalization that can be described by
a set of low-level concepts. For instance,
FineXL can be extended to explain subject-
driven personalization, such as specific facial
features in portraits, by modifying the prompt
given to the VLM to summarize subject fea-
tures instead of artistic styles.

We conducted an experiment on the personalization of facial features. To generate images with
different levels of personalized images, we utilized the latent space manipulation technique from
[17] to generate personalized outputs, where the editing scale serves as a proxy for the ground-truth
level of personalization. This approach allows for a controlled evaluation of how FineXL identifies
and quantifies changes in a subject’s appearance.

Method VisDiff GSCLIP FineXL

MAE error in Explanation 0.9 0.8 0.3

Table 4: Error of identifying the varying levels of
personalization in one aspect of facial features.

As shown in Figure 9, when the personalization
aspect is “mustache”, the coefficient computed
by FineXL correlates positively with the edit-
ing scale. It’s worth noting that the relationship
may not be strictly linear, as the latent space of
the diffusion model differs from the encoder’s embedding space. We also comparing FineXL with
two competitive baselines using the experiment setting in Sec 6.1, which is shown in Table 4. These
results confirms that FineXL can effectively explain subject-focused personalization.

6.4 FINEXL FOR SUBTLE STYLE DIFFERENCE Concept: Vibrant and contrasting colors

Image

Model SD 2.1 SD 1.4

Coefficient 0.34 0.18

Figure 10: Different SD model versions

In sec 6.2, our experiments demonstrate that FineXL can
reveal subtle differences between multiple personalized
versions of the same model, even when these distinc-
tions are not immediately apparent to the human eye. To
further validate FineXL’s ability to uncover nuanced dis-
tinctions between different image generation models, we
conducted experiments comparing Stable Diffusion (SD)
v1.4 and SD v2.1, using SD v1.1 as the base model. Our
findings in Figure 10, indicate that SD v2.1 tends to generate images with more vibrant and con-
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trasting colors. This result aligns with the qualitative analysis in [23], confirming that FineXL can
systematically identify and quantify known differences between foundational model versions.

6.5 GENERALIZABILITY ON DIFFERENT IMAGE GENERATION MODELS

Beyond diffusion models, we also evaluated FineXL on other types of image generation models,
including GANs (ControlGAN [38]) and auto-regressive models (Anole-7B [11]), by personalizing
these models in one aspect. As shown in Table 5 and 6, for both GANs and auto-regressive models,
FineXL exhibits the similar performance of fine-grained explanation with that of diffusion-based
image generation models shown in Section 6.1.

Dataset Synthetic Style transfer WikiArt

Naive method 2.3 2.9 2.4
Diff Caption 2.7 2.2 2.8

Chg2Cap 2.5 2.3 2.6
VisDiff 1.6 1.9 2.2
GSCLIP 1.5 2.3 2.0
FineXL 0.9 1.4 1.4

Table 5: The performance of Fine-XL and
baseline methods on ControlGAN [38]

Dataset Synthetic Style transfer WikiArt

Naive method 2.7 2.4 2.6
Diff Caption 2.7 3.0 3.1

Chg2Cap 2.8 2.6 3.3
VisDiff 2.0 1.0 2.3
GSCLIP 1.9 1.1 2.5
FineXL 1.5 0.7 1.8

Table 6: The performance of Fine-XL and
baseline methods on Anole-7B [11]

6.6 USING DIFFERENT VLMS IN CONCEPT DISCOVERY

# of alternative descriptions 5 10 15

GPT-4o 100% 93.3% 93.3%
Llama-3.2-11B-Vision [1 100% 86.7% 66.7%

Qwen2-VL-7B-Instruct [64 93.3% 80.0% 80.0%

Table 7: Correctness of low-level concepts
discovered by different VLMs, tested on the
synthetic dataset

We evaluate whether the VLM can accurately pro-
pose low-level concepts that capture the patterns in
personalized model’s output. The synthetic dataset
is used, and the style descriptions of its subsets serve
as the ground truth for low-level concepts. Ideally,
the extracted concepts should be similar to these
ground truth descriptions, but it is difficult to quan-
tify such similarity. Instead, we assume that if the
identified low-level concepts are accurate, a powerful LLM (e.g., GPT-4o) can match them to the
correct ground truth description among a set of alternatives, and the percentage of correct selection
then estimate such similarity. As shown in Table 7, we tested 3 different VLMs, and concluded that
GPT-4o is the best to be used in FineXL.

6.7 USING DIFFERENT TEXT/IMAGE ENCODERS

Model Linearity↑ Orthogonality↓ Alignment↑

CLIP [44] 0.79 0.03 0.72
ALIGN [34] 0.81 0.05 0.65

OpenCLIP [12] 0.72 0.05 0.63
EVA-CLIP [58] 0.73 0.02 0.69

Table 8: Performance of alignment models

To correctly derive quantitative explanations,
FineXL relies on aligned text and image en-
coders to ensure a shared representation space
that follows the linear representation hypoth-
esis. Accordingly, we evaluate multiple text-
image alignment models from the following
three key features in the representation space:

• Alignment between text and image encoders. If the two encoders are aligned, the vectors
computed using Eq. (6) and Eq. (7) should be equivalent. We measure alignment by the
cosine similarity between these two results. We use Stable Diffusion V3.5 as Gideal in Eq.
(7) and the text prompts are sampled from the Microsoft COCO dataset [42].

• Linearity is required to ensure that the high-level representation of distribution divergence
Vdiv can be linearly decomposed into vectors of low-level concepts. We measure such
linearity using the cosine similarity between the two f(Ci∪Cj) and wif(Ci)+wjf(Cj).

• Orthogonality among the vectors representing the low-level concepts is necessary to avoid
redundant concepts with similar meanings. We assess orthogonality by computing the co-
sine similarity between vectors of different concepts.

The results in Table 8 show that the performance of different models varies slightly, and we conclude
that CLIP has the best overall performance among the 4 choices.

7 CONCLUSION
In this paper, we present FineXL, a novel technique providing fine-grained explainability in natural
language for personalized image generation models. Comprehensive experiment show that FineXL
outperform other natural language explanation methods in fine-grained scenarios.
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A VERIFICATION OF Gideal AND APPROXIMATION WITH STABLE DIFFUSION

We define Gideal as a text-to-image model in which the input text and output images are perfectly
aligned. Such a model enables us to test whether Equations (5) and (6) map text and images of
the same style into a shared representation space. Specifically, given a textual description of a
concept, we check whether the embedding produced by the text encoder is semantically consistent
when interpreted through the space of image differences. For example, the embedding fvibrant should
approximate the vector difference between the embeddings of “vibrant” and “non-vibrant” images,
i.e.,

f(vibrant) ≈ Encimg(vibrant images)− Encimg(non-vibrant images), (12)

where both sets of images are generated by Gideal.

Equation (6) assumes such an ideal model, and the degree of alignment can be evaluated by com-
paring the difference between Eq. (5) and Eq. (6). In practice, a perfectly aligned model does not
exist, so we approximate Gideal with Stable Diffusion 3.5, the best-performing open-source diffu-
sion model available. Although this introduces some misalignment, our experiments show that the
error between Eq. (5) and Eq. (6) remains small, implying that the error would be even smaller with
a truly ideal model.

Moreover, we hypothesize that a model’s representation power directly influences its alignment qual-
ity, and thus the accuracy of the error computation. To test this, we evaluated multiple versions of
the Stable Diffusion model. Consistent with our hypothesis, newer versions of SD, which generally
provide stronger representation power, yield smaller approximation errors.

The model used as the “ideal” SD 3.5 Large SD 2.1 SD 1.4
Alignment (cosine similarity between Eq. 5 and Eq. 6) 0.72 0.52 0.34

Table 9: Alignment results using different Stable Diffusion models as the “ideal” model.

B DECOMPOSITION THRESHOLD

In theory, we aim to minimize the decomposition error as much as possible. However, in practice,
there are always components in the embedding space that cannot be fully decomposed. This means
that, regardless of how many low-level concepts are used, the error cannot be reduced to an arbi-
trarily small value. To prevent FineXL from attempting to extract an infinite number of low-level
concepts, we introduce a threshold, i.e., ddecomp as a fraction of Vdiv as described in Eq. (10), to
limit the decomposition process.

We conducted an ablation study using the synthetic dataset to evaluate the impact of different thresh-
old values in the decomposition process and the final performance of FineXL. As shown in the table
below, if the threshold is too small (e.g., 0.02 or 0.05), the decomposition error will never fall below
it, meaning that the threshold is not effectively limiting the decomposition process. Such a small
threshold will also result in an excessively large number of low-level concepts and hence reduce the
effectiveness and representativeness of decomposition itself. On the other hand, if the threshold is
too large (e.g., > 0.4), the explanation error, i.e., the error of quantitative explanation measured by
the ranking error introduced in Sec 5, increases. Based on our experiments, we empirically set the
threshold to 0.2. Notably, even when using a relatively large threshold, the explanation error does
not increase significantly, indicating that our method is not highly sensitive to the choice of threshold

Decomposition Threshold 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6
Number of Low-Level Concepts Needed ∞ ∞ 68 33 19 9 8 5
Decomposition Error 0.094 0.093 0.098 0.192 0.280 0.383 0.428 0.541
Explanation Error – – 0.7 0.7 0.7 0.9 0.9 1.1

Table 10: Performance under different decomposition thresholds.
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Figure 11: Illustration of mixed training data for personalization. “Based data” refers to data gener-
ated by the pre-trained model and represents training data without personalization.

C EVALUATION SETUP AND METRICS

We evaluate personalized image generation under two scenarios, each requiring a different evalua-
tion method.

Scenario 1 (Single-Aspect Personalization).In this scenario, the model is personalized along a sin-
gle aspect that varies across 10 levels (e.g., different degrees of vividness from 1 to 10). These
levels are implemented by fine-tuning a pre-trained image generation model with different numbers
of training steps (e.g., from 20 to 200). Explanations of personalization are evaluated by how ac-
curately the levels can be identified. Specifically, we compute personalization levels by ranking the
quantitative values produced by different explanation methods and then compare the rankings with
the ground-truth levels using mean absolute error (MAE).

For baseline methods that provide only qualitative (text-based) explanations, we convert the expla-
nations into numerical levels to allow comparison. To ensure fairness, we prompt GPT-4o to assign
a score from 1 to 10 based on its interpretation of the text. If the explanation lacks indicators of
degree (e.g., “very” or “slightly”), GPT-4o may assign identical or arbitrary values, reflecting that
the explanation is too vague to be useful in this scenario. By evaluating rankings rather than abso-
lute values, we ensure that the quantitative outputs from different methods remain comparable even
when they are not on the same scale.

In this scenario, we assume that the personalized levels relate to the number of training steps before
overfitting, the rationale is: We define personalization level as the distributional divergence between
the outputs of the personalized model and those of the base model. At the start of training, the
model has not yet adapted to the personalized data, so its outputs remain close to those of the
base model, with only faint traces of personalization. As training progresses, repeated fine-tuning
updates cause the model to increasingly reflect the personalized data, and its outputs diverge further
from the base model. This means that, in general, the degree of personalization increases with the
number of training steps. We emphasize that this relationship is not assumed to be linear. Instead,
our evaluation only requires that personalization grows monotonically with training steps before
convergence—a natural and intuitive assumption, since training for longer exposes the model more
strongly to the target aspect or style.

Scenario 2 (Multi-Aspect Personalization). In this scenario, the model is personalized across
multiple aspects, with varying levels for each. Personalization is achieved by fine-tuning the pre-
trained model with training data that mixes different aspects in varying proportions. The proportion
of data from a given aspect determines the personalization level for that aspect. For instance, if
two aspects are considered (Figure 11) and each has three possible levels, the training data can be
combined in six different ways.

Here, explanations are evaluated by how well the computed levels across multiple aspects match the
ground-truth mixture. Specifically, we represent the levels of different aspects as coordinates in the
space illustrated in Figure 11, and measure evaluation correctness as the accuracy of selecting the
true coordinate. For qualitative explanations that lack numerical levels, we again prompt GPT-4o to
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infer approximate coordinates from the text description, following the same procedure as in Scenario
1.

D DETAILS AND EXAMPLE IMAGES OF DATASETS

The synthetic dataset we generate contain 400 images in 15 subsets with unique styles. Each subset
is separately generated by prompting the Stable Diffusion 3.5 model [25] with prompts of “object
description + image style description”. The image style descriptions are manually crafted, while the
object descriptions are sampled from the MIcrosoft COCO dataset [42]. A typical example of such
prompt could be “a cartoon style photo: A man with a red helmet on a small moped on a dirt road”.

The image Style Transfer dataset [37] contains 2,500 images in 50 unique styles. Images in each
style are generated by rendering a base content image with a style image, and we use a pre-trained
BLIP2 image captioning model [39] to generate the text description. We also use the WikiArt dataset
[2] with 81,444 images of paintings from 129 artists. We select 15 artists with the most samples in
WikiArt for experiments and consider each artist as a unique image style. In our experiments, we
use image style transfer data, but FineXL can apply to any personalization task where image features
can be described with keywords or phrases (e.g., facial expressions in human face generation).

Figure 12 and 13 show example images of our synthetic datasets and two real-world datasets, re-
spectively.

Baroque Watercolor Psychedelic impressionist Ukiyo

Steampunk Default Pop art sketch monochrome

Minimalist Cartoon Pixel art Oil painting cyberpunk

Figure 12: Example images of synthetic data

E NUMBER OF SAMPLES NEEDED

In Section 4.1 of the main text, to practically calculate Vdiv , we estimate the expectation in Eq.
(4) by sampling from the corpus of input text samples. Specifically, for n text samples t1, t2, ...tn
, we conducted experiments to examine how the number of text samples correlates with the error
in Vdiv’s estimation, measured as the cosine distance from the Vdiv calculated using a sufficiently
large volume of samples. Results are shown in Table 11. For the style transfer dataset, since the
major differences between images in different styles are primarily in textures, capturing the pattern
is relatively easy, requiring only 25–50 samples. For more complex data, such as WikiArt, 100–200
samples are necessary.
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Figure 13: Examples images of two real-world datasets

# of samples Style transfer Wikiart
10 0.08 0.29

25 0.03 0.14

50 0.02 0.09

100 0.006 0.03

200 0.004 0.02

500 0.001 0.008

Table 11: The error of high-level representations with the number of text prompts, measured by
cosine distance

F VISUAL FEATURE BASED EXPLANATION

Except for natural language based explanation, we can also explain personalization in the form of
visual features (63; 40), which may include representative image samples, image patches from the
original dataset, or generated features (67; 9). Specifically, the extracted visual features from the
personalized model’s generated outputs can be compared with those of the base model to explain
the corresponding aspects of personalization. However, the extracted visual features are not always
easy to interpret and require human users to further explicitly summarize them (23), as shown in
Figure 14.

G SENSITIVITY TO PROMPT TEMPLATE

# of personalization levels 5 10

Original Prompt 0.4 0.7
Condensed Prompt 0.5 0.7
Elaborated Prompt 0.4 0.7

Table 12: Errors in explanations
with different prompts with dif-
ferent personalization levels

We prompt the VLM to discover low-level concepts using a man-
ually crafted prompt template (Figure 5). To assess the robust-
ness of FineXL, we evaluate its sensitivity to different prompt
templates. We ask GPT-4o to condense and elaborate the original
prompt, and run experiments on synthetic datasets with a single
aspect of personalization. As shown in Table 12, the results ob-
tained with different prompts are similar, indicating that FineXL
is robust to variations in prompt phrasing when extracting low-
level concepts.
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Figure 14: Examples of summarizing image datasets with visual features, the text in the figure is
summarized by human.
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