
Under review as a conference paper at ICLR 2024

UNDERSTANDING THE TRANSFER OF HIGH-LEVEL
REINFORCEMENT LEARNING SKILLS ACROSS DI-
VERSE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

A large number of reinforcement learning (RL) environments are available to the
research community. However, due to differences across these environments, it is
difficult to transfer skills learnt by a RL agent from one environment to another.
For this transfer learning problem, a multitask RL perspective is considered in this
paper, the goal being to transfer the skills from one environment to another using
a single policy. To achieve such goal, we design an environment agnostic policy
that enables the sharing of skills. Our experimental results demonstrate that: (a)
by training on both desired environments using standard RL algorithms, the skills
can be transferred from one environment to another; (b) by changing the amount
of data that the RL algorithm uses to optimize the policy and value functions, we
show empirically that the transfer of knowledge between different environments
is possible, and results in learning tasks with up to 72% fewer gradient update
steps. This study takes an important step towards enabling more effective transfer
of skills by learning in multitask RL scenarios across diverse environments by
designing skill-sharing, sample-efficient RL training protocols.

1 INTRODUCTION

There have been many successes in recent years where Reinforcement Learning (RL) has shown
performance on par or above humans, in domains such as video games (Mnih et al. (2015), Silver
et al. (2016)), continuous control (Levine et al., 2016), chip design (Mirhoseini et al., 2021), con-
trolling nuclear fusion (Degrave et al., 2022), and even interacting with humans (Liu et al., 2023).
However, these learned policies are only effective for the task and domain they were trained in and
are less effective when transferred to a related problem or during domain shifts (Zhao et al., 2020).
One common method to overcome this limitation is to train a policy across multiple different tasks
(Vithayathil Varghese & Mahmoud, 2020). In this setup, the agent explores each of the different
tasks during training and then learns a single policy for all of these tasks simultaneously. One of
the proposed benefits of this approach is that similar tasks could be learned faster as part of a sin-
gle policy compared to learning a separate policy for each task individually. This is achieved by
leveraging the experience from the first task to bootstrap the experience in the second task. While
training a policy in multiple environments simultaneously can lead to a policy that can perform mul-
tiple tasks in one domain, it is yet to be understood how these learned skills can be transferred to a
new set of environments or domains, as is common in other areas of machine learning. This paper
aims to understand and present the design decisions and training protocols necessary to achieve such
multi-task transfer learning of skills.

It has been shown that pre-trained models lead to large advances in transfer learning for Deep Learn-
ing, Computer Vision, and Natural Language Processing. Typically, the pre-trained models learn
generalized representations through supervised (He et al. (2015), Krizhevsky et al. (2017)) or self-
supervised learning (Devlin et al. (2019), Chen et al. (2021b), Chen et al. (2020), Grill et al. (2020))
on large amounts of data. Fine-tuning these pre-trained models then leads to efficient transfer for
new downstream tasks (Chen et al. (2020), Grill et al. (2020), Devlin et al. (2019)). However, this
technique cannot be directly applied to RL due to the large gap that may exist across different envi-
ronments. While many simulation engines are flexible and can easily be used to emulate a diverse
set of tasks and environments, the diversity of these tasks and environments leads to different state
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and action spaces, and reward manifolds. This makes pre-training a general representation diffi-
cult. Thus, in the context of multi-task learning, policies for multiple tasks are typically learned
over a specific environment, creating policies that cannot be easily transferred to a completely new
environment with a similar set of tasks.

To overcome this gap in the efficient transfer of RL skills to new tasks and environments, this paper
aims to study the design decisions and training protocols required for skill transfer and quantitatively
evaluates their performance in Robotics environments in different domains. For an RL algorithm
to be truly generalizable to similar tasks, it must also be able to apply different skills that it has
learned in other environments with similar tasks. For example, learning to pick up a pan in a kitchen
environment must be generalizable to picking up a toy in a bedroom. Recently, there has been
advances in this direction with multitask transformers (Reed et al. (2022), Driess et al. (2023)), pre-
trained image encoders for robotics (Nair et al. (2022), Parisi et al. (2022)), transformers trained on
human demonstrations (Bousmalis et al. (2023), Brohan et al. (2023b)), or even data from internet
sources (Brohan et al., 2023a). Each of these works provides an incremental step towards RL agents
being able to apply their skills in a wide range of problem settings. While these works all do some
form of multitask RL and transfer learning, they do not specifically explore the design decisions that
enable the transfer of skills across different environments in a traditional RL setting.

An additional challenge impeding the general transfer of skills is the difference in state, action, and
reward space that prevents any direct transfer as the policy can have different input and output sizes
for each specific environment. This work aims to understand and enable the transfer of skills be-
tween environments with different robotic morphologies, where the state, action, and reward space
differ. This environment-agnostic transfer is enabled by learning the appropriate latent representa-
tions through state and action translation layers, which map the states to a latent state space and
then extract an action from latent space to an environment-specific action space, respectively. We
demonstrate the effectiveness of these layers in continuous control tasks that transfer high-level ma-
nipulation concepts between the environments. Our experiments show that learning a policy in a
shared, environment-agnostic latent (SEAL) space by translating states to this SEAL space and de-
coding latent skills into actions from the SEAL space yields sample efficiency gains anywhere from
7% to 72% compared to training on a single environment’s tasks alone.

The proposed method, and thus the efficient skill transfer across domains can be achieved through
minimal modifications in existing RL algorithms. We demonstrate skill transfer between the Meta-
World (Yu et al., 2021) and Franka Kitchen (Gupta et al., 2019) environments, and show how SEAL
can be applied to state of the art algorithms, such as Soft-Actor Critic (SAC) (Haarnoja et al., 2018).

Our contributions are as follows:

• We propose the shared, environment-agnostic, latent policy architecture, which allows the
transfer of multiple skills across environments with different state and action spaces by
using a single policy.

• We show that learning with our proposed architecture leads to learning specific tasks in up
to 72% less policy network updates.

• We provide insights and limitations on traditional pre-training methods and how different
design decisions may lead to limited exploration or skill transfer capabilities of the RL
algorithm.

• We provide an open-source implementation to apply SEAL on existing RL algorithms.

2 PROBLEM STATEMENT

Reinforcement learning is formulated using a Markov decision process (MDP) (Sutton & Barto,
2018), where an MDP M is a tuple of (S,A, P, r, γ, p), where S is the state space, A is the action
space, the probability transition function P : S ×A → [0, 1]s , r : S ×A → R the reward function,
γ in [0, 1] is the discount factor, and p is the initial state distribution. At each time step, the agent
can observe the state at time t, st, choose an action sampled according to some policy π : S → A
based on st, receive a reward for landing in-state st+1, and observe state st+1. The goal of the agent
is to find a policy that maximizes expected rewards for the current task E[R(τ)] where R(τ) is the
sum of rewards along the trajectory induced by following the policy π.
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In the multitask reinforcement learning problem, a task distribution must be chosen where N tasks
are sampled from a task set T according to t ∼ p(t). Each task can be viewed as having its
own MDP Mt. Then, for task ti for i in 1, 2, . . . , N , the MDP is (S,A, Pi, ri, γ, pi) where the
state space, action space, and discount factors are held constant across tasks while the probability
transition function, reward function, and initial state distribution are specific to each task ti. The
goal of the multitask reinforcement learning agent is to maximize the expected reward across each
task.

Et∼p(t)[Eτ∼π[R(τ)]] (1)

using policy πη(a|s, t), where t ∈ T is the task identifier and η are learnable parameters of the
policy.

In this paper, the problem we consider is extending multitask RL to multiple environments that don’t
share the same state and action spaces but are still related tasks. Let E be a set of M environments,
where each environment m ∈ E has a set of Tm distinct tasks. Each task tm ∈ Tm in each envi-
ronment m has an MDP M

(m)
t for each task t. Therefore, the MDP M

(i)
j is now comprised of the

tuple (S(i),A(i), P
(i)
j , r

(i)
j , γ, p

(i)
j ), where the elements in the tuple can change with respect to the

environment.

The environment and the task can be jointly sampled from a joint distribution m, t ∼ p(m, t).
Since the state space S(m) and action space A(m) are environment-dependent, traditional multitask
reinforcement learning algorithms cannot be applied to share policy parameters πη between tasks
because the input state and output actions can be a variable number of sizes. In order to overcome
this problem, we propose using translation layers to the input and output of the policy.

With the use of translation layers and action heads, our goals are two-fold. The first goal is to
determine if we can demonstrate skills transfer across environments. The second goal is to find the
best training approach to learn a single policy πη that can act in all environments. We propose this
solution in Section 3.

3 ENABLING SKILL TRANSFER

In this section, we present the methods that can be used for multi-task skill learning and transfer.
Further, in Section 4, we evaluate the transfer of skills between environments as well as how a single
policy can be learned across multiple environments using our SEAL policy. To this end, we mainly
explore two different methods where the first method is a pre-train and fine-tune method, while the
second method trains across both environments using a SEAL policy architecture inspired by the
multi-head architecture of (Yu et al., 2021). We report the mean success rates for these experiments,
with Appendix F containing network update data for all experiments.

3.1 BASELINE MULTI-HEAD REINFORCEMENT LEARNING

In the most basic setting for learning multiple tasks in multiple environments, a policy for each
environment can be trained as shown in Figure 1a. In this case, we independently train a single
policy for each environment m ∈ E using the multitask multihead SAC (MTMHSAC) algorithm
from (Yu et al., 2021). It should be noted that there are no shared parameters or features between
either policy, therefore an environment i will have policy π

(i)
η .

3.2 PRE-TRAINING AND FINE-TUNING

For this method, we train on one environment using MTMHSAC as a pre-training phase (Section
3.1). We then fine-tune the pre-trained policy on the unseen environment using MTMHSAC. This
scenario is depicted in Figure 1b. In order to pre-train and fine-tune the policies in this manner,
we modify the state spaces to ensure that the input dimensionality of each network is the same by
padding the inputs with zeros. We also align the locations of the goals, and one-hot task IDs across
state spaces. In order to have the same dimensionality we then pad any needed elements of the state
with zeros. The final layer of the policy is different between environments because of the difference
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(a) Baseline (b) Fine-tuning

(c) SEAL

Figure 1: Control architecture for multi-task learning. Top-Left: Typical multitask reinforcement
learning architecture for single environments. We use this setup for generating our baseline success
rates and sample complexities. Top-Right: Fine-tuning method. This method is a two-step process.
In step (1) we pre-train policy π

(1)
η on Meta-World and policy π

(2)
η on Franka Kitchen. In step (2)

we take the policy π
(2)
η and fine-tune it on Meta-World, and fine-tune policy π

(1)
η on Franka Kitchen.

Bottom: The shared, environment agnostic, latent (SEAL) policy.

in action spaces. Because of this, we randomly initialize the final layer when fine-tuning. For pre-
training, we train a policy π

(i)
η on environment i using MTMHSAC. We then take the policy and

fine-tune it on environment j, j ̸= i with MTMHSAC.

3.3 SHARED, ENVIRONMENT AGNOSTIC, LATENT (SEAL) POLICY

To have an environment-agnostic policy that can learn in new environments while leveraging the
skills previously learned, we propose the SEAL policy found in Figure 1c. Typically, different
environments do not share the same action and state spaces. This issue is overcome by our proposed
SEAL policy.

We resolve this issue of different state spaces by using a state translation block fθi(s
(i)
t ), where θi

represents the parameters of the translation layer for the i-th environment and s
(i)
t the state at time

t for the i-th environment. Note that we assume that the task identifier is part of the state s
(i)
t . We

maintain a set of policy parameters denoted πη that are shared between all environments.

Finally, we must overcome the difference in action spaces. Similarly to the state translation block,
we use different action heads gϕi

for each environment indexed by i. The output size of an action
head i depends on the size of the action space of the environment i. Finally, for some environment i
to produce an action a

(i)
t at time step t, a forward pass must be completed as gϕi

(
πη

(
fθi(s

(i)
t )

))
.

These parameters are then optimized using the objective Et∼p(t)[Eτ∼π[R(τ)]]. However, because
there are M different environments, there are M different optimizers, where an optimizer i is oper-
ating on the translation layer fθi , the action head gϕi

, and the shared policy parameters πη . Doing
so allows the policy to share the high-level concepts present in each environment, such as pushing,
grasping, and reaching, across all M environments.
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4 EXPERIMENTS

In this section, we present experimental results from the design decisions and training protocols
required to achieve general skill representations that will then transfer to different tasks and domains.
Following the evaluation procedure (Appendix B), we will establish a performance baseline and
outline every design decision’s impact and importance by comparing their performance gain against
the established baseline. In the following, we will describe the training protocol steps and outline
strategies for efficient skill transfer.

4.1 BASELINE MULTI-TASK EXPERIMENTS

The transfer capabilities are benchmarked using Meta-World (MW) and Franka Kitchen (FK) envi-
ronments (see evaluation procedure in Section B). For the MW baseline, MTMHSAC is used due
to its capabilities and the extendability of its implementation to our proposed network architecture
(Yu et al., 2021). The baseline results are depicted in Figure 2, showing a success rate of about 75%
using MTMHSAC. Like the MW baseline, MTMHSAC is used to establish the FK baseline. As
the FK environments were not designed for a multi-task reinforcement learning setting but instead
for hierarchical RL with sparse rewards, modifications to the reward functions were necessary to
provide dense rewards for MTMHSAC (see Section C).

Figure 2 shows the baseline results of MW and FK. It is observed that the MW agent, on average,
achieves a maximum success rate of 73%, and the FK agent reaches an average success rate of
74%. As can be seen from the baseline results in Figure 2, the Meta-World MTMHSAC agent
reaches it’s maximum performance in approximately a quarter of training, while the Franka Kitchen
MTMHSAC agent reaches it’s maximum performance in approximately half of training.

We believe that this is attributed to the fact that each task in MW is isolated to its own environment.
Therefore, when training an agent, the agent does not need to explore and isolate the task to be solved
from any distractions, such as the other tasks. This is not the same in FK, where all tasks are always
available, which introduces an exploratory component of agent learning to FK. This observation
has motivated the need for efficient skill transfer and the design of an algorithm that can leverage
existing knowledge, and automatically infer and isolate tasks.

Figure 2: SAC results on Meta-World and Franka Kitchen. The shaded regions indicate the standard
deviation.

4.2 FINE-TUNING PRE-TRAINED MODEL

Similar to traditional Machine Learning approaches, we first analyze the transfer capabilities of RL
agents using the most straightforward approach: fine-tuning, where the policy is trained in one prob-
lem setting and then fine-tuned in a different problem setting. This training procedure is described
in Appendix D.
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We find that fine-tuning a pre-trained policy and value function limits the ability of an agent to use
only the skills that were acquired in the pre-training stage, and additional skills are required through
exploration, yielding no additional performance gains. In Figure 3, we show the performance of an
agent pre-trained on FK and fine-tuned on MW. While we see no performance increase in terms of
success rate, we do find that there are decreases in the number of samples required to learn specific
tasks.

In Table 6, we report the number of network updates to reach 90% success rate in this experiment.
This table shows that it took 29% less network updates for the Window Close task and 17% fewer
network updates for the Window Open task to be learned. By examining the success plots in Figure
3, we observe that within a few fine-tuning steps, the agent is on par with training on MW alone
based on the success rate. However, we can see a slight stagnation after a few evaluations. This
stagnation is because of the limited number of skills that are available within FK. At this point, the
agent must learn either new skills or how to leverage some combination of skills already learned
while training on FK. The agent is able to leverage the skills it acquired during pre-training on FK,
as shown by the decrease in network updates, to learn the Window Open and Window Close tasks.

Figure 3: Pre-training and fine tuning success rates for each scenario. The shaded regions indicate
the standard deviation.

When pre-training on MW, the easier of the environments, then fine-tuning on FK, we find that the
fine-tuning process is limited in success rate because the MW value functions have overfit. In Figure
3, we report the success rate of the agent during the pre-training phase and the fine-tuning phase.
We also report in Figure 7 the learning curve for the value functions in two experiments; fine tuning
on MW and fine tuning on FK. Figure 7 shows that the value functions are likely overfit during fine
tuning on FK. The pre-training phase shows that the MW agent reaches about 70% success rate.
During the fine-tuning phase, the maximum success rate of the agent is ∼ 10%, while the number of
network updates that it takes to learn Slide Cabinet is 25% less than learning in FK alone. We believe
that when a pre-trained policy is fine-tuned in MW, the overfit value functions limit the ability for
the agent to transfer it’s learned skills.

One of the limitations of this pre-train and fine-tune approach is that we are left with two policies,
one from the pre-training phase and one from the fine-tuning phase. The goal of multitask RL is to
learn a single policy that can accomplish many different tasks. In Section 4.3 we explore how to
learn a single policy across multiple environments.

4.3 SHARING ENVIRONMENT-AGNOSTIC LATENT REPRESENTATIONS

The main challenges of learning a single policy across multiple environments are the differences
between the state space S, and the action space A, as well as dealing with various reward landscapes.
To overcome these challenges, we use the network architecture that was outlined in Section 3.

In order to evaluate our SEAL policy architecture, we first train on the MW and FK environments
simultaneously. We find that a limited number of tasks can be solved in this experiment, as shown
in Figure 4, where the success rate approaches 40%. We found that the Slide Cabinet task is learned
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in ∼75% fewer network updates, showing that there is a limited transfer of skills in this experiment.
While it is not inherently obvious, the drawer close and the slide cabinet tasks are fairly similar.
Both tasks require the agent to learn to move the robotic arm towards the object, place the robotic
arm on the object in a manner that allows a force to be applied to the object, and apply a force to
the object to complete the task. Based on the number of updates to learn the slide cabinet task, it
seems that a transfer of skills is occurring, but it could also be that the policy is learning each skill
individually.

Figure 4: Success rate when training on MW and FK simultaneously. There are three variants of
training on both MW and FK: (a) equal data ratio (green), (b) high MW data ratio (blue), and (c)
high FK data ratio (orange). The shaded regions indicate the standard deviation.

We have designed the following experiment in order to examine whether the SEAL policy transfers
skills or learns the tasks individually. For the first 1000 epochs of training, the agent receives ∼ 90%
of data from environment i and ∼ 10% from environment j. For the next 1000 epochs of training,
the agent receives ∼ 80% of data from environment i and ∼ 20% from environment j. This process
of manipulating the data ratios continues in the same manner until the ratio reaches 50% data for
both environments.

By limiting the amount of data from an environment that the agent uses to optimize its policy and
value function, we find that the agent is able to transfer the learned skills. First, we examine the
experiments where the agent receives a high amount of FK data and a low amount of MW data at
the start of training. In Table 1, we report the number of network updates, in millions, needed to
reach 90% success rate on certain tasks during training. In the High FK column, we report that
when training with a high ratio of data from FK we find the following improvements in comparison
to training on FK or MW alone: drawer close needs 60% less network updates, drawer open needs
50% less network updates, while slide cabinet needs 55% less updates, and microwave needs 32%
less updates.

Next, we find similar skills transfer in the experiments where the agent receives a large amount of
MW data and a low amount of FK data at the start of training. The number of network updates to
learn specific tasks is reported in the High MW column of Table 1. When training with a high ratio
of MW data, we find that the slide cabinet needs 55% less network updates, and the microwave
needs 32% less network updates compared to learning on MW or FK alone.

Both of these results are indications that a transfer of skills is occurring. We believe that this im-
provement in the number of network updates to learn a skill is because in the previous experiment
each environment had an equal opportunity to modify the shared latent policy embedding space.
The improvement in sample complexity in regards to each task shows us that our architecture is
effectively capturing the skills that can transfer, while also aligning the outputs of the translation
layers for related tasks. With these two modules, the action head for each environment is then able
to learn how to produce actions that apply the desired skill based on the latent skill embedding that
the shared latent policy embedding produces.

7



Under review as a conference paper at ICLR 2024

Table 1: Millions of network updates for each training procedure. Bolded results indicate a decrease
in number of network updates for that task to reach 90% success rate.

Task Single Env FK&MW (50/50 Data) High FK High MW
Drawer Close (MW) 6.4 10.7 2.4 (-62.76%) 11.5
Drawer Open (MW) 42.7 211.2 24.8 (-42.0%) 53.9
Reach (MW) 17.1 19.2 12.7 (-25.88%) 27.9
Slide Cabinet (FK) 14.9 19.2 11.5 (-23.0%) 4.3 (-71.0%)
Microwave (FK) 76.8 147.2 38.3 (-50.13%) 71.5 (-6.94%)

5 RELATED WORK

One of the first comprehensive benchmarks for testing in the multitask RL domain was Meta-World
(Yu et al., 2021). The benefit of using the Meta-World benchmark is that it has a high degree of
shared environment and control structure which allows for efficient learning of distinct but related
tasks (Yu et al., 2021). Another benefit of Meta-World is the dense reward function available for
each individual task. (Yu et al., 2021) propose several benchmark algorithms for multitask reinforce-
ment learning including Multi-Task Multi-Head Soft Actor Critic (MTMHSAC). The MTMHSAC
algorithm modifies the base Soft-Actor Critic algorithm by adding an entropy head for each task,
allowing for different levels of exploration per task (Yu et al., 2021). In Yu et al. (2021) the states
are augmented with a one-hot vector that indicates which environment the state belongs to. Other
recent approaches include Soft-Modularization which uses the one-hot vector as input to a routing
network that outputs probabilities for how data is routed through the policy network (Yang et al.,
2020), Yu et al. (2020) developed a method of projecting conflicting gradients onto the same plane
thus making network optimization more efficient, Cho et al. (2022) developed a variational based
method as well as a measure of negative transfer. Recently, He et al. (2023) have shown diffusion
models to be effective planners and data synthesizer in multitask reinforcement learning settings.

Gupta et al. (2019) originally designed Franka Kitchen as a benchmark for algorithms that can solve
long-horizon, multitask problems. Franka Kitchen was then modified by (Fu et al., 2020). The
robotic arm in Franka Kitchen is a 9-DOF Franka robot that is placed in a kitchen environment with
many different household kitchen objects. The goal of the environment is to achieve some desired
configuration of the objects through manipulation (Gupta et al., 2019).

There has been a recent interest in creating foundation models Bommasani et al. (2022) for different
domains in machine learning. These foundation models provide a model that can be easily fine-tuned
to some downstream task (Bommasani et al., 2022). These types of pre-trained models have led to
rapid advances in deep learning for computer vision and natural language processing. These types of
models can be train in either a supervised learning (He et al., 2015) or unsupervised (Devlin et al.,
2019) fashion. The rapid advances can be attributed to the generalized representations that these
pre-trained models have learned to extract or generate; they are typically trained on large diverse
datasets (Krizhevsky et al. (2017), Lin et al. (2015), Pennington et al. (2014), Mikolov et al. (2013)).

These advances in pre-trained models have not been as useful to the RL community as they have
to the wider machine learning community. Recent work has found that pre-trained computer vision
models can be used as a frozen encoder module for downstream reinforcement learning (Parisi
et al., 2022), while advances in natural language processing have led to the use of transformers
(Vaswani et al., 2023) in reinforcement learning (Chen et al. (2021a), Reed et al. (2022), Janner
et al. (2021)) that show the capabilities of the transformer as a policy for continuous control RL.
Driess et al. (2023) showcased the abilities of a vision language model for continuous control tasks
where both images and text are inputs to the transformer that can then output high-level tasks for the
reinforcement learning agent.

Finally, Reed et al. (2022) was one of the first transformer-based model to have the vision-language
transformer model output actions for continuous control tasks directly. One limitation of Reed et al.
(2022) is that the effectiveness of the trained model in real-world robotic manipulation tasks is lim-
ited. Meanwhile, Lee et al. (2022) aimed to enable effective generalization capabilities by training
on suboptimal data from many Atari games. Brohan et al. (2023b) show the effectiveness and scaling
capabilities of a transformer-based reinforcement learning agent on real-world tasks through many
human demonstrations, while Brohan et al. (2023a) shows the effectiveness of using multiple data
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sources, including internet data, for real-world robotic manipulation tasks across different robotic
arm configurations. Thus, we have seen a step taken in the direction of foundation models for RL,
but these works do not answer the question of how to transfer skills across multiple environments,
especially in an online setting.

One line of work related to ours is the multi-embodiment of RL agents. These works attempt to
learn different policies that can be adapted to any number of different robot morphologies, different
environment dynamics, or some combination of both (Gupta et al., 2022). A number of different ap-
proaches have emerged in the literature including using graph neural networks (Kurin et al. (2021),
Wang et al. (2018)), shared modular policies per embodied joint (Huang et al., 2020), and transform-
ers (Gupta et al., 2022). Our work is different from this line work because we attempt to (a) learn
multiple skills across the different robot morphologies, (b) learn across different proprioceptive state
sizes, and (c) our set of skills to learn is more diverse.

The challenge to learn diverse skills across different morphologies by identifying task-specific and
robot-specific modules in the learned parameters has been conducted in (Devin et al. (2016), Gupta
et al. (2017)). Devin et al. (2016) proposed a method of composing different robot skills by cre-
ating robot morphology modules, as well as task modules. These combinations of task and robot
morphology modules are then trained simultaneously and can then be recombined for new, unseen
tasks (Devin et al., 2016). One limitation of this work that our method attempts to overcome is the
simultaneous training of each robot morphology on a task. In other domains of machine learning, it
is possible to train a model on one dataset and fine tune that model to a new dataset in a few gradient
steps. Gupta et al. (2017) proposes a method that uses contrastive loss to learn proxy tasks across
environments via a shared feature space. This shared feature space can then be used to transfer
additional knowledge from one robot to another. In addition to these works, Hausman et al. (2018)
learn an embedding space for skills where a skill vector contains information about the skill to be
applied which is then concatenated to observations. Hausman et al. (2018) found that they were able
to interpolate between skills for zero shot task completion. D’Eramo et al. (2020) trained a similar
model to ours, except they chose environments that only contain a single skill to transfer to other
environments. Our work attempts to expand on the limited number of skills that were tested in pre-
vious works. While there are several different types of robot included in Gupta et al. (2022), there is
a limited number of skills transferred across the different morphologies, and each of the skills were
to be transferred. Our work contains a larger number of potential skills to transfer.

6 CONCLUSION

This work focused on the ability of multi-task Reinforcement Learning agents to transfer their
learned skills to new environments. In order to enable skill transfer across environments, we first
had to overcome the issues of different state and action spaces for reinforcement learning environ-
ments. Our first method of overcoming this issue was to pad and align the state spaces of different
environments such that an agent could be trained in one environment and then use the trained agent
parameters as a starting point for learning in a new environment. This approach showed that the
fine-tuning of a pre-trained agent can have some success in a new environment, however there were
limitations based on the skills and exploration learned in the pre-training environment. Next, we
attempt to learn a single policy across diverse environments. We propose the shared, environment-
agnostic, latent (SEAL) policy for this task. This SEAL policy has environment-dependent parame-
ters along with shared parameters. The shared parameters were used in order to capture any shared
skills between the two environments, while allowing for the environment-dependent parameters to
handle the differences in state and action spaces. Over two diverse continuous control environments,
Meta-World and Franka Kitchen, we show that the SEAL policy combined with an effective training
protocol can decrease the number of network updates to learn a task by up to 72%. One of the limi-
tations of our work is that we only utilize state spaces. An extension of our work would be to extend
this method to reinforcement learning from pixels, or to explore the ability to transfer skills across
robots of different morphologies or using orthogonal skills. Another interesting line of research may
be to investigate why the Meta-World agent’s are overfit, and how to regularize those agents in a way
that maintains performance.
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A BACKGROUND INFORMATION

A.1 REINFORCEMENT LEARNING

In this work, the Reinforcement Learning (RL) algorithm that we use is Soft-Actor Critic (SAC).
SAC is an off-policy RL algorithm that is based on the maximum entropy learning framework
(Haarnoja et al., 2018). This framework leads the agent to maximize both expected rewards and
entropy, which leads the agent to succeed in the task while acting as randomly as possible (Haarnoja
et al., 2018). In this work there are three sets of parameters to optimize: the soft Q-function
Qθ(st, at) with Q parameterized by θ, the policy parameters πϕ(at|st) where π is parameterized
by ϕ, and the entropy penalty coefficient α (Haarnoja et al., 2018). The objective for policy opti-
mization is:

Jπ(ϕ) = Est∼D[α log πϕ(at|st)−Qθ(st, at)] (2)

with α controlling the entropy penalty coefficient. The coefficient α is learned using the objective:

J(α) = Eat∼πϕ
[−α log πϕ(at|st)− αH̄] (3)

where H̄ is the minimum target entropy.

Previous work has modified the SAC algorithm to include an entropy term for each of the N tasks to
guide exploration in each task individually, as well as to introduce replay buffers per task (Yu et al.
(2021), Yang et al. (2020)).

A.2 META-WORLD

The first set of environments used in this work are from Meta-World (Yu et al., 2021). Meta-World is
a suite of multitask RL and meta-RL environments that consist of a number of robotic manipulation
tasks. These environments are subdivided into different sets with any number of environments and
different goals. This work focuses on the Multi-Task 10 (MT10) set of environments. In the MT10
set, there are 10 tasks that the RL agent can interact with. Some environments are closely related
to each other, such as window open and window close, while other environments are not as closely
related to each other, such as pick and place, and window close. This difference in tasks allows for
a wide variety of skills to be learned across these environments with robust learning happening due
to the number of goals available for each of the individual tasks(Yu et al., 2021). Meta-World also
provides a dense and smooth reward function to help RL agents learn(Yu et al., 2021). The different
tasks of the MT10 set of environments can be found in Figure 5.

Figure 5: Meta-World MT10 tasks, image from (Yu et al., 2021).
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A.3 FRANKA KITCHEN

The Franka Kitchen environment is the other environment to be used in this work. The Franka
Kitchen environment has typically been used in hierarchical RL where the goal is to complete a
number of tasks sequentially (Gupta et al., 2019). This work uses the Franka Kitchen environment in
a slightly different manner where each of the available tasks in Franka Kitchen are used individually
to create a similar set of tasks to MT10 from Meta-World. This can be verified in Figure 6. Thus,
the agent only needs to solve one of the available tasks in a single environment. The default reward
function in Franka Kitchen is a sparse reward function where the agent only receives a reward for
solving the task (Gupta et al., 2019).

Figure 6: Franka Kitchen environment, image from (Gupta et al., 2017).

B EVALUATION PROCEDURE

We evaluate the performance and transfer capabilities of the RL agent in two domains: Meta World
(Yu et al., 2021) and Franka Kitchen (Gupta et al., 2019)(see Section A.2 and A.3). In all experi-
ments, we report the success rate across 100 episodes per task with 50,000 gradient steps each to
ensure that our results are statistically significant. These results are reported across 2 different ran-
dom seeds. For our multitask policy πθ(a|s, t), the task identifier t is a one-hot encoding of the task
to inform the agent what task it is solving.

In addition to the success rate, we also report the number of gradient update steps to our policy that
it takes to learn specific tasks. In order to calculate the number of updates it takes to learn a task, we
choose a success threshold of 90%, once a policy learns a task past this threshold for the first time
we can then calculate the number of network gradient updates it took to learn this task. This value is
calculated by the following formula: C ∗GS ∗BS, where C is the current epoch, GS is the number
of gradient steps per epoch, and BS is the number of samples of data for this task.

C REWARD FUNCTION FOR FRANKA KITCHEN

The Franka Kitchen environment uses a sparse reward function that gives the agent a reward of 0.3
for completing the desired task and 0 otherwise. This limits the ability to do online RL as it is
extremely difficult for the agent to learn the correct sequence of actions to complete any of the tasks.
To overcome this challenge in creating our baseline approach, we adopt a modified version of the
dense reward function that is used in Meta-World for Franka Kitchen. Table 2 shows the mapping
between the Franka Kitchen task to be solved and the reward function used from Meta-World to
provide dense rewards.
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Table 2: Dense reward functions used for Franka Kitchen from Meta-World.

Franka Kitchen task Meta-World Reward Function

Microwave Door Open
Right Hinge Door Door Open
Left Hinge Door Door Open
Light Switch Sweep
Top Right Burner Dial Turn
Top Left Burner Dial Turn
Bottom Right Burner Dial Turn
Bottom Left Burner Dial Turn
Slide Cabinet Push
Kettle Pick Place

Some slight modifications are made to the reward functions to use them in Franka Kitchen. Both
Meta-World and Franka Kitchen were designed using Mujoco. However, the objects that a RL
agent interacts with in Meta-World are Mujoco bodies, while most of the Franka Kitchen objects
are attached to bodies. The exception to this in Franka Kitchen is the kettle as it is a body itself. To
overcome this issue, the reward functions for each task are modified slightly to use different Mujoco
sites of the object of interest. For example, the microwave reward function uses the handle site as a
method of determining how open or closed the door is. We refer the interested reader to our public
implementation for further details on how the reward function was modified to use sites. To denote
that a task has been completed, we used a threshold of 5 cm.

D FINE TUNING EXPERIMENTS DETAILS

To ensure that we could fine tune pre-trained policies and value functions across environments, there
are some extra steps that had to be taken. The first step is to ensure that state and action spaces had
the same dimensionality. In order to do this, we have padded the Meta-World states with zeros to
match the dimensions of the Franka Kitchen state. We also had to pad the Meta-World actions with
zeros to match the dimensions of the Franka Kitchen actions. Initially, we naively pad the states with
zeros for the last dimensions, leaving the state intact. We find that this led to limited performance
because when we transfer to a new environment the order of the input state vector was different from
what the policy and value functions are trained on. In order to align these input features we spliced
the state, one-hot ID, and goal together in the same method across the environments. We also find
that aligning the one-hot IDs across environments was important to our success. In our original
experimentation, we did not assign similar tasks with equal one-hots IDs. We show the alignment of
tasks across environments with the same one-hot IDs in Table 3. Once we did this alignment, along
with the padding of state spaces, we were able to fine-tune the pre-trained policy and value-functions
effectively as outlined in our results.

Table 3: Environments that were aligned across MW and FK are shown. The Button Press Topdown,
Window Close, Peg Insert Side, Reach, Drawer Open, Top Right Burner, Top Left Burner, Bottom
Right Burner, and Bottom Left Burner tasks all received unique one-hot IDs.

Franka Kitchen task(s) Meta-World task(s)

Slide Cabinet Drawer Close
Kettle Pick Place
Left Hinge Door, Right Hinge Door, Microwave Door Open
Light Switch Push

To pre-train an agent in an environment, we first modify the state space as mentioned above. Once
this step is completed, we use MTMHSAC to pre-train the agent for 10000 epochs. During this
training, the agent is evaluated using the evaluation procedure outlined in Appendix B. Once the
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Figure 7: The mean loss of the value functions when fine tuning on FK or MW.

agent has been trained, we then load the agent’s parameters that had the highest success rate during
pre-training as a starting point in the new environment. All parameters are trained, while the last
layer of the policy is randomly initialized because this layer is directly related to the action size of
an environment.

E IMPLEMENTATION AND COMPUTE DETAILS

Code will be open-sourced upon acceptance.

F NETWORK UPDATES DATA

Table 4: Millions of network updates for each training procedure on Meta-World tasks. This number
is based on how many network updates it took to get to a 90% success rate. 0’s indicate that the task
was not learned in that training configuration.

Task Single Environment FK&MW(50/50) High FK High MW
Door Open 32.0 168.5 46.9 69.1
Drawer Close 6.4 10.7 2.4 11.5
Drawer Open 42.7 211.2 24.8 53.9
Window Open 25.6 185.6 46.9 72.7
Window Close 14.9 155.7 43.7 64.8
Peg Insert Side 0.0 0.0 0.0 0.0
Pick Place 0.0 0.0 0.0 0.0
Push 0.0 0.0 0.0 140.8
Button Press Topdown 49.1 215.5 91.7 110.9
Reach 17.1 19.2 12.7 27.9
Total Network Updates 187.7 966.4 269.1 551.7
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Table 5: Millions of network updates for each training procedure on Franka Kitchen tasks. This
number is based on how many network updates it took to get to a 90% success rate. 0’s indicate that
the task was not learned in that training configuration.

Task Single Environment FK&MW(50/50) High FK High MW
Slide Cabinet 14.9 19.2 11.5 4.3
Microwave 76.8 147.2 38.3 71.5
Top Right Hinge Cabinet 0.0 0.0 0.0 0.0
Top Left Hinge Cabinet 125.9 243.2 0.0 0.0
Top Right Burner 19.2 0.0 0.0 0.0
Top Left Burner 185.6 0.0 0.0 0.0
Bottom Right Burner 6.4 0.0 0.0 68.4
Bottom Left Burner 138.7 0.0 0.0 0.0
Kettle 0.0 0.0 0.0 0.0
Light Switch 14.9 125.9 110.1 41.2
Total Network Updates 582.4 535.5 159.9 185.4

Table 6: Millions of gradient updates for pre-training on Meta-World, or pre-training on Franka
Kitchen then fine-tuning on Meta-World. The pre-train on MW policy is then fine-tuned on Franka
Kitchen for Table 7. This number is based on how many network updates it took to get to a 90%
success rate. 0’s indicate that the task was not learned in that training configuration.

Task Single Environment Pre-train on MW Fine-Tune on MW
Door Open 32.0 25.6 59.7
Drawer Close 6.4 6.4 6.4
Drawer Open 42.7 106.7 209.1
Window Open 25.6 44.8 21.3
Window Close 14.9 23.5 10.7
Peg Insert Side 0.0 0.0 0.0
Pick Place 0.0 0.0 0.0
Push 0.0 238.9 0.0
Button Press Topdown 49.1 117.3 91.7
Reach 17.1 102.4 102.4
Total Network Updates 187.7 665.6 501.3

Table 7: Millions of gradient updates for pre-training on Franka Kitchen, and pre-training on Meta-
World and then fine-tuning on Franka Kitchen. The pre-train on FK policy is then fine-tuned on
Meta-World for Table 6. This number is based on how many network updates it took to get to a 90%
success rate. 0’s indicate that the task was not learned in that training configuration.

Task Single Environment Pre-train on FK Fine-tune FK
Slide Cabinet 14.9 12.8 134.4
Microwave 76.8 185.6 0.0
Top Right Hinge Cabinet 0.0 0.0 0.0
Top Left Hinge Cabinet 125.9 200.5 0.0
Top Right Burner 19.2 38.4 179.2
Top Left Burner 185.6 0.0 0.0
Bottom Right Burner 6.4 72.5 0.0
Bottom Left Burner 138.7 0.0 0.0
Kettle 0.0 0.0 0.0
Light Switch 14.9 14.9 21.3
Total Network Updates 582.4 0.0 334.9
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