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Abstract
Online advertising is a vital revenue source for
major internet platforms. Recently, joint adver-
tising, which assigns a bundle of two advertis-
ers in an ad slot instead of allocating a single
advertiser, has emerged as an effective method
for enhancing allocation efficiency and revenue.
However, existing mechanisms for joint advertis-
ing fail to realize the optimality, as they tend to
focus on individual advertisers and overlook bun-
dle structures. This paper identifies an optimal
mechanism for joint advertising in a single-slot
setting. For multi-slot joint advertising, we pro-
pose BundleNet, a novel bundle-based neural net-
work approach specifically designed for joint ad-
vertising. Our extensive experiments demonstrate
that the mechanisms generated by BundleNet ap-
proximate the theoretical analysis results in the
single-slot setting and achieve state-of-the-art per-
formance in the multi-slot setting. This signifi-
cantly increases platform revenue while ensuring
approximate dominant strategy incentive compat-
ibility and individual rationality.

1. Introduction
Online advertising emerges as the principal revenue source
for internet platforms like Google, Amazon, and Facebook.
With online advertising revenue reaching approximately
$225 billion in 2023, it plays a critical role in sustaining
the growth and development of these platforms. A preva-
lent method for allocating advertisement slots is sponsored
search auctions, wherein advertisers submit bids to the plat-
form. The platform subsequently employs predefined auc-
tion mechanisms to determine ad placements and pricing.
Maximizing the monetization efficiency of advertising traf-
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fic thus becomes a fundamental research direction for these
companies.

In recent years, a novel auction scenario known as “joint
advertisement” emerge on online advertising platforms such
as Facebook (Facebook, 2024). This joint advertisement
scenario (Ma et al., 2024), where both stores and brands
contribute to a bundle for advertising, allows for a more
integrated approach to advertisement placement. As illus-
trated in Figure 1, in traditional advertising pages, each
product is bid on solely by the retailer as a single bidder.
However, in joint advertisement, the retailer and the supplier
jointly bid on an ad. The ranking of the advertisement is
thus influenced by the combined bid rather than by a single
party’s bid, and the platform can charge both participants
accordingly. By accommodating the interests of multiple
stakeholders—including platforms, retailers, and brand sup-
pliers—joint advertisements create a mutually beneficial
ecosystem, fostering a win-win situation for all parties in-
volved.

Existing approaches for improving revenue in joint adver-
tisements can be categorized into two types: the first is the
use of Vickrey-Clark-Groves (VCG) mechanism (Vickrey,
1961; Clarke, 1971; Groves, 1973; Ma et al., 2024) and
VCG-like mechanisms such as JAMA (Ma et al., 2024),
and the second is the application of automated mechanism
design methods to joint advertisements, known as JRegNet
(Zhang et al., 2024). Compared to VCG, JAMA struggles
to adapt to the flexible and complex bipartite relationships
between retailers and suppliers that often arise in joint ad-
vertisement scenarios. JRegNet, on the other hand, suffers
from poor model generalization and robustness, and in many
cases, its performance is inferior to VCG, leading to reduced
rather than increased revenue.

Nevertheless, these methods have the following issues:

• These methods are similar to traditional methods in that
they only establish incentive compatibility (IC) in the
brand (or store) dimension. However, in the scenario of
joint advertising, the final ad slot will be allocated to a
bundle consisting of a brand and a store. Previous work
did not fully characterize the bundle, resulting in space
for optimization in the actual ad slot allocation process.

• In addition, since these methods cannot ensure the perfect
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Figure 1. A Comparison Between the Traditional Advertising Model and the Joint Advertising Model.The image on the left illustrates
traditional advertising, where the retailer submits a bid for the ad, while the supplier (brand owner) does not participate in the auction. In
this case, the platform only receives the bid from the retailer. In contrast, as shown in the right image, for a joint advertisement, both the
retailer and the supplier participate in the auction. They submit bids simultaneously, and the platform receives bids from both parties.

fulfillment of IC when maximizing the platform’s revenue,
the regret value is used to measure the degree of IC viola-
tion. Although the lower the regret value, the closer the
mechanism is to the optimal, it may not be close to the
optimal in the parameter space, so there is the possibility
of a locally optimal solution.

To address these challenges, we propose a novel and ef-
ficient automated mechanism learning approach, termed
BundleNet, specifically tailored for joint advertisements.

Concretely, the contributions of our paper can be summa-
rized as follows:

First, we identify the optimal mechanism for single-slot joint
advertisement. Additionally, we propose a novel neural net-
work architecture and introduce a new IC constraint method
for multi-slot joint advertisements. Our approach not only
improves platform revenue but also ensures approximate
IC and individual rationality (IR). Extensive experiments
demonstrate that our method achieves state-of-the-art per-
formance.

2. Related Work
In traditional advertising auctions, the generalized second
price (GSP) auction, following early work (Aggarwal et al.,
2006; Varian, 2007), has been popular in the past two
decades for its simplicity, feasibility, and good revenue

(Edelman et al., 2007). Variations like adding reserved
prices (Thompson & Leyton-Brown, 2013; Roberts et al.,
2016) and “squashing” (Lahaie & Pennock, 2007; Charles
et al., 2016) have been introduced to boost revenue. But
GSP lacks the IC property.

In auction mechanism design, Myerson (Myerson, 1981)
characterized the revenue maximizing single-parameter auc-
tion mechanism. However, the multi-parameter optimal
auction design problem remains unsolved even after 40
years. Automated mechanism design (Conitzer & Sandholm,
2002; 2004; Sandholm & Likhodedov, 2015) addresses the
multi-item, multi-bidder auction design challenge by find-
ing approximate optimal solutions. There are three main ap-
proaches in this field: the RegretNet-like approach (Dütting
et al., 2024; Curry et al., 2020; Peri et al., 2021; Rahme et al.,
2021; Duan et al., 2022; Ivanov et al., 2022) constructing IC
constraints; the affine maximizer auctions (AMA) (Roberts,
1979) and related methods (Likhodedov & Sandholm, 2004;
Guo et al., 2017; Curry et al., 2022; Duan et al., 2023) mod-
ifying allocation with weights for higher revenue; and the
approach characterizing utility functions for IC and strategy-
proofness (Dütting et al., 2024; Shen et al., 2019; Wang
et al., 2024). Automated mechanism design is increasingly
used in online advertising auctions (Zhang et al., 2021; Liu
et al., 2021; Liao et al., 2022).

(Ma et al., 2024) proposed the joint advertisement setting,
a Revised VCG mechanism for revenue improvement, and
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JAMA (a menu-based AMA approach (Curry et al., 2022))
to further increase revenue. Our approach is closer to JReg-
Net (Zhang et al., 2024), a RegretNet-like method for joint
ads. JRegNet encodes bipartite relationships in neural net-
works and transforms allocation to payment functions, out-
performing VCG in small-bidder bipartite settings. But both
JAMA and JRegNet have limitations. JAMA can’t adapt to
complex bipartite relationships in joint ads, and JRegNet has
poor generalization in large, complex scenarios. (Aggarwal
et al., 2024) proposed learning algorithms for repeated joint
ads to minimize regret and maximize revenue in different
environments, not focusing on single-round ad revenue.

3. Preliminaries
In this section, we mainly introduce the basic setting of joint
advertising system.

In the context of joint advertisements, the sets of re-
tailers R and suppliers S are mutually exclusive, with
R ∩ S = ∅. When a user submits a query, the advertis-
ing system retrieves n advertisements represented by the
set E = {e1, . . . , en}, where each advertisement links a
retailer r ∈ R with a supplier s ∈ S. Simultaneously, there
are m slots M = {1, . . . ,m} available for displaying ad-
vertisements. The click-through rate (CTR) for the k-th
slot is denoted as λk, where k ∈ M , and we assume that
the CTRs are ordered such that 0 ≤ λm ≤ · · · ≤ λk ≤
· · · ≤ λ1 ≤ 1. We represent these CTRs using a vector,
λ = (λ1, . . . , λm).The relationship between R and S is
modeled as a bipartite graph G = (R,S,E), with edges
E ⊆ R× S representing advertisements.

The joint valuation distribution domain is defined as V =
V R × V S , where V R represents the domain of all pos-
sible retailer valuation distributions, with vR = (vr)r∈R,
and V S is the domain of all possible supplier valuation
distributions, with vS = (vs)s∈S . Retailer valuations vr
and supplier valuations vs are independently drawn from
their respective cumulative distribution functions Fr and Fs,
with probability density functions fr(vr) and fs(vs). The
domain excluding retailer r is V−r = V R

−r × V S , where
V R
−r =

∏
r′∈R\{r} V

R
r′ , and the domain excluding supplier

s is V−s = V R × V S
−s, where V S

−s =
∏

s′∈S\{s} V
S
s′ .

The auctioneer knows the distribution F = (Fi)i∈R∪S , but
not the realized valuation profile v = (vi)i∈R∪S . Bidders
report their valuations as bids b = (bi)i∈R∪S , where br ∈
Vr for retailer r and bs ∈ Vs for supplier s. The auctioneer’s
personal value for each slot, if unallocated, is denoted by
v0.

Joint advertisements involving retailers or suppliers are de-
fined as Er = {(r∗, s) ∈ E | r∗ = r} for retailer r and
Es = {(r, s∗) ∈ E | s∗ = s} for supplier s. Excluded
joint advertisements are denoted as E−r and E−s, repre-

senting bundles that exclude a specific retailer r or supplier
s, respectively.
Definition 3.1 (Joint Auction Mechanism). The Joint Auc-
tion Mechanism is represented by a pair of rules M =
(x, p). The allocation rule of bundle e is denoted by
xe : V → 2M , and the payment rule of bidder i for bundle e
is denoted by pei : V → R≥0. The joint auction mechanism
M = (x, p) is then defined with the following components:

1. Allocation and Payment Rules: For each bundle e =
(r, s) ∈ E, the allocation and payment are shared be-
tween the participating bidders r ∈ R and s ∈ S as
follows:

xe(v) = xe
r(v) = xe

s(v), ∀e = (r, s) ∈ E,

pe(v) = per(v) + pes(v), ∀e = (r, s) ∈ E.

The total allocation and payment for a participant i ∈
R ∪ S are:

xi(v) =
∑
e∈Ei

xe(v), pi(v) =
∑
e∈Ei

pei (v). (1)

Since each slot can only be allocated to a single bundle,
the allocation must satisfy the constraint:∑

e∈E

xe(v) ≤ 1m. (2)

2. Expected Quasilinear Utility: The expected utility for
a participant i ∈ R ∪ S is given by:

Ui(vi, v
′
i) = Ev−i∼V−i

[
vixi(v

′
i, v−i)λ

T − pi(v
′
i, v−i)

]
.

3. Incentive Compatibility: A mechanism satisfies IC if:

Ui(vi, vi) ≥ Ui(vi, v
′
i), ∀i ∈ R ∪ S, vi, v

′
i ∈ Vi.

4. Individual Rationality: A mechanism satisfies IR if:

Ui(vi, vi) ≥ 0, ∀i ∈ R ∪ S, vi ∈ Vi.

5. Expected Revenue: The expected total revenue of the
mechanism is:

U0 = Ev∼V

[
v0

(
1−

∑
e∈E

xe(v)

)
λT +

∑
e∈E

pe(v)

]
.

4. Optimal Joint Auction Design with Single
Slot

We say that a mechanism M is feasible if and only if the
mechanism M satisfies the conditions of IR and IC. For the
single-item environment, the most well-known theory for
this case is Myerson’s Lemma (Myerson, 1981), which pro-
vides a necessary and sufficient condition for the feasibility
of a mechanism.
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Lemma 4.1 (Myerson’s Lemma). In the single-item setting,
a mechanism (x, p) is feasible if and only if the following
conditions hold:

(a) An allocation rule x is monotonically non-decreasing.

(b) If x is value-monotonic, then there is a unique payment
rule p for which (x, p) is IR and IC and the winner
pays her critical bid and the losers pay zero.

Extending this framework to a single-slot joint advertise-
ment scenario, the feasibility conditions remain consistent
with traditional auction mechanisms. The primary differ-
ence lies in the allocation and payment rules, which are
adapted to account for joint advertisement characteristics.
Myerson-like mechanisms can thus be applied to the joint
advertisement setting through appropriate modifications.

In this paper, we consider distributions that satisfy the regu-
lar condition, which is crucial in Myerson’s auction theory:
Definition 4.2. A distribution V is termed regular if its
associated virtual value function

c(v) = v − 1− F (v)

f(v)

is monotonically increasing function of v in the support of
V .

To formulate these modifications, we first introduce the
concept of bundles and neighbors, which are critical for
defining the allocation and payment rules in the optimal
joint auction mechanism. The neighbors of a node are
defined as N(r) = {s ∈ S | (r, s) ∈ E} for retailer
r and N(s) = {r ∈ R | (r, s) ∈ E} for supplier s.
These structures allow us to define the virtual value func-
tions for retailers and suppliers as cr(vr) = vr − 1−Fr(vr)

fr(vr)

and cs(vs) = vs − 1−Fs(vs)
fs(vs)

, respectively. Using these
virtual values, we identify the maximum adjacent nodes,
where sMr = argmaxs∈N(r) cs(vs) for retailer r and rMs =
argmaxr∈N(s) cr(vr) for supplier s. The corresponding
bundles are eMr = (r, sMr ) and eMs = (rMs , s), and the vir-
tual value of a bundle e = (r, s) is defined as the sum of
the virtual values of its nodes: ce(vr, vs) = cr(vr)+ cs(vs).
These bundle and neighbor definitions serve as the foun-
dation for the allocation and payment rules in the optimal
mechanism.

Building on these structures, we establish the necessary and
sufficient conditions for an optimal joint auction mechanism
in the single-slot scenario. The optimal mechanism aims to
achieve both feasibility (satisfying IR and IC) and revenue
maximization.
Theorem 4.3. For the single-slot joint advertisement with
regular bidders, A deterministic joint auction mechanism
M is optimal if and only if for all i ∈ R ∪ S,

(i) Step Function:

xM
i (vi, v−i) =

{
1 if vi > v̂i(v−i)

0 otherwise
.

(ii) Critical Value:

pMi (vi, v−i) =

{
v̂i(v−i) if vi > v̂i(v−i)

0 otherwise
.

where the critical value v̂i(v−i) is defined as follows:

• For i ∈ R, the critical value v̂r(v−r) is:

v̂r(v−r) = inf{br |ce
M
r (br, vsMr ) ≥ v0∧

ce
M
r (br, vsMr ) ≥ cê(vr̂, vŝ),∀ê ∈ E−r}.

• For i ∈ S, the critical value v̂s(v−s) is defined similarly:

v̂s(v−s) = inf{bs|ce
M
s (vrMs , bs) ≥ v0∧

ce
M
s (vrMs , bs) ≥ cê(vr̂, vŝ),∀ê ∈ E−s}.

See Appendix B for detailed proofs.

5. Optimal Joint Auction Design as Learning
Problem

In multi-slot joint advertisement, bids for bundles are jointly
determined by two bidders, making them interdependent
and challenging to handle. To address this, we propose
BundleNet, a novel neural network architecture with a cor-
responding learning methodology for optimal mechanism
design. Section 5.1 introduces a bundle-based IC constraint,
Section 5.2 details BundleNet’s architecture, and Section
5.3 elaborates on its loss function and training process.

5.1. Differentiable Approximation Approach for Joint
Auction Design

In the domain of automated mechanism design, particularly
within the class of RegretNet-based approaches (Dütting
et al., 2024; Duan et al., 2022; Ivanov et al., 2022; Zhang
et al., 2024), the optimization problem typically involves
balancing two conflicting objectives: maximizing revenue
and minimizing regret. The trade-off between these objec-
tives is controlled by hyperparameters, such as the initial
values and schedules of the Lagrangian multipliers.

In the context of joint advertisements, (Zhang et al., 2024)
extended this framework by introducing IC constraints for
all participants, including both retailers and suppliers. Their
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model is formalized as:

min
w∈Rd

− Ev∼V

[ ∑
i∈R∪S

pi(v;w)

]
s.t. rgti(w) = 0, ∀i ∈ R ∪ S,

where w represents the parameters of the neural network
used for the automated mechanism. The regret function
rgti(w) is defined as:

rgti(w) = Ev∼V

[
max
v′
i∈Vi

ui(vi; (v
′
i, v−i);w)− ui(vi; (vi, v−i);w)

]
.

In joint advertisement scenarios, the bidding strategies of
bidders have different impacts on the mechanism, as their de-
grees in the bipartite graph are not identical. However, from
the perspective of bundles in joint advertisements, we ob-
serve that the properties of each bundle are generally similar.
Each bundle contains bids from both retailers and suppli-
ers. Therefore, we propose redefining the IC constraints by
constructing them for bundles instead of individual bidders.
Although it may seem that a bundle, consisting of both re-
tailers and suppliers, could be modeled as a two-parameter
auction problem, the bundle itself does not have a strategy:
It depends on the bidding strategies of the connected retailer
and supplier. As a result, directly defining an IC constraint
for bundles is highly challenging. To address this, we pro-
pose a method to expand the feasible domain, which derives
an IC constraint from the bundle’s perspective. The key
feature of this new constraint is that it encloses the feasible
region defined by the original IC constraints. By forcing the
new constraint to approach zero, the original IC constraints
also approach zero, ultimately ensuring the incentive com-
patibility of the entire mechanism. We define the ex-post
regret for bundles as follows:

rgte(w) =

Ev∼V

[
max
v′
r∈Vr

{ue
r(vr, (v

′
r, v−r);w)− ue

r(vr, (vr, v−r);w)}

+ max
v′
s∈Vs

{ue
s(vs, (v

′
s, v−s);w)− ue

s(vs, (vs, v−s);w)}
]
.

Lemma 5.1 demonstrates the relationship between the origi-
nal constraints and the newly introduced constraints:

Lemma 5.1. In a joint advertisement, the sum of the IC
constraints for bundles is always greater than or equal to the
sum of the IC constraints for individual bidders, as follows:∑

i∈R∪S

rgti(w) ≤
∑
e∈E

rgte(w).

The detailed proof is provided in Appendix C. IC constraints
are designed to penalize situations where the utility from

misreporting exceeds that of truthful reporting. When the
utility from misreporting is less than the utility from truth-
ful bidding, the IC constraint becomes inactive. Therefore,
rgti(w) ≥ 0. When the sum of penalties imposed by the
bundle IC constraints approaches zero, the IC penalties for
all bidders also approach zero. With Lemma 5.1 guarantee-
ing the desired properties, we reformulate the optimal joint
advertisement design as the following constrained optimiza-
tion problem:

min
w∈Rd

− Ev∼V

[∑
e∈E

pe(v;w)

]
(3)

s.t. rgte(w) = 0, ∀e ∈ E.

To solve this, we aim to use sampling-based methods to
learn the mechanism M = (x, p). Given a sample S of L
valuation profiles drawn from a distribution F , we estimate
the ex-post regret for each bundle as:

r̂gt
e
(w) =

1

L

L∑
ℓ=1

[
max
v′
r∈Vr

{
ue
r

(
v(ℓ)r , (v′r, v

(ℓ)
−r);w

)
− ue

r

(
v(ℓ)r , v(ℓ);w

)}
+ max

v′
s∈Vs

{
ue
s

(
v(ℓ)s , (v′s, v

(ℓ)
−s);w

)
− ue

s

(
v(ℓ)s , v(ℓ);w

)}]
.

Finally, we reformulate the original optimization problem
as minimizing the empirical loss of negated revenue, subject
to the constraint that the empirical ex-post regret for all
bundles is zero:

min
w∈Rd

− 1

L

L∑
ℓ=0

∑
e∈E

pe(v(ℓ);w) (4)

s.t. r̂gt
e
(w) = 0, ∀e ∈ E.

Additionally, we utilize a neural network architecture to
ensure that the mechanism satisfies the conditions of IR in
Sec 5.2.

5.2. Neural Network Architecture

This section introduces our neural network-based approach
for mechanism design in joint advertisements. Our archi-
tecture comprises two primary components: Allocation
Network and Payment Network . As illustrated in Figure
2, we employ a graph-based approach to model the inter-
actions between retailers and suppliers effectively. This
process, termed Graph Feature Fusion, involves aggregat-
ing node features from a bipartite graph into edge features
that capture the combined characteristics of retailer-supplier
pairs (bundles).

Each node in the bipartite graph G = (R,S,E) is associated
with a feature vector representing the bidder’s cost per click
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Figure 2. The neural network architecture BundleNet. Details are shown in Sec 5.2.

(CPC), defined as Xr = brλ ∈ Rm
≥0 for retailer r or Xs =

bsλ ∈ Rm
≥0 for supplier s.

To capture the combined influence of retailers and suppliers
on each bundle, we aggregate their node features into edge
features, which we refer to as Divided Bids for the Bundle.
This process is mathematically formalized as follows:

DBe = [Xr, Xs] ∈ R2m
≥0 , ∀e = (r, s) ∈ E,

where e = (r, s) represents an edge between a retailer r and
a supplier s. We denote DBE as the features of all edges in
the bipartite graph.

By summing up the aggregated edge features, we derive the
Stacked Bids for the Bundle, which is defined as

SBe = Xr +Xs ∈ Rm
≥0, ∀e = (r, s) ∈ E.

Similarly, we use SBE to represent the aggregated features
of all edges in the bipartite graph.

In the Allocation Network, similar to RegretNet, we uti-
lize a doubly stochastic matrix approach to ensure that each
bundle is allocated to exactly one slot and each slot is as-
signed to only one bundle, reflecting the joint advertisement
scenario. A key property of doubly stochastic matrices is
encapsulated in the following lemma:

Lemma 5.2 ((Dütting et al., 2024)). The matrix ϕDS(x, x′)
is doubly stochastic ∀x, x′ ∈ Rnm. For any doubly stochas-
tic matrix a ∈ [0, 1]nm, there exist x, x′ ∈ Rnm, for which
a = ϕDS(x, x′).

aij = ϕDS
ij (x, x′) = min

{
exij∑n+1

k=1 e
xkj

,
ex

′
ij∑m+1

k=1 ex
′
ik

}
.

The aggregated edge features SBE , serve as the input to
a multi-layer perceptron (MLP), producing an intermedi-
ate output denoted as Y ∈ Rdy , where dy represents the
dimensionality of the output feature space:

Y = MLP(SBE) ∈ Rdy .

The output Y contains values that reflect the potential
allocation results for each bundle across available slots.
To normalize these values, we apply two distinct trans-
formations using matrices Wrow ∈ Rdy×(n+1)(m+1) and
Wcol ∈ Rdy×(n+1)(m+1).

The first transformation involves multiplying Y by Wrow,
resulting in a matrix that captures the allocation potential
for each slot:

MR = YWrow ∈ R(n+1)(m+1).

Next, we apply the row-wise softmax function to R. The
softmax function transforms the raw scores into a probability
distribution across the bundles for each slot.

DRij =
exp(MRij)∑m+1

k=1 exp(MRik)
, ∀i ∈ {1, . . . , n+ 1}.

Similarly, we perform a second transformation by multiply-
ing Y by Wcol:

MC = YWcol ∈ R(n+1)(m+1).

We then apply the column-wise softmax function to C. For
each column j in C, the softmax is defined as:

DCij =
exp(MCij)∑n

k=1 exp(MCk,j)
, ∀j ∈ {1, . . . ,m+ 1}.
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Alg. Setting

U2 U3 U4 U5 E2 E3 E4 E5

Ours
BundleNet 0.5286 0.6681 0.7805 0.8802 0.4248 0.5460 0.6354 0.7215
IC Violation 0.0006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

IC Baselines
RVCG 0.3811 0.6003 0.7455 0.8607 0.2820 0.4649 0.5927 0.7041
Optimal 0.5247 0.6705 0.7826 0.8819 0.4249 0.5479 0.6470 0.7376

Baselines with IC Violation
JRegNet 0.5622 0.7287 0.7791 0.7882 0.4727 0.5892 0.6306 0.6943
IC Violation 0.00054 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 1. The experimental results compare BundleNet, JRegNet, Revised VCG, and the Optimal Mechanism as the number of bundles
increases under different settings in the single-slot scenario with CTR λ = (1). The notations U2, U3, U4, U5 represent cases where
the number of bundles is 2, 3, 4 and 5, respectively, under the uniform distribution U(0, 1). Similarly, E2, E3, E4, E5 correspond to
scenarios with 2, 3, 4 and 5 bundles under the truncated exponential distribution E(2). In this table, we use bold to indicate the method
among BundleNet, JRegNet, and RVCG that is closest to the optimal mechanism, rather than the one with the highest revenue.

Finally, to ensure consistency in the allocation, we take
the element-wise minimum of the two resulting matrices to
obtain the final allocation matrix A, where:

Aij = min(DRij , DCij), ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

In the Payment Network, to ensure that the auction satis-
fies ex-post IR, we generate normalized payments for each
bundle corresponding to the retailer and supplier, denoted
as p̃ir and p̃is ∈ [0, 1]. We employ an MLP with a Sigmoid
activation function in the final layer to represent this map-
ping:

p̃ = Sigmoid(MLP(DBE)) ∈ R2n.

Subsequently, we derive the corresponding payments as
follows:

peir = p̃eir

m∑
j=1

AijXr[j],

peis = p̃eis

m∑
j=1

AijXs[j].

Finally, we can determine the payment for each participating
bidder in the advertising auction using the equations defined
in Equation (1).

5.3. Optimization and Training

We optimize the constrained objective (4) by introducing
the augmented Lagrangian method. Our loss function is
formulated as follows:

Lρ(w;µ) =

− 1

L

L∑
ℓ=1

∑
e∈E

pe(v(ℓ)) +
∑
e∈E

µer̂gt
e
(w) +

ρ

2

∑
e∈E

(
r̂gt

e
(w)
)2

.

where w represents the neural network parameters, λe

represents the Lagrangian multipliers associated with the
constraints, while ρ is a hyper-parameter controlling the
weight of the quadratic penalty term. During optimiza-
tion, we utilize the Adam optimizer to update our parame-
ters w as well as the misreports v′(ℓ)r and v

′(ℓ)
s in turn, i.e.,

we update wnew ∈ argminw Lρ(w
old, µold) and update

µnew
e = µold

e + ρ · rgte(wnew),∀e ∈ E. The detailed
algorithmic specifications can be found in Algorithm 1.

6. Experiments
In this chapter, we present empirical experiments to
demonstrate the effectiveness of BundleNet. All experi-
ments are conducted on a Linux machine equipped with
NVIDIA Graphics Processing Unit cores.

Baseline methods: We compare BundleNet with the fol-
lowing baselines:

• Optimal Joint Auction Mechanism, a Myerson-like
method for optimal mechanism design in joint advertising
auctions with a single slot (See Sec. 4).

• VCG (Vickrey, 1961; Clarke, 1971; Groves, 1973), a
classic mechanism satisfying DSIC and IR. In our experi-
ments, we apply the RVCG mechanism (Ma et al., 2024)
to the joint advertising.

• JRegNet (Zhang et al., 2024), a neural network architec-
ture for near DSIC mechanism design in the joint adver-
tising auction settings which can achieve the near-optimal
revenue.

Evaluation: We generate training and test data from dif-
ferent distributions. The training set consists of 204,800

7
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Alg. Setting

U5×5 U6×5 U7×5 U8×5 U9×5 U10×5 U11×5 U12×5

Ours
BundleNet 1.4982 1.7162 1.9233 2.0890 2.2210 2.4047 2.5649 2.6495
IC Violation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

IC Baseline
RVCG 0.8420 1.2854 1.6142 1.8831 2.0991 2.2800 2.4564 2.5868

Baselines with IC Violation
JRegNet 1.4972 1.6849 1.8244 1.9350 1.9804 1.9622 1.9763 1.9973
IC Violation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 2. The experimental results of BundleNet, JRegNet, RVCG as the number of bundles increases under different settings in the
multi-slots scenario. Similar to those of Table 1, the notation U5×5, · · · , U12×5 represent the settings where the number of bundles varies
from 5 to 12, while letting the CTRs of these 5 slots as (1, 0.8, 0.6, 0.4, 0.2). In all tables, we report the better performance of JRegNet
and BundleNet.

samples, while the test set contains 20,480 samples.
To assess the performance of each method, we utilize
the average empirical ex-post regret of the mechanism:
r̂gt := 1

2n

∑
i∈R∪S r̂gti. Since in real-world scenarios,

v0 = 0, we also consider empirical revenue: rev :=
1
L

∑L
ℓ=1

∑
e∈E pe(v(ℓ)). In all synthetic data experiments,

the joint relationship matrix between stores and brands is
randomly generated for each search request sample. We
evaluate the revenue performance of BundleNet, JRegNet,
and RVCG across different distributions.

6.1. Experimental Results for the Single Slot

The experimental setup considers the optimal joint auction
mechanism in a single-slot setting, evaluated under three
different probability distributions commonly studied in the
literature: Setting U: The uniform distribution U(0, 1). Set-
ting E: The truncated exponential distribution Exp(2) over
the interval (0, 1). Setting N: The truncated normal distribu-
tion N(0.5, 0.1) over the interval (0, 1). For each distribu-
tion, we examine auction scenarios with a varying number of
bundles, specifically ranging from 2 to 5, with a single-slot
CTR of 1.

The experimental results, reported in Table 1 and Table 3 ,
illustrate the performance of different auction mechanisms
under these settings. The experimental results demonstrate
that BundleNet consistently approximates the optimal mech-
anism across various settings, whereas JRegNet does not
always exhibit such proximity. This indicates that, although
both methods are based on RegretNet, BundleNet improves
upon it by modifying the neural network architecture and
optimization approach, enabling it to better learn the optimal
mechanism. We provide a visual analysis in the Appendix E.
The allocation results of BundleNet are much closer to the
optimal mechanism, while the allocation results of JRegNet
are significantly different from the optimal mechanism.

6.2. Experimental Results for the Multi-Slot

We have also conducted extensive experiments to evaluate
the performance of BundleNet under the multi-slot scenario
from experiments on real-world dataset (Zhang et al., 2024).

Concretely, we explore different variations of this setting,
where 10 bundles compete for 5 slots. We fix the number
of slots and vary the number of bundles to evaluate the
performance of BundleNet in comparison with baseline
mechanisms. The bidders’ value profiles are sampled from
three different probability distributions: Setting U, where
values follow the uniform distribution U(0, 1); Setting LN,
where values follow the truncated lognormal distribution
LN(0.1, 1.44) over the interval (0, 1); Setting N, where
values follow the truncated normal distribution N(0.5, 0.1)
over the interval (0, 1). For each distribution, we assess
different mechanisms by varying the number of bundles
from 5 to 12, while keeping the CTRs of the 5 slots fixed at
(1, 0.8, 0.6, 0.4, 0.2).

Regarding the experimental results for Setting U, as shown
in Table 2, we conclude that BundleNet achieves higher rev-
enue compared to other baseline mechanisms. BundleNet
consistently outperforms VCG across all scenarios, whereas
JRegNet surpasses VCG only in some cases. The experi-
mental results for Setting LN and Setting N, provided in
Appendix D.2, lead to similar conclusions.

7. Conclusion
We propose two solutions for the optimal mechanism design
in joint advertisement. The first solution in the single-slot
scenario, is a Myerson-based approach for the single-slot
scenario and an automated RegretNet-inspired method for
the multi-slot case. Empirical results show that BundleNet
learns a Myerson-like mechanism in the single-slot setting
and finds a near-optimal solution outperforming baselines
in the multi-slot setting.
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A. Optimization and Training Procedures

Algorithm 1 BundleNet Training
Input: Minibatches B1, . . . ,BT of size C
Parameters: ∀t, ρt > 0, γ > 0, η > 0, Γ ∈ N, K ∈ N
Initialize: w0 ∈ Rd, λ0 ∈ Rm

for t = 0 to T do
Receive Bt = {G(1), . . . , G(B)}
Initialize v

′(ℓ)
r ∈ Vr, v

′(ℓ)
s ∈ Vs, ∀ℓ ∈ [B], r ∈ R, s ∈ S

for r = 0 to Γ do
for ℓ = 1 to B do
∀ℓ ∈ [C], i ∈ R ∪ S :

v
′(ℓ)
i ← v

′(ℓ)
i + γ∇v′

i
[uw

i (v
(ℓ)
i ; (v′i, v

(ℓ)
−i ))]

∣∣
v′
i=v

′(ℓ)
i

end for
end for
Compute Lagrangian gradient and update wt

wt+1 ← wt − η∇wLρt(w
t, µt)

if t is a multiple of H then
µt+1
e ← µt

e + ρtr̂gt
e
(wt+1), ∀e ∈ E

else
λt+1 ← λt

end if
end for

B. Proof of Theorem 4.3
The joint auction with single slot remains a single-parameter auction, with the primary distinction from traditional auctions
lying in the allocation and payment rules. As a result, the necessary and sufficient conditions for a feasible auction, as
established in Myerson’s work (Myerson, 1981), still hold in this setting.Before presenting the proof, we first introduce
an assumption: suppose ai and bi are the lower and upper bounds of the domain of the probability density function fi for
bidder i. That is, vi ∈ [ai, bi]. Given a joint auction mechanism, we define Qi(vi) as:

Qi(vi) = Ev−i∼F−i
[xi(vi)], ∀i ∈ R ∪ S,

where represents the expected probability that bidder i wins, given their value estimate vi.
Lemma B.1 ((Myerson, 1981)). In the single-slot setting, a joint auction mechanism (x, p) is feasible if and only if the
following conditions hold:

(a) If v∗i ≤ vi, then Qi(v
∗
i ) ≤ Qi(vi), ∀i ∈ R ∪ S, vi, v

∗
i ∈ Vi.

(b) Ui(vi, vi) = Ui(ai, ai) +
∫ vi

ai
Q(z)dz, ∀i ∈ R ∪ S.

(c) Ui(vi, vi) ≥ 0, ∀i ∈ R ∪ S.

(d)
∑

e∈E xe(v) ≤ 1, xe(v) ≥ 0

M = (x, p) is an optimal joint auction mechanism if and only if it maximizes U0 while ensuring the feasibility of the
auction. We provide a simpler condition to characterize optimality.
Lemma B.2. Suppose that the function x : V → 2n maximizes the following objective:

max
M

∫
V

∑
e=(r,s)∈E

(
vr + vs −

1− Fr(vr)

fr(vr)
− 1− Fs(vs)

fs(vs)
− v0

)
xe(v)f(v)dv

s.t. pi(v) = vixi(v)−
∫ vi

ai

xi(z, v−i)dz, ∀i ∈ R ∪ S

If v∗i ≤ vi, then Qi(v
∗
i ) ≤ Qi(vi), ∀i ∈ R ∪ S, vi, v

∗
i ∈ Vi,∑

e∈E

xe(v) ≤ 1, xe(v) ≥ 0

(5)

11



Optimal Auction Design in the Joint Advertising

Then, the pair M = (x, p) represents an optimal joint auction.

Proof. To prove that the pair M = (x, p) represents an optimal joint auction, we analyze the expected revenue function U0

and show that it maximizes the given objective function while satisfying feasibility and incentive compatibility constraints.
The expected revenue U0 is given by:

U0 = Ev∼F

[
v0

(
1−

∑
e∈E

xe(v)

)
+
∑
e∈E

pe(v)

]
,

=

∫
V

v0f(v)dv +
∑
e∈E

(

∫
T

[per(v)− vrx
e
r(v)]f(v)dv +

∫
V

[pes(v)− vsx
e
s(v)]f(v)dv)

+
∑
e∈E

∫
V

xe(v)(vs + vr − v0)f(v)dv

(6)

Using the conclusion of Lemma B.1, we can simplify the following equation.∑
e∈E

∫
V

[per(v)− vrx
e
r(v)]f(v)dv =

∑
r∈R

∫
V

[pr(v)− vrxr(v)]f(v)dv

= −
∑
r∈R

∫ br

ar

[Ur(vr, vr)]fr(vr)dvr

= −
∑
r∈R

∫ br

ar

[Ur(ar, ar) +

∫ vr

ar

Qr(z)dz]fr(vr)dvr

= −
∑
r∈R

[Ur(ar, ar) +

∫ br

ar

∫ br

z

Qr(z)fr(vr)dvrdz]

= −
∑
r∈R

[Ur(ar, ar) +

∫ br

ar

(1− Fr(z))Qr(z)dz]

= −
∑
r∈R

[Ur(ar, ar) +

∫ br

ar

(1− Fr(vr))xr(vr)f−r(v−r)dv]

= −
∑
e∈E

[Ue
r (ar, ar) +

∫ br

ar

(1− Fr(vr))x
e
r(vr)f−r(v−r)dv]

(7)

Substituting Equation 7 into Equation 6 gives us:

U0 =

∫
V

v0f(v)dv +
∑

e=(r,s)∈E

∫
V

xe(v)(vs + vr −
1− Fr(vr)

fr(vr)
− 1− Fs(vs)

fs(vs)
− v0)f(v)dv

+
∑
r∈R

Ur(ar, ar) +
∑
s∈S

Us(as, as)

(8)

The first term in Equation 8 is a constant, while the third and fourth terms are always non-negative due to the IR property of
the auction. When these terms are equal to zero, the objective function reaches its maximum value without affecting the
value of the first and second terms. Thus, by setting the third and fourth terms to zero, we obtain:

pr(v) = vrxr(v)−
∫ vr

ar

xr(z, v−r)dz

ps(v) = vsxs(v)−
∫ vs

as

xs(z, v−s)dz

(9)
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Next, we proceed with the proof of Theorem 4.3:

Proof of Theorem 4.3. In this paper, we consider distributions that are regular. Since distributions in the regular class ensure
the monotonicity required by Lemma B.2, they guarantee the IC property of the joint auction. As a result, we can simplify
the objective function as follows: ∑

e=(r,s)∈E

(ce(vr, vs)− v0)x
e(v)

This implicitly indicates that the slot will be allocated to the bundle with the highest virtual value. For a single-slot joint
auction, each bidder’s bidding strategy depends solely on the neighbor node with the highest virtual value. This is because
any bundle formed with other neighbors has no chance of winning the auction. Therefore, for each bidder, their critical
value is given by:

• For i ∈ R, the critical value v̂r(v−r) is:

v̂r(v−r) = inf
{
br | ce

M
r (br, vsMr ) ≥ v0, and ce

M
r (br, vsMr ) ≥ cê(vr̂, vŝ),∀ê = (r̂, ŝ) ∈ E−r

}

• For i ∈ S, the critical value v̂s(v−s) is similarly:

v̂s(v−s) = inf{bs|ce
M
s (vrMs , bs) ≥ v0, and ce

M
s (vrMs , bs) ≥ cê(vr̂, vŝ),∀ê = (r̂, ŝ) ∈ E−s}

We take a node r ∈ R as an example. The allocation of all bundles connected to r is given by:

xeMr (br, v−r) =

{
1 if br ≥ v̂r(v−r)

0 if br < v̂r(v−r)

xe∗(br, v−r) = 0, ∀e∗ ∈ Er \ {eMr }

Thus, we can derive the allocation result for r as follows:

xr(br, v−r) = xeMr (br, v−r) +
∑

e∗∈Er/{eMr }

xe∗(br, v−r) =

{
1 if br ≥ v̂r(v−r)

0 if br < v̂r(v−r)

We can derive the final payment result by solving the payment formula based on the Equation 9. We integrate the allocation
rule to determine the payment function. Thus, the final payment for bidder r is given by:

pr(br, v−r) =

{
zr(v−r) if br ≥ v̂r(v−r)

0 if br < v̂r(v−r)

For a node s ∈ S, the conclusion follows similarly. The allocation and payment rules apply symmetrically due to the
structure of the joint auction mechanism, where each participant’s strategy depends on their highest virtual value neighbor.

Thus, the proof is complete.
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C. Proof of Lemma 5.1
Proof. ∑

i∈R∪S

rgti =
∑

i∈R∪S

Ev∼F

[
max
v′
i∈Vi

ui(vi; (v
′
i, v−i);w)− ui(vi; (vi, v−i);w)

]

=
∑
r∈R

Ev∼F

[
max
v′
r∈Vr

ur(vr; (v
′
r, v−r);w)− ur(vr; (vr, v−r);w)

]
+

∑
s∈S

Ev∼F

[
max
v′
s∈Vs

us(vs; (v
′
s, v−s);w)− us(vs; (vs, v−s);w)

]

=
∑
r∈R

Ev∼F

[
max
v′
r∈Vr

∑
e∈Er

ue
r(vr; (v

′
r, v−r);w)−

∑
e∈Er

ue
r(vr; (vr, v−r);w)

]

+
∑
s∈S

Ev∼F

[
max
v′
s∈Vs

∑
e∈Es

ue
s(vs; (v

′
s, v−s);w)−

∑
e∈Es

ue
s(vs; (vs, v−s);w)

]

≤
∑
e∈E

Ev∼F

[
max
v′
r∈Vr

ue
r(vr; (v

′
r, v−r);w)− ue

r(vr; (vr, v−r);w)

]
+

∑
e∈E

Ev∼F

[
max
v′
s∈Vs

ue
s(vs; (v

′
s, v−s);w)− ue

s(vs; (vs, v−s);w)

]
=

∑
e=(r,s)∈E

rgte(w)

(10)

D. Additional Experiments
D.1. Experimental Results Under Single-Slot Setting N

Alg. Setting

N2 N3 N4 N5

Ours
BundleNet 0.7750 0.8692 0.9134 0.9561
IC Violation < 0.001 < 0.001 < 0.001 < 0.001

IC Baselines
RVCG 0.5492 0.8114 0.8956 0.9444
Optimal 0.7789 0.8656 0.9188 0.9582

Baselines with IC Violation
JRegNet 0.8183 0.9091 0.8747 0.9117
IC Violation < 0.001 < 0.001 < 0.001 < 0.001

Table 3. The experimental results compare BundleNet, JRegNet, Revised VCG, and the Optimal Mechanism as the number of bundles
increases under different settings in the single-slot scenario with CTR λ = (1). The notations N2, N3, N4, N5 represent cases where
the number of bundles is 2, 3, 4 and 5, respectively, under the normal distribution N(0.5, 0.1). In this table, we use bold to indicate the
method among BundleNet, JRegNet, and RVCG that is closest to the optimal mechanism, rather than the one with the highest revenue.
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D.2. Experimental Results Under Multi-Slot Setting

Alg. Setting

LN5×5 LN6×5 LN7×5 LN8×5 LN9×5 LN10×5 LN11×5 LN12×5

Ours
BundleNet 2.6560 3.0093 3.4346 3.7031 3.9952 4.2366 4.4618 4.6038
IC Violation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

IC Baseline
RVCG 1.4365 2.1764 2.7130 3.1579 3.5104 3.8332 4.1019 4.3449

Baselines with IC Violation
JRegNet 2.6020 2.9237 3.1845 3.4139 3.441 3.2535 3.2747 3.3848
IC Violation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 4. The experimental results of BundleNet, JRegNet, VCG as the number of bundles increases under different settings in the
multi-slots scenario. Similar to those of 1, the notation LN5×5, · · · , LN12×5 represent the settings where the number of bundles varies
from 5 to 12 , respectively, under the truncated lognormal distribution LN (0.1, 1.44) over the interval (0, 1), while letting the CTRs of
these 5 slots as (1, 0.8, 0.6, 0.4, 0.2). In most of the scenarios, BundleNet report the better performance of JRegNet.

Alg. Setting

N5×5 N6×5 N7×5 N8×5 N9×5 N10×5 N11×5 N12×5

Ours
BundleNet 2.1393 2.3690 2.4914 2.6287 2.7020 2.7916 2.8428 2.8841
IC Violation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

IC Baseline
RVCG 1.3110 2.0132 2.3565 2.5343 2.6395 2.7228 2.7840 2.8383

Baselines with IC Violation
JRegNet 2.2071 2.3537 2.4814 2.4740 2.5185 2.4711 2.4082 2.3272
IC Violation < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 5. The experimental results of BundleNet, JRegNet, VCG as the number of bundles increases under different settings in the
multi-slots scenario. Similar to those of 1, the notation N5×5, · · · , N12×5 represent the settings where the number of bundles varies from
5 to 12, respectively, under the truncated normal distribution N (0.5, 0.1) over the interval (0, 1), while letting the CTRs of these 5 slots as
(1, 0.8, 0.6, 0.4, 0.2). In most of the scenarios, BundleNet report the better performance of JRegNet.

E. Comparison of Visualized Allocation Results Under the Setting U2

To further validate our hypothesis, we visualize the allocation rules of BundleNet and JRegNet to examine their differences.
Since the bipartite graph structures in joint advertisement scenarios can be highly complex, we select the Setting U2, which
consists of only two types of heterogeneous bipartite graphs. Based on these structures, we design two different sets of
experiments.

In the first experiment, we consider a bipartite graph where Set R contains two nodes (r1, r2), Set S contains a single node
(s1), and there are two bundles, e1 = (r1, s1) and e2 = (r2, s1). To observe the impact of bidding on the allocation outcome
of e1, we fix the bid for s1 at 0, 0.25, 0.5, and 0.75, while varying the bids of the two nodes r1, r2.

In the second experiment, we extend the complexity by introducing a bipartite graph where set R contains two nodes (r1, r2),
Set S contains two nodes (s1, s2), and there are two bundles, e1 = (r1, s1) and e2 = (r2, s2). To analyze how the bids in e1
affect its allocation outcome, we fix the bid for e2 at (0,0), (0.25,0.25), (0.5,0.5), and (0.75,0.75) and observe the impact of
the bids from r1 and s1 in e1.

As shown in Figure 3, we present the allocation results of BundleNet and JRegNet in two experimental settings. We observe
that BundleNet exhibits clearer boundary awareness than JRegNet, accurately identifying scenarios where Bundle e1 should
not be allocated.

To better demonstrate BundleNet’s capability in learning the optimal mechanism, we compare its deterministic allocation
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a. The allocation results of BundleNet
in the first experiment.

b. The allocation results of JRegNet
in the first experiment.

c. The allocation results of BundleNet
in the second experiment.

d. The allocation results of JRegNet
in the second experiment.

Figure 3. The figure presents the allocation rules learned by BundleNet and JRegNet under the Setting U2. Subfigures (a) and (c) show
the allocation results of BundleNet in two experiments, while (b) and (d) display the results of JRegNet in the same experiments. The
solid regions in all subfigures depict the probability of the single-slot being allocated to bundle e1, with the white dashed line representing
the boundary of the allocation results derived from Myerson-like mechanism.

results with those RegretNet-like methods and the theoretical optimum in Figure 4. Unlike stochastic allocation, deterministic
allocation provide clearer visual differentiation between these mechanisms. This visualization confirms BundleNet’s
superior approximation of the optimal mechanism, while JRegNet exhibits inconsistent performance. The deterministic
view eliminates random noise, making the comparative advantages more apparent.

16



Optimal Auction Design in the Joint Advertising

Optimal BundleNet JRegNet Optimal BundleNet JRegNet

(1) (2)

Figure 4. The figure presents the allocation rules learned by BundleNet and JRegNet under the Setting U2. Subfigure (1) show the
allocation results of optimal mechanism, BundleNet and JRegNet in the first experiment, while subfigure (2) display the results of three
mechanism in the second experiment.
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