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Abstract

Circuit discovery has gradually become one of the prominent methods for mech-
anistic interpretability, and research on circuit completeness has also garnered
increasing attention. Methods of circuit discovery that do not guarantee complete-
ness not only result in circuits that are not fixed across different runs but also
cause key mechanisms to be omitted. The nature of incompleteness arises from the
presence of OR gates within the circuit, which are often only partially detected
in standard circuit discovery methods. To this end, we systematically introduce
three types of logic gates: AND, OR, and ADDER gates, and decompose the
circuit into combinations of these logical gates. Through the concept of these
gates, we derive the minimum requirements necessary to achieve faithfulness and
completeness. Furthermore, we propose a framework that combines noising-based
and denoising-based interventions, which can be easily integrated into existing cir-
cuit discovery methods without significantly increasing computational complexity.
This framework is capable of fully identifying the logic gates and distinguishing
them within the circuit. In addition to the extensive experimental validation of
the framework’s ability to restore the faithfulness, completeness, and sparsity of
circuits, using this framework, we uncover fundamental properties of the three
logic gates, such as their proportions and contributions to the output, and explore
how they behave among the functionalities of language models.

1 Introduction

As an intervention-based approach to mechanistic interpretability, circuit discovery allows for the
extraction of subgraphs from the computational graph of a language model that play a significant
role in task performance, referred to as circuits [[1, 2,3} 4]. Several key studies have supported its
development [5} 6], such as those focusing on ensuring that circuits faithfully reflect the model’s
outputs [2} [7]], enabling efficient circuit extraction [8]], and addressing scalability challenges for
models with extremely large parameters and corpora [9} 10, [11].

As the concept of circuits evolves, recent attention has increasingly focused on the completeness
of circuits in addition to faithfulness. For example, completeness has been redefined such that
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when a circuit is removed from the computational graph, the performance of the task should degrade
significantly [12} [13]]. Nevertheless, current circuit discovery methods have been found to lack
completeness [9]. Moreover, theory analysis [[14] indicates that incomplete circuits lead to two
potential pitfalls: non-transitivity and preemption, which prevent the recovery of the key mechanisms
underlying the circuit. Finally, incompleteness results in variability in circuit discovery outcomes,
making the circuit appear more like an arithmetic solution to obtain the output rather than representing
a closed-form solution with interpretability [[15]].

Incompleteness largely arises from the presence of OR gates 16| [2]. For instance, consider a model
M that employs two identical and disjoint serial circuit paths, C; and Cs, which operate in parallel
and whose outputs are subsequently combined via an OR operation. In this case, identifying either
path is sufficient to achieve faithfulness, and removing the other path is a preferable choice for
promoting sparsity. However, restoring completeness by discovering OR gates remains a challenge.
The simplest approach, which involves repeated interventions on combinations of components [14]],
could theoretically uncover the complete OR gate; however, this makes circuit discovery an NP
problem (We explained it in Appendix[E.I). Additionally, while denoising-based intervention methods
can rapidly restore OR gates [17]], they lead to a more severe loss of faithfulness. Furthermore, these
methods fail to isolate the OR gates from the final circuit, resulting in a lack of logical interpretability.

To this end, we introduce the concept of logic gates, where any circuit can be decomposed into AND,
OR, and ADDER gates, and propose a systematic framework to uncover and separate all the gates,
and then to explain their correspondence to faithfulness or completeness with the sparsity constraint.
Our specific contributions are as follows:

1. We systematically introduce three types of logic gates that compose a circuit: AND, OR, and
ADDER gates. Through these gates, we are able to infer the minimum requirements for a circuit to
achieve faithfulness and completeness, as well as assess the capability of noising-based and denoising-
based interventions in restoring these gates. Based on these corollaries, we analyze three types of
prevailing circuit discovery methods, named greedy search [2, 18} [11], linear estimation [8},|19]], and
differentiable mask [9, (12, [10], by evaluating their ability to recover the three logic gates and their
faithfulness and completeness. Moreover, we conduct experiments to provide empirical evidence
supporting these theoretical conclusions.

2. We propose a framework capable of fully discovering the three logic gates, which can be
easily extended to current circuit discovery methods with constant-time complexity. Our frame-
work combines noising-based and denoising-based interventions, ensuring both the faithfulness and
completeness of the circuit, and enabling the separation of AND, OR, and ADDER gates from the
final circuit. Extensive experimental results demonstrate that our framework achieves promising
faithfulness and completeness. Additionally, to ensure consistency in the granularity of noising-based
and denoising-based interventions, we introduce a misalignment score for AND and OR gates to
measure whether the scales of the two intervention strategies are aligned when combined.

3. We explore the characteristics of AND, OR, and ADDER gates in a circuit, including their
proportions and contributions to the output, building upon our proposed logic gates and recovery
framework. Furthermore, we examine the relationship between logic gates and the functionality of
language models. Experimental results show that OR gates typically link multiple backup paths for
the same function, while AND gates often connect paths for different necessary functions.

2 Preliminaries

2.1 Circuit Discovery

In Transformer decoder-based language models, the forward pass is typically conceptualized as a
computational graph G, where the nodes represent components (such as attention heads, MLPs, or
even more granular elements like the query, key, and value matrices) and an edge ¢« — j denotes a
connection where the output of component 7 serves as input to component j. Circuit discovery seeks
to identify a subgraph (circuit) C C G that captures the task-relevant behavior of the model [3].

The process used to prune and obtain the circuit C is referred to as intervention (also known as
knockout, ablation) [[17, 20} 21} 22]|. For a given task 7, each sample x is referred to as clean text,
and the corresponding forward pass yields the clean activation x; at each component ¢. A perturbed
version of the input, denoted Z, is called corrupted text, producing a corresponding corrupted



activation [23|[17]. The corrupted activation ; depends on the specific ablation method used. For
example, ZERO ABLATION sets ; = 0, while NOISE ABLATION draws Z; from a predefined noise
distribution. A widely used method, INTERCHANGE ABLATION, defines Z; as the activation resulting
from an input text that has been minimally perturbed to produce a different task label [10].

The intervention is divided into two strategies: noising-based intervention (hereafter referred to as
Ns) and denoising-based intervention (hereafter referred to as Dn) [24]. The Ns first runs the clean
text in the computational graph. Then, corrupted activations replace each clean activation to observe
the change in the final output y. If replaced (also known as removed or pruned) activations lead to a
significant change in output, they are considered to make an important contribution to the task 7 and
should be retained in the circuit C [17]. Let pg(y|z) denote the model’s original output, p¢(y|z, Z)
represent the circuit’s output after intervention. Specifically, if an edge j — ¢ is retained within C,
the activation of component ¢ keeps the clean one (x;). Conversely, it is replaced by the corrupted
one (Z;). Let s denote the requirement of sparsity, and D represent the distance used to quantify the
difference between the two outputs. Ns has the following objective:

argminE (. z)e7[D(pg (y|2)|lpe(ylz, 2))], s.t.1—C|/|G] = s )]

Equation [T]indicates that the circuit is a subgraph that most closely approximates the functionality
of the computational graph, where the components and edges have the most significant effect on
the output. Similarly, the Dn first performs the corrupted run in the computational graph, and then
replaces the corrupted activations with the clean activations. Those activations that lead to significant
changes in the output () consist of the circuits. Dn thus has the following objective:

argmin B, 5)e7[D(pg (917)lpe (912, )], s.t.1—Cl/|G] = 5 (@)

Most of the related work on circuit discovery follows the Ns strategy. We categorize these works
into three types: (1) Greedy search [2, (18, [11], which iteratively examines each edge (or node)
through intervention to obtain a greedy solution for the circuit. (2) Linear estimation [8 [19],
where the contribution of each edge is approximated by a gradient measure obtainable in a single
backward pass. This approach ranks the importance of each edge to approximate the circuit. (3)
Differentiable masks [9} 12} [10], where a learnable mask is assigned to each edge (or node), treating
circuit discovery as an optimization problem to derive the optimal circuit.

2.2 Circuit Evaluation

Circuit evaluation is primarily defined by three aspects: faithfulness, completeness, and sparsity.

Faithfulness refers to the circuit’s ability to perform task 7 in isolation, which is defined as the
difference between the circuit’s output and the model’s original output [16} 9} [17]. This is represented
in Equationsas E(e,5)e7[D(pg (y|z)||pe(y|2, Z))] (simplified as D(G||C)). Method ACDC [16]
measures faithfulness by computing the average difference in the unnormalized output logits between
the correct token and an incorrect option. Recently, work [2} 17, 25] proposes that KL divergence
provides a better measure of the distribution over the vocabulary, while other work [9, [15] suggests
that task accuracy can avoid the overemphasis on irrelevant vocabulary in the KL divergence. In this
paper, we measure faithfulness using both KL divergence and task accuracy as metrics.

Completeness refers to whether the circuit includes all the important paths that have an effect on
the output. The work [[16] first introduces the concept of circuit completeness, stating that C and
G should ensure similar outputs even under any knockout. Therefore, the incompleteness score is
defined as the difference D(C \ K||G \ K) for any subcircuit L C C. Existing work [9} [I5] proposes
that insufficient sampling of IC may lead to unreliable approximations (we show the practical results
in Appendix [A), and thus recommends evaluating completeness by assessing the performance after
the circuit’s removal from the computational graph on the task 7, i.e., D(G \ C||G) [13[12]. In this
paper, we also adopt it to evaluate completeness.

Sparsity refers to that the circuit should be as small as possible. Currently, many works 10\ 9} [15]
recommend measuring sparsity using the ratio |C|/|G|, which represents the proportion of edges in
the circuit relative to those in the computational graph. In fact, higher sparsity tends to result in lower
faithfulness, meaning that the circuit always reflects some trade-off between sparsity and faithfulness.



3 Circuit Logic

3.1 Logical Gates

Recent studies [16}2,[17] have increasingly observed that within a circuit, certain subcircuits influence
the output according to logical relationships resembling AND or even OR operations. Building on
these findings, we systematically introduce three fundamental circuit logic types: the AND gate, OR
gate, and ADDER gate.

Definition 1. We assume a common paradigm in which a receiver node B, which is connected by
more than 1 sender node Ay, As, .... For any edge A; — B, we use binary values ‘0’ and ‘1’ to
represent the activation state of a node. Specifically, A; = 0 indicates that node A; is removed,
ablated, or deactivated, whereas A; = 1 indicates that node A; is retained and active. When the
sender nodes are ablated, the effect of node B on the output exhibits three distinct patterns, which
are as follows:

AND: All sender nodes satisfy an AND logical relationship with the receiver node, i.e., B =
Ay N Ag A . ... Inthis case, node B exerts a significant effect on the output only if all of its sender
nodes are retained. If even a single sender node is ablated, the effect of B on the output is nearly
eliminated.

OR gate: All sender nodes satisfy an OR logical relationship with the receiver node, i.e., B =
A1V As V... In this case, node B always exerts a significant effect on the output if one or more of
its sender nodes are retained. Only if all sender nodes are ablated, the effect of B on the output is
nearly eliminated.

ADDER gate: all sender nodes satisfy an ADDER logical relationship with the receiver node, i.e.,
B = A1 + As + ... In this case, node B exhibits its maximal effect on the output only when all
of its sender nodes are retained. If any single sender node is ablated, the effect of B on the output
is substantially diminished; when all sender nodes are ablated, B’s effect on the output is reduced
to zero. Accordingly, we define the state of B as taking values 0,1,2,. .., where the total number of
distinct states equals the number of sender nodes.

Theoretical analyses support the view that Ns is capable of recovering a complete AND gate but fails
to recover a complete OR gate, whereas Dn demonstrates the opposite pattern [17]. This asymmetry
is straightforward to interpret. The Ns procedure corresponds to the transition from a clean activation
state (state = 1) to a corrupted activation state (state = 0). Since all gates can be regarded as being
initialized with activation states equal to 1, any transition to state = 0 induces a significant change in
the effect of AND and ADDER gates on the output. Consequently, Ns can reliably identify AND
and ADDER gates. Conversely, the Dn procedure corresponds to initialization with activation states
equal to 0. In this case, any transition to state = 1 produces a significant change in the effect of OR
and ADDER gates on the output. Moreover, we design a toy model to explain ADD, OR, ADDER
gates in Appendix

Therefore, we denote the circuit constructed under the Ns strategy as Cys, and the one constructed
under the Dn strategy as Cp,. Based on the above set-theoretic relationships between Cns and Cp,, we
extract subsets of edges corresponding to AND, OR, and ADDER gates as follows:

e AND gate (Canp): edges that are present in Cns but absent from Cpy,.
* OR gate (Cor): edges that are present in Cp, but absent from Cy.
* ADDER gate (Capper): edges that are shared between Cns and Cpy,.

We conduct an ablation on these edges: for each gate, we randomly remove either one or two edges
on the same receiver node and measure the resulting change in the KL divergence of the output.
This procedure is repeated 30 times for each receiver node, and the distributions of AKL values
are summarized via box plots, as shown in Figure T| (Detailed results are shown in Appendix [E.2).
We selected the computational graph of GPT2-small as G, and Indirect Object Inference (I0I) [16]]
as the test task. For the baseline methods, we chose ACDC [2] to represent the greedy search
method, EAP [8] to represent the linear estimation method, and EdgePruning [[10]] to represent the
differentiable mask method. For details regarding the implementation of these strategies within each
baseline, we refer the reader to Appendix [E]



(a) Complete Circuit (b) Max faithfulness and sparsity (c) Max completeness and sparsity

Figure 2: Presentation of a toy model designed to elucidate the logical relationships among faithful-
ness, completeness, and sparsity. Suppose that A; A As = By, A3V Ay = By, and By + By = C,
and among the three only C'is connected to the output. When optimizing for faithfulness and sparsity
alone, it is possible to remove one edge from the OR gate (either A3 — By or A4 — Bs), thereby
ensuring the minimal number of edges. Similarly, when optimizing for completeness and sparsity,
one edge from the AND gate (either A; — By or Ay — Bj) can be eliminated for sparsity.
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3.2 How to Use Logical Gates to Interpret Faithfulness and Completeness

These logical gates reveal some interesting phenomena as shown in Figure[2] For optimal faithfulness
and sparsity, the circuit only needs to include one edge from each OR gate. For optimal completeness
and sparsity, the circuit only needs to include one edge from each AND gate. Based on the definitions
in Section |2 we can draw the following corollary regarding these properties:

Corollary 1. The minimal edge subset that satisfies optimal faithfulness consists of all edges from
the AND gates, all edges from the ADDER gates, and any one edge from each OR gate. The minimal
edge subset that satisfies optimal completeness consists of all edges from the OR gates, all edges from
the ADDER gates, and any one edge from each AND gate (The proofs are shown in Appendix|C)).

Corollary [I] provides an explanation for why existing circuit discovery algorithms predominantly
adopt the Ns strategy. The reason is that Ns is able to recover complete AND and ADDER gates,
while its recovery of OR gates remains incomplete. This tradeoff corresponds precisely to the optimal
balance between faithfulness and sparsity. Conversely, the Dn strategy is not adopted because it fails
to recover complete AND gates, thereby severely compromising the faithfulness of the resulting
circuit.

Therefore, we further evaluate the performance of existing work in terms of faithfulness and complete-
ness. Table [T] presents the specific results for the three types of circuit discovery methods mentioned
in Section 2l

Among these, methods based on greedy search and differentiable masks can identify partial OR gates,
whereas methods based on linear estimation are unable to detect any edges of OR gates. Similarly,
methods from Dn exhibit a similar pattern. While they can completely identify OR and ADDER
gates, methods based on greedy search and differentiable masks can detect partial AND gates, while
methods based on linear estimation fail to identify any. In Appendix [D] we explain why greedy
search and differentiable mask methods are able to identify some edges, whereas linear estimation
completely fails to do so. Moreover, inspired by [2], we design a simple one-layer transformer toy
model to implement the basic AND, OR, and ADDER gates, and validate the performance of these
circuit discovery methods corresponding to the conclusion from Table



Table 1: Capabilities and performances of three types of circuit discovery methods in recovering
logical gates, faithfulness, and completeness. The symbol 1/ represents the ability to fully satisfy
the corresponding requirement, X indicates the complete inability to satisfy the corresponding
requirement, and () denotes the ability to partially satisfy the corresponding requirement.

Strategy Method AND OR ADDER Faithfulness Completeness
greedy search [2][18][11] V4 O V4 Vv X
Ns linear estimation [8][19] 4 X Vv X X
differentiable mask [91[12][10] 4 O Vv Vv X
greedy search [2][18][11] O Vv vV X v
Dn linear estimation [8][19] X Vv Vv X X
differentiable mask [9112][10] O Vv v X Vv

Noising Denoising Noising Denoising

Ground Truth ([ AND ADDER! [ADDER OR Ground Truth ( AND ADDER ADDER  OR
\
Observed Results D Observed Results

(a) Aligned granularity (b) Misaligned granularity

Figure 3: A Venn diagram for Cns and Cp,. In the case of granularity alignment, the intersection cor-
rectly separates the AND, OR, and ADDER gates (left figure). However, in the case of misalignment,
it results in some ADDER gates being incorrectly classified as AND (or OR) gates (right figure).

3.3 Granularity Alignment between Cns and Cpy,

The intersection operation mentioned above raise concerns about the granularity alignment between
Cns and Cpy. As illustrated in Figure [3] if the number of edges in Cx; significantly exceeds that in
Cpn, some edges identified as the AND gates could belong to the true type of the ADDER gates. This
misalignment in granularity can also occur when Cp, is considerably larger. Therefore, we propose
two metrics (refer to Appendix [F)) to assess the degree of misalignment between Cy, and Cp, when
performing intersection.

We report the misalignment of Cys and Cp, at different scales in Appendix [F] The results indicate that
when the number of edges in the Dn circuit is approximately equal to that in the Ns circuit, both the
misalignment score and its standard deviation reach an acceptable level. Therefore, throughout this
paper, we assume that the optimal alignment occurs when Ns and Dn contain an equal number of
edges and conduct experiments based on this assumption by scaling the number of edges identified
by Ns and Dn strategies in a similar range.

4 Discovering Logically Sound Circuit

4.1 Optimization for Logically Sound Circuit

Existing baseline methods are capable of recovering only complete AND and ADDER structures, as
demonstrated in Table[I] Therefore, the recovery of complete OR gates remains a challenge. Several
approaches can be considered to address this problem, such as introducing additional combinations of
interventions or varying the order of the intervention to identify different surviving edges of the OR
gate, or incorporating a completeness score, such as D(G \ C || G), into the circuit discovery process.
However, these approaches come with significant drawbacks. Expanding the space of intervention
combinations renders circuit discovery an NP problem. Meanwhile, the inclusion of completeness
scores is incompatible with non-differentiable optimization strategies such as greedy search, and it
also fails to effectively split the three logic gate types in the recovered circuits.

Therefore, we propose a combined Ns+Dn approach to recover logically complete gates. This method
is compatible with a wide range of circuit discovery algorithms, introduces minimal additional
computational overhead, and enables clear and effective separation of the three types of logic gates.
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Figure 4: Completeness evaluation of circuit from Ns and NS+Dn.

Ns+Dn has the following objective:
argmin E, 5)e7[D(pg (yl2)llpe(ylz, 7)) + Dpg (912)[[pe (912, 2))], st.1—[Cl/IG] 25 ()

In brief, for each baseline, we modify its implementation to perform both the Ns and Dn strategies in
parallel, whereas originally only the Ns strategy was applied.

4.2 Validation of Logically Sound Circuit

In this subsection, we focus on the faithfulness and completeness of the logically sound circuit (from
our framework in Section @ denoted by Cns+pn) and the circuit of existing work (since existing
work generally adopts Ns as a basic intervention strategy, we denote it by Cx;). Similar to Section 3.1}
we select GPT2-small as the computational graph, and ACDC, EAP, and EdgePruning as methods to
represent greedy search, linear estimation, and differentiable mask, respectively. We examine the
circuits obtained through Ns, Dn, and Ns+Dn. For instance, in ACDC, when intervening on each edge,
we simultaneously compute the effect of substituting the clean activation with a corrupted one in the
clean run, and the effect of substituting the corrupted activation with a clean one in the corrupted
run. In EAP, we compute gradients under both clean and corrupted conditions. For EdgePruning,
we replace Equation [T] with Equation [3] as the optimization objective. Detailed implementation
can be found in Appendix These experiments are conducted on three mainstream tasks for
circuit discovery, namely indirect object inference (IOI) [16]], greater than (GT) [26], and syntactic
agreement [9]. The details of these tasks are presented in Table[2]

Table 2: An overview of the tasks and datasets.

Task  Example(|Corrupted text]) Output corrupted output
I0I  When Mary and John went to the store, John (Alice) gave a drink to ~ Mary other names

GT The war lasted from 1517 (1501) to 15 18or 190or... 99 other digits

SA Many girls (girl) insulted themselves herself

4.2.1 Completeness

Following the definition of completeness in Section[2} we first compare the changes in KL divergence
and accuracy for the corresponding tasks (IOI, GT, SA) when the circuit is removed from the
computational graph. Specifically, we compare the differences between the original circuits (obtained
through Ns) and the logically sound circuits (obtained through Ns+Dn) after removal, for three
methods: ACDC, EAP, and EdgePruning. To account for the effects of sparsity, we constrain the
number of edges in both circuits to remain consistent across six sparsity levels: 100, 200, 500,
1000, 2000, and 5000 edges. Figure [ shows that, both in terms of KL divergence and accuracy, the
performance of circuits removed through Ns+Dn is noticeably weaker compared to those removed
through Ns. This corroborates Corollary [I] where we note that Ns, due to its inability to fully recover
the OR gate, results in suboptimal completeness. Additionally, we observe that the gap between Ns
and Ns+Dn is largest in both metrics in the EAP method (see the solid line in Figure ), where Ns
fails to recover any edges of the OR gate. Additionally, since ACDC and EdgePruning are generally
able to identify one OR edge, the recovered OR edge exhibits some degree of randomness. In the
case of ACDC, this randomness is influenced by the search order, while in the case of EdgePruning,
it is influenced by the initial values of the mask. Moreover, we show the detailed results including Dn
in Appendix [G]



Table 3: Difference in Hamming distance between the Cy s and Cy s+ p, (We compute the average
Hamming distance between C s and subtract the average Hamming distance between Cns+pn)- A
larger value indicates that the circuits obtained through Ns exhibit greater randomness compared to
those obtained through Ns+Dn. #edges represents the number of edges in circuits.

#edges 101 . 6T . SA .
ACDC EAP EdgePruning | ACDC EAP EdgePruning | ACDC EAP EdgePruning
100 3.4+0.6 0.6+0.1  8.4+37 4.8+0.9 0.5+0.1 12.7+4.9 2.8+0.4 1.1£0.2  153+58
200 5.9+1.3 1.2+0.3  18.1x6.7 6.7+1.8 1.3+0.2  22.549.1 4.3+0.9 22+0.5 284127
500 147437  1.8+0.7  44.5+138 16.9+4.2 1.6+0.8  49.1+15.6 12.8+2.9  29+09  55.9+16.7
1000 21.8+53  47+1.8  89.6+27.9 23.6+6.4 44+1.6  97.5+29.4 19.7+43  57+28  108.2+31.4
2000 49.5+12.9 7.9+29  1953+57.8 55.7£14.9  8.6+3.5  211.7£66.2 44.8+152 8.8+3.1  237.4+64.8
5000 1274285 145469 509.5+164.7 | 136.5+33.4 15.9+6.1 564.8+181.1 | 113.7+58 154458 688.9+144.5

o)
=)

(a) AND gate (b) OR gate (c) ADDER gate

Figure 6: The cases with 2-layer gates of AND, OR, ADDER circuits.

To further validate completeness, we test the overlap of randomly generated circuits by extracting
30 distinct circuits under different random seeds and calculating the Hamming distance between
pairs of these circuits to assess the randomness of the discovered circuits. Table [3]shows that the
randomness of ACDC and EdgePruning is significantly higher than that of EAP, and it increases with
the sparsity scales (as more OR gates are discovered). Additionally, the randomness of the circuits
obtained through Ns+Dn is consistently lower than that of the circuits obtained through Ns, further
supporting the claim that the inclusion of all three logical gates ensures optimal completeness.

4.2.2 Faithfulness

In Appendix [H] we compare the circuits obtained using S ‘ — oe
three strategies—Ns, Dn, and Ns+Dn—under the same 25 P o )
sparsity constraints (specifically, we select edge counts > .

of 100, 200, 500, 1000, 2000, and 5000) in terms of KL. . \ y
divergence and accuracy. The results show that, in terms

of faithfulness, we have the relationship: Cng+pn =~ Cns >
Cpn. Figure S)illustrates the average of the three methods

Accuracy

0.5

on the IOI task to corroborate this conclusion. More results %00 200 0 1000 2000 5000
can be found in Figure 0] (a)-(c), which further supports #edges
the faithfulness requirements asserted in Corollary [1} Figure 5: The average of three methods

in faithfulness of IOI task.
S Exploration on Logical Gates

5.1 Graph Study

In Appendix[I| we present the circuits of the AND, OR, and ADDER gates recovered by ACDC on
the IOI task and map the functions of the components to those in the previous IOI circuit [16]. We
show parts of these circuits as demonstrations in Figure [} each color represents one function in 101
circuit and blocks represent components at different locations, such as “a5.9” indicating the 9-th
attention head in the 5-th layer, and “m8” referring to the MLP in the 8-th layer. The complete gate
circuit can be found in Figure [T0]of Appendix[[] The results are interesting, revealing that the AND
gates typically receive edges from different functions, suggesting that these functions must work
together to support the receiver’s activation. In contrast, the OR gates almost exclusively receive
edges from the same function, indicating that these edges are likely interchangeable due to their



execution of the same function. The ADDER gates, on the other hand, tend to focus on combining
two functions from different layers, with the activation generally considering the outputs of both
shallow-layer and deep-layer functions.

5.2 Output Contribution

In Appendix |J| we investigate the contribution of three types of logic gates to the output. The gate
effect represents the contribution of the entire gate to the output and the edge effect represents the
average contribution of each edge to the output. The results show that the contribution of the ADDER
gates is significantly higher than that of the AND and OR gates. Furthermore, methods that focus on
the edge effect, such as differentiable masks and linear estimation, lead to a higher average effect in
the recovered circuit.

5.3 Proportion

In Appendix [K] we present the number of AND, OR, and ADDER edges recovered by different
methods. The results indicate that the proportion is closely related to the type of circuit discovery
method used. For instance, greedy search selects all edges beyond the threshold, resulting in nearly
equal numbers of AND, OR, and ADDER edges. In contrast, differentiable mask methods calculate
the effect of each edge, which is disadvantageous for gates like AND and OR that contain multiple
edges. As a result, the number of ADDER edges is significantly higher.

6 Conclusions

This paper systematically introduces three logic gates—AND, OR, and ADDER—to explain the
essential requirements of circuit faithfulness and completeness. Furthermore, it provides an analysis
of how existing circuit discovery methods perform with respect to these logic gates. Additionally, we
propose an Ns&Dn-based method for separating the three logic gates, and for restoring a logically
sound circuit. We empirically validate the differences in faithfulness and completeness between the
logically sound circuit and existing circuits. Finally, we explore the relationships between the logic
gates in terms of distribution, contribution, and functionality.

6.1 Limitations and Future Research

The three logical gates under discussion in this paper are, in principle, derived from the intersection
of Cns and Cp,,. Nevertheless, it must be acknowledged that other types of logical gates may
also exist—for instance, the XOR gate—whose underlying logic cannot be captured solely through
the simple intersection of C s and Cp,,. That said, we contend that the three gates obtained from
this intersection—AND, OR, and ADDER—are already sufficient to cover all edges of the circuits
constructed from Cy s and Cp,,. For the purposes of the present scope of research, this coverage is
adequate.

Moreover, a logically sound circuit provides a more granular and logically coherent perspective on
the interpretability of a circuit. With a complete understanding of the logical relationships between
edges, the circuit becomes more useful for offering insights into model control. For instance, a
logically sound circuit for different tasks can reflect whether the skills associated with these tasks can
be combined. That is, if the circuit for task A requires the presence of ¢ — 7, and the circuit for task
B requires the removal of ¢ — j, knowing that ¢« — j exists as an OR edge in task A resolves the
conflict between the two circuits. Thus, a logically sound circuit offers a novel approach for verifying
the potential combination of tasks through boolean satisfiability, which is treated as our future study.
We have demonstrated the potential contributions of completeness research with a toy task of model
unlearning, as shown in Appendix [[]

6.2 Societal and Ethical Impact

Our work aims to facilitate the process of understanding and explaining the logical connections in
language models, which is crucial for their continued safe development and deployment. We do not
foresee logically sound circuit and logical gates being used towards adverse societal or ethical ends.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and a summary of the important work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations in Section[6] Moreover, Section [3.1] shows the
limitations of our corollary, including considering that the receiver node is directly connected
to the output.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Section [3.1] provides full hypotheses and detailed examples to explain our
theoretical definition.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide full settings of our experiments in Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will make it open-access with github link.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [A.1] and Section [3.3] provide full settings and details of our two
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Table 3] Figure[§|provide clear error bars with o.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix [E.3] we claimed that all experiments only need low computational
cost as in the original setting of the existing work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We checked the NeurIPS Code of Ethics and ensured that our paper satisfies it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the broader impacts to ML society in Section [6]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We listed the pretrained LMs in footnotes and described the scraped datasets
in Appendix [E]

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We listed the URLSs and references of existing assets that we used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We didn’t release any pre-trained models and large-scale datasets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We didn’t conduct any research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve any LLMs tools for core methodology, scientific
rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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A The Preference between Two Types of Completeness Metrics

The earlier completeness evaluation method (proposed by [16]) in fact measures incompleteness,

defined as D(C'\ K || G\ K), where a lower score indicates better performance. In contrast, the current
method [9] measures completeness, defined as D(G \ C'|| G), where a higher score is preferable.
Importantly, these two metrics are not directly interchangeable — thatis, 1 — D(C'\ K | G\ K) #
D(G\ C| G).

Nevertheless, a comparison can still be made in terms of the standard deviation. It has been
theoretically demonstrated that the earlier completeness method suffers from high variance due to
insufficient sampling, leading to instability in the final results. To illustrate this, we provide a simple
comparison between the previous and current evaluation methods, as shown in the Table 4}

Table 4: The standard deviation between two metrics of completeness.

Method 5 sampled K 10 sampled K 20 sampled K 30 sampled K New metric

ACDC 1.1x1.6 1.8+1.2 1.4+1.1 1.2+0.6 1.3+0.13
EAP 1.7£1.5 1.3+1.6 1.6+1.2 1.3+0.7 1.4+0.11
Edge-P  1.5+1.8 1.4£1.9 1.4+1.6 1.6+0.6 1.2+0.08
Ours 0.4+0.3 0.6+0.4 0.3+0.3 0.3+0.2 1.8+0.03

We conducted five different runs of circuit discovery using random seeds, with the random subset K
chosen from subcircuits of sizes ranging from 2 to 5 nodes. For the previous evaluation metric, we
performed 5, 10, 20, and 30 sampling iterations.

The experimental results clearly support two conclusions:

1. For algorithms that inherently lack completeness (such as ACDC, EAP, and Edge-Pruning), as
well as for our own method, which ensures completeness, the previous evaluation metric exhibits
large standard deviations across all trials. This indicates that the sampling process for the previous
metric is insufficient, rendering the results highly unreliable.

2. The new evaluation metric significantly reduces variance for all types of circuits, as it does not
suffer from sampling issues. The variance observed in the results arises from minor differences in the
circuits generated by different random seeds.

B How Does Circuit Logic Model Intervention?

B.1 AND Gate

Consider a simple logical gate: A; A Ao = B (only if both x4, and x 4, are present can B be
activated), where B directly influences the output. For noising-based intervention (Ns), replacing
x4, With T 4,, or x4, with Z 4,, produces a significant effect on the output. Thus, Ns is capable of
detecting the structure {(A1, As), B}.

However, for denoising-based intervention (Dn), substituting Z 4, with x4, alone does not yield a
noticeable change in the output, as Z 4, remains present. Similarly, replacing = 4, with z 4, while
T 4, 1s still active also fails to significantly affect the output.

Under a greedy search strategy, if Z 4, is first replaced by x 4, and the output remains unchanged,
the algorithm concludes that A; is not relevant and removes it (i.e., replaces Z 4, with x4, in the
scenario of Dn). Subsequently, replacing Z 4, with x 4, causes a substantial shift in the output due to
the presence of x 4, , thereby restoring the structure {(As), B}, since A; has already been removed.

Analogously, a greedy search that begins with A5 and then proceeds to A; would only recover the
structure {(A;), B}. Therefore, we conclude that Ns is capable of identifying the complete AND
gate structure, whereas Dn either fails to detect the AND gates or only partially recovers it
under greedy search conditions.
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B.2 OR Gate

Consider a simple logical gate: A; V Ay = B (if either z 4, or x 4, are present can B be activated),
where B directly influences the output. For Ns, replacing x 4, with Z4, alone does not yield a
noticeable change in the output, as z 4, remains present. Similarly, replacing x 4, with & 4, while
T 4, 1s still active also fails to significantly affect the output.

Under a greedy search strategy, if x4, is first replaced by Z 4, and the output remains unchanged,
the algorithm concludes that A; is not relevant and removes it (i.e., retains 4,). Subsequently,
replacing x 4, with T 4, causes a substantial shift in the output due to the lack of support of x 4,,
thereby restoring the structure {(Asz), B}, since A; has already been removed.

Analogously, a greedy search that begins with A5 and then proceeds to A; would only recover the
structure {(A;), B}.

However, for Dn, replacing Z 4, with z4,, or Z 4, with x 4,, produces a significant effect on the
output. Thus, Dn is capable of detecting the structure {(A;, A3), B}.

Therefore, we conclude that Dn is capable of identifying the complete OR gate structure, whereas
Ns either fails to detect the OR gates or only partially recovers it under greedy search conditions.

B.3 ADDER Gate

Consider a simple logical gate: A; + Ay = B, where B directly influences the output. Since the
influence of each edge in an ADDER gate is independent, removing an edge in either Ns or Dn
directly impacts the output via its effect on B. For instance, in Ns, replacing x4, with Z 4, results in
B* = A,, which is significantly smaller than B = A; + A,. Similarly, in Dn, replacing Z 4, with
x4, yields B* = A;, which is substantially greater than B = 0. Therefore, both Ns and Dn are
capable of identifying the complete structure of the ADDER gate.

C How Does Circuit Logic Affect Faithfulness, Completeness, and Sparsity?

C.1 Faithfulness

As introduced in Section |2} faithfulness requires that D(G||C) be minimized. Let us consider the
following scenarios:

* For any gate {(A1, A3), B}, if the circuit does not include all edges or nodes from this gate,
it is always possible to find a circuit C* = C'U Ay, Ao, B such that D(G||C) > D(G||C*).

* For an AND gate {(A1, A3), B}, if the circuit C only includes A; and B, the gate effect
of this AND gate is not maximized (the influence of B is maximized when both A; and

Ajs are present). Therefore, it is always possible to find a circuit C* = C' U Az such that
D(G||C) > D(G||C™).

* For an ADDER gate {(A;, A2), B}, if the circuit C' only includes A; and B, the gate
effect of this ADDER gate is not maximized (again, the influence of B is maximized
when both A; and A, are present). Thus, there exists a circuit C* = C' U A, such that
D(G|C) > D(G]|C7).

* Foran OR gate {(A4;, Az), B}, if the circuit C only includes A; and B, the gate effect of this
OR gate is already maximized (the same applies if only A and B are included). Therefore,
for C* = C' U Ay, we have D(G||C) = D(G||C*). However, from the perspective of
sparsity, |C*| > |C|.

Thus, to achieve optimal faithfulness, the circuit must include all edges that result in the maximum

gate effects, namely all edges from the AND, ADDER, and OR gates. However, considering sparsity,
the gate effect sum remains maximal even if only one edge from each OR gate is retained.

C.2 Completeness

Similarly, completeness requires that D(G \ C||G) be maximized. Consider the following scenarios:
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* For any gate {(A1, As), B}, if the circuit does not include all edges or nodes from this
gate, it is always possible to find a circuit C* = C'U Ay, A, B such that D(G \ C||G) <
D(G\ C]|G).

* For an AND gate {(A1, As), B}, if the circuit C only includes A; and B, then G \ C will
only contain A or the edge Ay — B (depending on whether pruning is applied to edges
or nodes). Due to the AND operation, B will not produce a gate effect. Therefore, for the
circuit C* = C'U Ay, we have D(G \ C||G) = D(G \ C*||G).

* For an OR gate {(A;, A2), B}, if the circuit C' only includes A; and B, then G \ C
will only contain A5 or the edge As — B. Due to the OR operation, B still produces
a gate effect. Therefore, it is always possible to find a circuit C* = C' U A, such that
D(G\ C||G) < D(G\ C*||G).

* For an ADDER gate {(A1, A2), B}, if the circuit C only includes 4; and B, then G \ C
will only contain A; or the edge Ay — B. Due to the ADDER operation, B still produces

a gate effect. Therefore, it is always possible to find a circuit C* = C U A, such that
D(G\ C|G) < D(G\ C*]|G).

Thus, to achieve optimal completeness, the circuit must include all edges that result in the maximum
gate effects, namely all edges from the AND, ADDER, and OR gates. However, considering sparsity,
the total gate effect remains maximized even if only one edge is retained for each AND gate.

D Validation of Logical Gates

D.1 Toy Model

Motivated by [2], to study a toy transformer model with an AND, OR, and ADDER gates, we take a
1-Layer transformer model with two heads per layer, ReLU-based activations, and model dimension 1.
Specifically, as shown in Figure[7] Let A; and A5 be two attention heads with respective biases bias;
and biass, both set to 1. The activation function m is based on the ReLU nonlinearity. To ensure that
the output of each attention head corresponds directly to its bias, we use a zero tensor as the input.
For corrupted activations, we employ zero ablation—i.e., we directly remove the activations along
the corresponding edges.

The activation function m is configured differently to simulate logical gates as follows:

» AND gate: m(x) = ReLU(z — 1). Under this setting, the output is 1 only when both A;
and A, are active (i.e., not ablated); otherwise, the output is 0.

* OR gate: m(x) =1 — ReLU(1 — z). Here, the output is 1 as long as at least one of A; or
As is active; if both are ablated, the output is 0.

» ADDER gate: The bias, is modified to 1.5, and m(x) = ReLU(z). In this case, the output
is 0 when both A; and A, are ablated; it is 1.5 when only A; is ablated, 1 when only A, is
ablated, and 2.5 when both are active.

Under these configurations, we evaluate the performance of existing methods
on the toy model, as summarized in Tablem For example, under the default N,
ACDC [2] (representing greedy search), EAP [8] (representing linear estima-
tion), and EdgePruning [10] (representing differentiable mask) all successfully
identify both A; and A5 in the AND and ADDER gates. However, in the OR
gate, ACDC and EdgePruning identify only one of A; or As—the specific
result depends on the search order in ACDC and the initialization of the mask
in EdgePruning—while EAP fails to identify any high-effect edge.

Conversely, when these methods are executed under Dn, the outcomes are
reversed. In the OR and ADDER gates, all three methods, ACDC, EAP and
EdgePruning, can now identify both A; and A,. However, in the AND gate,
only ACDC and EdgePruning are able to recover one of A; or Ay, whereas

EAP considers the effects of both to be insufficiently strong. Figure 7: A toy
model to study
Ns can at least guarantee the full recovery of AND and ADDER gates. Greedy AND, OR, and

search, by retaining previous steps with removed results, can identify one OR  AppER gates.
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edge (a detailed analysis is provided in Appendix [B). Differentiable mask,

optimizing for faithfulness (as per Corollary [I)), ensures that at least one OR

gate is included (otherwise, optimal faithfulness cannot be achieved), while

additional OR edges conflict with the sparsity constraint and are therefore removed. However, linear
estimation, when computing the effect of each edge, keeps all other edges in their non-removed state,
which results in a failure to detect the OR gate. For example, when computing the effect of the edge
A — C'in the OR gate A — C < B, the edge C < B is also in the clean activation state, leading
to a very small effect for A — C. Similarly, when computing the effect of C' <— B, the edge A — C'
remains in the clean activation state. In summary, linear estimation is unable to detect any edges of
the OR gate.

The performance on Dn is the opposite of that on Ns, where, in addition to the full OR gates and
ADDER gates, greedy search and differentiable mask can similarly recover one AND edge, just
as they could with the OR gates in Ns. Linear estimation also fails to detect the AND gates due
to the non-removed status of the other edges. Based on Corollary [I| we are also able to derive the
performance of the three types of methods in terms of faithfulness and completeness.

E Experiment Details

E.1 Why Does Search Strategy by repeating interventions on combinations is NP Problem?

Due to the differences in circuit algorithms, this issue cannot be fully proven mathematically.
However, we will provide some additional explanation: we treat each ablation as O(1). Assuming the
language model contains /N nodes, if we need to use all possible intervention combinations to obtain a
complete circuit, the time complexity would be O(2%), which far exceeds polynomial time. However,
different strategies can optimize the solution verification process to varying degrees. For example,
EAP only requires O (V) time to verify whether the circuit is complete, while Edge-pruning involves
gradient descent, making its time complexity difficult to estimate. Additionally, greedy search can
only perform a greedy verification in O(N) time rather than a thorough verification. Therefore, we
ultimately classify this problem as NP problem.

However, our proposed method, which employs the algorithm N+ D,,, does not introduce additional
computational complexity to the existing circuit discovery algorithm. Conceptually, it is equivalent
to reapplying the N algorithm once more under the strategy of D,,. As a result, the overall time
complexity increases by at most a factor of two relative to the baseline algorithm, without imposing
any additional nonlinear burden.

E.2 Detailed Results of Figure 3]

Table 5: The changes in KL divergence between the original output and the new output when one or
two edges are ablated.

AND OR ADDER
edgel(state) edge2(state) (A KL)(state) edgel(state) edge2(state) (A KL)(state) edgel(state) edge2(state) (A KL)(state)
remain (1) remain(1) 0.50 (1) remain (1) remain(1) 0.28 (1) remain (1) remain(1) 0.65 (2)
remain (1) ablate(0) 0.02 (0) remain (1) ablate(0) 0.27 (1) remain (1) ablate(0) 0.32(1)
ablate (0) remain(1) 0.04 (0) ablate (0) remain(1) 0.27 (1) ablate (0) remain(1) 0.36 (1)
ablate (0) ablate(0) 0.00 (0) ablate (0) ablate(0) 0.00 (0) ablate (0) ablate(0) 0.00 (0)

All three subcircuits exhibit a fundamental pattern: the effect on the output is maximized when both
edges are retained, and it drops to zero when both edges are ablated (as there is no clean activation
left to support the node in this case). However, ablation of a single edge yields divergent outcomes:

In AND gate, ablating either edge nearly eliminates the effect on the output. In OR gate, ablating
either edge has almost no impact on the output. In ADDER gate, ablating either edge leads to a
noticeable degradation in the output.

E.3 Baselines

In this work, we select ACDC [2] to represent greedy search methods, EAP [8] to represent linear
estimation methods, and EdgePruning [10] to represent differentiable mask methods. In the following
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sections, we provide a detailed exposition of the original design of each method under the Ns.
strategy, the corresponding formulation under the Dn. strategy, and the final approach that integrates
both—Ns.+Dn.—for recovering logically complete gates.

E.3.1 Greedy Search Example: ACDC

The ACDC method identifies important edges by iteratively removing each edge and observing the
effect of this intervention on the model output. Edges whose removal causes an effect greater than a
predefined threshold 7 are retained, while those with an effect smaller than 7 are pruned. The original
algorithm (Ns. strategy), is outlined as follows:

Algorithm 1: The ACDC algorithm in Ns.
Data: Computational graph G, dataset (z;)!_, corrupted datapoints (z})?_; and threshold

7> 0.
Result: Subgraph H C G.
H<+—G // Initialize H to the full computational graph
H + H.reverse_topological_sort() // Sort H so output first
for v € H do

for w parent of v do
Hpew — H\ {w — v} // Temporarily remove candidate edge
ifDKL(gHHneW) — DKL(QHH) < 7 then
H +— Hupew // Edge is unimportant, remove permanently

return

In the Ns. strategy, G denotes the clean run, and H \ {w — v} represents the replacement of the
clean activation on the edge w — v with its corrupted activation. In contrast, under the Dn. strategy,
G refers to the corrupted run, and 7 \ {w — v} indicates the substitution of the corrupted activation
on edge w — v with the corresponding clean activation.

In the combined Ns.+Dn. approach, the effects from both strategies are jointly considered.
Specifically, the original pruning condition Dy (G || Hnew) — Drr(G||H) < 7 is replaced
with the aggregated criterion: Dy 1, (G || Hpew) — D, (G || 1) + Dicr,(GO™P || Hpen) —
DKL (gcorrupted || H) < T

E.3.2 Linear Estimation Example: EAP

The EAP method approximates the effect of each edge using the first-order term of its Fourier
expansion, enabling the estimation of all edge effects with a single forward pass. It is important to
note that, during the computation of each edge’s effect, all other edges remain in their unpruned
(active) state.

Specifically, Ns. has approximation:

0
L(z|do(i;)) — L(x) ~ (&; — mi)Ta L(z) 4)
Ii]
and Dn. has approximation:
0
L(Z|do(z;)) — L(%) =~ (%; — xi)T?L(i) 5)
Therefore, the approximation for Ns.+Dn. is (Z; — xi)T%L(az) + (2 — o:i)Tag_] L(2).

E.3.3 Differentiable Mask Example: EdgePruning

EdgePruning assigns a learnable mask to each node or edge, where the mask is reparameterized
using the hard concrete distribution. In the Ns. setting, the optimization objective corresponds to
Equation[I] Consequently, the objectives for the Dn. and Ns.+Dn. settings are given by Equation 2]
and Equation 3| respectively.
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In the Ns.+Dn. setting, directly optimizing both objectives jointly can lead to gradient interference
and convergence to Pareto-optimal solutions, rather than a unified optimum. To address this, we
independently compute the final mask values for Ns. and Dn. using Equations [Tjand [2] and then
obtain the mask for Ns.+Dn. by averaging the two.

F Misalignment Score

Misalignment of AND: For any subcircuit anp C Canp, Canp = Canp \ Kanp. Let i, j € Canp,
1%, 7% € Cxnp be any two edges with the same receiver, respectively. The score of misalignment of
AND reads:

E; j[D(Canp \ i||Canp \ 3, 5)] — Eix i« [D(Canp \ i [|Canp \ 75 57)] (6)

Equation [6] indicates that the higher the score, the higher the misalignment. This is due to their
properties: the effect caused by removing one and two edges from the AND gates is similar, while
the effect for the ADDER gates differs significantly.

Misalighment of OR: Similarity, let any Kor C Cor , CBR = Cor \ Kor, 1,] € Cor, 7, j* S CE;R,
respectively. The score of misalignment of OR reads:

E; i« [D(Cor \ #[Cor \ )] — Ei i« [D(Cor \ i, j||Cor \ 7%, %) +m @)

Equation [/| utilizes the properties that the effect does not change by removing one edge from OR
gates, while it significantly changes from ADDER gates. Additionally, to avoid the bias caused by
both effects of ADDER and OR edges being marginally small in large-scale circuits, we replace the
“difference in one edge” with the “difference in difference between one edge and two edges,” and
introduce a constant m to ensure that the score > 0 (with m set to 1.5 in practice).

Therefore, for any pair of Cys and Cp,, we can compute the misalignment using these two scores.
We report the misalignment scores resulting from the intersection of Ns and Dn circuits at varying
scales. Specifically, we select an Ns circuit consisting of 100 edges recovered from the IOI task and
examine how the misalignment score changes as the number of edges in the Dn circuit varies from 60
to 140. Figure [§]illustrates that when Dn is significantly smaller than Ns, the misalignment score
for the AND gates is high, as many ADDER edges are misclassified as AND edges. Conversely,
when Dn is substantially larger than Ns, the misalignment score for the OR gates increases, due to
many ADDER edges being misclassified as OR edges. When the number of edges in the Dn circuit is
approximately equal to that in the Ns circuit, both the misalignment score and its standard deviation
reach an acceptable level.

As shown in Figure [§] when the OR set significantly exceeds the AND set, a large number of
misclassified ADDER gates appear only within the OR set, leading to a much higher misalignment
score for OR compared to AND. The misalignment score is more of a "property," reflecting the
optimal scale at which OR and AND sets should intersect. We determine the optimal ratio of AND to
OR gates by minimizing the sum of the misalignment scores for AND and OR. The optimal results
obtained with different methods and datasets are approximately as shown in Table 6}

Table 6: The optimal ratio of edge numbers between Cns and Cpy,.

strategies 101 GT SA
ACDC 1.12:1 1.05:1 1.07: 1
EAP 1.09:1 1.03:1 1.05:1

Edge-Pruning 1.11: 1 1.07:1 1.06:1

The results show that the proportion of AND is always slightly higher than that of OR, but it can be
approximated as 1:1. Therefore, throughout this paper, we assume that the optimal alignment occurs
when Ns and Dn contain an equal number of edges.

G Experiments of Completeness

In this Appendix, we present the detailed results of the completeness validation, together with a
comparison against the Dn strategy. The specific results are reported in Tables[/|and |8} In brief,
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Figure 8: Misalignment score with 100-edges IOI circuit from Ns.

our method generally outperforms the approach based on Dn. Although the Dn-based method is
theoretically capable of identifying all OR gates, it suffers from certain shortcomings in practice. For
instance, as shown in Table 1, EAP fails to identify one of the edges associated with an AND gate
under the Dn framework. Additionally, the greedy strategy may miss some OR gates located beneath
branches of AND gates due to its dependence on the search order. The differentiable mask approach,
on the other hand, suffers from the drawback that, in gates involving multiple edges, the mask values
assigned to each edge tend to be lower, reducing its effectiveness.

Table 7: KL in Completeness Validation of 10I task, including Ns, Dn, and Ns+Dn.

#edges ACDC_NS ACDC_Dn ACDC_NsDn EAP_Ns EAP Dn EAP_NsDn EdgeP_Ns EdgeP_Dn EdgeP_NsDn

100 0.62+0.1 0.64+0.1 0.64+0.1 0.51+0.1 0.71£0.1  0.74+0.1 0.560.1 0.62+0.1 0.64+0.1
200 0.64+0.1 0.69+0.1 0.71+0.1 0.56+0.1 0.73£0.0 0.73%0.1 0.58+0.1 0.65+0.1 0.69+0.1
500 0.71£0.1 0.84+0.1 0.87+0.1 0.65+£0.1 0.81£0.1 0.83x0.1 0.67£0.1 0.88+0.1 0.94+0.1
1000 0.81+0.1 0.96+0.1 1.03+0.1 0.74+0.1 0.96+0.1 1.02+0.1 1.08+0.1 1.11£0.1 1.13+0.1
2000 1.05+0.1 1.19+0.2 1.22+0.1 0.89+0.1 1.11£0.2 1.24+0.2 1.31£0.2 1.40+0.1 1.41£0.1
5000 1.34+0.2 1.42+0.2 1.46+0.2 1.21+0.1 1.42+0.2 1.48+0.2 1.62+0.2 1.73£0.1 1.73+0.1

Table 8: Accuracy in Completeness Validation of IOI task, including Ns, Dn, and Ns+Dn.

#edges ACDC_NS ACDC_Dn ACDC_NsDn EAP_Ns EAP Dn EAP_NsDn EdgeP_Ns EdgeP_Dn EdgeP_NsDn

100 0.73+0.1 0.68+0.0 0.63+0.1 0.74+0.1 0.53£0.0 0.51%0.0 0.760.1 0.67+0.1 0.66+0.0
200 0.65+0.0 0.62+0.0 0.60+0.0 0.68+0.0 0.49+0.0 0.46+0.0 0.59+0.0 0.55+0.0 0.56+0.0
500 0.53+0.0 0.51£0.0 0.51x0.0 0.61£0.0 0.41£0.0 0.38+0.0 0.55£0.0 0.43£0.0 0.43+0.0
1000 0.40+0.0 0.34+0.0 0.33+0.0 0.39+0.0 0.29+0.0 0.26+0.0 0.32+0.0 0.27£0.0 0.26+0.0
2000 0.34+0.0 0.26+0.0 0.24+0.0 0.35£0.0 0.18£0.0  0.14+0.0 0.24+0.0 0.18+0.0 0.16+0.0
5000 0.26+0.0 0.22+0.0 0.21+0.0 0.29+0.0 0.13£0.0  0.09+0.0 0.21+0.0 0.11+0.0 0.11+0.0

H Experiments of Faithfulness

In this section, we investigate the faithfulness of circuits obtained using three methods—ACDC, EAP,
and EdgePruning—across three tasks: 101, GT, and SA. Specifically, we examine the changes in KL,
divergence and accuracy between the original circuit (Ns.), the circuit with full OR and ADDER
gates (Dn.) and the circuit with logically complete gates (Ns.+Dn.). For sparsity, we select edge
counts of 100, 200, 500, 1000, 2000, and 5000.

Figure [0 illustrates that, under the same sparsity constraints, the circuits discovered using Dn. are
significantly lower in both metrics compared to those discovered using Ns. and Ns.+Dn., which
corroborates our assertion in Corollary [T} Dn. is incapable of fully recovering the AND gate, and
thus cannot achieve optimal faithfulness.

Additionally, in the EAP method, Ns clearly performs much worse than Ns+Dn, whereas in the
ACDC and EdgePruning methods, the performance of Ns and Ns+Dn is quite similar. This aligns
with our reasoning in Table[I] where we note that only the linear estimation method completely fails
to identify any OR edge, thus not satisfying the minimal requirement of faithfulness.
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Figure 9: Faithfulness of circuit from Ns., DN., and NS.+Dn..

I Graph Study

To investigate the relationship between the three logical gates and the functions of the language
model, we extracted the circuits of AND, OR, and ADDER gates discovered through ACDC on the
IOI task. We then reviewed the 10I circuit [16] to determine the function of each component.

Interestingly, each receiver in the AND circuit is almost always influenced by edges from different
functions, indicating that the AND operation can be understood as combining different functions to
jointly impact the subsequent layers. For example, in Figure[I0{a), the Induction Head requires edges
from both the Duplication Token Head and the Previous Token Head to function, which supports the
mechanism behind the Induction skill [27, 28], 29]]. Similarly, the Name Mover Head requires support
from both the S-Inhibition Head and the Induction Head, which explains the functional mechanism
of the AND operation.

In contrast, the OR circuit clearly shows that nearly every receiver node is influenced by edges from
the same function, as shown in in Figure [T0[b), suggesting that these edges from the same function
are either backups or interchangeable. For instance, the S-Inhibition Head is influenced by multiple
Induction Heads, and the Backup Name Mover Head is influenced by multiple S-Inhibition Heads.

Lastly, the ADDER circuit appears to focus more on the outputs of the MLP and often combines
outputs from shallow-layer skills with those from deeper-layer skills, as shown in Figure [I0[c). The
Name Mover Head considers outputs from all functions between the Duplicate Token Head and the
S-Inhibition Head, and the final output takes into account the combined results from all three Name
Mover Heads.

Additionally, regarding the span of gates across layers, the OR gates typically operate over the
shortest distances, usually occurring between two functions that are close in layer position. In
contrast, the ADDER gates generally span the longest distances, typically combining shallow-layer
functions with deeper-layer functions.
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Figure 10: Circuit Graphs of AND, OR, and ADDER gates, respectively. We set the color of each

component to be the same as that of the IOI circuit [[16], allowing for easy reference to the function
of each component.
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Figure 11: The contribution of different logic gates to the output.”

J Output Contribution

In this section, we investigate the contribution of three types of logic gates to the output. Specifi-
cally, we calculate the change in the KL divergence of the output caused by replacing these gates.
Considering the collection of gates, we analyze their contributions from two perspectives: the gate
effect and the edge effect. The gate effect refers to the impact on the output caused by replacing
an entire logic gate, while the edge effect corresponds to equally distributing the gate effect across
each edge within the gate. For example, for an AND gate with two edges, if the activation of the
receiver node contributes 0.8 to the output, the edge effect would be 0.4. Figure[IT]illustrates the gate
effect and edge effect of these logic gates across different tasks and baselines. Clearly, the ADDER
gates exhibit the largest contribution, demonstrating its role as the primary framework of the circuit,
while the contributions of the AND and OR gates are similar. Additionally, the average gate and edge
effects in EdgePruning and EAP are significantly higher than those in ACDC. This is because the
differentiable mask and linear estimation methods optimize (rank) based on the edge effect, ensuring
that the effect within the circuit is maximized, in contrast to greedy search methods.

K Proportion of AND, OR, and ADDER Gates

Figure [T2]illustrates the proportion of the three types of logical gates across different tasks for each
method. Notably, in the ACDC baseline, the number of edges corresponding to each gate type is
nearly equal. This is because ACDC employs a greedy search strategy without ranking edges by their
effect on the output. In contrast, both EAP and EdgePruning yield significantly fewer OR edges,
reflecting the fact that OR edges contribute the least to the output—a finding we detail in Section[5.2]
and Appendix |J| Furthermore, the results from EdgePruning indicate that the number of AND edges
is similarly low, comparable to OR edges. This arises from the fact that EdgePruning optimizes based
on individual edge effects rather than gate-level effects. For instance, in a gate comprising two AND
edges, each edge contributes only half of the total gate effect. As a result, during optimization, the
mask values for such edges may be suppressed, increasing the likelihood of pruning.

L. Potential Contributions of Completeness: an Example of Model Unlearning

We have designed a toy task analogous to knowledge unlearning to demonstrate its actual effec-
tiveness. Specifically, given a harmful-response datasets (PKU-SafeRLHF) [30], we first obtain its
circuit C, and then remove this circuit from the computation graph G, observing whether the model
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(d) ACDC in GT task (e) EAP in GT task (f) EdgePruning in GT task
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(g) ACDC in SA task (h) EAP in SA task (1) EdgePruning in SA task

Figure 12: Proportion of AND, OR, and ADDER edges in circuit from Ns.+Dn., The concentric
rings from the innermost to the outermost represent circuits with 100, 500, 1000, and 5000 edges,
respectively. The blue represents AND edges, red represents ADDER edges, and green represents
OR edges.
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can still respond to the dataset. The dataset provides harmful responses for certain questions, which
are used to evaluate the efficacy of preventing the model from generating these harmful responses.

In the Table[9] we present the performance of this toy task on the accuracy of G — C, which refers to
the performance of the computational graph after the circuit has been removed (using the interchange
ablation method), reflecting the completeness of the circuit. We test two circuit discovery methods:
EAP and Edge-Pruning.

Table 9: A toy experiment on model unlearning task

Method accuracy accuracy of G-C

EAP 92.74 29.17
Edge-P  92.74 31.44
Ours 92.74 13.21

It is evident that, compared to existing circuit discovery methods, our method ensures that the
computational graph loses almost all the necessary mechanisms for the task once the circuit is
removed. Additionally, this toy task highlights the significance of studying circuit completeness,
which holds great potential in unlearning harmful information: a complete circuit can help us pinpoint
all neurons associated with harmful responses.
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