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Abstract

State-of-the-art semi-supervised learning (SSL) approaches rely on highly confident predic-
tions to serve as pseudo-labels that guide the training on unlabeled samples. An inherent
drawback of this strategy stems from the quality of the uncertainty estimates, as pseudo-
labels are filtered only based on their degree of uncertainty, regardless of the correctness
of their predictions. Thus, assessing and enhancing the uncertainty of network predictions
is of paramount importance in the pseudo-labeling process. In this work, we empirically
demonstrate that SSL methods based on pseudo-labels are significantly miscalibrated, and
formally demonstrate the minimization of the min-entropy, a lower bound of the Shannon
entropy, as a potential cause for miscalibration. To alleviate this issue, we integrate a simple
penalty term, which enforces the logit distances of the predictions on unlabeled samples to
remain low, preventing the network predictions to become overconfident. Comprehensive
experiments on a variety of SSL image classification benchmarks demonstrate that the pro-
posed solution systematically improves the calibration performance of relevant SSL models,
while also enhancing their discriminative power, being an appealing addition to tackle SSL
tasks. Code : https://github.com/ShambhaviCodes/miscalibration-ssl

1 Introduction

Deep learning models have significantly advanced the state-of-the-art across a myriad of tasks (Masana et al.,
2022; Minaee et al., 2021). Nonetheless, their success has been often contingent on the availability of large
amounts of labeled data. Having access to curated large training datasets, however, is not easy, and often
involves a tremendous human labor, particularly in those domains where labeling data samples requires
expertise, hindering the progress to address a broader span of real-world problems.

Semi-supervised learning (SSL) (Chapelle et al., 2006) mitigates the need for large labeled datasets by pro-
viding means of efficiently leveraging unlabeled samples, which are easier to obtain. This learning paradigm
has led to a plethora of approaches, which can be mainly categorized into consistency regularization (Bach-
man et al., 2014; Laine & Aila, 2017) and pseudo-labeling (Lee et al., 2013; Xie et al., 2020b) methods.
Indeed, state-of-the-art SSL approaches (Wang et al., 2023; Zhang et al., 2021; Sohn et al., 2020; Chen
et al., 2023; Zheng et al., 2022) combine both strategies, obtaining promising results. The underlying idea
of these approaches follows the low-density and smoothness assumptions in SSL (Chapelle & Zien, 2005). In
particular, incorporating pseudo-labels from unlabeled data points into the training process aids the deci-
sion boundary to lie in low density regions. Furthermore, consistency regularization assumes that the same
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unlabeled data point should yield the same pseudo-label regardless of the perturbations applied, implicitly
capturing the underlying data manifold. As the model can produce very uncertain predictions for strongly
perturbed samples, these techniques incorporate a threshold, either fixed (Sohn et al., 2020) or adaptive
(Wang et al., 2023; Zhang et al., 2021), to only integrate very confident samples in the training loss. Thus,
all samples whose predicted probabilities are highly confident are trusted by these methods as supervisory
signals for subsequent steps, even when their predictions are wrong.

Despite being a standard practice, recent evidence (Chen et al., 2023) suggests that the amount of incorrect
pseudo-labels integrated into the training is not negligible, potentially undermining the optimization process.
Hence, given that the generated pseudo-labels play a significant role in the training of SSL models, producing
accurate uncertainty estimates is of pivotal importance. Nevertheless, while we have observed a remarkable
progress in their discriminative performance, little attention has been paid to studying, and improving, the
calibration of SSL approaches. Motivated by these findings, in this work we address the critical yet under-
explored issue of miscalibration in SSL, particularly for those methods based on pseudo-labeling. To this end,
we select a set of relevant and recent strategies that build on pseudo-labels and consistency regularization
(Sohn et al., 2020; Wang et al., 2023; Zhang et al., 2021) and empirically demonstrate that they are poorly
calibrated. Furthermore, we explore the underlying causes of this issue and shed light about the potential
reasons that produce overconfident pseudo-labeling SSL models. Last, inspired by these observations we
propose a simple solution to tackle miscalibration in these models. Our contributions can be therefore
summarized as follows:

1. We empirically demonstrate that state-of-the-art SSL approaches based on pseudo-labels are sig-
nificantly miscalibrated. Through our analysis, we formally show that the cause of miscalibration
is the minimization of a min-entropy term, a specific case of the Rényi family of entropies, on a
considerably large proportion of unlabeled samples, which forces the model to yield overconfident
predictions. Indeed, the ensuing gradients from this term strongly push the unlabeled samples to
be highly confident since the beginning of the training, even if their class predictions are incorrect.
This results in large logit magnitudes, a phenomenon known to cause miscalibration.

2. Based on our observations, we propose to use a simple solution that refrains the model from pushing
unlabeled samples towards very confident regions, improving the calibration of pseudo-labeling SSL
methods. More concretely, we add a penalty term on a dominant set of unlabeled samples, which
enforces logit distances to remain low, alleviating the miscalibration issue.

3. Through a comprehensive set of experiments, we empirically demonstrate that the proposed approach
consistently improves the uncertainty estimates of a set of very relevant and recent state-of-the-art
pseudo-labeling SSL approaches on popular benchmarks, in both standard and long-tailed classifi-
cation tasks. In addition, in most cases, the proposed solution further improves their discriminative
performance.

2 Related work

2.1 Semi-supervised learning

Prevailing semi-supervised learning (SSL) approaches heavily rely on the concept of pseudo-labels (Lee et al.,
2013; Shi et al., 2018) and consistency regularization (Bachman et al., 2014; Laine & Aila, 2017; Sajjadi
et al., 2016; Tarvainen & Valpola, 2017; Miyato et al., 2018), where labels are dynamically generated for
unlabeled data throughout the training process. Essentially, these methods exploit the role of perturbations,
by stochastically perturbing the unlabeled images and enforcing consistency across their predictions. This
consistency is achieved by a pseudo-supervised loss, where the predictions over the strong perturbations are
supervised by the pseudo-labels obtained from the weak perturbations (Xie et al., 2020a; Wang et al., 2023;
Zhang et al., 2021; Chen et al., 2023; Zheng et al., 2022; Yang et al., 2023; Xu et al., 2021; Zheng et al., 2022).
This paradigm to use artificial labels facilitates the integration of unlabeled data into the learning process,
thereby augmenting the training set and improving the model ability to generalize. To avoid introducing
noise in the pseudo-supervision process, these approaches retain a given pseudo-label only if the model

2



Published in Transactions on Machine Learning Research (09/2024)

assigns a high probability to one of the possible classes. This strategy effectively harnesses the information
from unlabeled data by leveraging the network confidence in assigning pseudo labels, enabling the model
to access the valuable knowledge encapsulated within these unlabeled samples. Thus, the main differences
across the different approaches based on pseudo-labels lie on the mechanism introduced to select confident
samples. For example, FixMatch (Sohn et al., 2020) and ShrinkMatch (Yang et al., 2023) employ a fixed
threshold, whereas Dash (Xu et al., 2021) proposes a dynamically growing threshold. Other approaches, such
as FlexMatch (Zhang et al., 2021) and FreeMatch (Wang et al., 2023), integrate class-adaptative thresholds,
considering a larger amount of unlabeled data which is otherwise ignored, especially at the early stage of the
training process.

Limitations of pseudo-labeling SSL from a calibration standpoint. Although these methods enhance the
discriminative power of deep models, their calibration has been significantly overlooked, lacking of principled
strategies to simultaneously improve the classification performance while maintaining the quality of the
uncertainty estimates. As pseudo-labeling state-of-the-art SSL approaches trust highly confident artificial
labels derived from unlabeled samples, understanding how this confidence is assigned, and ensure its accuracy,
is of paramount importance. In this context, (Rizve et al., 2021) addresses the challenge of selecting reliable
pseudo-labels by incorporating uncertainty estimates into the pseudo-labeling process. Very recently, BAM
(Loh et al., 2023) studied miscalibration in SSL, and proposed to replace the last layer of a neural network
by a Bayesian layer. Nevertheless, the source of miscalibration was not explored, and in-depth empirical
results were not reported.

2.2 Calibration

Recent evidence (Guo et al., 2017; Müller et al., 2019; Mukhoti et al., 2020) has shown that deep networks
are prone to make overconfident predictions due to miscalibrated output probabilities. This emerges as
a byproduct of minimizing the prevalent cross-entropy loss, which occurs when the softmax predictions
for all training samples fully match the ground-truth labels, and thus the entropy of output probabilities is
encouraged to be zero. To mitigate the miscalibration issue, and to better estimate the predictive uncertainty
of deterministic models, two main families of approaches have emerged recently: post-processing (Guo et al.,
2017; Ding et al., 2021; Tomani et al., 2021) and learning (Pereyra et al., 2017; Müller et al., 2019; Mukhoti
et al., 2020; Liu et al., 2022; Cheng & Vasconcelos, 2022; Liu et al., 2023; Noh et al., 2023; Murugesan
et al., 2023; Larrazabal et al., 2023; Park et al., 2023) approaches. Among the post-processing strategies,
Temperature Scaling (TS) (Guo et al., 2017) has been a popular alternative, which manipulates logit outputs
monotonely, by applying a single scalar temperature parameter. This idea is further extended in (Ding
et al., 2021), where a local TS per pixel is provided by a regression neural network. Nevertheless, despite the
simplicity of these methods, learning approaches have arisen as a more powerful choice, as in this scenario the
model adapts to calibration requirements alongside its primary learning objectives, optimizing both aspects
simultaneously. Initial attempts integrated learning objectives that maximize the entropy of the network
softmax predictions either explicitly (Pereyra et al., 2017; Larrazabal et al., 2023), or implicitly (Mukhoti
et al., 2020; Müller et al., 2019; Cheng & Vasconcelos, 2022). In order to alleviate the non-informative
nature of simply maximizing the entropy of the softmax predictions, recent work (Liu et al., 2022; 2023)
has presented a generalized inequality constraint, which penalizes logits distances larger than a pre-defined
margin.

3 Semi-supervised learning and calibration

3.1 Problem statement

In the semi-supervised learning scenario, the training dataset is composed of labeled and unlabeled data
points. In this setting, let DL = {(xi, yi)}NL

i be the labeled dataset and DU = {xi}NU
i the unlabeled dataset,

where NL and NU represent the number of labeled and unlabeled samples, respectively, and NL << NU .
Furthermore, xi ∈ Rd is a d-dimensional training sample, with yi ∈ {0, 1}K its associated ground truth
(only for labeled data points, i.e., xi ∈ DL) that assigns one of the K classes to the sample. The objective
is, given a batch of labeled and unlabeled samples, to find an optimal set of parameters of a deterministic
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function, e.g., a neural network, parameterized by θ, by using a compounded loss including a labeled and
an unlabeled term. Given an input image xi, the network will generate a vector of logits fθ(xi) = li ∈ RK ,
which can be converted to probabilities with the softmax function.

Supervised loss. The supervised objective is typically formulated as a standard cross-entropy H between
the one-hot encoded labels yi and the corresponding softmax predictions p(y|xi) ∈ [0, 1]K of labeled samples:

LS = H(yi, p(y|xi)) = −
∑

i∈DL

yi log p(y|xi) (1)

Unsupervised loss. Most modern SSL approaches adopt a consistency regularization strategy based on
pseudo-labeling for the unsupervised objective. To this end, the same image xi follows a set of weak and
strong augmentations, denoted as ω(·) and Ω(·), respectively. Thus, a pseudo-cross-entropy term on the
unlabeled training dataset can be formulated as:

LU = −
∑

i∈DU

ỹi log p(y|Ω(xi)) (2)

where ỹi is the one-hot encoding of the arg max of the softmax probabilities for the weak augmented version,
i.e., arg max(p(y|ω(xi)). To avoid that samples with high uncertainty, and possibly incorrect predictions,
intervene in the optimization of the term in eq. (2), a common strategy is to retain only discrete pseudo-labels
whose largest class probability fall above a predefined threshold (Lee et al., 2013; Wang et al., 2023; Sohn
et al., 2020; Zhang et al., 2021). This results in the following objective:

LU = −
∑

i∈DU

1(max(p(y|ω(xi))) ≥ τ)ỹi log p(y|Ω(xi)) (3)

where τ is the predefined threshold. Note that all loss terms are normalized by the cardinality of each set,
which we omit for simplicity.

3.2 Revisiting the calibration of semi-supervised models

We now introduce a series of observations revealing several intrinsic properties of semi-supervised methods
built up on pseudo-labels generation, which allows us to motivate a calibration technique tailored for pseudo-
label based SSL.

Observation 1. Semi-supervised learning degrades the calibration performance. An important
body of literature on SSL relies on pseudo-labeling to leverage the large amount of unlabeled samples. To
achieve this, a very common strategy is to generate weak augmentations of each unlabeled image, whose
predictions serve as supervision for their strong augmentation counterpart, as presented in eq. (3). Pseudo-
labeling (Lee et al., 2013) is indeed closely related to entropy regularization (Grandvalet & Bengio, 2004),
which favors a low-density separation between classes, a commonly assumed prior for semi-supervised learn-
ing. While minimizing the entropy of the predictions can actually improve the discriminative performance
of neural networks, it inherently favours overconfident predictions, which is one of the main causes of mis-
calibration. Figure 1 brings empirical evidence about this observation, where we can observe that despite
bringing performance gains, in terms of accuracy, pseudo-label based SSL methods naturally degrade the
calibration properties of a supervised baseline trained with a few labeled samples.

Observation 2. Pseudo-labeling in SSL indeed minimizes min-entropy on unlabeled points. The
use of a hard label makes pseudo-labeling closely related to entropy minimization (Grandvalet & Bengio,
2004). Nevertheless, the different transformations that unlabeled images follow in modern SSL methods
produce different probability distributions for the weak and strong versions of the same image, where the
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Figure 1: Observation 1. Reliability plots for a baseline supervised model (trained with eq. (1)) and
three representative SSL approaches (trained with eq. (4)) on CIFAR-100. These plots empirically highlight
the calibration degradation observed when training with the standard unsupervised loss, despite the gains
achieved in discrimination.

predictions of the former are used to correct the predictions of the later. Note that this is slightly different
from the traditional pseudo-labeling approaches, where the same image is used for assigning the pseudo-label
and updating the predictive model. Thus, albeit they are related, the minimization of entropy cannot be
attributed as the cause of miscalibration. Motivated by this, we explore in this section the implications of
the standard SSL unlabeled loss based on pseudo-labels and its effect on network calibration. The common
learning objective is composed of two terms: the first one is the standard cross-entropy (CE) on labeled
samples (eq. (1)), while the second term is a CE between pseudo-labels obtained from weak augmentations
and the predictions of their strong augmented counterparts (eq. (3)):

LT = −
∑

i∈DL

yi log si︸ ︷︷ ︸
CE on labeled samples

−
∑

i∈DU

ỹw
i log ss

i︸ ︷︷ ︸
Pseudo-CE on DU

, (4)

where si = p(y|xi) is used for simplicity, and the superscripts w and s denote weak and strong transfor-
mations, respectively. We now split the unlabeled dataset into DU ′ , which contains the unlabeled samples
whose predicted class from weak and strong augmentations are different, i.e., arg max(sw

i ) ̸= arg max(ss
i )

and DU ′′ , containing the samples whose predicted class from weak and strong augmentations are the same.
Thus, we can decompose the right-hand term in eq. (4) into two terms, one acting over DU ′ and one over
DU ′′ :

LT = −
∑

i∈DL

yi log si︸ ︷︷ ︸
CE on labeled samples

−
∑

i∈DU′

ỹw
i log ss

i︸ ︷︷ ︸
Pseudo-CE on DU′

−
∑

i∈DU′′

ỹw
i log ss

i (5)

In the above equation, the second term can be seen as a pseudo cross-entropy on DU ′ . Furthermore, as ỹw
i

is equal to the one-hot vector from arg max(ss
i ) on samples from DU ′′ , the last term is equivalent to the

min-entropy1:

LT = −
∑

i∈DL

yi log si︸ ︷︷ ︸
CE on labeled samples

−
∑

i∈DU′

ỹw
i log ss

i︸ ︷︷ ︸
Pseudo-CE on DU′

−
∑

i∈DU′′

log(max
k

ss
i,k)

︸ ︷︷ ︸
min-entropy on DU′′

(6)

As shown in Figure 2 in the case of a two-class distribution (p, 1 − p), min-entropy is a lower bound of
the Shannon Entropy, which has several implications in network miscalibration. In particular, while both

1Pseudo-label ŷw
i,c = 1 if ss

i,c = maxk ss
i,k, and 0 otherwise.
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Shannon Entropy and min-entropy reach their minimum at the vertices of the simplex, i.e., when p = 0
or p = 1 (left), the dynamics of the gradients are different (middle). More concretely, in the case of the
Shannon entropy, the gradients of low-confidence predictions at the middle of the simplex are small and,
therefore, dominated by the other terms at the beginning of training. In contrast, by minimizing the min-
entropy, the inaccuracies resulting from uncertain predictions are reinforced, i.e., pushed towards the simplex
vertices, yielding early errors in the predictions, which are hardly recoverable, and potentially misleading
the training process.

Figure 2: Observation 2. (Left) The unsupervised term in pseudo-label SSL is equivalent to a pseudo
cross-entropy on a small subset of unlabeled samples and a pseudo-entropy regularization loss that minimizes
the min-entropy (a lower bound of the Shannon Entropy) of the predictions from most unlabeled samples.
(Middle) Compared to the Shannon Entropy, the min-entropy is more aggressive in the gradient dynamics,
particularly at the beginning of the training, when most predictions are uncertain. (Right) Ratio of samples
with same hard prediction for weak and strong augmentations that were above the selection threshold of
three relevant SSL methods.

Furthermore, we empirically observed that the amount of samples where the arg max of the predictions
from weak and strongly augmented versions was the same, i.e., DU ′′ , was significantly larger than those
with different predictions, i.e., DU ′ (Figure 2, right). In particular, as shown in this figure, and after some
iterations, more than 80% of unlabeled samples included in the training share the same pseudo-
label between weak and strong annotations, regardless of the approach analyzed. Thus, based on
our observations we argue that the training of SSL methods based on pseudo-labels is equivalent to having a
supervised term coupled with a pseudo cross-entropy on a small subset of unlabeled samples and a pseudo-
entropy regularization loss that minimizes the min-entropy of the predictions from most unlabeled samples.
This means that, while implicitly, or explicitly, minimizing the Shannon entropy on the network softmax
predictions is known to cause miscalibration (Guo et al., 2017), employing the min-entropy aggravates the
problem, which explains why SSL methods based on pseudo-labels are not well calibrated, particularly
compared to a simple supervised baseline (Figure 1).

Observation 3. Pseudo-label SSL techniques produce highly overlapped logit distributions,
with large logit magnitudes and distances. A direct implication of Observation 2 is that softmax
predictions in pseudo-labeling SSL methods become highly confident, which translates into larger logit values
compared to a supervised baseline. As a result, even when a predicted category is incorrect, the network
will still express a high level of certainty in its prediction. Take for instance the example shown in Figure 3,
which depicts the logit value distributions for the samples belonging to class 5. We can observe that, in the
case of the supervised baseline, the maximum logit values for incorrect predicted classes is at ≈ 7.5 (classes
6 and 7) and around 6.5 (class 8). In contrast, when adding unlabeled samples in the form of pseudo-labels
(e.g., in FixMatch (Sohn et al., 2020)), the maximum logit values for incorrect classes increase to nearly
12.5. This means that, while both models yield incorrect predictions, these are highly confident in the
SSL methods. Furthermore, the logit range in the supervised baseline goes from around -7 to 10, whereas
FreeMatch produces logits in the range from -10 to 15, which will result in highest probability scores for the
predicted category. From these observations, we argue that a well-calibrated SSL model should decrease the
magnitude of logits associated with incorrect classes, as well as their total logits range, thereby decreasing
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confidence in erroneous predictions, while simultaneously preserving high values in logits corresponding to
the target class.
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Figure 3: Observation 3. These plots depict the Kernel Density Estimation of the logit distributions
obtained by (left) the supervised baseline trained with eq. (1) and (right) FreeMatch on STL-10, for the
samples belonging to class 5. We can observe that, even for non-target classes (k̸=5), the logit magnitudes
in FreeMatch are larger, which translates to higher overconfidence in both correct and incorrect predictions.
We select STL-10 due to its number of classes (10 vs. 100 in CIFAR-100).

4 Our solution

Based on our findings, especially in Observation 3, it becomes evident that an effective strategy for
addressing miscalibration within the SSL scenario involves controlling the magnitude of predicted logits
for unlabeled samples. Furthermore, from Observation 2 we can derive that the underlying mechanism
magnifying the miscalibration issue stems from the hidden min-entropy term on the data points in DU ′′ ,
which represents the majority of unlabeled samples. Thus, we resort to an inequality constraint that imposes
a controllable margin on the logit distances of predictions in samples from DU ′′ . This constraint, which draws
inspiration from (Liu et al., 2022), takes the following form d(l) ≤ m, where d(l) = (maxj(lj) − lk)1≤k≤K ∈
RK represents the vector of logit distances between the winner class and the rest (only for samples in DU ′′)
and m a K-dimensional vector defining the margin values, with all elements equal to m ∈ R++. Note that
while (Liu et al., 2022) was proposed in the fully supervised learning scenario, in this work we only enforce
the constraint on a subset of samples, which is motivated by the observations presented in 3.2. Furthermore,
this choice is also supported empirically in the ablation studies presented in the experiments.

By integrating this inequality constraint on the logit distances, training becomes a constrained problem,
whose objective can formally defined as:

minimize LT

subject to d(l) ≤ m m ∈ R++, ∀xi ∈ DU ′′ .
(7)

The above constrained problem in eq. (7) can be approximated by penalty-based optimization method,
transforming the formulation into an unconstrained problem by using a simple ReLU function:

min
θ

LT + λ
∑

i∈DU′′

∑
k

max(0, max
j

(li,j) − li,k − mk) (8)

where the second term, i.e., the non-linear ReLU penalty, prevents logit distances from exceeding a prede-
termined margin m, and λ ∈ R+ is a blending hyperparameter which controls the contribution of the CE
loss and the corresponding penalty. The intuition behind this penalty term is simple. For the winner logits
where the distance with the remaining logits is above the margin m, a gradient will be back-propagated to
enforce those values to decrease. As a result, the whole logit magnitudes will decrease, potentially alleviating
the miscalibration issue in the set of unlabeled samples LU ′′ , which dominate the SSL training.

7



Published in Transactions on Machine Learning Research (09/2024)

5 Experiments

Datasets. We resort to the recent Unified Semi-supervised Learning Benchmark for Classification (USB)
(Wang et al., 2022), which compiles a diverse and challenging benchmark across several datasets. In partic-
ular, we focus on three popular datasets: CIFAR-100 (Krizhevsky & Hinton, 2010), which has significant
value as a standard for fine-grained image classification due to its wide range of classes and detailed object
distinctions; STL-10 (Coates et al., 2011), which is widely recognized for its limited sample size and ex-
tensive collection of unlabeled data, rendering it a challenging scenario of special significance in the context
of SSL; and EuroSAT (Helber et al., 2019), containing 10 unique fine-grained categories related to earth
observation and satellite imagery analysis, and important challenges such as high variability and imbalance
classes. Last, we also conduct further experiments in the long-tailed version of CIFAR-100.

Architectures. We have prioritized Vision Transformers (ViT) over Convolutional Neural Networks
(CNNs), for three main reasons related to discriminative performance, quality of uncertainty estimates,
generalization and transfer learning capabilities. First, the emergence of ViTs has proven these models to
outperform their CNNs counterparts (Raghu et al., 2021; Cai et al., 2022). Second, from a calibration
standpoint, ViTs have also shown to be better calibrated than CNNs (Minderer et al., 2021; Pinto et al.,
2021). Hence, due to their superior discriminative and calibration performance, they pose a more challenging
scenario to evaluate the effectiveness of the proposed strategy. And last, the fine-tuning capabilities of ViTs
enable effective transfer learning across diverse visual tasks and datasets. This capability is particularly
advantageous in scenarios where labeled data is scarce, as it allows leveraging pre-trained representations
learned from large-scale datasets, significantly minimizing the amount of training iterations while maintain-
ing consistent performance2. More concretely, we employ a ViTSmall (Gani et al., 2022) with a patch size
of 2 and an image size of 32 for CIFAR-100 and EuroSAT, in accordance with the standard in USB, and a
ViT-Small with an image size of 96 for STL10.

We use same settings for all models and benchmarks to provide a fair comparison.

Training, evaluation protocol and metrics. While several works use different amounts of labeled data
in their experiments, we perform due diligence and follow the settings proposed in USB (Wang et al., 2022)
for training. For each method and configuration, we perform three runs with different seeds, select the best
checkpoint and report their mean and standard deviation, following the literature. We report error rates for
the accuracy performance and the expected calibration error (ECE), following the literature in calibration
of supervised models. Implementation details are discussed in Appendix.

5.1 Results

Main results. The proposed strategy is model agnostic, and can be integrated on top of any SSL approach
based on pseudo-labels, enabling substantial flexibility. For the empirical evaluation, we selected three pop-
ular and relevant approaches that resort to hard pseudo-labels: FixMatch (Sohn et al., 2020), FlexMatch
(Zhang et al., 2021) and FreeMatch (Wang et al., 2023) and assess the impact of adding our simple solution
during training. Discriminative performance (table 1): we observe that in 16 out of the 18 different settings,
adding the penalty in eq. (8) brings improvement gains compared to the original versions of each method,
which are only trained with eq. (4). Note that these gains are sometimes substantial, improving the original
method by up to 4% (e.g., FixMatch in CIFAR-100(200) and EuroSAT(20) or FlexMatch in EuroSAT(20)).
Furthermore, the three approaches combined with our penalty achieve very competitive performance com-
pared to existing SSL literature, typically yielding state-of-the-art results. Calibration performance (table 2):
Similarly, including the penalty term systematically enhances the calibration performance of the three ana-
lyzed approaches, whose improvements are typically significant (up to 6-7% in several cases).

An interesting observation is that, MixMatch (Berthelot et al., 2019), a consistency regularization based
approach, yields surprisingly well calibrated models. Indeed, MixMatch has several components that have
shown to improve calibration, such as ensembling predictions and MixUp, which may explain the obtained
values. Nevertheless, it is noteworthy to mention that the discriminative performance compared to our

2Training FreeMatch on CIFAR100 with 400 labeled samples goes from 12 days (WideResNet from scratch) to 10 hours
(ViTSmall) in an NVIDIA V100-32G GPU.
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Table 1: Classification performance (error rate (%)). Arrows indicate whether our modified version
improves (↓) or deteriorates (↑) the performance. Best overall performance in bold and best across pseudo-
label SSL approaches underlined.

Dataset CIFAR-100 EuroSAT STL-10

# Labeled samples 200 400 20 40 40 100

Only consistency regularization

MixMatchNeurIPS’19 37.68±2.66 26.84±1.06 28.77±10.40 14.88±2.07 25.19±2.05 11.37±1.49
Dash ICML’21 28.51±2.91 19.54±1.20 10.05±8.15 6.83±3.24 18.30±4.58 8.74±2.13
AdaMatch ICLR’22 19.26±1.83 17.13±0.92 12.01±4.16 6.07±2.26 13.31±3.75 8.14±1.48
DeFixMatch ICLR’23 30.44±0.82 20.93±1.42 14.27±9.05 5.42±2.69 25.36±4.40 10.97±1.75

Pseudo-labeling

FixMatchNeurIPS’20 31.28±1.58 19.42±1.56 11.88±6.32 6.64±5.03 16.13±2.36 8.06±2.15
FixMatch + Ours 27.57±1.49↓ 18.48±1.65↓ 7.19 ±4.83↓ 5.02±2.24↓ 17.55±4.00↑ 7.96±1.64↓
FlexMatchNeurIPS’21 28.27±0.59 17.61±0.51 7.89±3.06 7.13±1.23 13.34±1.63 8.35±1.24
FlexMatch + Ours 26.49±0.52↓ 18.15±0.47↑ 3.69±0.81↓ 5.00±0.98↓ 12.87±4.32↓ 7.53±1.32↓
FreeMatchICLR’23 23.92±2.02 16.18±0.38 4.74±1.77 4.48±0.73 14.88±0.72 8.83±0.14
FreeMatch + Ours 21.36±1.62↓ 16.09±0.80↓ 4.30±1.46↓ 3.50±0.70↓ 13.18±1.61↓ 8.57±1.05↓

modified versions of SSL methods is strikingly lower, with differences typically going from 10% to 24%,
failing to achieve a good compromise between accuracy and calibration.

Table 2: Calibration performance (ECE). Arrows indicate whether our modified version improves (↓)
or deteriorates (↑) the performance. Best overall performance in bold, whereas best across pseudo-label SSL
approaches is underlined.

Dataset CIFAR-100 EuroSAT STL-10

# Labeled samples 200 400 20 40 40 100

Only consistency regularization

MixMatchNeurIPS’19 8.13±2.16 7.19±2.31 9.27±3.68 3.75±3.30 3.42±1.77 5.89±1.51
Dash ICML’21 22.23±2.85 13.20±1.07 7.09±6.65 4.24±2.22 11.23±2.33 5.23±1.87
AdaMatch ICLR’22 12.96±1.76 11.17±0.72 8.55±4.83 2.66±0.67 8.80±3.01 4.96±1.25
DeFixMatch ICLR’23 24.54±1.37 14.89±0.97 10.46±8.71 2.90±1.29 12.89±1.73 6.62±1.87

Pseudo-labeling

FixMatchNeurIPS’20 27.77±1.49 13.45±1.45 8.36±5.29 4.72±4.45 10.27±2.4 5.83±2.25
FixMatch + Ours 21.56±1.32↓ 12.12±1.70↓ 4.66±2.49↓ 3.84±1.91↓ 7.83±4.23↓ 5.64±1.40↓
FlexMatchNeurIPS’21 21.95±0.57 11.95±0.30 5.42±2.95 4.50±2.60 9.72±1.63 5.85±0.98
FlexMatch + Ours 19.74±0.50↓ 11.61±0.29↓ 2.26±1.13↓ 3.21±1.79↓ 8.89±3.39↓ 4.97±1.19↓
FreeMatchICLR’23 18.27±1.60 11.56±0.44 3.49±1.39 3.22±0.55 10.49±1.87 5.24±0.90
FreeMatch + Ours 14.86±1.22↓ 10.35±0.68↓ 2.82±0.81↓ 2.63±0.70↓ 3.74±0.90↓ 3.50±1.02↓

We would like to stress that our goal is not to propose a novel state-of-the-art SSL approach, but to shed light
about an important issue in prevalent pseudo-labeling based SSL methods, and present a simple yet efficient
solution that can improve their performance. These results demonstrate that integrating the penalty in eq. (8)
during training appears as an appealing strategy to improve both accuracy and calibration performance of
pseudo-label SSL approaches.

Lastly, we follow (Wang et al., 2022) and employ the Friedman rank (Friedman, 1937; 1940) to fairly
compare the performance of different methods across various settings. This metric can be defined as
rankF = 1

m

∑m
i=1 ranki, with m being the number of evaluation settings (m = 12 in our case, 2 metrics

× 6 datasets), and ranki the rank of a method in the i-th setting. Hence, the lower the rank obtained,
the better the method. These rankings, which are depicted in fig. 4, show that our modified versions pro-
vide competitive performances considering accuracy (Error), ECE and both (All), with our FreeMatch and
FlexMatch versions presenting the best alternatives across overall methods.

On the impact on the logits. We now analyze in more detail the impact of incorporating the constraint
during training, particularly on the logit distribution. In fig. 5, we depict the kernel density estimation of the
logits distribution, which was negatively affected by SSL methods compared to a fully-supervised baseline
(Observation 3 ). From these figures, we can observe two interesting findings that will have a positive effect
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Figure 4: Friedman Rank for the methods analyzed in Tables 1 and 2 following (Wang et al., 2022): a)
MixMatch, b) Dash, c) AdaMatch, d) DeFixMatch, e) Fixmatch, f) FixMatch + Ours, g) FlexMatch, h)
FlexMatch + Ours, i) FreeMatch and j) FreeMatch + Ours.

in calibration: i) the logit magnitude of the incorrect predicted classes is decreased, and ii) the whole logit
range also decreases. This means that, even for incorrect predictions, the reduced logit values will lead
to less confident predictions, which contrasts with the potentially more confidence scores obtained by SSL
methods. We argue that the reduction of the logit magnitudes is a byproduct of the penalty preventing the
logit differences to be large. This limits the effect of the min-entropy pushing hard towards the vertex of the
simplex, which is minimized with either 0 or 1 softmax predictions.

Thus, following our hypothesis from Observation 3, we can advocate that our strategy provides well-calibrated
SSL methods, as both the total range and logit magnitude of incorrect predictions are significantly decreased.

Figure 5: Impact of the proposed solution in the logits, which plots the Kernel density estimation
of the logits distribution (per-class) for target class 5 for the supervised baseline (left), original FreeMatch
(middle) and our version (right).

Comparison to other calibration methods. In this section, we compare our approach to relevant
calibration approaches in the fully-supervised scenario. In particular, we evaluate the impact of adding
label smoothing (LS) (Szegedy et al., 2016) and focal loss (FL) (Lin et al., 2017) to FreeMatch, as it is the
most recent studied method. Results from these experiments, depicted in fig. 6, confirm that our approach
consistently yields the best discriminative-calibration trade-off across datasets and settings, which can be
measured by the largest gap between the accuracy (bright yellow) and ECE (dark yellow). Furthermore, we
compare to BAM (Loh et al., 2023), up to our knowledge the only concurrent work that tackles calibration
work on SSL. This comparison (table 3) demonstrates that our simple solution outperforms the recent BAM
in terms of error rate and ECE, emerging as a promising choice.

Table 3: Discriminative and calibration performance compared to BAM (Loh et al., 2023).

Method CIFAR100 (200) CIFAR100 (400)

Error ECE Error ECE

FixMatch + BAM 28.46±1.74 25.04±1.43 19.32±0.94 16.75±0.96
FixMatch + Ours 27.57±1.49 21.56±1.32 18.42±1.65 12.12±1.70
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Figure 6: Radar plots for different calibration approaches based on FreeMatch. The range of the radar plot
for ECE is changed for better visualization (CIFAR-100: [1, 50], EuroSAT: [1, 20], STL-10: [1, 20])

In which samples to impose the penalty? A natural question that arises from our analysis is whether
constraining the logit distances should also be applied to the samples in DU ′ . We argue that, indeed, it is only
beneficial to the samples in DU ′′ . While we formally exposed that the third term in eq. (8) minimizes the min-
entropy, the second term has some sort of corrective effect, where pseudo-labels from weak augmentations
correct the predictions obtained with the strong augmented versions. As labels are different, enforcing a
penalty on the logit distances might indeed have a counterproductive effect. More concretely, trying to
satisfy the constraint in samples from DU ′ , where hard predictions are from different classes, may actually
impede the network to learn semantically meaningful features that can bring discriminative capabilities to
the model. To support these arguments empirically, we report in table 4 the performance of the three SSL
methods - FixMatch, FlexMatch and FreeMatch when the constraint is enforced across different scenarios. We
can clearly see that, regardless of the configuration or model used, including the penalty on the samples from
DU ′ has a detrimental effect, with discriminative and calibration results suffering a substantial degradation.

Table 4: Impact of the penalty term in the different unlabeled subsets, DU ′ and DU ′′ for the three
relevant pseudo-labeling SSL methods studied in this work. The proposed approach is shadowed in gray and
best result in bold.

CIFAR-100 (200) CIFAR-100 (400)

DU′ DU′′ Error ECE Error ECE

FixMatch
27.77±1.49 31.28±1.58 15.76±0.39 19.73±0.56

✓ 21.56±1.32 27.57±1.49 13.49±0.80 18.57±0.77
✓ ✓ 19.30±2.52 25.72±2.36 13.00±1.79 19.20±1.63

FlexMatch
21.95±0.57 28.27±0.59 11.95±0.30 17.61±0.51

✓ 19.74±0.50 26.49±0.52 11.61±0.29 18.15±0.47
✓ ✓ 20.98±3.05 27.57±3.37 13.41±0.51 19.62±0.44

FreeMatch
23.92±2.02 18.27±1.95 16.18±0.38 11.56±0.53

✓ 21.36±1.62 14.86±1.48 16.09±0.80 10.35±0.83
✓ ✓ 27.44±1.08 20.86±1.48 18.82±0.67 12.39±0.78

Can we add our calibration strategy to other methods?. We have evaluated the impact of incorpo-
rating the proposed term into relevant SSL approaches that resort to hard pseudo-labels during training. In-
deed, our motivation stems from the observations that under this scenario (i.e., the standard pseudo-labeling
process in SSL), there is a hidden min-entropy objective that dominates the training. While we have demon-
strated that our approach effectively improves both the discriminative and calibration performance of these
models, we further assess its impact on approaches that use soft pseudo-labels, i.e., pseudo-labels on weak
augmentations are not converted to one-hot encoded vectors. For these approaches, the reasoning in eq. (5)
and eq. (6) does not entirely hold in these cases. More concretely, the recent work SimMatch (Zheng et al.,
2022) uses this strategy3, where the direct softmax prediction over the weak augmented samples is used as
supervisory signal for its strong augmented counterpart. On the other hand, for SoftMatch (Chen et al.,
2023), the weighted thresholding mask prevents overly confident predictions, distinguishing these methods
from those relying entirely on hard pseudo-labels. The results from this experiment are reported in Table 5,
which show that adding the proposed penalty has a positive effect favouring better calibrated models even

3Note that most pseudo-labeling SSL approaches use a hard pseudo-label strategy, where the softmax predictions of weak
augmentations are transformed into one-hot encoded pseudo-labels.
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in methods that use soft pseudo-labels, particularly as the number of labeled samples increases. Note that,
as our main findings, observations, and motivations, do not entirely apply for soft pseudo-labels approaches,
such as SimMatch and SoftMatch, we do not make any claim regarding the benefits of our strategy in these
approaches. In contrast, we simply show empirically that even in these cases, our method can still bring
performance benefits.

Table 5: Comparison to related approaches, SimMatch and SoftMatch, which use soft pseudo-labels, instead
of hard pseudo-labels (as FixMatch, FlexMatch and FreeMatch).

Error rate (%) ECE

CIFAR-100

# Labeled samples 200 400 1000 200 400 1000

SimMatch 22.49±0.26 19.45±0.08 15.46±0.48 3.17±0.28 6.54±1.92 9.60±0.72
SimMatch + Ours 23.00±0.07↑ 19.10±0.31↓ 15.36±0.41↓ 3.31±0.59↑ 5.55±0.13↓ 9.18±0.17↓

SoftMatch 22.69±1.74 16.49±0.83 14.49±0.35 17.64±1.27 12.09±0.82 10.63±0.33
SoftMatch + Ours 21.72±0.31↓ 16.82±0.74↑ 14.53±0.36↑ 15.80±0.32↓ 11.70±0.86↓ 10.60±0.46↓

Long-tailed experiments. In table 6 we report error rate and ECE on CIFAR100-LT to asses the effect of
the proposed calibration when the class population is imbalanced. Across all cases both the method accuracy
and the ECE improve consistently. It is noteworthy to mention that for all these experiments we use the
same margin as in CIFAR-100, without any adaptation to the specific setting.

Table 6: Qualitative performance on long-tailed classification (CIFAR-100-LT).

Method γl = 10, γu = -10 γl = 10, γu = 10 γl = 15, γu = 15

Error ECE Error ECE Error ECE

FixMatch 15.05±0.13 8.58±0.82 15.01±0.18 10.51±1.82 16.45±0.11 10.22±2.01
FixMatch + Ours 14.73±0.12 7.22±1.20 14.37±0.21 9.42±0.29 15.81±0.31 8.44±0.44

FlexMatch 14.79±0.28 7.70±1.03 14.98±0.21 9.49±0.47 16.19±0.32 9.25±0.68
FlexMatch + Ours 14.72±0.23 7.33±1.49 14.6±0.05 7.44±0.40 16.08±0.49 8.85±0.47

FreeMatch 14.93±0.20 8.52±0.95 15.04±0.09 9.99±0.52 16.26±0.35 8.68±0.84
FreeMatch + Ours 14.67±0.28 6.74±0.98 14.77±0.15 9.05±0.84 15.87±0.69 8.53±0.60

Additional experiments with detailed analysis across methods, comparison to additional approaches and
additional settings are reported in Appendix.

Scalability and Computational Costs. The proposed approach boils down to a simple penalty term,
which can be straightforwardly integrated on existing methods by modifying the loss function, whose compu-
tational cost is negligible. Indeed, our learning approach does not involve architectural changes, avoiding any
increase in model complexity. Thus, the strategy proposed in this work further improves the discriminative
and calibration performance of existing SSL methods without incurring additional overheads.

6 Conclusion

In this work we have raised awareness of the miscalibration problem induced by pseudo-label training, which
is one of the most popular approaches for SSL. We demonstrated that the unsupervised loss used by pseudo-
label methods is dominated by the min-entropy term, a lower bound of the Shannon entropy, and identified it
as a potential source of miscalibration. We then proposed a simple solution based on enforcing a fixed margin
constraint between the winner class and its contenders. Our solution on popular SSL datasets and methods
yields consistent calibration improvements, whereas we also found consistent gains in terms of predictive
accuracy, typically outperforming the state-of-the-art for SSL.
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A Additional discriminative results

Table 7: Comparison of error rate (%) for different SSL methods across various labeled settings and datasets
(CIFAR-100, EuroSAT, and STL-10).† indicates that the results are reported from (Wang et al., 2022). Best
results in bold, whereas second-best are underlined.

Dataset CIFAR-100 EuroSAT STL-10

# Labeled samples 200 400 20 40 40 100

π-Model NeurIPS’15 † 36.06±0.15 26.52±0.41 21.82±1.22 12.09±2.27 42.76±15.94 19.85±13.02
Mean-Teacher NeurIPS’17 35.47±0.40 26.03±0.30 26.83±1.46 15.85±1.66 18.67±2.66 24.19±10.15
VAT TPAMI’18 † 31.49±1.33 21.34±0.50 18.45±1.47 26.16±0.96 10.09±0.94 10.69±0.51
MixMatch NeurIPS’19 37.68±2.66 26.84±1.06 28.77±10.40 14.88±2.07 25.19±2.05 11.37±1.49
ReMixMatch ICLR’20† 22.21±2.21 16.86±0.57 5.05±1.05 5.07±0.56 13.08±3.34 7.21±0.39
UDA NeurIPS’20 28.80±0.61 19.00±0.79 9.83±2.15 6.22±1.36 15.58±3.16 7.65±1.11
CRMatch GCPR’21† 25.70±1.75 18.03±0.20 13.24±1.69 8.35±1.71 10.17±0.00 –
CoMatch ICCV’21† 35.08±0.69 25.35±0.50 5.75±0.43 4.81±1.05 15.12±1.88 9.56±1.35
Dash ICML’21 28.51±2.91 19.54±1.20 10.05±8.15 6.83±3.24 18.30±4.58 8.74±2.13
AdaMatch ICLR’22 19.26±1.83 17.13±0.92 12.01±4.16 6.07±2.26 13.31±3.75 8.14±1.48
SimMatch CVPR’22 † 23.78±1.08 17.06±0.78 7.66±0.60 5.27±0.89 11.77±3.20 7.55±1.86
SoftMatch ICLR’23 † 22.67±1.32 16.84±0.66 5.75±0.62 5.90±1.42 13.55±3.16 7.84±1.72
DeFixMatch ICLR’23 30.44±0.82 20.93±1.42 14.27±9.05 5.42±2.69 25.36±4.40 10.97±1.75

FixMatch NeurIPS’20 31.28±1.58 19.73±0.56 11.88±6.32 6.64±5.03 16.13±2.36 8.06±2.15
FixMatch + Ours 27.57±1.49 18.57±0.77 7.19 ±4.83 5.02±2.24 17.55±4.00 7.96±1.64
FlexMatch NeurIPS’21 28.27±0.59 17.61±0.51 7.89±3.06 7.13±1.23 13.34±1.63 8.35±1.24
FlexMatch + Ours 26.49±0.52 18.15±0.47 3.69±0.81 5.00±0.98 12.87±4.32 7.53±1.32
FreeMatch ICLR’23 23.92±2.02 16.18±0.38 4.74±1.77 4.48±0.73 14.88±0.72 8.83±0.14
FreeMatch + Ours 21.36±1.62 16.09±0.80 4.30±1.46 3.50±0.70 13.18±1.61 8.57±1.05

In the main paper, we included several relevant SSL methods to compare both error and calibration perfor-
mance. We did not include a considerably large set of approaches because we need to run three times each
method in each setting (so that each evaluated method means 3×6=18 runs, with an average of 10 hours
per run). Furthermore, we would like to stress again that our goal in this work is not to provide a novel
state-of-the-art SSL method, but investigate the miscalibration issue of pseudo-labeling SSL, identify the
source of the problem, and provide a solution that can enhance the calibration of this family of methods.
Having said this, the discriminative performance of additional methods is provided in (Wang et al., 2022),
which is used to complement the discriminative comparison in Table 1, whose results can be found in Table
7 of this appendix.
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B Dataset details

We provide detailed insights into the datasets utilized in our experiments, whose configuration is strongly
inspired by the recent USB (A Unified Semi-supervised Learning Benchmark for Classification) benchmark
(Wang et al., 2022). For CIFAR-100, a renowned benchmark for fine-grained image classification, we consid-
ered two label settings: 2 labeled samples and 4 labeled samples per class for each of the 100 classes,resulting
in a total of 50,000 training samples and 10,000 samples for testing. Each image in CIFAR-100 is sized
at 32×32 pixels. STL-10, known for its limited sample size and extensive unlabeled data, offers a unique
challenge. We employed two label settings as well: 4 labeled samples and 10 labeled samples per class for
all 10 classes, and an additional 100,000 unlabeled samples for training, along with 8,000 samples for test-
ing. Each STL-10 image measures 96×96 pixels. Lastly, EuroSAT, based on Sentinel-2 satellite images,
features two label settings: 2 labeled samples per class and 4 samples per class for 10 classes. With a total
of 16,200 training samples, including labeled and unlabeled images and 5,400 testing samples, EuroSAT
images are sized at 64×64. While literature includes SVHN and CIFAR-10 datasets, we do not use them
for evaluation, as state-of-the-art SSL methods already achieve a performance comparable to that of fully
supervised training on these datasets. The selected datasets offer diverse challenges and settings, allowing
for a comprehensive evaluation of semi-supervised learning methods across various domains.

For the long-tailed CIFAR-100 experiments, we investigate two subsets of the dataset, with N1 represent-
ing the number of samples in the minority class and M denoting the number of samples in the majority class.
The imbalance ratio is controlled by γl and γu, where both parameters are set to -10, 10 or 15, ensuring a
consistent level of label imbalance across categories. In the first setting, we set the imbalance ratio of labeled
samples γl to 10 and the imbalance ratio of unlabeled samples γu to 10, with the number of labeled samples
(N1) set to 150 and the number of unlabeled samples (M) set to 300. In the second setting, we maintain the
same label imbalance ratio (γl = 10) and number of labeled samples (N1 = 150), but we set the unlabeled
sample imbalance ratio γu to -10. Finally, in the third setting, we increase the γl to 15 while keeping the
γu at 15, with N1 and M set to 150 and 300, respectively. This configuration introduces a higher degree of
label imbalance, with the minority class having 15 times fewer samples than the majority class. We follow
the same setup as authors in (Wang et al., 2022) for the classic setting using WideResnet. These settings
allow us to comprehensively evaluate the performance of machine learning models under varying degrees of
label imbalance and class distribution scenarios within the CIFAR100-LT dataset.

C Implementation details

Method-dependent hyperparemeters. In the context of pseudo-labeling methods, while FixMatch and Flex-
Match rely on a single threshold hyperparameter for pseudo-label selection, FreeMatch introduces additional
hyperparameters such as a pre-defined threshold τ , unlabeled batch ratio µ, unsupervised loss weight wu,
fairness loss weight wf , and EMA decay λ. To avoid unfair comparisons across methods, we use the default
values for all these hyperparameters, which are reported in their respective papers.

Specific-case: BAM. In our comparison with BAM (Loh et al., 2023), we encountered difficulties in hyper-
parameter tuning. BAM employs the quantile Q over the batch to determine the threshold for pseudo-label
selection, which serves as a key hyperparameter. In the cited paper, Q = 0.75 for the CIFAR-100 benchmark
and Q = 0.95 for the CIFAR-10 benchmark were chosen. Additionally, BAM incorporates a separate Adam
optimizer for the Bayesian Neural Network (BNN) layer, with a fixed learning rate of 0.01. Notably, for
the sharpening temperature parameter in BaM-UDA, BAM opts for t = 0.9 as opposed to t = 0.4 utilized
in UDA. These hyperparameter selections are specific to both the dataset and the method employed, thus
presenting a challenge when evaluating the method across different datasets. For our experiments, we chose
to focus on CIFAR-100 due to the inherent complexity involved in conducting extensive hyperparameter
searches, not only concerning the dataset or method, but also regarding the optimizer and learning rate for
the introduced BNN layer.

Margin Selection with Limited Fine-tuning: We stress that in the majority of cases, we did not extensively
fine-tune the margin hyperparameter. Across various experiments, settings and datasets, the chosen margin
values remained consistent without significant adjustments. Specifically, for the CIFAR-100 and EuroSAT
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datasets, the margins were uniformly set without requiring further refinement, with values of 10 and 8 across
methods, respectively. Given its complexity, we needed to perform a hyperparameter search in a few cases
in the STL-10 dataset. In particular, most settings employed a margin equal to 10, similar to the CIFAR-
100 dataset. Nevertheless, we observe that, particularly for FreeMatch, this margin did not yield the best
performance across the two settings of labeled data (i.e., 40 and 100 labeled samples). After fine-tuning
the margin value, we found that for STL-10 (40) and STL-10 (100) FreeMatch worked best with a margin
of 4 and 6, respectively. Furthermore, for all the remaining experiments with CIFAR-100, as well as with
long-tailed CIFAR-100, we kept the margin fixed (m = 10) across experiments and methods.

Training hyperparemeters. Regarding algorithm-independent hyperparameters, we adhered to the settings
outlined in (Wang et al., 2022). Specifically, the learning rate was set to 5 × 10−4 for CIFAR-100, 10−4 for
STL-10, and 5×10−5 for EuroSAT. During training, the batch size was fixed at 8, while for evaluation, it was
set to 16. Additionally, the layer decay rate varied across datasets: 0.5 for CIFAR-100, 0.95 for STL-10, and
1.0 for EuroSAT. Weak augmentation techniques employed included random crop and random horizontal
flip, while strong augmentation utilized RandAugment (Cubuk et al., 2020). The cosine annealing scheduler
was utilized with a total of 204,800 steps and a warm-up period of 5,120 steps. Both labeled and unlabeled
batch sizes were set to 16. Furthermore, we follow (Wang et al., 2022; Zhang et al., 2021) to report the best
number of all checkpoints to avoid unfair comparisons caused by different convergence speeds.

D Model choices

In this work we have selected three relevant SSL approaches based on hard pseudo-labels, as our findings
are closely related to these approaches. More concretely, we demonstrate empirically our observations in
FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021) and FreeMatch (Wang et al., 2023), as they are
popular SSL methods, some of them published recently (i.e., FreeMatch has been published in 2023). Thus,
for the Table 1 and Table 2, we have shown the effect of adding the proposed term in all the three approaches.
Similarly, the impact of our term over the three methods is evaluated in Table 6 (i.e., CIFAR-100-LT), as we
consider that long-tailed classification represents an important task, and assessing the performance of the
three approaches will undoubtedly strengthen the message that our solution can improve both classification
and calibration performance across a general family of SSL approaches. Regarding the ablation studies to
evaluate the impact of several choices, we have used FreeMatch, the most recent approach among the three,
in all the ablations (Fig 6 and Table 4), except when comparing to the concurrent work in BAM (Loh
et al., 2023). The reason is that authors in (Loh et al., 2023) only consider FixMatch in their experiments,
despite BAM being a work published in 2023. Thus, the code4 is all constrained to the use of FixMatch and
CIFAR-100, making it difficult to evaluate with other SSL approaches and datasets. In fact, we attempted to
integrate FreeMatch on the BAM framework, but the results obtained were suboptimal. We believe that, the
sensitivity to hyperparameters (e.g., just the choice of the backbone for the Bayesian layer in BAM requires
different learning rates) could be the main cause for the low performance of BAM in SSL approaches other
than FixMatch. Therefore, in order to avoid an unfair comparison (due to the suboptimal performance of
BAM in other SSL methods) we decided to compare to it based only on FixMatch, following their original
work.

E Numerical values for results in radar plots

For the radar plots shown in the main paper, we present here (Table 8) the individual quantitative results,
for a more detailed comparison across methods. As a reminder, FreeMatch (Wang et al., 2023) is used as a
baseline strategy, and the different calibration strategies (i.e., Focal Loss (Lin et al., 2017), Label Smoothing
(Szegedy et al., 2016), and ours) are applied over the DU ′′ subset.

4https://github.com/clott3/BaM-SSL
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Table 8: Numerical values of radar plots depicted in Figure 6 of the main paper.

Method Setting Error ECE CECE AECE

Baseline
CIFAR 100 (200)

23.92±2.02 18.27±1.95 0.41±0.04 18.27±1.95
Focal Loss 28.81±0.75 24.42±0.85 0.53±0.01 24.42±0.85
Label Smoothing 29.14±2.46 23.55±2.33 0.52±0.04 23.54±2.34
Ours 21.36±1.62 14.86±1.48 0.35±0.03 14.81±1.48

Baseline
CIFAR 100 (400)

16.18±0.38 11.56±0.53 0.27±0.01 11.54±0.52
Focal Loss 20.35±0.35 15.63±0.54 0.35±0.008 15.60±0.54
Label Smoothing 19.01±1.90 13.03±1.39 0.31±0.02 13.02±1.39
Ours 16.09±0.80 10.35±0.83 0.26±0.01 10.33±0.83

Baseline
EuroSAT (20)

4.74±1.82 3.50±1.70 0.82±0.32 3.38±1.82
Focal Loss 10.25±8.48 8.54±8.29 1.88±1.70 8.52±8.31
Label Smoothing 5.94±4.21 3.57±2.83 0.95±0.67 3.45±2.81
Ours 4.30±1.46 2.82±1.00 0.70±0.23 2.78±0.98

Baseline
EuroSAT (40)

4.48±0.73 3.22±0.55 0.74±0.11 3.15±0.61
Focal Loss 4.37±0.30 3.10±0.10 0.74±0.04 3.01±0.08
Label Smoothing 15.84±3.57 4.43±3.38 1.02±0.70 4.37±3.31
Ours 3.50±0.70 2.63±0.70 0.60±0.12 2.58±0.64

Baseline
STL 10 (40)

14.88±0.72 10.49±1.87 2.45±0.40 9.40±1.81
Focal Loss 14.73±2.77 11.16±3.13 2.39±0.64 11.15±3.13
Label Smoothing 15.59±2.74 10.09±1.64 2.20±0.28 10.04±1.58
Ours 13.18±1.61 3.74±5.64 2.39±0.68 8.43±4.92

Baseline
STL 10 (100)

7.62±1.25 5.24±1.09 1.15±0.21 5.19±1.03
Focal Loss 8.75±1.59 6.07±1.40 1.35±0.31 6.02±1.35
Label Smoothing 8.25±2.05 4.94±1.79 1.13±0.35 4.94±1.79
Ours 8.57±1.90 3.50±1.54 0.94±0.27 4.00±1.21

F Comparing our method to temperature scaling

Applying temperature scaling (pk = explk/τ∑K

j=1
explj /τ ) can indeed modify the shape of the softmax distribution,

leading to smoother distributions when τ > 1. Nevertheless, compared to the proposed solution, scaling the
softmax values during training (before using the softmax probabilities into the cross-entropy loss) presents
several drawbacks. 1) No mechanism to control the importance of softened distributions: System-
atically scaling the softmax predictions might be suboptimal in several cases: e.g., reduction of the gradient
magnitude, loss of sparsity in the predictions, impaired learning of hard examples, or even magnifying the
miscalibration issue, as strong softmax smoothing can lead to meaningless uniform distributions. While
applying TS on the softmax values will always introduce a risk of these drawbacks to appear, the use of
the proposed constrained term acts as a regularizer of the main objective, whose importance can be con-
trolled by a blending hyperparameter λ, which introduces more flexibility during training. 2) Difficulty
on finding the optimal scaling factor. Softmax distributions at the beginning of the training (mostly
uniform) are very different from those observed typically when the network converges (peaky distributions
with one category dominating the softmax vector). Thus, the scaling factor to control the logit distance
should also evolve during training (e.g., at the beginning, one might not want to scale the softmax at all,
as this could magnify all the problems presented in previous point). For instance, a scaling value of 2 does
not result to the same logit distances (or their equivalent softmax predictions) on an almost uniform than
on a peaky distribution. On the other hand, the proposed penalty acts on the absolute logit values, enforc-
ing the same constraint across the training (i.e., just penalize those predictions whose logit distances are
longer than the given margin), which is easier to adjust. 3) Different behaviour. Based on the previous
point, at the beginning of the training, when the logit distribution is more uniform, the penalty term will
not apply to most predictions, allowing the cross-entropy, pseudo cross-entropy and min-entropy terms to
guide the training. However, it will start to increasingly act as regularizer as logit distributions become
sharper, controlling the logits magnitudes from becoming larger and larger, but allowing their distances to
be large enough to have discriminative power. On the other hand, scaling the softmax from the beginning
will reduce the softmax values of all the samples systematically, which may impede the network to properly
learn. Thus, we can argue that the proposed constrained term offers more control over the logit/softmax
distributions than simply scaling the softmax predictions, more flexibility as it offers a mechanism to control
the importance of the constraint, and a different behaviour, particularly at the beginning of the training.
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To quantify the discussion, we present our results in the Table 9. We also illustrate the logit distribution of
the three methods under consideration (a) FreeMatch, (b) FreeMatch + Ours and (c) FreeMatch with logits
scaled by a temperature of 2. In these plots, it can be observed that the impact on the logit distribution of
our method, and systematically applying temperature scaling to all samples, is different, which empirically
supports our hypothesis regarding their different behaviour.

Table 9: Comparison of various metrics across different numbers of labeled samples.

# Labeled Samples Temperature
(τ)

ECE Error

200
2 26.63±0.93 29.53±1.07
5 26.58±0.31 27.93±0.46

10 27.46±0.67 28.07±0.70
20 27.55±0.92 27.98±1.03

400
2 17.49±1.23 20.43±1.04
5 18.32±0.90 19.69±1.11

10 18.85±0.33 19.48±0.34
20 18.78±0.52 19.10±0.51

Figure 7: Logit Distribution Plot depicting the distribution of correct predictions vs. incorrect predictions
for (a) FreeMatch (b) FreeMatch + Ours and (c) FreeMatch with logits scaled by a temperature of 2 on the
CIFAR-100 dataset with 200 labeled samples.

G Evaluating our method in a classic setting

As stated in the main paper, we advocate for the use of Visual transformers over standard convolutional
neural networks due to their multiple advantages. Nevertheless, to show that our approach is also applicable
to convolutional deep models, we evaluate our method against the baseline FreeMatch as well as UPS (Rizve
et al., 2021) with WideResNet-28 as the backbone architecture. The results obtained from comparing our
method are reported in the Table 10 below. While UPS was initially evaluated on higher amounts of labeled
data, semi-supervised learning has evolved to use much lesser data in recent settings, which echoes more
realistic scenarios. Thus, we have evaluated UPS under these newer settings, alongside state-of-the-art
methods. In particular, for a scenario where 4000 labeled samples are available, and UPS achieves an error
rate of 40.77 (See Table 1 in (Rizve et al., 2021)). Thus, it is reasonable to think that its performance is
degraded as the amount of labeled samples decreases. Having validated the performance of UPS, we can
easily observe that our method, as well as the baseline FreeMatch, significantly outperform UPS in terms of
both error rate, and Expected Calibration Error (ECE).

Table 10: Results on FreeMatch with WideResnet - 28 as backbone on CIFAR-100 dataset

Error rate (%) ECE

CIFAR-100 CIFAR-100

# Labeled samples 400 2500 400 2500

UPS 82.67 48.85 70.43 38.55
FreeMatch 50.17 33.35 36.05 20.63
FreeMatch + Ours 50.45 33.88 27.57 16.13
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H Detailed comparison between original and our versions

We include additional comparisons between our proposed method and the original SSL approaches.

Convergence analysis. First, as depicted in Fig. 8, we assess the impact of adding our approach to FreeMatch
in terms of convergence. Notably, our method, denoted as FreeMatch (Ours), demonstrates superior per-
formance in terms of accuracy, outperforming the baseline FreeMatch method within the initial 50, 000
iterations. In contrast, the original method reaches convergence around 170, 000 iterations, making it con-
siderably slower if one looks at discriminative performance. Additionally, our approach consistently achieves
lower values of Expected Calibration Error (ECE) throughout the iterative process, highlighting its potential
to enhance the calibration performance. This contrasts with the original FreeMatch, whose predictions seem
to be better calibrated at the first iteration, and these are degraded (i.e., ECE increases) with the training.
Thus, adding our method exhibits accelerated convergence rates compared to the original approach, reaching
competitive performance levels in a fraction of the time.

Figure 8: Comparison of convergence of Accuracy (left) and ECE (right) over iterations for STL10 dataset
with 40 labeled samples.

Logits distribution. We now provide additional insights into the effects of our approach across the logit
distribution. More concretely, in fig. 9 and fig. 10 we present the kernel density estimation of the logits
distribution for each class on the STL10 dataset for FreeMatch and FreeMatch plus our method (denoted as
Ours). This analysis expands on Observation 3 from the main paper, highlighting the impact of SSL on the
calibration of the model across a diverse range of classes. Specifically, while the original FreeMatch provides
larger logit ranges, as well as larger logit values even for incorrect classes, adding our approach limits these
logit increases across all the classes. As the logit range decreases, the resulting softmax probabilities for the
predicted classes will be smaller, alleviating the problem of overconfident predictions. This is particularly
important for wrong predictions, as we expect a well-calibrated model to not be overconfident when incorrect
classes are predicted.

Reliability plots. Last, we depict several reliability plots for both the semi-supervised learning (SSL) methods
that were discussed in the main paper and our modified version, to highlight the calibration improvements
brought by our approach (fig. 11 and fig. 12).
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Figure 9: Comparison of convergence of Accuracy (left) and ECE (right) over iterations for STL10 dataset
with 40 labeled samples.
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Figure 10: Comparison of convergence of Accuracy (left) and ECE (right) over iterations for STL10 dataset
with 40 labeled samples.
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Figure 11: Reliability plots on CIFAR-100(200) for the original (top) and our (bottom) versions of the three
pseudo-label SSL methods selected.

Figure 12: Reliability plots on CIFAR-100(400) for the original (top) and our (bottom) versions of the three
pseudo-label SSL methods selected.
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