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Abstract

Massive web-crawled image-text datasets lay the foundation for recent progress
in multimodal learning. These datasets are designed with the goal of training
a model to do well on standard computer vision benchmarks, many of which,
however, have been shown to be English-centric (e.g., ImageNet). Consequently,
existing data curation techniques gravitate towards using predominantly English
image-text pairs and discard many potentially useful non-English samples. Our
work questions this practice. Multilingual data is inherently enriching not only
because it provides a gateway to learn about culturally salient concepts, but also
because it depicts common concepts differently from monolingual data. We thus
conduct a systematic study to explore the performance benefits of using more
samples of non-English origins with respect to English vision tasks. By translating
all multilingual image-text pairs from a raw web crawl to English and re-filtering
them, we increase the prevalence of (translated) multilingual data in the resulting
training set. Pre-training on this dataset outperforms using English-only or English-
dominated datasets on ImageNet, ImageNet distribution shifts, image-English-text
retrieval and on average across 38 tasks from the DataComp benchmark. On a
geographically diverse task like GeoDE, we also observe improvements across all
regions, with the biggest gain coming from Africa. In addition, we quantitatively
show that English and non-English data are significantly different in both image
and (translated) text space. We hope that our findings motivate future work to be
more intentional about including multicultural and multilingual data, not just when
non-English or geographically diverse tasks are involved, but to enhance model
capabilities at large.

1 Introduction
Today, the predominant pre-training paradigm for vision-language models relies on large quantities
of image-text pairs scraped from the web [35, 24]. As raw web data contains a significant amount of
noise, automatic data filtering approaches are designed to curate a high-quality subset and maximize
the performance of a model trained on this subset on standard computer vision benchmarks (e.g.,
ImageNet). However, these benchmarks typically only evaluate in English, and many of them
have been shown to be geographically biased: for instance, ImageNet images are mostly sourced
from North America and Western Europe [43]. Consequently, it is possible that we are designing
data curation algorithms that propagate a monolingual bias, i.e., filtered datasets are increasingly
dominated by English image-text pairs. In fact, a lot of highly cited work—including CLIP [35],
ALIGN [21] and BASIC [33]—relies exclusively on English data. Using more multilingual data for
training is often only a deliberate design decision when non-English tasks are involved [45, 15, 26].
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Figure 1: Multilingual image-text data adds diversity to the English data distribution in various, significant
ways (a) We show some examples of culturally salient concepts that would not exist in "high-quality" English
data (as determined by CLIP score), such as "bamboo steamer", "kiji" (the national bird of Japan) and yalı (a
traditional architecture style for Turkish waterside houses) (b) Even for a common everyday object ("stove"),
non-English and English images portray very different visual representations.

Multilingual data enriches any monolingual data distribution; multilingual data brings attention to
culturally salient concepts and introduces new perspectives and annotations for the same visual
category [48]. As illustrated in Figure 1, there are certain native concepts, e.g. ‘kiji’ (the national
bird of Japan), that are more likely to be conveyed in Japanese (non-English) captions compared to
English ones. Even in the case of a common everyday object (‘stove’), the non-English and English
images look very different. Despite the diversity present in multilingual data, it is disproportionately
excluded from existing large-scale pre-training corpora.

In this paper, we investigate the counterfactual: can we improve on English vision tasks by diversifying
the cultural and linguistic backgrounds of the training data?

Our investigation is motivated by a dichotomy: English image-text pairs constitute a minority of
any random web crawl (in our estimate, one-third); yet, they form a majority in popular pre-training
datasets such as LAION-5B [42], DataComp [14], and DFN [13].

It is common for web-scraped corpora to remove "low-quality" data by using a high-performing
model (e.g., OpenAI CLIP) to compute image-text alignment and rank the raw data samples. However,
this process often disproportionately favors English data if the filtering model also has an English
bias [14, 20]. In addition to discarding many potentially useful non-English image-text pairs, this
can also negatively impact the geographical and cultural representation of the resulting dataset, and
consequently, the model’s performance on certain underrepresented populations [38, 36, 10].

Our key observation is that the diversity present in multilingual data can be confounded by the
language the data is in, making it difficult to observe the empirical benefits of using such data
in model training. To offer a more systematic study of the effectiveness of multilingual data—in
contrast to English-only or English-dominated datasets—we fix the language medium, translate all
captions from DataComp’s 128M-sample web crawl [14] to English with an advanced translation
model. We then re-filter the data pool and train a CLIP model on this translated multilingual data.
We focus on two types of evaluations: (i) on standard English vision tasks including ImageNet,
MSCOCO and Flickr retrieval, and (ii) on geographically diverse images, e.g. from GeoDE [36],
which contains images of common objects across different geographical locations. We acknowledge
that translation can sometimes be too literal, subject to losing the intent and richness of the original
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phrasing. Nevertheless, we hope findings from our work provide a starting point for studying how to
leverage the diversity of multilingual data more effectively.

Our contributions are as follows:

• We demonstrate that with translation, non-English data does benefit English vision tasks. In
particular, training on more samples of non-English origins leads to better performance on ImageNet,
ImageNet distribution shifts and image-English-text retrieval. On the DataComp benchmark with a
fixed compute budget, our best-performing approach that leverages translated multilingual captions
outperforms training on just filtered raw captions by 2.0% on ImageNet and 1.1 percentage points
on average across 38 tasks. When training for longer (which mimics the number of epochs large-
scale multimodal models are often trained for), these performance gaps increase to 4.2% and 2.1
percentage points respectively.

• On a geographically diverse task such as GeoDE, training on translated multilingual data leads to
4.2% boost in accuracy on average compared to training on filtered raw data, with performance
improvement observed for all regions, especially for Africa where the increase is 5.5%.

• We analyze in detail the differences between English and (translated) non-English image-text pairs.
We quantitatively show that they capture distinct distributions, both in text and image space, even
after they are converted to the same language medium. Consequently, it is beneficial to combine
high-quality data from both sources as much as possible, since they are inherently complementary.

In summary, despite the abundance of “sufficiently useful” English data, existing data curation
techniques can always do better in the data diversity axis by being more deliberate about including
data from other language and cultural backgrounds. This way of enhancing diversity in turn leads to
a better vision-language model in general, offering performance benefits beyond non-English vision
tasks or tasks involving geographically diverse images. We will release the raw captions and the
corresponding English translations for the 128M image-text pairs used in our experiments.

2 Related Work

Existing data collection and filtering approaches induce Western bias in downstream datasets and
models; benchmarks that seek to capture this bias still receive relatively little attention. Consequently,
despite evidence showing cultural and geographical limitations in popular vision datasets, the use of
multilingual data is mostly intended for pre-training and fine-tuning multimodal models to do well on
non-English tasks. Our work seeks to include more image-text pairs of non-English origins in the
pre-training dataset, and shows that this process can improve performance, even on English-centric
vision tasks.

Western bias of existing models and datasets Several papers have studied biases in popular
datasets, especially biases that correlate with culture and geographic locations. Notably, Shankar et al.
[43] find that ImageNet and OpenImages exhibit substantial US-centric and eurocentric representation
bias. In NLP, Santy et al. [40] find that existing datasets align predominantly with Western and White
populations. It is not only the data collection process that leads to a Western bias, but also the data
preprocessing pipeline. For instance, automated data filtering with scores output by a model, e.g.,
OpenAI CLIP, has been commonly adopted as a way to discard low-quality web-crawled samples.
Little is known about the potential biases induced by this approach. Hong et al. [20] recently show
that CLIP score filter is more likely to include data related to Western countries compared to that of
non-Western countries. In [14] (Figure 24), the authors offer evidence that CLIP filtering implicitly
performs some English filtering, as the top CLIP score examples are increasingly dominated by
English image-text pairs. Consequently, all these dataset biases translate to performance disparity, as
demonstrated by existing work showing that the accuracy of vision systems drops significantly on
non-Western inputs [10, 49, 38, 36], or low-resource languages [16].

Improving the availability of non-English data in multimodal datasets Translation has been
a popular technique to address the limited availability of large-scale and high-quality non-English
data in training and evaluation [45, 47, 6, 32, 11, 2, 16]. In addition to translating English captions
into the language of interest, previous work also uses a curated list of common words in the native
language to scrape image-text pairs from the web [26, 17]. COCO-CN [25] extends the MSCOCO
dataset [7] with manually written Chinese captions.
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Most closely related to our setup is the LAION-Translated dataset [29], which translates 3B samples
of LAION-5B from many languages into English using the M2M100 model [12]. Compared to this
dataset construction, we (i) use a more advanced translation model, NLLB [9], that covers twice as
many languages, (ii) work with mostly raw data while LAION was heavily filtered and thus could
contain a biased representation of multilingual data. To the best of our knowledge, no existing work
has experimented with the LAION-Translated dataset.

Adapting CLIP post-training for multilingual tasks Geigle et al. [15] translate high-quality
English data into 95 languages, and use these translated samples to re-align an image encoder
previously trained on English data to a multilingual language model. Similarly, Chen et al. [8]
propose re-training OpenAI CLIP on a mix of Chinese and English data to enhance its multilingual
representation. In [4], the authors explore adaptation without any image data, solely fine-tuning
the text encoder with English captions from MSCOCO, Google Conceptual Captions, and VizWiz
translated to other languages. Visheratin [45] replace the text encoder of OpenAI CLIP with the
text encoder from the NLLB model, and fine-tune the new model on multilingual image-text pairs
obtained from translating LAION-COCO’s English captions [41] into 200 languages. In contrast to
these papers that employ multilingual data for the purpose of adapting to non-English tasks, we focus
on using multilingual data to do better on common vision tasks that are in English.

Using multilingual data significantly enhances data diversity Our study is partly inspired by
findings from Ye et al. [48], who show that multilingual synthetic captions obtained from existing
image captioning systems provide higher semantic coverage than monolingual ones, over 3.6K
images. Our experiments instead use raw web-crawled data and explore the performance benefits of
embracing cultural and linguistic diversity in (mostly) human-generated captions at scale.

3 Experimental Setup
Given a starting pool of raw image-text pairs scraped from the web, many of which contain non-
English captions, we experiment with ways to preprocess and filter this pool into a high-quality
dataset. The quality of the dataset is measured by the zero-shot performance of a CLIP model trained
on it from scratch.

Data We experiment with the medium pool of the DataComp benchmark [14], which consists of
128M image-text pairs randomly sampled from Common Crawl dumps between 2014 and 2022, and
deduplicated. Unlike other heavily filtered corpora such as LAION [42], DataComp applies minimal
data preprocessing, involving only NSFW filtering, deduplication of evaluation sets, and face blurring.
This allows the candidate pool to stay close to the natural distribution of the raw web data as much as
possible, in addition to enabling maximum flexibility in dataset design.

Translation model To detect language and translate the raw captions from DataComp into English,
we use the No Language Left Behind (NLLB) translation model [9], which is considered state-of-
the-art. NLLB is the first to translate across 200 languages, including low-resource ones that are
not currently supported by common translation tools. We use the 600M-parameter model publicly
available on HuggingFace to allow for fast inference on our large data corpus. All 128M captions
from DataComp are translated to English; examples could be found in Appendix A. We provide some
quantitative analysis of the translation quality in Appendix C.

Training After translating the captions of all samples in the raw data pool, we filter them based
on cosine similarity between image and text embeddings. We experiment with using OpenAI CLIP-
ViT-L/14 [35] and the public Data Filtering Network (DFN) from [13] to obtain the embeddings, and
subsequently, the cosine similarities. The DFN, specifically designed to filter data for subsequent
model training, was trained on three public datasets deemed as high-quality—Conceptual Caption
12M [5], Conceptual Captions 3M [44], and Shutterstock 15M [30]. We find that indeed the public
DFN is better at data filtering compared to OpenAI CLIP, as measured by the performance of CLIP
trained on the corresponding filtered datasets (see Appendices E and G).

We pretrain a CLIP model [35] on each filtered subset with ViT-B/32 as the image encoder, and follow
DataComp’s hyperparameters; details can be found in Appendix B. Unless specified otherwise, all
models are trained for the same compute budget (128M steps) as determined by DataComp. For some
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Table 1: On the DataComp benchmark, training on translated captions outperforms training on raw
captions across a range of metrics; using both types of captions yields even more performance gains. We
report the performance of select baselines on the DataComp benchmark [14]; all baselines are trained for the
same number of steps as specified. Here the filtering threshold (and thus the resulting dataset size) has been tuned
for each baseline and we only show the filtered subset that yields the highest average accuracy. We find that with
the same filtering method (i.e., using DFN score), training on translated captions ("Filtered translated captions")
is more effective than training on raw captions ("Filtered raw captions") as seen from higher performance on
ImageNet, ImageNet distribution shifts, retrieval, GeoDE (worst-region accuracy) and on average across 38
tasks. Combining both sources of captions leads to the best performance. Appendix G contains the full results.

Baseline name Dataset
size

ImageNet ImageNet
shifts

Retrieval GeoDE Average
over 38 tasks

Training with DataComp setup (128M steps)

Filtered raw captions 25.6M 0.316 0.260 0.282 0.688 0.350
Filtered raw captions, replaced with translated
captions

25.6M 0.304 0.252 0.268 0.668 0.331

Filtered translated captions 25.6M 0.329 0.275 0.296 0.709 0.359
Filtered English-only captions 16.0M 0.283 0.236 0.278 0.666 0.327
Filtered raw captions ∪ Filtered translated cap-
tions

34.2M 0.329 0.271 0.298 0.720 0.364

Filtered raw captions & Filtered translated cap-
tions

51.2M 0.336 0.280 0.301 0.725 0.361

Training for 10× longer (1.28B steps)

Filtered raw captions 38.4M 0.414 0.340 0.344 0.742 0.414
Filtered translated captions 38.4M 0.427 0.347 0.352 0.771 0.414
Filtered raw captions ∪ Filtered translated cap-
tions

34.2M 0.441 0.359 0.353 0.775 0.427

Filtered raw captions & Filtered translated cap-
tions

51.2M 0.456 0.369 0.371 0.776 0.435

select baselines, we also experiment with training for 10× longer. The fixed architecture, compute
and hyperparameter setup allow us to isolate data quality as the main factor influencing performance.

Evaluation We perform zero-shot evaluation of trained CLIP models using the 38 tasks from
DataComp. These tasks involve recognition and classification of a wide range of domains (e.g.,
texture, scene, metastatic tissue, etc.) in addition to image-text retrieval and commonsense association.
Among them, we pay particular attention to commonly cited metrics such as ImageNet accuracy,
ImageNet distribution shift accuracy - a proxy for natural robustness, and retrieval performance.
ImageNet shifts include ImageNet-V2 [37], ImageNet Sketch [46], ImageNet-A [19], ImageNet-O
[19], ImageNet-R [18] and ObjectNet [1]. Retrieval score is the average of the performance on
Flickr30K [50], MSCOCO [7] and WinoGAViL [3]. Throughout the paper we also highlight GeoDE
worst-region performance [36]—a task that involves geographically diverse images—to demonstrate
the added benefits of geographical inclusivity that training on more (translated) multilingual captions
offers.

4 Impacts of using (translated) multilingual captions on standard vision tasks
We explore training on each caption distribution separately, as well as combining them. Below we
describe the baselines from Table 1 in more detail:

• Filtered raw captions: As mentioned in Section 3, we use the public DFN from [13] by default
to filter the starting pool (128M samples). Given the images and the corresponding web-crawled
captions, we experiment with varying the filtering threshold to keep top x% of the pool based on
DFN score. In Table 1, we only report the best average performance obtainable after the filtering
threshold has been tuned, and the resulting dataset size. Refer to Appendix G for the full results.

• Filtered translated captions: Similar to the approach above, we tune the filtering threshold, but
using DFN score between an image and the English translation of the original web-crawled caption.

• Filtered English-only captions: Similar to "Filtered raw captions" baseline, here we also tune
the filtering threshold to keep only a subset of the pool with the highest DFN scores, but with an
additional constraint of only filtering from samples with web-crawled captions already in English.
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Figure 2: Filtering with translated captions
allows substantially more (translated) non-
English samples to be included in the final
training set. While English data only makes up
about one-third of the raw web crawl, it dom-
inates the top 20% of the pool, selected based
on DFN score between image and raw caption.
With translation, English-translated non-English
captions now make up the majority of the "high-
quality" data and thus are more likely to be se-
lected for training.

• Filtered raw captions, replaced with translated captions: Given samples from "Filtered raw
captions" (i.e. again, based on the cosine similarity score between image and original web text), we
keep the images selected and replace the raw captions with the corresponding English translations.

• Filtered raw captions ∪ Filtered translated captions: We combine image-text pairs from "Filtered
raw captions" and "Filtered translated captions" subsets uncovered above. However, these subsets
have about two-thirds of their images in common (see Appendix D). For such images, we only
include one copy in the final training set and use English-translated caption by default. For the
rest of the images in "Filtered raw captions" that do not appear in "Filtered translated captions",
we include them in the training set with the corresponding original captions (which could be
non-English).

• Filtered raw captions & Filtered translated captions: We combine "Filtered raw captions" and
"Filtered translated captions"; the overlapping images between these two subsets would appear
twice in the final training set - one copy with the original web caption and one copy with the
English-translated caption.

4.1 Overall performance trends

Combining high-quality raw and translated captions offers the best performance We find that
using both sources of captions, and image data—since top (image, raw text) pairs and top (image,
translated text) pairs only have two-thirds of the images in common—leads to the best performance
(bolded entries of Table 1). This approach surpasses training on only high-quality raw data by 2% on
ImageNet, ImageNet shifts and retrieval, and improves GeoDE worst-region performance by 3.7%.
We note that this is not simply due to having more unique image-text samples, as filtered subsets
of similar sizes but using a single source of captions (e.g., top 40% raw captions totalling 51.2M
samples) yields significantly lower performance (Appendix G).

Using only translated multilingual captions is still better than using only raw captions Zooming
in on "Filtered translated captions" and "Filtered raw captions" baselines, we find that the former
outperforms the latter on many standard metrics (ImageNet, ImageNet distribution shifts, image-
text retrieval). This is unexpected in light of prior work showing that ImageNet exhibits strong
amerocentric and eurocentric bias [43], with images from America and Great Britain taking up 53%
of the dataset.

4.2 Ablations

We perform more ablation studies to disentangle the reasons for the performance gains from using
high-quality translated captions, as well as to verify that the gains are robust.

The performance gain from using translated captions is not simply due to converting all text
data to a common language medium Given image-text pairs from the "Filtered raw captions"
subset, we replace the web-crawled captions with the corresponding English translations ("Filtered
raw captions, replaced with translated captions"). This intervention on only the captions leads to
performance drop across the board. We hypothesize that this is due to noise in the translation process,
as (i) many web captions are formed by stringing together short, ungrammatical phrases and thus
are "out-of-distribution" for the NLLB translation model, (ii) web captions may contain multiple
languages in the same sentence, thereby leading to noisy language detection and translation.

Re-filtering data after translation is also necessary due to significant changes in the data ranking
Besides noisy artifacts introduced by translation, the process also changes the image-text cosine
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Figure 3: With the same degree of filtering, training with (image, translated caption) pairs improves
performance on 28 out of 38 tasks compared to training with (image, raw caption) pairs, including
on ImageNet distribution shifts, retrieval, and tasks with geographically diverse inputs. We compare
performance on each task of the DataComp benchmark between training with raw captions and training with
translated captions. Both datasets have been filtered with image-text cosine similarities output by the public
DFN [13] to select the top 30% examples. We find that using translated captions leads to 1.5 percentage points
improvement on average across 38 tasks. We highlight the performance changes on ImageNet distribution shifts
(red), retrieval (blue) and fairness-related tasks (dark yellow).

similarity score and thus the quality ranking of the data samples in the pool. More specifically, we
find that while "Filtered raw captions" is dominated by English samples, (translated) non-English
samples make up the majority of "Filtered translated captions" (Figure 2). These two filtered subsets
only share about two-thirds of the images in common, see Appendix D for more details. Therefore,
by changing the caption distribution, we are also inducing changes to the image distribution that the
best-performing model would see.

The benefits of training with translated multilingual captions are consistent across data filtering
networks As alluded to in Section 3, we also explore using cosine similarities output by OpenAI
CLIP-ViT-L/14 [35] for data filtering. The full results for this ablation can be found in Appendix
E. Similar to the previous observations, we find that using filtered translated captions yields better
performance than using filtered raw captions.

The performance benefits of using translated data persists with much longer training duration
We also experiment with training for 10× more steps (i.e., 1.28B samples seen) as this is more in line
with the number of epochs typical vision-language models are often trained on (e.g., OpenAI CLIP
models were trained on 400M datapoints for 32 epochs [35]). When using either the raw caption
or the translated caption distribution, setting the filtering threshold to top 30% of the pool works
best. Even though the two filtered datasets now yield the same average accuracy, training on high-
quality translated captions still offers significant advantages when it comes to ImageNet, ImageNet
shifts, retrieval and GeoDE. Combining high-quality data from both sources of captions continues
to be the best performing approach, giving 4.2% improvement on ImageNet and 2.1 percentage
points improvement on average, compared to just training on filtered raw captions. Results for more
baselines can be found in Appendix H.

4.3 Individual task analysis

After observing improvement across different metrics from using more (translated) multilingual
captions, in this section we break down the performance changes for each of the 38 tasks in the
DataComp benchmark. The base model for comparison is CLIP trained on top 30% image-text pairs
filtered from the raw data pool, and the new improved model is the one trained on top 30% image-text
pairs after the same pool has been all translated to English. Both models are trained for 128M
steps. Averaged across 38 evaluation tasks, the latter yields a 1.5 percentage points improvement.
The biggest gains come from Flickr retrieval, fairness (GeoDE, Dollar Street) and remote sensing
(EuroSAT, RESISC45) tasks (Figure 3).
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Figure 4: On GeoDE, using filtered trans-
lated captions leads to improvements
across all regions compared to using fil-
tered raw captions, with Africa observ-
ing the biggest gain. We break down the
GeoDE performance by region and compare
training on top 30% translated captions to
training on top 30% raw captions. On av-
erage, classification accuracy improves by
4.2%, and the improvement applies to all re-
gions in the dataset, especially Africa where
the accuracy gain is the biggest at 5.5%.

English data Non-English data Figure 5: Visualizations
of what an SVM deems
typical of images with En-
glish captions and those
with non-English captions.
We show examples of easy-
to-classify images in our
English versus non-English
data classification task. Be-
sides the product logo and
text in some images that are
suggestive of the language
distribution, the image con-
tent mostly depicts common
scenes and objects.

In particular, on GeoDE [36], which consists of images of common objects crowd-sourced from
six different regions across the world, we find that using translated multilingual captions makes
CLIP perform better on all regions, with the biggest gain coming from Africa images (5.5%) and the
second biggest gain coming from the Europe region. This is unexpected given that African languages
only make up a small fraction of the training set, and after translation, more European (compared to
African) language samples make it to the resulting filtered subset (Appendix D]). Besides, it is worth
noting that on GeoDE, our best baseline from Table 1 ("Filtered raw captions & Filtered translated
captions") outperforms the current best baseline on DataComp’s medium scale ("HypeSampler" [22])
by 1.5%, measured in terms of worst-region accuracy (Africa).

5 Understanding the differences between English and (translated)
non-English data

Given that using more image-text pairs of non-English origins in the training set offers significant
benefits on most vision tasks, including those that are English-centric, we seek to further understand
the various ways that non-English data complements and improves the diversity of English data, in
both image and text space.

5.1 Image distribution

As a proxy for capturing image distribution differences, we train simple classifiers—a Support Vector
Machine (SVM) on CLIP embeddings and a ResNet-50—to distinguish images with English captions
from those with non-English captions. We randomly sample 100K images from each distribution for
training and 10K for testing. We only use images from the top 20% of the candidate pool (based on
DFN cosine similarity score), to ensure that (i) these are the samples that the best-performing CLIP
models are eventually trained on, (ii) images are of sufficient quality, to the extent that they have
fitting captions accompanying them.

We note that this classification task is non-trivial for a number of reasons:
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• Many images are duplicated across the web, i.e., after DataComp performs image deduplication it
is possible for these images to appear with either English captions or non-English captions in our
data pool.

• The language detection model is not perfect and web-crawled captions may contain more than one
language in the same sentence.

• Images with non-English captions contain many sub-distributions of images, some of which may
overlap with the distribution of images with English captions (e.g., eurocentric data).

Text distributions MAUVE score
Translated non-English vs.
Translated non-English

0.964 ± 0.005

Translated English vs.
Translated English

0.957 ± 0.005

English vs.
Translated English

0.890 ± 0.004

Translated English vs.
Translated non-English

0.616 ± 0.010

English vs.
Translated non-English

0.449 ± 0.008

Table 2: There exists a substantial gap between the
distribution of English captions and that of non-
English captions, even when we apply translation
to both, suggesting that they capture different con-
tents. We use MAUVE score [34] to measure the
difference between English captions and (translated)
non-English captions in the training set. We find that
(i) translation indeed introduces some artifacts and
changes what "English" texts may look like, (ii) the
English text distribution is remarkably different from
the non-English one, even after they are converted to
the same medium with translation. All scores are aver-
aged over 3 randomly sampled sets of 10K captions.

Despite these challenges, our simple classifiers
achieve 67% accuracy on the binary classification
task, significantly better than random chance per-
formance. In Figure 5, we show some examples of
what the SVM deems easy to classify. Overall this
experiment suggests that the distribution of images
with non-English captions is sufficiently distinct
from that of images with English captions. There-
fore, not training on more of the former means we
are missing out on a considerable amount of visual
information that can only be found in a separate
part of the web.

5.2 Text distribution
In the text space, we leverage MAUVE score [34]
to quantify the differences between English cap-
tions and non-English captions that have been
translated to English. MAUVE was originally de-
signed to measure the gap between machine- and
human-generated texts. The metric computes KL
divergences in a quantized, low-dimensional space
after embedding text samples from each distribu-
tion with a language model (by default, GPT-2).
The output score ranges between 0 and 1 and the
higher it is, the more similar the text distributions
are. Similar to our analysis in the image space, we only use caption samples from the top 20% of the
candidate pool (based on DFN score).

In Table 2, as a sanity check, we randomly sample two disjoint sets of 10K captions from the same text
distribution (e.g., non-English captions having been translated to English with the NLLB translation
model, or English captions having been passed through the same model). We find that the two sets
indeed exhibit high MAUVE scores (above 0.95). When comparing raw English captions to English
captions that have been passed through the NLLB model (i.e., "translated English"), we find that the
MAUVE score decreases slightly (0.890), indicating that the translation process introduces some
artifacts making English-translated English text look somewhat different from raw English text.

When comparing raw English texts and non-English texts, both having been passed through the
translation model and thus undergone the same "preprocessing" (i.e., English translation), the resulting
MAUVE score is relatively low (0.616). This signals that independent of differences in language,
what is discussed in English captions and non-English captions differs in many ways. We should
therefore leverage both sources of text information as much as possible for training.

6 Discussion

Limitations We fix the data filtering method to be based on image-text cosine similarity output by a
trained model, and study the impact of selecting training data based on different caption distributions.
We show that the advantages of using translated multilingual data are robust to the choice of the
filtering network. However, our best-performing baseline is currently not state-of-the-art on the
DataComp benchmark [14]. It remains an open question whether the performance benefits of our
method persist with other score metrics, e.g. hyperbolic entailment [22] - currently the best method
for DataComp’s medium scale, or other filtering methods that are used jointly with CLIP score, e.g.
T-MARS [27] which also removes text-spotting images with limited visual information.
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Besides, we acknowledge that translation can introduce artifacts and reduce the richness of expressions
in the original languages. Prior work has shown that translated sentences are less effective compared
to manually-written sentences as sources of training data for a vision task, e.g. image captioning
[28, 23]. Our work mainly leverages translation as a way to convert all image-text pairs to the same
medium, and remove confounding impacts of language in data selection and model training.

Conclusion In this work, we bring all web-crawled image-text pairs into a common language
medium via English translation, and systematically study the empirical benefits of using non-English
data with respect to standard computer vision tasks (that are in English). By including significantly
more (translated) multilingual data in the filtered training set, the improved cultural and linguistic
diversity in turn leads to substantial gains across all major metrics—ImageNet, distribution shift
robustness, retrieval capabilities and average performance across 38 tasks—even if some of these
metrics have been shown to overfit to English. We also find that despite being translated to the same
language, English and non-English data distributions are still distinct from each other.

Future work This work motivates future studies into data curation techniques that directly improves
the diversity of data origins. Another interesting direction of exploration is adapting trained CLIP
models from this paper for multilingual benchmarks, such as by re-training the text encoder (that
has only been trained on English and English-translated captions) with the technique proposed in [4].
We hypothesize that text adaptation alone is sufficient for our models to perform competitively on
non-English tasks, owing to the presence of significantly more multilingual and multicultural images
in our pre-training dataset.

Broader impact While most studies have looked into non-English data with the goal of increasing
societal representation and subsequently improving performance on under-served populations or
tasks, we observe that non-English data can actually help enhance model capabilities as a whole
(including on standard English benchmarks). This suggests that diverse representation in training
data, e.g. as measured by cultural and linguistic backgrounds, should be a deliberate design decision
in the data curation process, instead of existing only as a byproduct of the preprocessing pipeline or
out of societal considerations.
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Cross-lingual visual question answering. arXiv preprint arXiv:2109.06082, 2021.

[33] H. Pham, Z. Dai, G. Ghiasi, H. Liu, A. W. Yu, M.-T. Luong, M. Tan, and Q. V. Le. Combined
scaling for zero-shot transfer learning, 2021. URL https://arxiv. org/abs/2111.10050.

[34] K. Pillutla, S. Swayamdipta, R. Zellers, J. Thickstun, S. Welleck, Y. Choi, and Z. Harchaoui.
Mauve: Measuring the gap between neural text and human text using divergence frontiers.
Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

[35] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[36] V. V. Ramaswamy, S. Y. Lin, D. Zhao, A. Adcock, L. van der Maaten, D. Ghadiyaram, and
O. Russakovsky. Geode: a geographically diverse evaluation dataset for object recognition.
Advances in Neural Information Processing Systems, 36, 2024.

[37] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet classifiers generalize to
imagenet? In International conference on machine learning, pages 5389–5400. PMLR, 2019.

[38] M. Richards, P. Kirichenko, D. Bouchacourt, and M. Ibrahim. Does progress on object
recognition benchmarks improve real-world generalization? arXiv preprint arXiv:2307.13136,
2023.

[39] W. A. G. Rojas, S. Diamos, K. R. Kini, D. Kanter, V. J. Reddi, and C. Coleman. The dollar
street dataset: Images representing the geographic and socioeconomic diversity of the world. In
Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022.

[40] S. Santy, J. T. Liang, R. L. Bras, K. Reinecke, and M. Sap. Nlpositionality: Characterizing
design biases of datasets and models. arXiv preprint arXiv:2306.01943, 2023.

[41] C. Schuhmann, A. Köpf, R. Vencu, T. Coombes, and R. Beaumont. Laion coco: 600m synthetic
captions from laion2b-en. URL https://laion.ai/blog/laion-coco/.

[42] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes,
A. Katta, C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

[43] S. Shankar, Y. Halpern, E. Breck, J. Atwood, J. Wilson, and D. Sculley. No classification
without representation: Assessing geodiversity issues in open data sets for the developing world.
arXiv preprint arXiv:1711.08536, 2017.

[44] P. Sharma, N. Ding, S. Goodman, and R. Soricut. Conceptual captions: A cleaned, hypernymed,
image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.

12

https://laion.ai/blog/laion-translated/
https://laion.ai/blog/laion-coco/


[45] A. Visheratin. Nllb-clip–train performant multilingual image retrieval model on a budget. arXiv
preprint arXiv:2309.01859, 2023.

[46] H. Wang, S. Ge, Z. Lipton, and E. P. Xing. Learning robust global representations by penalizing
local predictive power. Advances in Neural Information Processing Systems, 32, 2019.

[47] A. Yang, J. Pan, J. Lin, R. Men, Y. Zhang, J. Zhou, and C. Zhou. Chinese clip: Contrastive
vision-language pretraining in chinese. arXiv preprint arXiv:2211.01335, 2022.

[48] A. Ye, S. Santy, J. D. Hwang, A. X. Zhang, and R. Krishna. Cultural and linguistic diversity
improves visual representations. arXiv preprint arXiv:2310.14356, 2023.

[49] D. Yin, L. H. Li, Z. Hu, N. Peng, and K.-W. Chang. Broaden the vision: Geo-diverse visual
commonsense reasoning. arXiv preprint arXiv:2109.06860, 2021.

[50] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denota-
tions: New similarity metrics for semantic inference over event descriptions. Transactions of
the Association for Computational Linguistics, 2:67–78, 2014.

13



A Examples of translated data (no cherry picking)

Raw caption: Lovely 2nd Floor Plans Part - 4: 2nd Floor Plan
Language detected: eng_Latn
Translation: Lovely 2nd Floor Plans Part - 4: 2nd Floor Plan

Raw caption: ピンク色「インテリアの鮮やかなピンクのカ
ラフルなラウンジ」:スマホ壁紙(19)
Language detected: jpn_Jpan
Translation: Pink: The bright pink lounge of the interior: cell phone
wallpaper.

Raw caption: CW&#8217;s The Originals Joseph Morgan Jacket
Language detected: eng_Latn
Translation: CW The Originals Joseph Morgan Jacket

Raw caption: PURPLE AZALEAS UP CLOSE
Language detected: yue_Hant
Translation: Purple Azleas up close.

Raw caption: Paso a paso: Cómo sacar el permiso para circular con
el auto en vacaciones de verano | Garantia Plus
Language detected: spa_Latn
Translation: Step by step: How to get a driving permit on summer
vacation

Raw caption: Een hangende decoratie van Vivi Gade papieren
diamantvormen
Language detected: nld_Latn
Translation: A pending decoration of Vivi Gade paper diamond
shapes
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Raw caption: Neymar n’a plus joué en compétition depuis le 28
novembre 2021, à Saint-Etienne. Icon Sport
Language detected: fra_Latn
Translation: Neymar has not played in a competitive match since
28 November 2021, at Saint-Etienne.

Raw caption: Ring Alarm 5-piece kit (2nd Gen) – home security
system with optional 24/7 professional monitoring – Works with
Alexa
Language detected: eng_Latn
Translation: Ring Alarm 5-piece kit (2nd Gen) home security sys-
tem with optional 24/7 professional monitoring Works with Alexa

Raw caption: Alcatras Hapisanesi
Language detected: tur_Latn
Translation: The Alcatras Prison

Raw caption: Coque iPhone XS Max Olaf Reine des neiges bon-
homme de neige
Language detected: fra_Latn
Translation: Iphone XS Max Olaf Snow Queen Snowman

Raw caption: Multiracial Thumbs Up Against Blue Sky
Language detected: eng_Latn
Translation: Multiracial Thumbs Up Against Blue Sky

Raw caption: 去年学校野去了waiheke island景色超美海水十
分清澈
Language detected: deu_Latn
Translation: Last year school camp went to Waiheke island

15



B More training details

We follow the training and evaluation protocols of the DataComp benchmark [14]; refer to Appendices
M and N of this previous work for more details. To summarize, we use ViT-B/32 as the image encoder
for CLIP, and fix the hyperparameters used for training: learning rate 5e-4, 500 warmup steps, batch
size 4096, AdamW optimizer β2 = 0.98.

Since the compute budget is fixed, for the DataComp setting (128M training steps), each of our
baseline takes about 8 hours with 8 A40 GPUs and 40 CPUs. With the same amount of resources,
for experiments involving training for longer (1.28B steps), each baseline takes about 80 hours. We
report all baselines that we ran in Appendices E, G and H.

C Translation quality

Here we provide a quantitative assessment of the quality of caption translation offered by the NLLB
model [9]. We sample 100K captions from the raw data pool and backtranslate the English-translated
caption into the original (detected) language (e.g., Chinese text → English translation → Chinese
translation of the English-translated text). To evaluate the translation quality, we compute the cosine
similarity between the initial web-scraped text and the backtranslated text using embeddings from
the multilingual Sentence-BERT model [? ]. We find that on average the cosine similarity (and
thus, translation quality) remains relatively high (0.63). In the table below, we report the top 5 and
bottom 5 languages that observe the highest and lowest translation quality as captured by our metric,
computed over at least 30 text samples per language.

Table 3: Top 5 and bottom 5 languages where web-scraped captions observe the highest and lowest translation
quality by the No Language Left Behind model [9], out of all the languages detected in our raw data pool.
Translation quality is measured by how much the semantic meaning is preserved after the caption is translated
into English and subsequently backtranslated into the original language.

Language Text cosine similarity after backtranslation (↑)

English 0.886
Norwegian Nynorsk 0.883
Bengali 0.883
Russian 0.860
Norwegian Bokmål 0.839
Marathi 0.271
Irish 0.240
Standard Latvian 0.233
Chechen 0.0595
Karachay-Balkar 0.00280

D Changes in data composition due to translation

D.1 Differences in image uids between "Filtered raw captions" and "Filtered translated
captions"

In this section, we provide some statistics of the differences in image-text pairs selected for "Filtered
raw captions" and "Filtered translated captions", when both caption distributions are filtered to a
similar extent with the public DFN from [13]. We find that at either 20% or 30% selectivity threshold,
both filtered subsets have about two-thirds of their images in common. In addition, filtering the initial
pool using (image, translated caption) cosine similarity score always leads to translated multilingual
captions taking up the majority of the resulting training set. This is not the case when filtering with
(image, raw caption) cosine similarity score.
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Table 4: Analysis of the number of samples of English and non-English origins in "Filtered raw captions",
"Filtered translated captions" and their intersection.

Data subset Total size
(M)

Number of English
captions (M)

Number of non-
English captions (M)

Top 20% Raw captions 25.6 14.9 10.7
Top 20% Translated captions 25.6 11.0 14.6
Top 20% Raw captions ∩ Top 20%
Translated captions

17.1 10.7 6.4

Top 30% Raw captions 38.4 20.4 18.0
Top 30% Translated captions 38.4 15.4 23.0
Top 30% Raw captions ∩ Top 30%
Translated captions

25.7 15.0 10.7

D.2 Language composition of the filtered subsets

Below we show the most common languages in top 20% raw captions and top 20% translated captions.
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Figure 6: Top 20 languages that are most common in top 20% raw captions (left) and top 20% translated
multilingual captions (right) (both are filtered with the public DFN model).
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D.3 Changes in language composition

Comparing image-text pairs selected in top 20% translated captions to those selected in top 20% raw
captions, we show below the languages that observe the biggest change in their representation in the
resulting training set:

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
Composition change (%)
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Figure 7: Top languages that see the biggest change (in absolute percentage) in their representation in the final
training set when we filter with translated multilingual captions versus with raw web-scraped captions.
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E Experiments with OpenAI CLIP score filtering

Table 5 shows results of our experiments with data filtering using OpenAI CLIP-ViT-L/14 [35].
Besides the baselines described in Section 4, the table also contains "Top 30% raw captions ∪ top
30% translated captions, using translated caption for all", where we take all the images uncovered
from "Top 30% raw captions" and "Top 30% translated captions", deduplicate them, and use the
corresponding translated captions for all these images.

We find that with OpenAI CLIP as the filtering network, some of our observations from Section 4
continue to hold true: (i) using translated multilingual captions is better than using raw captions, and
(ii) the performance gain from training with translated captions requires re-filtering the entire data
pool after translation (as seen from comparing the first two baselines of the table).

Table 5: The benefits of using translated multilingual captions still hold when using cosine similarity
score from OpenAI CLIP for filtering. This table shows performance of all baselines we experiment with for
filtering with OpenAI CLIP-ViT-L/14. Again, the compute budget is fixed and all baselines are trained for 128M
steps. We find that training on filtered translated captions also outperforms training on filtered raw captions in
this case.

Baseline name Dataset
size

ImageNet ImageNet
shifts

Retrieval GeoDE Average over
38 tasks

Top 30% raw captions 38.4M 0.273 0.230 0.251 0.683 0.328

Top 30% raw captions, replaced with trans-
lated captions

38.4M 0.260 0.224 0.248 0.660 0.322

Top 30% translated captions 38.4M 0.292 0.250 0.267 0.695 0.342

Top 50% raw captions 64.1M 0.254 0.218 0.262 0.670 0.315

Top 50% translated captions 64.1M 0.265 0.230 0.276 0.704 0.320

Top 30% raw captions ∪ top 30% translated
captions, using translated caption for all

47.7M 0.275 0.234 0.261 0.683 0.326

Top 30% raw captions ∪ top 30% translated
captions

47.7M 0.284 0.247 0.260 0.696 0.340

Top 30% raw captions & top 30% translated
captions

76.8M 0.289 0.250 0.262 0.696 0.335
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F Comparison to training with synthetic captions

Table 6: When fixing the training images and replacing translated English captions with synthetic captions
generated by BLIP2, we find that performance decreases in general. Since filtering from translated captions
exposes CLIP to both new images and new text distributions, we seek to disentangle the impact of these two
factors on model performance. Our results suggest that having access to more diverse images alone (without the
corresponding translated multilingual captions) may be insufficient for achieving performance gains.

Baseline name Dataset
size

ImageNet ImageNet
shifts

Retrieval GeoDE Average over
38 tasks

Top 20% translated captions 25.6M 0.329 0.275 0.296 0.709 0.359

Top 20% translated captions, replaced with
synthetic captions

25.6M 0.283 0.255 0.350 0.696 0.336

Top 30% translated captions 38.4M 0.311 0.265 0.305 0.718 0.351

Top 30% translated captions, replaced with
synthetic captions

38.4M 0.282 0.253 0.371 0.703 0.341

As observed in Section 4.1, training on filtered translated captions outperforms training on filtered
raw captions across all major metrics. This could be attributed to both changes in captions (from
original web-crawled texts to English-translated texts) as well as changes in images (since "Filtered
raw captions" and "Filtered translated captions" only share some of the images in common, see
Appendix D). Here we attempt to disentangle the contribution to performance gain from these two
changes.

Given the images selected by filtering based on (image, translation caption) cosine similarity (i.e.,
"Top 20% translated captions", "Top 30% translated captions"), we generate synthetic captions for
each image using BLIP2 model [24] and the generation hyperparameters from [31]. Training on the
new (image, synthetic caption) pairs leads to lower performance overall compared to training on the
original (image, translated caption) pairs (Table 6). This suggests that having access to more diverse
(non-English) images in the training set is not sufficient to boost performance; the diversity coming
from translated multilingual captions is also necessary for obtaining the accuracy gains.

We acknowledge that since BLIP2 was pre-trained on relatively few multilingual samples, it is
possible that the captioning model finds it difficult to caption non-English images. This ablation study
experiment is thus mostly exploratory, and more experiments are needed to assess the performance
benefits coming from seeing more non-English images, versus seeing more diverse linguistic concepts
in (translated) non-English captions.
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G All DFN filtering baselines

Table 7: Here we report all the baselines we experiment with using the public DFN from [13] for filtering; all
models are trained for 128M steps as set by the DataComp benchmark. For each caption distribution (i.e., raw/
translated/ English-only), only the filtering threshold that yields the best average performance across 38 tasks is
shown in Table 1.

Baseline name Dataset
size

ImageNet ImageNet
shifts

Retrieval GeoDE Average over
38 tasks

Top 20% raw captions 25.6M 0.316 0.260 0.282 0.688 0.350

Top 20% raw captions, replaced with trans-
lated captions

25.6M 0.304 0.252 0.268 0.668 0.331

Top 30% raw captions 38.4M 0.297 0.246 0.280 0.663 0.337

Top 40% raw captions 51.2M 0.267 0.222 0.274 0.669 0.320

Top 20% translated captions 25.6M 0.329 0.275 0.296 0.709 0.359

Top 30% translated captions 38.4M 0.311 0.265 0.305 0.718 0.352

Top 40% translated captions 51.2M 0.289 0.248 0.288 0.709 0.332

Top 20% raw English-only captions 8.0M 0.260 0.218 0.234 0.603 0.303

Top 30% raw English-only captions 12.0M 0.280 0.238 0.259 0.630 0.326

Top 40% raw English-only captions 16.0M 0.283 0.236 0.278 0.666 0.327

Top 50% raw English-only captions 20.0M 0.277 0.236 0.280 0.668 0.321

Top 20% raw captions ∪ top 20% translated
captions, using translated caption for all

34.2M 0.316 0.265 0.289 0.716 0.353

Top 20% raw captions ∪ top 20% translated
captions

34.2M 0.329 0.271 0.298 0.720 0.364

Top 20% raw captions & top 20% translated
captions

51.2M 0.336 0.280 0.301 0.725 0.361

Top 30% raw captions & top 30% translated
captions

76.8M 0.295 0.248 0.282 0.673 0.340
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H Training for longer

Here we show the results of all the baselines that we train for 1.28B steps (i.e., 10× the number of
steps set by DataComp). In Table 8, we find that when using either raw web-crawled captions or
English-translated captions, filtering for top 30% of the pool does best, and translated multilingual
captions continue to yield better performance on standard metrics compared to raw captions. We also
provide a breakdown of performance differences between these two baselines across 38 tasks from
DataComp in Figure 8.

Table 8: When the training duration is increased by 10× compared to the DataComp setting, training
on translated multilingual captions continues to outperform training on raw captions across a range of
metrics; using both sources of captions continues to yield the best performance. We show performance
of all the baselines that are trained for 1.28B steps. Even though using filtered raw captions and using filtered
translated captions yield similar average performance (0.414 percentage points), the latter still surpasses the
former on ImageNet, ImageNet distribution shifts, retrieval and GeoDE (worst-region accuracy). We also note
that these performance gaps widen with training duration (see Table 1 for a comparison).

Baseline name Dataset
size

ImageNet ImageNet
shifts

Retrieval GeoDE Average over
38 tasks

Top 20% raw captions 25.6M 0.423 0.345 0.331 0.751 0.407

Top 30% raw captions 38.4M 0.414 0.340 0.344 0.742 0.414

Top 40% raw captions 51.2M 0.417 0.344 0.358 0.746 0.410

Top 20% translated captions 25.6M 0.421 0.348 0.346 0.754 0.412

Top 30% translated captions 38.4M 0.427 0.347 0.352 0.771 0.414

Top 40% translated captions 51.2M 0.421 0.348 0.346 0.754 0.412

Top 20% raw captions ∪ top 20% translated
captions

34.2M 0.441 0.359 0.353 0.775 0.427

Top 20% raw captions & top 20% translated
captions

51.2M 0.456 0.369 0.371 0.776 0.435

Top 30% raw captions & top 30% translated
captions

76.8M 0.419 0.347 0.345 0.771 0.429
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Figure 8: With the same degree of filtering, training with (image, translated caption) pairs improves per-
formance on 23 out of 38 tasks compared to training with (image, raw caption) pairs, including ImageNet
distribution shifts, retrieval, and tasks with geographically diverse inputs. We compare performance on
each task of the DataComp benchmark between training with raw captions and training with translated captions,
when both are trained for 1.28B steps. Both datasets have also been filtered with image-text cosine similarities
output by the public DFN [13] to select the top 30% examples. We find that when we increase training duration
to be 10× longer than DataComp’s setting, using translated multilingual captions and using raw captions yield
similar average performance across 38 tasks. However, the former still outperforms the latter on most of the
ImageNet distribution shifts (red), retrieval (blue) and fairness-related tasks (dark yellow).
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I More performance analysis

In addition to the analysis in 4.3, we provide further breakdown of performance changes at the income
group and class levels, on Dollar Street (Figure 9) and ImageNet (Figure 10) respectively, when we
swap the training distribution from top 30% raw captions to top 30% translated captions.

$27-200 $200-684 $685-1997 $1998-19671
Monthly income ($USD)

40

45

50

55

60

65

70

75

80

To
p 

5 
ac

cu
ra

cy
 (%

)

Filtered raw captions
Filtered translated captions

Figure 9: On Dollar Street, using trans-
lated multilingual captions leads to per-
formance improvement across all income
groups. Dollar Street [39] is another fairness-
related task that involves classifying images
of everyday items collected from households
around the world with different socioeco-
nomic backgrounds. We break down the per-
formance on this dataset by income groups
and find that training on top-quality trans-
lated captions improves the classification ac-
curacy across all groups, compared to train-
ing on top-quality raw captions.

en
ter

tai
nm

en
t c

en
ter

ha
rte

be
es

t

ne
mato

de

Entl
eb

uc
he

r S
en

ne
nh

un
d

Malt
es

e
ap

iar
y

ch
am

be
red

 na
uti

lus

sil
ve

r s
alm

on

co
mmon

 ga
llin

ule

bu
llo

ck
 ca

rt

sli
de

 ru
le

ye
llo

w la
dy

's 
sli

pp
er

ha
nd

ke
rch

ief

su
ns

cre
en

ba
ss

ine
t

life
bo

at

gre
en

 ig
ua

na cli
ff

clo
the

s i
ron

marm
ot

art
ich

ok
e
ha

rp

ph
oto

co
pie

r

tril
ob

ite

ho
rse

-dr
aw

n v
eh

icl
e

go
nd

ola

foo
tba

ll h
elm

et

ab
ay

a

ba
bo

on

stu
rge

on

cli
ff d

well
ing

so
uth

ern
 bl

ac
k w

ido
w
jag

ua
r

oc
ea

n l
ine

r

hy
en

a
tan

k
sa

fe
ca

no
e

Kerr
y B

lue
 Te

rrie
r

roc
k b

ea
uty

 fis
h

80

60

40

20

0

20

40

P
er

-c
la

ss
 a

cc
ur

ac
y 

di
ffe

re
nc

e 
(%

)

Figure 10: 40 ImageNet classes that observe the largest changes in classification performance when we
train on top translated multilingual captions compared to top raw captions. We show 40 categories from
ImageNet that see the biggest change in accuracy when more (translated) multilingual data is included in the
training set.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We enumerate the contributions in the introduction and describe the contribu-
tions in more detail in subsequent sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not contain any theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the experimental setup in Section 3 and full training hyperparam-
eters in Appendix B. The translation model is publicly available on HuggingFace and we
plan to release the translated captions as well.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our experiments mostly use the training code and data from the DataComp
benchmark [14], which are publicly available. We did not open-source the translation code,
but we describe in detail in Section 3 how we apply translation to all samples in the pool
and re-filter them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow the hyperparameter setup of the DataComp benchmark [14] and
describe the hyperparameters in Section 3 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to compute constraints and the many ablation experiments that are
involved, we did not run multiple random seeds for each baseline. The only experiment with
multiple runs is for computing MAUVE score. We plan to run more random seeds for select
baselines to accommodate the review process.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide compute details in Appendix B. In general, our training runs follow
the hyperparameters and infrastructure of the DataComp benchmark [14], readers could
refer to this previous work for more details regarding the compute design.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and followed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts of our work in the Discussion section.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We have not yet released the translated caption data but we plan to follow the
guidelines from DataComp’s dataset release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and follow the license of DataComp and NLLB model. We also cite
the three public data sources that the DFN was trained on.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The data preprocessing and data filtering pipelines are described in detail in
Section 3. We plan to release all 128M English-translated captions on HuggingFace after
the review period.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our experiments do not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments do not involve human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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