Workshop track - ICLR 2016

HOW FAR CAN WE GO WITHOUT CONVOLUTION: IM-
PROVING FULLY-CONNECTED NETWORKS

Zhouhan Lin & Roland Memisevic

Université de Montréal

Canada

zhouhan.lin@umontreal.ca, roland.umontreal@gmail.com

Kishore Konda

Goethe University Frankfurt

Germany
konda.kishorereddy@gmail.com

ABSTRACT

We propose ways to improve the performance of fully connected networks. We
found that two approaches in particular have a strong effect on performance: lin-
ear bottleneck layers and unsupervised pre-training using autoencoders without
hidden unit biases. We show how both approaches can be related to improving
gradient flow and reducing sparsity in the network. We show that a fully connected
network can yield approximately 70% classification accuracy on the permutation-
invariant CIFAR-10 task, which is much higher than the current state-of-the-art.
By adding deformations to the training data, the fully connected network achieves
78% accuracy, which is close to the performance of a decent convolutional net-
work.

1 INTRODUCTION

Convolutional neural networks (CNN) have had huge successes since [Krizhevsky et al.|(2012), espe-
cially in computer vision applications. The main computational idea behind these, weight sharing,
is unfortunately not biologically plausible, and it does not map nicely to simple, densely parallel
hardware designs, which may one day yield lower-energy, and more efficient ways to run neural
networks. The reason is that weight sharing requires long-range communication, for example, when
distributing derivatives, during learning.

In this paper, we explore the performance that one can possibly achieve with a neural network with-
out convolutions, in other words, a neural network learning on “permutation invariant” classification
tasks. We use these as a test-bed for studying alternative architectural design choices beside con-
volution, which are biologically plausible and potentially more hardware friendly. Studying these
design choices is relevant also because many tasks and sub-tasks do not come with any local trans-
lation invariance, making them not amenable to convolution (an example being the hidden layer in
a recurrent neural network).

Two architectural choices we found to have a strong impact on performance are (i) linear bottleneck
layers and (ii) pre-training using autoencoders whose hidden units have no biases. Taken together,
these two approaches allow us a network to achieve state-of-the-art performance on the permutation-
invariant CIFAR-10 task [1_-], and by adding deformations (thus removing the permutation invariance
requirement) it achieves performance close to the range of that achieved by CNNss.

'An example implementation that generates the state-of-the-art on this task is available at https:
//github.com/hantek/zlinnet

https://github.com/hantek/zlinnet
https://github.com/hantek/zlinnet

Workshop track - ICLR 2016

1.1 SPARSITY IN NEURAL NETWORKS

Both approaches can be viewed from the perspective of sparsity in a neural network. Sparsity is
commonly considered as a desirable property, as it can provide an optimal balance between high-
capacity, but “entangled”, distributed representations on the one hand, and low-capacity, but easily-
decodable, one-hot representations on the other (eg., Foldiak (2003)). Because of its benefits, spar-
sity is often encouraged explicitly as a regularizer in statistical machine learning models. While
sparse codes could also provide energy-efficiency when implemented in the right type of hardware,
the floating-point hardware underlying most common machine learning models does not exploit this.

Unfortunately, in deep, multilayer neural networks sparsity comes at a price: in common activation
functions, such as sigmoid or ReLU, zero (or almost zero) activations are attained at values where
derivatives are zero, too. This prevents derivatives from flowing through inactive hidden units, and
makes the optimization difficult. Stated in terms of the vanishing gradients problem (e.g., Hochreiter,
et al. (2001))) this means that for a ReL U activation many Jacobians are diagonal matrices containing
many zeros along the diagonal.

To alleviate this problem, recently several activation functions were proposed, where zero derivatives
do not, or are less likely to, occur. In the PReLU activation function (He et al.,|2015)), for example,
the zero-derivative regime is replaced by a learned, and typically small-slope, linear activation. An-
other approach is the Maxout activation (Goodfellow et al.,2013), which is defined as the maximum
of several linear activations. Accordingly, preventing zero-derivatives this way was shown to im-
prove the optimization and the performance of multilayer networks. Unfortunately, these methods
solve the problem by giving up on sparsity altogether, which raises the question whether sparsity is
simply not as desirable as widely assumed or whether the benefit of the optimization outweigh any
detrimental effect on sparsity. Sparsity also plays a crucial role in unsupervised learning (which can
also be viewed as a way to help the optimization (Saxe et al., |2013)), where these activations have
accordingly never been successfully applied.

This view of sparsity motivates us to revisit a simple, but as we shall show surprisingly effective,
approach to retaining the benefits of sparsity without preventing gradient-flow. The idea is to inter-
leave linear, low-dimensional layers with the sparse, high-dimensional layers containing ReL.U or
sigmoid activations. We show that this approach outperforms equivalent PReLU and Maxout net-
works on the fully supervised, permutation invariant CIFAR-10 task.

A second detrimental side-effect of sparsity, discussed in more detail in [Konda et al.| (2014), is that
for a ReLLU or sigmoid unit to become sparse it typically learns strongly negative bias-terms. In
other words, while sparse activations can be useful in terms of the learning objective (for example,
by allowing the network to carve up space into small regions) it forces the network to utilize bias
terms that are not optimal for the representation encoded in hidden layer activations. |Konda et al.
(2014), for example, suggest bias-terms equal to zero to be optimal and propose a way to train an
autoencoder with zero-bias hidden units. We suggest in Section [3] that pre-training a network with
these autoencoders may be viewed as a way to orthogonalize subsets of weights in the network, and
show that this yields an additional strong performance improvement.

We shall discuss the motivation for linear bottleneck layers in the next section and pre-training using
autoencoders in Section 3] followed by experimental results in Section]

2 LINEAR BOTTLENECK LAYERS

One drawback of sparsity in a deep network is that it amounts to data scarcity: a weight whose
post-synaptic unit is off 80% of the time will effectively get to see only 20% of the training data.
In lower layers of a convolutional network, this problem is compensated by weight-sharing, which
increases the effective number of training examples (patches in that case) per weight by a factor of
several thousand. In a fully connected layer (more precisely, a layer without weight sharing) such
compensation is not possible and the only way to counter this effect would be by increasing the
training set size.

Sparsity is a common and stable effect in neural networks containing ReLU or sigmoid units, and
it can be related to the fact the biases are driven to zero in response to regularization (eg., Konda

‘Workshop track - ICLR 2016

et al.| (2014)). Figure (1] (left) shows the sparsity level attained after training ReLU MLPs. E| The
plots show that the sparsity of the hidden presentation increases with the depth of the network and
increase further in the presence of dropout.

100 T T T Z-Lin pair Z-Lin pair
— I Layerl
] [Layer2 % %
g 80 ™ [Layer3 \ / \
N [] H H
s : :
& 60
@© f f
5 H H
o 40
o R R
S : :
°> 20
O\ H H
0 i ; . .
Nl_Crpt N2_Crpt N1 N2 zero-bias i . zero-bias i L zero-bias logistic
ReLUs inear units ReLUs inear units ReLUs regression

Figure 1: (left) The sparsity in different layers of two MLPs N1(1000-2000-3000 units) and
N2(2000-2000-2000 units) trained with and without dropout on CIFAR-10 dataset. NI1_Crpt,
N2 _Crpt: Experiments with dropout. (right) Illustration of a network with linear bottleneck lay-
ers.

2.1 LINEAR LAYERS AS DISTRIBUTION RESHAPING

It is well-known that different activation functions work best when the input is in a reasonable
scale, which is the motivation for using pre-processing by mean subtraction and scaling, for ex-
ample. Furthermore, incorporating them into hidden unit activation, can yield further performance
improvements (loffe & Szegedyl 2015).

Here, we focus on the distribution over the outputs of a unit. The output of a linear neuron Y with
inputs X = (X1, X2,.., X, Xn) is given by YV = ZZV w; X; + b, where w; is the entry in the
weight vector corresponding to input node ¢, b is the bias of the linear neuron, and N denotes the
input dimension. Assume the data fed into each input node X; is independent and has a finite mean
1; and variance af. In the net input to a neuron, the mean and variance of each w; X; term are tuned
by its corresponding weight values:

fli = Wit 6;° = wio})
Thus, Y can be viewed as bias b plus a sum of N different random variables, whose means and
variances are ji; and &;° correspondingly. Note that here we cannot apply central limit theorem
directly to draw the conclusion that Y subjects to Gaussian distribution as /N goes infinity, because
those w; X; terms are not i.i.d. However, there is an important extension to the central limit theorem
called Lyapunov theorem (DeGroot et al., [1986). It basically describes, if a sequence of random
variables with finite mean and variance are independent but not necessarily identically distributed,
the distribution of the sum:

1
N 2

S = (iwx - iu) (Z @2))

i=1
tends to standard Gaussian distribution for N — oo. If we write Y in terms of S, thatis, Y =
1
(Zf;l U}-Q) S b+ Zivzl i1; we see that Y approximates a Gaussian distribution whose mean

isb+ Zf\il [1; and whose variance equals to Zfil 6,2, when the input dimension N — co. For

>Two MLPs (1000-2000-3000 units and 2000-2000-2000 units, respectively), trained for 501 epochs on
CIFAR-10. Each network was trained once with dropout and once without. For the experiments with dropout,
an input noise level of 0.2 and hidden noise level of 0.5 was used.

Workshop track - ICLR 2016

mean-centered data, we have ji; ~ 0. Thus the actual mean value of Y is merely dominated by b in
which case the p.d.f. of Y is:

1 (y=b)?2

PLin (Y) & —N€72E§V=1 7 3)
\/ 2T Zi:l OA'iQ

This form of asymptotic distribution holds regardless of the weight w;. That means, no matter how
the network is trained, or even not trained, the asymptotic distribution of output of a linear unit tends
to be Gaussian.

Since the pre-hidden activation of ReL.U is linear it tends to be Gaussian as well. The ReLU activa-
tion then simply sets all negative values to zero which yields:

P prin (v) dy - 8(0),y <0)
PheLU (y) {pLG (y) Y > 0 ()

where §(0) is the Dirac delta. The distribution has a delta spike at zero and a Gaussian tail at its
positive end (Figure [2)).

Pyl P(y)

-

b
Figure 2: P.d.f. of ReLU output (left) and zero-bias ReLLU output (right). The arrow at zero indicates
a delta spike, and the dashed part stands for the probability mass absorbed into that delta spike.

Since the bias controls the intensity of the 6(0) spike, it controls the sparsity of output representation
(left plot). The observation that biases tend to zero motivated Konda et al.| (2014) to introduce a
“zero-bias” activation function which uses a fixed threshold followed by linear activation. Typically
while using zero-bias ReL.U, a threshold of 1 is introduced during pre-training stage, and set back to
zero while training its subsequent layers and fine-tuning. The distribution of pre-hidden activity of
a zero-bias ReLU stretches equally on both sides of zero. As a result, for zero-bias ReLU activation
half of the probability mass concentrates on a delta spike located at zero, as illustrated it Figure 2]
(right). While batch normalization alone will push the mean and variance into the optimal range for a
subsequent ReLU unit, it will not resolve the issue that the distribution is peaked at the negative bias.
In fact, the estimate of mean and variance will suffer from the presence of a highly non-Gaussian
distribution. Typical histograms over hidden unit activations for several activation functions are
shown in Figure [3d]

6000000

nnnnnnn

10
2000000
04 05
1000000)
02
o, 09
(3 g

i 15 % %5 o = g B E (o 02 e 06 o5 10

(a) zero bias ReLLU activation (b) linear layer activation (c) Sigmoid activation

Figure 3: Histogram of output activation with different types of activation function.

Workshop track - ICLR 2016

2.2 DERIVATIVES IN THE PRESENCE OF LINEAR LAYERS

We now consider the derivatives of a ReLU network. The activation of layer ¢ 4 1 is given by:

HL+1 = R(wzﬁ7 + 12)7)

where R() is the element-wise activation function. The back-propagated updates on w; will be:
Aw; =80 R (H;l) A, ©6)
where § stands for the down flowing error signal coming from the upper layer, o stands for element-
wise multiply, and - is the product of a vertical vector and a horizontal vector. As discussed in
Section[2.1] at least 50% (usually much more in practice due to negative biases) of the values in the
representation H; and H;; are typically equal to zero (cf., Figure[I] left) making a large fraction of
the entries of Aw; per training case zero. If we introduce a linear layer between two ReLLU layers,

—

H =wH;+b Hi1=R (wiﬁl + b:) @)

where H ; stands for the output of linear layer, and w;, b; are the weights and biases in the linear
layer, we obtain updates of the form:

—

Aw =68 H;, Aw;=50R (HM) . H, ®)

where §; is the error signal passed to the linear layer, §; = dw;. Since the linear layer representa-
tion H; is dense, both Aw; and Aw,; become denser: only half of the values in these two update
matrices are zeros. More importantly, there always exists a simple ReLU layer that is equivalent to
a ReLU/linear combination because any linear layer can be absorbed into the weights of the ReLU
layer:

w = w;w;, b=w;b +0b;)

Then, the equivalent update on w becomes:

Aw = Aw; Aw; + w; Aw; + Aw;w; (10)

Even if half of the values in Aw; and Aw; are zero, their product is a dense matrix. The second
and third term in Equation @] are also dense, so with a linear bottleneck layer, we actually obtain a
dense update in an equivalent ReL.U layer.

2.3 REDUCING PARAMETERS

Besides helping with back propagation, it is important to note that linear layers also reduce the total
number of parameters. Suppose a linear layer with L units is inserted between two nonlinear layers
with N units each. The total number of parameters would become 2N L + L + N. This is much less
than the number of parameters that would result from directly connecting the two nonlinear layer,
which would amount to N2 + N parameters. Convolutional network also reduces the number of
parameters by convolution kernels. Note that for any trained convolutional network, we can always
find a fully connected network with the same accuracy by expanding the convolutional kernels.

3 PRE-TRAINING AND ZERO-BIAS ACTIVATIONS

It was suggested by [Saxe et al.| (2013) that the benefit of unsupervised pre-training of a network
using RBMs or autoencoders may result in weight matrices that are closer to orthogonal and thus
less affected by vanishing gradients problems. It is interesting to note, however, that the sparsity-
inducing negative biases yield reconstructions that are affine not linear and accordingly may not
orthogonalize weights after all (Konda et al.,[2014). This may be one of the reasons why the practical
success of these pre-training schemes has been quite limited by comparison to fully supervised
learning using back propagation.

It is also important to note that due to sparsity, the number of active units in a layer is often smaller
than that the same number in the layer below, so the “effective” weight matrix for a given input

Workshop track - ICLR 2016

example is not a square matrix. Rather than simply orthogonal weight matrices, we should be
looking for networks where hidden units which tend to be active on the same inputs have weights
that tend to be orthogonal to one another. In other words, we should be looking for “orthogonal
active paths” through the network rather than overall orthogonal weight matrices.

In order to obtain hidden units with linear not affine encodings |Konda et al.|(2014) introduce ““zero-
bias autoencoders” (ZAE) whose activations are thresholded when pre-trained by minimizing the
autoencoder reconstruction error, and whose thresholds are removed when the weights are used for
classification or for initializing a feed forward network. In other words, the activations for hidden
units in layer ¢ + 1 are given by (Konda et al.| 2014):

—

Hiy = (wiH; > 0)w;H; (11)
where we set § = 1 during pre-training and 6 = 0 otherwise.

As discussed in [Konda et al.| (2014) minimizing squared error under the linear encoding should
encourage weights corresponding to hidden units that tend to be “on” together to orthogonalize
(because the orthogonal projection is what minimizes reconstruction error). [Konda et al.| (2014)
reported decent classification performance in various supervised tasks, but found only a weak im-
provement over standard autoencoders when used to initialize a single-hidden-layer MLP.

The view of a zero-bias activation function as a way to orthogonalize weights suggests especially
deep networks to profit from ZAE pre-training, and so we investigated the performance of ZAE-
pretrained networks with many hidden layers, as well as in conjunction with interleaved bottleneck
layers (as discussed in Section[2). We found them to yield a separate, and significant, performance
improvement in fully connected networks.

4 EXPERIMENTS

4.1 CIFAR-10

The CIFAR-10 dataset is a subset of the 80 Million Tiny Images|Torralba et al.|(2008)), and contains
10 balanced classes. It provides a training set with 50000 samples and a test set of 10000 samples.
Each sample is a colour image with 32 x 32 RGB pixels. We first compare mixed models with linear
bottleneck layers and ordinary networks. We compare two different activation functions: ReLU
and zero-bias ReLU (Konda et al.,[2014). Comparison are based on classification accuracy. All the
experiments in this subsection share the same pre-processing pipeline and the same type of classifier.
For pre-processing, the raw data is contrast normalized and centred to have zero mean, followed by
PCA whitening, retaining 99% of the variance.

We trained 3 ReLU networks with different configurations, and compare their results with the ReLU-
Lin network 4000ReLLU — 1000Linear — 4000ReL.U, that interleaves a linear layer between two
ReLU layers. All networks in Figure[4a|are trained by supervised back propagation using stochastic
gradient descent with 0.9 momentum. The ReLU-Lin network outperforms all the pure ReLU net-
works and reaches an accuracy of 56.84%. We also found that the ReLU-Lin network tends to be
more stable than the pure ReLU networks: if we pre-train these networks layer-wise, then for the
ReLU networks the majority of the units in higher layers become “dead”, whereas the ReLU-Lin
network is still stable for unsupervised pre-training without dead units at the second ReL.U layer.

We repeat the same experiment by substituting ReLU with ZAE (Figure[db). The Z-Lin network is
configured as 4000Z — 1000Linear — 4000Z (same as in Figure [I] but with only one Z-Lin pair).
Since ZAE does not suffer from the problem of dead units that much as ReLU, all the networks are
first layer-wise pre-trained in an autoencoder, and then fine-tuned with stochastic gradient descent.
During pre-training the linear layer, we have 1.0 weight decay added to the cost. Similar to the
case of ReLU, it is also observed that introducing linear bottleneck layers makes the stacked deeper
model outperform its shallow counterpart. Having a linear inserted in the middle makes the Z-Lin
model outperform all the other models, yielding an accuracy of 65.76%.

PReLU |He et al.| (2015) and Maxout |Goodfellow et al.| (2013) are two alternative approaches to
fixing the sparsity incurred by the ReL.U activation. We compare the ReLU-Lin and Z-Lin networks
with PReLU and Maxout in Table[T] All models are trained by supervised learning, and share the
same preprocessing steps as described in Section For ReLL.U-Lin, Z-Lin and PReLU, we use

Workshop track - ICLR 2016

4000-1000-4000 ReLU—Lin_ 56.84 _ 4000-1000-4000 Z—Lm_ 65.76
4000-4000-4000 RelU [52.84 . 4000-4000-4000 ZAE [| 62.35
4000-1000-4000 RelU [54.91 , 4000-1000-4000 ZAE [| 62.77

4000-4000 RelU 53.92 . 4000-4000 ZAE| | 6188
30 35 40 45 50 55 60 65 70 75 30 35 40 45 50 55 60 65 70 75
Accuracy (%) Accuracy (%)

(a) ReLU-Lin network and various networks with pure (b) Z-Lin network and various networks with pure
ReL.U activation. Zero-bias ReLLU activation.

pure zero-bias ReLU |- 78.11

pure RelU | I 78.36

77.0 771.5 78.0 78.5 79.0
Accuracy(%)

(¢) Z-Lin, zero-bias ReLU, ReLU-Lin and ReLLU net-
work trained on HIGGS dataset.

Figure 4: Comparing bottlenecked network with its various counterparts. Models compared in (a)
and (b) are trained on CIFAR-10, while those in (c) are trained on HIGGS dataset.

SGD with 0.9 momentum. For Maxout, we add 0.01 weight decay, and use 0.1 dropout (droping
10% of hidden activations randomly) for each layer. The table shows that the bottleneck layers
outperform PReLLU and Maxout on this task by a large margin.

Table 1: Comparing with PReLU and Maxout

Method test set accuracy(%)
ReLU-LIN network 4000ReLU-1000Lin-4000ReL.U-10 56.84
Z-LIN network 4000Z-1000Lin-4000Z-10 56.43
PReLU, 4000-4000-10 51.65
PReLU, 4000-1000-4000-10 51.94
Maxout, 4000-1000-4000-10 52.80

While doing pure supervised learning using bottleneck layers, the linear layer remaps the non-linear
representation, which results in subtracting the mean values, and rescales the representation onto
a proper standard deviation. In this sense, our way of remapping the representation is similliar to
batch normalization [loffe & Szegedy| (2015). While batch normalization is applied before the non-
linearity, and normalizes each dimension individually, linear bottleneck layers are applied after the
non-linearity, and use a whole fully connected layer to modify the representation. To be fair We have
to compare the two methods in supervised learning, as originally batch normalization is proposed
for, though linear bottleneck layer can also be applied for unsupervised learning. In Table 2] two of
the most frequently used activation functions, ReL.U and sigmoid, are used for comparison between
batch normalization and linear bottleneck layers. We use a 4000 — 1000 — 4000 — 10 network trained
fully supervised. The table shows that the linear bottleneck layers yield an improvement comparable
to that of batch normalization. However, we should note that batch normalization also accelerates
the convergence, which is not observed when using the bottleneck layers. It is important to note,
however, that the linear bottleneck layers are amenable also to unsupervised learning which on this
task yields a large performance improvement as we shall show.

Workshop track - ICLR 2016

Table 2: Comparing with Batch Normalization

models ReLU sigmoid
network without normalization 55.23 44.60
network with linear bottleneck layer | 56.84 46.44
network with batch normalization | 56.29 46.63

4.2 THE HIGGS DATASET

The HIGGS dataset has 11 million samples with 28 dimensions. The first 21 features are kinematic
properties measured by particle detectors in a particle accelerator, and the remaining 7 features are
functions of the first 21 features. Thus the dataset itself is permutation invariant. The task is to
decide if or not a given sample corresponds to a Higgs Boson.

We tried both ReLU and ZAE with/without linear bottleneck layers on this dataset. Similar to
before, for each model PCA whitening retaining 99% of the variance is used for pre-processing.
(corresponding to 27 principle components). We use the same model size for four different models
that we compare (zero-bias ReLU, Z-Lin, ReLLU, and ReLU-Lin). The structure is 27 — 800 — 100 —
800 — 100 — 2 for all, so the models differ by using different activation functions. We train all the
models using SGD with momentum, and tune learning rates individually. We do not use any pre-
training. The results are shown in Figure [dc] which also confirm the effectiveness of the bottleneck
layers, albeit not as pronounced as on the CIFAR-10 data. Also, zero-bias units do not yield an
improvement here.

The reason why the Z-LIN network does not strongly improve performance on HIGGS dataset
might be related to its low dimensionality. Consider a Z-LIN pair which has only one input node,
one linear layer output node, but with many zero-bias ReLUs in the hidden layer. The functions
that such a Z-LIN pair can model are piece-wise linear functions that have only one inflection point
at the origin. This extends to multi-dimensional cases. Since the model response can only change
linearly by scaling the input by a positive linear factor, the nonlinearity of the model response could
be observed only by changing the direction of the input feature vector. In that way, the model is
concentrating all its non-linear learning capacity on the direction of feature vectors, and cares less
about the magnitude of feature vectors. Since the direction becomes more and more important as
the dimension increases, the advantage of the Z-LIN network would be more pronounced in high
dimensional tasks.

4.3 REDUCING PARAMETERS

In this subsection we explore how the network’s performance is affected by increasingly reducing
the number of parameters, using bottlenecks of different sizes.

We define a network by stacking 3 Z-LIN pairs, plus a ZAE layer and a logistic regression classifier.
Each ZAE layer has 4000 hidden units. We reduce the linear layer size from 1000 down to 100
units. Training involves dropout, pre-training and fine-tuning. The results are shown in Figure [5]
We observe that even with a hidden layer of size 100, which has only 1/20 of the parameters, the
network still works reasonably well and does not loose too much accuracy.

A 7-layer fully connected network with 4000 units each layer has around 112 million parameters.
With linear layers, the smallest model in Figure [5] has only around 2.44 million parameters. By
comparison, a typical convolutional network yielding an accuracy higher than 80% on CIFAR10
would have around 3.5 million parameters.

4.4 ACHIEVING STATE-OF-THE-ART ON PERMUTATION INVARIANT CIFAR-10

We compare the performance of the Z-Lin model with other published methods on the CIFAR-10.
For our method, pre-processing steps are the same to Section[d.1] For the Z-Lin network, each ZAE
layer 4000 hidden units, and each linear autoencoder has 1000 hidden units. We use logistic regres-
sion on top of the last ZAE layer for classification. Following Konda et al.| (2014)), the threshold of

Workshop track - ICLR 2016

~
=]

[=2]
=]

~_ " |

200 400 600 800 1000
linear layer units

[=)]
=]

2

Accuracy (%)

[=2]
]

2}
=]

Figure 5: Classification accuracy w.r.t different linear layer size.

all ZAEs are fixed at 1.0 during pre-training, and set to 0 while training the subsequent layers and
performing fine-tuning. As before, we subtract the mean value and normalize the activations to have
a standard deviation of 1.0 in all layers.

We train the networks using stochastic gradient descent with 0.9 momentum and decreasing learning
rate. The learning rate is set to 0.001 for the ZAEs and to 0.0001 for the linear autoencoder. Weight
decay is used for the linear autoencoder and for the logistic regression layer. The latter is trained
using nonlinear conjugate gradients. After pre-training, we use a tiny learning rate of 5 x 107 to
fine-tune the whole network, which yields an overall accuracy of 65.7%. This already outperforms
all previous published permutation invariant CIFAR-10 results, the next best-performing of which
are 63.1% (Le et al.,2013)), and 63.9% (Konda et al.| [2014).

By adding dropout (Srivastava et al., [2014)) during pre-training and fine-tuning, these performances
can be further improved. A same model in the last paragraph but trained with dropout would yield
69.1% accuracy, and a very deep Z-LIN network (3 Z-LIN pairs, plus a ZAE layer and logistic
regression classifier, i.e., 4000Z — 1000Lin — 4000Z — 1000Lin — 4000Z — 1000Lin — 4000Z — 10)
yields 69.62%, which exceeds the current state-of-the-art on permutation invariant CIFAR10 by a
very large margin.

If we give up on permutation-invariance by using data augmentation (eg., Krizhevsky et al.| (2012))
but retain the use of a fully connected network, the performance improves much further. Here, we
add flipping, rotation, and shifting to the original data during training of a 4000Z — 1000Lin —
4000Z — 10 Z-LIN network pushing the performance to 78.62%. This is a much higher accuracy
on CIFAR-10 achieved by any fully connected network we are aware of, and it is not far behind the
performance of a convolutional network.

5 RELATED WORK

The idea of a linear bottleneck layer is very old and has been used as early as the 1980’s in the context
of autoencoders (eg., Baldi & Hornik! (1989)). More recently, Ba & Caruana) (2014) used a linear
bottleneck layer to factorize a single-layer network and showed that it helped speed up learning. An
application of a linear bottleneck layer in the last layer of a neural network for dealing with high-
dimensional outputs is described in [Sainath et al.[(2013)) and Xue et al.[(2013). In contrast to our
work, in none of these methods is the goal to alleviate vanishing gradients and deal with sparsity,
and (accordingly) they use just a single bottleneck layer in the network. Recently, Srivastava et al.
(2015)) have introduced linear skip connections in order to train very deep networks. These can also
be viewed as a way to prevent gradients from exploding or vanishing.

Reshape distributions over activations using linear layers is also related to the recently introduced
batch-normalization trick (Ioffe & Szegedy, |[2015), in that it is also a way to adjust the distribution
of inputs to a subsequent layer. In contrast to that work, linear bottleneck layers not only adjust the
mean and variance of the inputs to the subsequent layer, but reshape the whole distribution.

Workshop track - ICLR 2016

T T T T T T T T T T
80| 78.62 |

65.70
63.78 310 63.90

62.20

Methods

Figure 6: Test set accuracy of various methods. They are (from left to right): 1) Logistic Regres-
sion on whitened data; 2) Pure backprop on a 782-10000-10 network; 3) Pure backprop on a 782-
10000-10000-10 network; 4) RBM with 2 hidden layers of 10000 hidden units each, plus a logistic
regression; 5) RBM with 10000 hiddens plus logistic regression; 6) “Fastfood FFT” model (Le et al.
[2013)); 7) Zero-bias autoencoder of 4000 hidden units with logistic regression (Konda et al.| [2014);
8) 782-4000-1000-4000-10 Z-Lin network trained without dropout; 9) 782-4000-1000-4000-1000-
4000-1000-4000-10 Z-Lin network, trained with dropout 10) Z-Lin network the same as (8) but
trained with dropout and data augmentation; Results (1)-(5) are from Krizhevsky & Hinton|(2009).
The final one is distinguished with a grey background because it uses data augmentation.

6 DISCUSSION

It is well known that a single-hidden-layer neural network can model any non-linear function under
mild conditions (Funahashil, [1989; [Cybenko}, [1989). The intuition behind this observation is that the
hidden layer carves up space into half-spaces, or “tiles”, and the subsequent linear layer composes
the non-linear function by combining different linear regions to produce the output. It is interesting
to note that this view may suggest using a pair of layers (a non-linear followed by a linear layer) to
define the non-linear function, leading thus to interleaved linear/non-linear layers.

The practical usefulness of this result is limited, however, because to approximate any given function
it would require an exponentially large number of hidden units. In practice, this is one motivation for
using multilayer networks which compute a sequence of consequently more restricted, but tractable
non-linear functions. Arguably, in the presence of enough training data and computational resources,
wide hidden layers would still be preferable to narrow ones. However, in practice, wider hidden
layers also entail more sparsity, which prevents the flow of derivatives. Also, as sparse activations
propagate upwards through the network, they tend to proliferate, aggravating the problem in higher
layers.

ACKNOWLEDGMENTS

The authors would like to thank the developers of Theano (Bastien et al.}[2012). We acknowledge the
support of the following agencies for research funding and computing support: Samsung, NSERC,
Calcul Québec, Compute Canada, the Canada Research Chairs and CIFAR.

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural Informa-
tion Processing Systems, pp. 2654-2662, 2014.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural networks, 2(1), 1989.

10

Workshop track - ICLR 2016

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud
Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303-314, 1989.

Morris H DeGroot, Mark J Schervish, Xiangzhong Fang, Ligang Lu, and Dongfeng Li. Probability
and statistics, volume 2. Addison-Wesley Reading, MA, 1986.

Peter Foldiak. Sparse coding in the primate cortex. The Handbook of Brain Theory and Neural
Networks, 2003.

Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks.
Neural networks, 2(3):183-192, 1989.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. arXiv preprint arXiv:1302.4389, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852, 2015.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jiirgen Schmidhuber. Gradient flow in recur-
rent nets: the difficulty of learning long-term dependencies, 2001.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Kishore Konda, Roland Memisevic, and David Krueger. Zero-bias autoencoders and the benefits of
co-adapting features. stat, 1050:20, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Com-
puter Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Quoc Le, Tamas Sarlos, and Alex Smola. Fastfood - approximating kernel expansions in loglinear
time. In 30th International Conference on Machine Learning (ICML), 2013.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pp- 6655-6659. IEEE, 2013.

Andrew M Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929-1958, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Antonio Torralba, Robert Fergus, and William T Freeman. 80 million tiny images: A large data set
for nonparametric object and scene recognition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(11):1958-1970, 2008.

Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. 2013.

11

	Introduction
	Sparsity in neural networks

	Linear Bottleneck Layers
	Linear Layers as Distribution Reshaping
	Derivatives in the Presence of Linear Layers
	Reducing Parameters

	Pre-training and zero-bias activations
	Experiments
	CIFAR-10
	The HIGGS Dataset
	Reducing Parameters
	Achieving state-of-the-art on Permutation Invariant CIFAR-10

	Related Work
	Discussion

