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Abstract

While cross-linguistic model transfer is effec-
tive in many settings, there is still limited un-
derstanding of the conditions under which it
works. In this paper, we focus on assessing the
role of lexical semantics in cross-lingual trans-
fer, as we compare its impact to that of other
language properties. Examining each language
property individually, we systematically ana-
lyze how differences between English and a tar-
get language influence the capacity to align the
language with an English pretrained representa-
tion space. We do so by artificially manipulat-
ing the English sentences in ways that mimic
specific characteristics of the target language,
and reporting the effect of each manipulation
on the quality of alignment with the represen-
tation space. We show that while properties
such as the script or word order only have a
limited impact on alignment quality, the degree
of lexical matching between the two languages,
which we define using a measure of translation
entropy, greatly affects it.

1 Introduction

Different languages partition meanings over their
vocabularies in different ways. In English, the
concept wall includes both a structural component
in a house and a defensive barrier around a city,
whereas Spanish distinguishes them with the con-
cepts pared and muro. This raises the question of
how such differences in lexical semantics influence
cross-lingual transfer – the ability of models trained
on data from one language to effectively perform
tasks in another language (Kim et al., 2017; Artetxe
and Schwenk, 2019a; Dobler and de Melo, 2023).

In this work, we study the impact of lexical se-
mantics and other linguistic properties on the ef-
fectiveness of cross-lingual transfer. We examine
how various properties affect the ability to extend
an existing representation space to include an ad-
ditional low-resource language, and consequently,

Figure 1: A. Sentences from the UM parallel corpus. In
each sentence, the word mind is colored along with its
translation in Simplified Chinese. B. A weighted graph
which results from the UM corpus. The edge weights
indicate how many times mind is translated into each
instance in Simplified Chinese. C. Calculation of the
translation entropy of the word mind in the UM corpus.

how they affect the zero-shot performance of the
low-resource language.

To isolate the distinct linguistic properties and
evaluate their individual impact, we perform manip-
ulations to the English language that mimic specific
language traits found in other languages, thereby
creating artificial languages. For instance, to eval-
uate the impact of lexical semantics, we create an
artificial language by imposing lexicalization pat-
terns of other languages onto English.

We define a weighted bipartite graph that links
the vocabularies of two languages, mapping each
word in one language to all its potential translations
in the other language. We leverage this graph to
characterize the lexicalization patterns between the
languages in information theoretic terms.

Our results indicate that the lexicalization pat-
terns of the source and target languages have more

http://nlp2ct.cis.umac.mo/um-corpus/


impact on transferability than other linguistic prop-
erties. They also demonstrate robust correlation
between the entropy of words in the bipartite graph
we define and zero-shot performance.

2 Related Work

2.1 Cross-lingual Transfer Methods

Multilingual language models (MLLMs) like
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020a) exhibit remarkable zero-shot
cross-lingual performance, despite being trained
without parallel data. However, they also face lim-
itations. Being contextualized token embeddings,
they may underperform in sentence-level tasks (Hu
et al., 2020b). Moreover, training these models
requires a massive amount of text from each lan-
guage, posing a major challenge to the inclusion of
low-resource languages.

To overcome these limitations, Reimers and
Gurevych (2019, 2020) trained a model (Sentence-
BERT) using a sentence-level objective to obtain
sentence representations (2019). They then em-
ployed knowledge distillation (teacher-student su-
pervised learning) to extend the representation
space to additional languages (2020). This ap-
proach, while requiring parallel data, proves effec-
tive with relatively few samples, making it suitable
for low-resource languages. Heffernan et al. (2022)
applied a similar technique with LASER2 (Artetxe
and Schwenk, 2019b), a language-agnostic sen-
tence encoder, as their teacher model. They demon-
strated the efficiency of this approach with ex-
tremely low-resource languages. In our research,
we follow a similar setup.

2.2 Investigations of Zero-shot Transfer

Many studies examined the factors affecting zero-
shot cross-lingual transfer. Some defined metrics of
language similarity, such as geographical, genetic,
or phonological distance, and explored their rela-
tion to transferability (Lin et al., 2019; Lauscher
et al., 2020; Dolicki and Spanakis, 2021; Ahuja
et al., 2022). Others focused on assessing the im-
pact of specific properties like lexical overlap (Wu
and Dredze, 2019; Patil et al., 2022; de Vries et al.,
2022) or syntactic structure and word order (Dufter
and Schütze, 2020; Arviv et al., 2021; de Vries
et al., 2022; Chai et al., 2022; Wu et al., 2024).

Among the studies exploring word order, some
rearranged English sentences to create artificial lan-
guages and analyzed their behavior (Dufter and

Schütze, 2020; Deshpande et al., 2022; Chai et al.,
2022; Wu et al., 2024). As summarized by Philippy
et al. (2023), experiments involving sentence inver-
sion or random shuffle showed a significant decline
in zero-shot performance compared to experiments
where the word order was systematically modified
based on the structure of other natural languages.
This implies that while word order is important,
differences in word order between languages may
play a minor role in zero-shot transfer.

To our knowledge, no previous work examined
the impact of variations in the lexicalization pat-
terns of the two languages on cross-lingual transfer
learning. In this paper, we aim to address this gap.
In addition, while previous studies mostly focused
on representations derived from masked language
models, we focus on a knowledge distillation setup.

2.3 Lexicalization Patterns
Lexicalization patterns were widely used in lin-
guistic typology to classify languages and explore
language universals, in cognitive science to study
conceptualisation, and even by anthropologists to
examine cultural influences on language and cogni-
tion (François, 2008; Jackson et al., 2019; Xu et al.,
2020; Georgakopoulos et al., 2022). The major-
ity of research on lexicalization has been centered
around the concept of colexification (a linguistic
phenomenon that occurs when multiple concepts
are expressed in a language with the same word).
Traditionally, colexification data relied on hand-
curated resources, but this changed with the intro-
duction of CLICS (List et al., 2018), promoting ex-
ploration into large-scale colexification graphs also
in NLP (Harvill et al., 2022; Liu et al., 2023a,b).

Liu et al. (2023b) proposed a more system-
atic way to investigate the conceptual relation be-
tween languages and extract colexifications. Their
method includes aligning concepts in a parallel cor-
pus and extracting a bipartite directed graph for
each language pair, mapping source language con-
cepts to sets of target language strings. Leveraging
these bipartite graphs, they identify colexifications
across a diverse set of languages. Here, we employ
a similar method, albeit to a different purpose – our
primary focus lies in proposing a methology for
quantifying how differences in lexical semantics
impact cross-lingual transfer.

3 Method

Our main goal in this paper is to study how different
language properties, with a particular emphasis on



lexical patterns, influence the ability to perform
cross-lingual transfer, and we aim to do so in a
carefully controlled way.

To isolate distinct language properties and un-
derstand their respective contribution, we define
different manipulations of the source language Ls.
For each of these manipulations, we modify Ls so
that it imitates certain properties found in a target
language Lt, creating a new artificial language LA
(Section §4). Throughout this article, we maintain
English as the source language.

Then, for each artificial language LA, we fol-
low the distillation method proposed by Reimers
and Gurevych (2020), training a model to encode
sentences of LA into an English pretrained repre-
sentation space. We explore which of them allows
for an effective knowledge transfer and, hence, per-
forms well in a zero-shot setting (Section §6).
Model Distillation. The pretrained teacher model
we use is an English sentence transformer model
(Reimers and Gurevych, 2019). It is trained using
English sentence pairs and a self-supervised con-
trastive learning objective to encode similar English
sentences into vectors that are close to one another
in the vector space. Given a sentence from a pair,
the model is trained to predict which of a batch of
randomly sampled other sentences is in fact paired
with it. The outcome of this training yields a sen-
tence representation space that captures the seman-
tic information of a given sentence. Within this
pretrained vector space, the cosine similarity be-
tween two vectors indicates the degree of similarity
between the two sentences they represent.

The pretrained representations of the teacher
model serve us throughout the experiment as
ground truth. For each artificial language LA, we
train smaller transformer models using an English–
LA parallel corpus. Denoting the teacher model
with M and the student model that corresponds to
the language LA with mA, for each sentence pair
(s, t) ∈ English×LA, the training objective is to
minimize the following cosine embedding loss:

Lcos(mA(t),M(s)) =


cos(mA(t),M(s))

if t is a manipulation of s
max(0, cos(mA(t),M(s)))

otherwise
(1)

This optimization process aims to increase the co-
sine similarity in the vector space whenever the
sentence t is a manipulation of the sentence s, and
decrease it in any other case. As a result, it pro-
duces a sentence encoder that maps each sentence

t ∈ LA to a location in the pretrained vector space
as close as possible to the representation of the
original English sentence.

Evaluation. For each student model mA, we com-
pute the average cosine similarity between the em-
beddings of English sentences and the embeddings
of the corresponding manipulated sentences within
a held-out subset of the corpus. This serves as
the intrinsic evaluation. Additionally, we employ
the model in a zero-shot experiment for an extrin-
sic NLP task and present its performance. These
two outcomes help us understand the quality of the
alignment of the language LA with the pretrained
representation space of the teacher model.

4 Manipulations of the Data

We proceed to define the different manipulations
that we apply. For each manipulation, we modify
the English source to create an artificial language
LA, generate an English–LA parallel corpus, and
train student models mA as explained.

Our primary focus lies within the domain of lex-
ical semantics. To thoroughly examine their in-
fluence, we take a broader approach, investigating
how the effect of lexical semantic manipulations
compare with that of other linguistic properties. We
examine three aspects: script, syntax, and lexical
semantics. For each of these aspects, we define
a manipulation that solely modifies it. First, we
substitute the letters of the English alphabet with
symbols of a different script (§4.1). Second, we sys-
tematically rearrange the word order in sentences,
thus examining the effect of the syntactic structure,
or at least a specific aspect of it (§4.2). Finally,
we replace the English lexicon with that of a target
language to explore the significance of variations
in lexicalization patterns (§4.3). By isolating each
linguistic aspect, we obtain a clearer understanding
of its individual contribution.

4.1 Manipulating the Script

To manipulate the script we simply substitute each
English character with a symbol from another script
in an injective manner. For instance, if we consider
the Greek alphabet system, we can swap the char-
acters according to their sequential order: a→ α,
b→ β, c→ γ, and so forth. This way, the sentence
Brown cows eat grass will transform into: βσoψξ
γoψτ ϵαυ ησαττ .



4.2 Manipulating Word Order

The second manipulation we use is a word reorder-
ing one. We apply the word reordering algorithm
developed by Arviv et al. (2023), to permute the
words of each source sentences so that it will con-
form to the syntactic structure of the target lan-
guage (see Appendix B for full details). The algo-
rithm recursively reorders all the subsequences in
a source sentence, yielding a new sentence in an
artificial language LA that imitates the word-order
of a target language Lt. For example, the sentence
Brown cows eat grass yields different results de-
pending on the selected target language. Spanish,
an SVO language, but in which nouns are ordered
before adjectives, produces: Cows brown eat grass;
whereas Hindi, an SOV language, produces: Brown
cows grass eat.1

4.3 Manipulating the Lexicon

The core of our study is lexical semantics and their
impact on cross-lingual transfer. We seek to assess
the influence of the diverse distribution of mean-
ings across different lexicons. To achieve this, we
develop a manipulation in which we substitute the
lexicon of the source language Ls with that of a
target language Lt. This creates a new artificial lan-
guage LA that is based on the lexicon of Lt while
retaining the original sentence structure of Ls.

The manipulation is based on a word alignment
between a source sentence s ∈ Ls and its transla-
tion in the target language t ∈ Lt. We replace each
word in the source language with its corresponding
translation in the target language, thus adopting
the lexical semantics of the target language while
preserving the original syntax.2

However, word-aligned bitext is difficult to ob-
tain. While manually aligned parallel datasets are
scarce and limited in size, model-based automatic
aligners often map words to a wide range of pos-
sible translations. When defining a lexical manip-
ulation that depends on mapping one lexicon to
another, ensuring each word consistently maps to
the same set of words is crucial. To address this,

1Since the algorithm is based on fixed statistics, the arti-
ficial language it produces exhibits a more consistent word
order than that of a natural language. We prefer this experi-
ment over one in which the order of words in a sentence is
randomly rearranged due to the potential noise this might add.

2This manipulation inherently includes the first manipula-
tion, at least to some extent, as altering specific words in the
sentence also influences the script. However, we will demon-
strate later that the script is not a significant factor, making
this fact of minor importance to our conclusions.
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Figure 2: Illustration of the weighted sub-graph which
results from the Europarl parallel corpus. The edges
represent the possibility that two words are translations
of each other. The weights denote the number of occur-
rences that each word pair is aligned in the bitext.

we develop an algorithm that refines the output of
an automatic aligner, mapping each word of the
lexicon to a fixed set of words. This careful pro-
cess involves extracting a bipartite graph from the
bitext, which ensures consistent mapping.

Formalism. Consider a word-aligned bitext that
contains the languages Ls and Lt. We define
G = (Vs, Vt, E, w) to be a weighted bipartite
graph, where Vs is the set of words in the lexi-
con of Ls, and Vt is the set of words in the lexicon
of Lt. A pair of words (v, u) ∈ Vs × Vt is an edge
in G iff v is aligned to u in at least one instance
in the bitext. The weight function w : E → N+

assigns the number of times that each word pair is
aligned in the bitext.

This construction aims to capture the relation-
ship between the lexical semantics of two lan-
guages. For example, the Spanish translation of
for is por in some cases and para in others; by
is also occasionally translated as por (e.g., multi-
ply by three translates to multiplicar por tres). We
thereby obtain the subgraph in Figure 2.

We hypothesize a negative correlation between
the degree of the vertices in the graph and the abil-
ity to perform cross-lingual transfer between the
languages. In other words, the closer the lexicons
approximate a bijective relationship, the better we
expect the cross-lingual transfer performance to be.

Swapping Algorithm. We proceed to outline the
systematic procedure we employ to perform the
lexical manipulation. For each pair of languages
Ls, Lt we follow these steps:

1. We apply an automatic word aligner to a large
Ls–Lt parallel corpus, extracting a weighted bipar-
tite graph G as described above.

https://www.statmt.org/europarl/


2. We filter out of the graph any edge e ∈ E that
represents an alignment which is not substantial
(that is, an edge whose weight does not exceed
a certain threshold or whose weight is relatively
small compared to other edges originating from the
same vertex).3

3. Given a source sentence s ∈ Ls and its trans-
lation in the target language t ∈ Lt, we run the
automatic aligner to achieve a word-to-word align-
ment between s and t.

4. For each source word v ∈ s:

(a) If there exists a word u ∈ t such that the word-
to-word alignment includes the pair (v, u),
and at the same time it holds that (v, u) ∈ E,
then we replace the word v with u.

(b) Otherwise, if there exists a word u ∈ t such
that (v, u) ∈ E, we replace the words as well.
If there is more than one valid choice, we
select the word u ∈ t for which the weight
w(v, u) is the highest.

(c) Otherwise, we look for the edge (v, u) ∈ E
that has the highest weight among all edges
originating from v, meaning that u is the most
common alignment of v in the language Lt. If
we find such an edge, we replace v with u.4

(d) In a case there are no edges originating from
v, we preserve it.

This systematic procedure provides a mapping
between two lexicons, and therefore enables us
to make consistent decisions for each word in the
lexicon – whether to be replaced or preserved. This
helps maintaining a coherent semantic structure in
the resulting artificial language LA.5

For a simple illustration, consider the sentence
Brown cows eat grass and its Spanish translation
Las vacas marrones comen hierba, and assume
the auto-aligner’s output is brown→marrones,

3These parameters may depend on the target language. See
Appendix C.

4In languages where the words have different inflections,
we check the validity of the match based on the lemma, but
replace the words in their original form. The determination
of the most common alignment also considers the original
inflection.

5To ensure that our algorithm does not harm the alignments
of the auto-aligner, we compare the precision and recall of
our algorithm’s outputs with the original alignments of the
auto-aligner against the gold standard. We observe higher
precision but lower recall, resulting in a slightly better F1
score for our algorithm’s outputs. For further details, please
refer to Appendix D.

eat→comen. When applying our swapping algo-
rithm, we first check whether the edges (brown–
marrón) and (eat–comer)6 appear in the bipartite
graph. As both of them do, we replace brown with
marrones and eat with comen. Next, we search for
words in the target sentence that are linked to the
source words in the graph, resulting in the edges
(cow–vaca) and (grass–hierba). These two words
are swapped with their corresponding pairs as well.
This process ultimately yields the sentence: Mar-
rones vacas comen hierba.

Translation Entropy. To further appreciate the
impact of the divergence between the source and
the target lexicons, we introduce the concept of
translation entropy. LetG be the weighted bipartite
graph presented earlier, we compute the entropy
for each vertex v in the graph:7

e(v) = −
∑
u∈Uv

pv(u)log(pv(u)) (2)

where Uv is the subset of vertices linked to v, and
pv is the following probability function:

pv(u) =
w(v, u)∑

u′∈Uv
w(v, u′)

(3)

As w counts occurrences of each word pair aligned
in the bitext, the outcome of the function pv is the
probability that, in a particular instance, the word v
is linked to the word u among all possible u′ ∈ Uv

(see calculation example in Figure 1).
We examine the impact of translation entropy

in two distinct configurations: one for the source
words (Figure 3A) and another for the target words
(Figure 3B). In the first, we compute the translation
entropy for all source vertices v ∈ Vs and partition
the set Vs into three disjoint subsets based on the
percentile of the translation entropy values. The
percentile calculation is based on the number of
instances in the database, rather than the number
of words in the lexicon. Then, in each experiment,
we remove from the graph G all the source vertices
that do not belong to a specific subset to achieve
the sub-graph G′. We apply once again the lexical
manipulation, but this time using the filtered graph
G′. In the second configuration, we follow the
exact same steps, but this time for the target vertices
v ∈ Vt.8

6The lemmas of marrones and comen respectively.
7It does not matter whether v ∈ Ls or v ∈ Lt.
8The two configurations are not directly comparable: re-



Returning to the previous example, after we ex-
tract an English–Spanish bipartite graph from the
Europarl parallel corpus and compute the entropy
of the English words, we obtain: e(brown)=0.545,
e(cow)=0.24, e(eat)=0.631, e(grass)=0.799. If we
filter the graph to retain only words that fall within
the upper third of translation entropy values, we
find that the word grass is the only one meeting
this criterion. Consequently, applying our lexical
manipulation to this filtered graph results in the
sentence: Brown cows eat hierba.

5 Experimental Setup

5.1 Datasets
In this subsection, we outline the datasets used in
our work. For further details on the datasets, their
selection rationale, and the filtering process applied,
please refer to Appendix E. The bitext we use for
training and intrinsic evaluation of the student mod-
els throughout all manipulation experiments is the
TED-2020 parallel corpus (Reimers and Gurevych,
2020). To avoid over-specializing the tokenizer on
this small dataset, we train the tokenizers on the
CC-100 corpus (Wenzek et al., 2020).9 The CC-
100 corpus is also used for our monolingual bench-
mark experiments (see beggining of Section §6).
For extrinsic evaluation we use the Cross-lingual
Natural Language Inference (XNLI; Conneau et al.,
2018). To extract the bipartite graphs, we require
a large parallal corpus. Therefore, we use the Eu-
roparl corpus for Europian languages and the UM
corpus (Tian et al., 2014) for Simplified Chinese.

5.2 Models
Teacher Model. We select the pretrained sentence
transformer all-mpnet-base-v2. This model was
trained on 1B English sentence pairs with a self-
supervised contrastive learning objective (see Sec-
tion §3). The training produced a 768-dimensional
vector space that has proven to achieve state-of-the-
art results in sentence-level tasks.

Student Models. We train multiple RoBERTa
models (Liu et al., 2019), with each model de-
signed to encode a sentence into the teachers’ 768-
dimensional vector space. To achieve this, we add
a mean-pooling layer on top of the last hidden layer.

moving a source word from the lexicon leads to a reduction in
the number of swaps performed, whereas removing a target
word reduces the diversity of the swaps but not necessarily the
number of them.

9Full details on tokenizer training for each artificial lan-
guage can be found in Appendix F.

We set the vocabulary size to 30527, matching that
of the teacher model, the number of max position
embeddings to 28, and the hidden size to 768. As
to the number of hidden layers and the number
of attention heads, we explore various architec-
tures: 3/6/9/12 hidden layers paired with 4/6/8/12
attention heads, respectively. The number of train-
able parameters for these configurations are 84316,
135004, 185692, and 236380, respectively. We
reserve a small portion of the dataset for testing
(20K sentence pairs in the TED corpus and 100K
sentences in CC-100), and then randomly split the
training set into 90% for actual training and 10%
for validation. We use the Adam optimizer with
a learning rate of 3e−5, continuing until the vali-
dation loss does not decrease for five consecutive
epochs. The model with the lowest validation loss
is selected, and its performance on the test set is
reported.

NLI Model. For the zero-shot English NLI experi-
ment, we train a Multi-Layer Perceptron (MLP) on
top of the teacher model. We use the usual combi-
nation of the two sentence embeddings: (p; h; p ·h;
|p − h|), where p and h are the premise and the
hypothesis respectively (see for example Artetxe
and Schwenk, 2019b). We build the MLP with
two hidden layers of size 128, and train it for 150
epochs using the Adam optimizer. We select the
model that achieves the lowest loss on the test set.

Auto-aligner. For obtaining high-quality word-to-
word alignments we use the Simalign automatic
aligner (Jalili Sabet et al., 2020). This tool uses
contextualized embeddings to map words between
sentences. We run it with XLM-R as the base model,
and set the matching method to be ArgMax. To
simplify the analysis, we filter its outputs to include
only one-to-one alignments. We manually review
some of the alignments to ensure their quality.

6 Experiments & Results

To assess the impact of each linguistic property on
transferability, we apply our manipulations to En-
glish and carry out the distillation process for each
artificial language LA. For intrinsic evaluation,
we compute the average cosine similarity (here-
after: ACS) between the embeddings of English
sentences and the embeddings of the corresponding
manipulated sentences in the test set. For extrinsic
evaluation, we use XNLI zero-shot accuracy.

Before manipulating English, we conduct exper-
iments to obtain reference points for evaluating the

https://www.statmt.org/europarl/
https://opus.nlpl.eu/TED2020.php
https://huggingface.co/datasets/cc100
https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
https://www.statmt.org/europarl/
https://www.statmt.org/europarl/
http://nlp2ct.cis.umac.mo/um-corpus/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/cisnlp/simalign


models. First, we perform the distillation process
on regular English sentences from the CC100 cor-
pus. We explore the influence of varying training
set sizes and of the student model architecture. We
observe a considerable margin, with differences of
up to 0.227 in ACS, between models trained on 50K
sentences and those trained on 1M. Conversely, we
observe a smaller margin, with differences of up to
0.035 in ACS, between smaller and larger model
architectures. Our findings suggest that for low-
resource scenarios, exceeding 6 hidden layers and
6 attention heads is unnecessary. For full results
refer to Appendix A.1.

Second, we conduct cross-lingual experiments
using the TED-2020 parallel corpus to compare
English with other natural languages without ma-
nipulation. The results of the cross-lingual experi-
ments serve as a lower bound for the performance
on the manipulated data (as the manipulations are
meant to change English to be closer to the target
language). We also train student models on English
with a newly trained tokenizer to arrive at an upper
bound. We observe a substantial range between the
lower and upper bounds, with differences of up to
0.186 in ACS, which gives us sufficient room to
experiment with our manipulations. See full results
in Appendix A.2.

We proceed to apply our manipulations to tease
apart the properties of the data that contribute to
this difference between in-language training and
cross-lingual training.
6.1 Script Substitution
We perform two script substitutions: first, replac-
ing the English characters with Greek characters
sorted alphabetically, and second, replacing them
with Simplified Chinese characters sorted by their
frequency. For all the student models, we train a
tokenizer from scratch (see Appendix F for full de-
tails). The results, reported in Table 1, show almost
no degradation in performance.

ACS score XNLI accuracy
50K 100K 50K 100K

English 0.725 0.786 55.7 59.4
Greek alphabet -0.0 -0.0 -1.1 -0.7
Chinese symbols +0.003 +0.002 -0.4 -1.0

Table 1: Results for the script substitution experiment.
50K/100K denote for the number of training sentences.

6.2 Word Reordering
We apply the reordering algorithm developed by Ar-
viv et al. (2023) each time relying on the pairwise

ordering distributions of a different language. We
examine SVO languages (Spanish, Greek, Chinese
and Hebrew) as well as an SOV language (Hindi).
Results are presented in Table 2. Although we ob-
serve a degradation in performance, it is a very
slight one. The ACS score in the worst case (100K
Greek sentences) decreases by 0.013 points, and
the XNLI accuracy in the worst case (100K Hindi
sentences) decreases by 1.5%.

ACS score XNLI accuracy
50K 100K 50K 100K

English 0.725 0.786 55.7 59.4
Spanish order -0.002 -0.007 +0.2 -0.5
Greek order -0.007 -0.013 -0.9 -1.3
Chinese order -0.002 -0.012 -0.6 -1.3
Hebrew order -0.0 -0.005 -0.5 -0.4
Hindi order -0.005 -0.01 +0.8 -1.5

Table 2: Results from the distillation process for the
word reordering experiment.

6.3 Lexical Swapping

We follow the steps described in Section §4.3 for
Spanish, Greek and Simplified Chinese. When
constructing the weighted bipartite graph, for Span-
ish and Greek we use the datasets Europarl+TED,
whereas for Simplified Chinese we use UM+TED.
Results are presented in Table 3. In this experiment,
we observe a significant decrease in both the ACS
score and the XNLI accuracy. The language that
performs the worst is Simplified Chinese, with up
to 0.092 degradation in the ACS score and up to
5.9% in XNLI accuracy.

ACS score XNLI accuracy
50K 100K 50K 100K

English 0.725 0.786 55.7 59.4
Spanish lexicon -0.055 -0.06 -2.3 -1.9
Greek lexicon -0.073 -0.073 -3.4 -3.3
Chinese lexicon -0.079 -0.092 -4.8 -5.9

Table 3: Results from the distillation process for the
lexical swapping experiment.

These results suggest that variations in lexicons
significantly impact the capacity to align a language
with a pretrained representation space, thereby af-
fecting transferability. To gain a deeper understand-
ing of this phenomenon, we proceed to applying the
same manipulation, this time selectively swapping
only a subset of the words in the language.

Entropy-based Lexical swapping. In this exper-
iment we filter the vertices of the bipartite graph
based on their translation entropy (see §4.3) and

https://opus.nlpl.eu/TED2020.php


then apply the lexical swapping manipulation. Fig-
ure 3A presents the outcome of filtering the source
vertices, and Figure 3B shows the result of filtering
the target vertices. In both cases, we split the set
of vertices based on percentiles: into the ranges of
0-33, 33-67, and 67-100. In addition, we include
an experiment where we exclusively swap words
with zero entropy, and we add the results from the
full lexical manipulation.

Figure 3: Results of filtering the source vertices in the
graph in Figure (A) and results of filtering the target
vertices in the graph in Figure (B). The horizontal axis
represents the entropy values ranging from 0 to all ver-
tices. Numerical x values denote percentiles. The y axis
represents ACS scores.

We observe a robust negative correlation be-
tween the entropy of the words we swap and the
similarity scores. In all cases except for one (filter-
ing Greek words of percentile 33-67), the higher
the entropy of the words swapped, the worse the
distillation process performs. Moreover, when we
swap only 33% of English word instances with low
entropy, it has minimal impact on performance, but
when we swap 33% of word instances with the
highest entropy, it results in a degradation of per-
formance that is close to the degradation observed
in the full lexical manipulation. We conclude that
swapping in itself does not degrade performance;
instead, most degradation results from the lexicons
not being aligned in a one-to-one manner.

The absence of one-to-one alignment in the lexi-
cons conceals two separate phenomena: synonymy
and polysemy. In case of a synonymy, a specific
word is translated to different words in different
contexts, whereas in the case of polysemy, several

distinct words are translated to the same word. The
first experiment (filtering the source words) mostly
simulates the impact of synonymy, while the sec-
ond experiment (filtering the target words) mostly
simulates the impact of polysemy. Results imply
that both phenomena have a substantial impact on
cross-lingual transfer.

7 Conclusion

We leverage a knowledge distillation setup to ex-
plore the conditions that allow successful cross-
lingual transfer. We apply various manipulations
to English to alter specific language properties and
assess their impact.

First, we apply script substitution and observe
almost no degradation in performance. Next, we
examine the impact of word order. Unlike previous
studies (Deshpande et al., 2022; Chai et al., 2022;
Wu et al., 2024), which made only subtle modifica-
tions to the constituent order in some experiments
and inverted/shuffled all the words in others, we
apply a manipulation that permutes many words in
the sentence but still maintains a coherent syntactic
structure. We believe that this manipulation pro-
vides us with a more nuanced understanding of how
word order affects cross-lingual transfer. Our find-
ings align with the survey by Philippy et al. (2023),
suggesting that as long as the syntactic structure
remains coherent, the effect of word order is less
substantial (compared to inversion/shuffling).

Finally, we swap words from the English lexicon
with words from the target lexicon and observe a
substantial degradation in performance. We use the
notion of translation entropy to explore the impact
of swapping only a subset of words in the lexicon.
This reveals that swapping the words with the high-
est entropy leads to a more substantial degradation
in performance compared to words with lower en-
tropy. These findings support our hypothesis: the
more the lexicons align in a one-to-one manner, the
better cross-lingual transfer will perform.

To recap, Among the three manipulations we
apply then, only lexical swapping was found to
have a substantial effect. This suggests that when
it comes to cross-lingual transfer, at least in the
case of model distillation, lexicalization differences
across languages may be more crucial than other
linguistic factors such as word order. This find-
ing offers valuable guidance for optimizing cross-
lingual transfer systems.



Limitations

Our work has several limitations (we intend to ad-
dress them in future work). First, all our experi-
ments are conducted using a monolingual teacher
model. We consider it important to examine the
influence of multilingual pretraining. The potential
impact of a representation space that is not tailored
to a particular language could be substantial. Sec-
ondly, the sum of degradations resulting from the
various manipulations we apply does not reach the
degradation caused by cross-lingual transfer. This
could stem from the fact that translations are not
always accurate, but it can also indicate that we are
missing an important determinant of cross-lingual
transferability. Last, many other manipulations
that impact the lexical semantics of the source lan-
guages were not considered here. For example, it
would be valuable to apply the manipulation to a
different subset of the language (e.g., enabling only
synonymy but not polysemy, filtering by part-of-
speech tags etc.).
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Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-
tasopoulos, Patrick Littell, and Graham Neubig. 2019.
Choosing transfer languages for cross-lingual learn-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3125–3135, Florence, Italy. Association for Compu-
tational Linguistics.

Johann-Mattis List, Simon J. Greenhill, Cormac An-
derson, Thomas Mayer, Tiago Tresoldi, and Robert
Forkel. 2018. Clics2: An improved database of cross-
linguistic colexifications assembling lexical data with
the help of cross-linguistic data formats. Linguistic
Typology, 22(2):277–306.

Yihong Liu, Haotian Ye, Leonie Weissweiler, and
Hinrich Schütze. 2023a. Crosslingual transfer
learning for low-resource languages based on mul-
tilingual colexification graphs. arXiv preprint
arXiv:2305.12818.

Yihong Liu, Haotian Ye, Leonie Weissweiler, Philipp
Wicke, Renhao Pei, Robert Zangenfeind, and Hin-
rich Schütze. 2023b. A crosslingual investigation of
conceptualization in 1335 languages. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12969–13000, Toronto, Canada. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Minh Van Nguyen, Viet Lai, Amir Pouran Ben Veyseh,
and Thien Huu Nguyen. 2021. Trankit: A light-
weight transformer-based toolkit for multilingual nat-
ural language processing. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations.

Vaidehi Patil, Partha Talukdar, and Sunita Sarawagi.
2022. Overlap-based vocabulary generation im-
proves cross-lingual transfer among related lan-
guages. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 219–233, Dublin,
Ireland. Association for Computational Linguistics.

Fred Philippy, Siwen Guo, and Shohreh Haddadan.
2023. Towards a common understanding of con-
tributing factors for cross-lingual transfer in multi-
lingual language models: A review. In Proceedings

https://www.researchgate.net/publication/47443290_Semantic_maps_and_the_typology_of_colexification_Intertwining_polysemous_networks_across_languages
https://www.researchgate.net/publication/47443290_Semantic_maps_and_the_typology_of_colexification_Intertwining_polysemous_networks_across_languages
https://www.researchgate.net/publication/354917369_Universal_and_macro-areal_patterns_in_the_lexicon_A_case-study_in_the_perception-cognition_domain
https://www.researchgate.net/publication/354917369_Universal_and_macro-areal_patterns_in_the_lexicon_A_case-study_in_the_perception-cognition_domain
https://www.researchgate.net/publication/354917369_Universal_and_macro-areal_patterns_in_the_lexicon_A_case-study_in_the_perception-cognition_domain
http://www.lrec-conf.org/proceedings/lrec2008/pdf/250_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/250_paper.pdf
https://doi.org/10.18653/v1/2022.naacl-main.386
https://doi.org/10.18653/v1/2022.naacl-main.386
https://aclanthology.org/2022.findings-emnlp.154/
https://aclanthology.org/2022.findings-emnlp.154/
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2003.11080
https://arxiv.org/abs/2003.11080
https://www.researchgate.net/publication/338065432_Emotion_semantics_show_both_cultural_variation_and_universal_structure
https://www.researchgate.net/publication/338065432_Emotion_semantics_show_both_cultural_variation_and_universal_structure
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://www.aclweb.org/anthology/2020.findings-emnlp.147
https://doi.org/10.18653/v1/D17-1302
https://doi.org/10.18653/v1/D17-1302
https://doi.org/10.18653/v1/D17-1302
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301
https://doi.org/doi:10.1515/lingty-2018-0010
https://doi.org/doi:10.1515/lingty-2018-0010
https://doi.org/doi:10.1515/lingty-2018-0010
https://arxiv.org/abs/2305.12818
https://arxiv.org/abs/2305.12818
https://arxiv.org/abs/2305.12818
https://doi.org/10.18653/v1/2023.acl-long.726
https://doi.org/10.18653/v1/2023.acl-long.726
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2021.eacl-demos.10/
https://aclanthology.org/2021.eacl-demos.10/
https://aclanthology.org/2021.eacl-demos.10/
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323
https://doi.org/10.18653/v1/2023.acl-long.323


of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5877–5891, Toronto, Canada. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentencebert:
Sentence embeddings using siamese bert networks.
In Findings of the Association for Computational
Linguistics: EMNLP 2019, page 3982–3992. Associ-
ation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual using
knowledge distillation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
page 3982–3992. Association for Computational Lin-
guistics.

Liang Tian, Derek Wong, Lidia Chao, Paulo Quaresma,
Francisco Oliveira, Shuo Li, Yiming Wang, and
Yi Lu. 2014. Um-corpus: a large english-chinese
parallel corpus for statistical machine translation. In
Proceedings of the 9th International Conference on
Language Resources and Evaluation.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. Ccnet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, page
4003–4012. European Language Resources Associa-
tion.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 833–844, Hong
Kong, China. Association for Computational Linguis-
tics.

Zhengxuan Wu, Alex Tamkin, and Isabel Papadimitriou.
2024. Oolong: Investigating what makes transfer
learning hard with controlled studies.

Yang Xu, Khang Duong, Barbara C Malt, Serena Jiang,
and Mahesh Srinivasan. 2020. Conceptual relations
predict colexification across languages. Cognition,
201:104280.

A Baseline Experiments & Degradation
Analysis

A.1 Training the student model on English
To understand how both the size of the data and
the selected model architecture influence the qual-
ity of alignment we begin by training the student
models on English. We train models of various
architectures on subsets of various sizes from CC-
100. The tokenizer we use is the original tokenizer
of the teacher model. Table 4a reports the average

cosine similarity (ACS) of all the sentences in the
separated test set when they are encoded once us-
ing the teacher model and once using the student
model. Table 4b reports the accuracy on the XNLI
test set in a zero-shot setting (the MLP built upon
the teacher model achieved an accuracy of 71.2%).

50K 100K 200K 1M
3 hidden layers and
4 attention heads

0.658 0.727 0.793 0.866

6 hidden layers and
6 attention heads

0.684 0.754 0.827 0.9

9 hidden layers and
8 attention heads

0.682 0.737 0.818 0.909

12 hidden layers and
12 attention heads

0.677 0.74 0.81 0.901

(a) Average cosine similarity (ACS) of all the sentences
paired with themselves in a held-out subset of CC-100.

50K 100K 200K 1M
3 hidden layers and
4 attention heads

53.7 57.6 61.3 63.3

6 hidden layers and
6 attention heads

55.7 59.6 62.9 65.7

9 hidden layers and
8 attention heads

56.2 58.1 62.9 65.8

12 hidden layers and
12 attention heads

54.3 58.1 61.8 64.9

(b) XNLI test accuracy in a zero-shot setting.

Table 4: Results from the distillation process with En-
glish as the target language for various architectures and
various dataset sizes.

Several conclusions can be drawn. First, we ob-
serve a robust correlation (Pearson correlation of
0.988) between the ACS score and zero-shot per-
formance (the intrinsic and extrinsic performance
respectively). This proves that the quality of the
alignment with the pretrained representation space
can be a useful tool for predicting zero-shot perfor-
mance. Secondly, the results demonstrate that the
size of the corpus has a great effect on the quality of
the alignment. With 1M sentences, one can already
train a student model that achieves an ACS score of
0.909 out of 1. Lastly, results indicate that the archi-
tecture of the student model has a relatively minor
impact on performance. However, beyond a cer-
tain model size, training results reflect overfitting.
As our main concern is low-resource languages,
we decide to stick with the architecture that shows
optimal performance in limited data scenarios: 6
hidden layers and 6 attention heads.

A.2 Cross-lingual Transfer
We conduct a cross-lingual experiment using the
TED-2020 parallel corpus. Results are presented in
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Table 5. We present the outcomes of training the
English encoders with both the original teacher’s
model tokenizer and a newly trained tokenizer (see
Appendix F).

ACS score XNLI accuracy

50K 100K 50K 100K
English - teachers’
tokenizer

0.74 0.804 56.6 60.5

English - new CC-
100 tokenizer

0.725 0.786 55.7 59.4

Spanish 0.601 0.657 49.4 54

Greek 0.574 0.632 49.9 53.1

Chinese 0.555 0.6 40.9 46.5

Hebrew 0.545 0.606 X X

Table 5: Results from the distillation process (average
cosine similarity scores and XNLI accuracies) for vari-
ous languages using the TED-2020 parallel corpus.

We can see that the tokenizer’s substitution re-
sults in only a minor performance degradation
(0.015 points in ACS score when trained with 50K
sentences), while the transition to a different lan-
guage leads to a substantial decrease (0.124 when
trained with 50K Spanish sentences). Unsurpris-
ingly, languages closer to English in terms of phy-
logenetic distance, produce higher ACS scores and
better zero-shot performance.

B Word Reordering Algorithm

We hereby describe the word reordering algorithm
developed Arviv et al. (2023), that we apply to per-
mute the words of the source sentences so that it
will conform to the syntactic structure of the target
language. The algorithm relies on the statistics of
the Universal Dependencies (UD) treebank to per-
mute the words of a sentence in one language so
that they mimic the syntactic structure of another.
The algorithm is built on the assumption that a con-
tiguous subsequence, which constitutes a grammat-
ical unit in the original sentence, should remain a
contiguous subsequence after reordering, although
the order of words within that subsequence may
change. It operates, therefore, on a UD dependency
tree, recursively permuting each sub-tree so that it
will conform to the order of an equivalent sub-tree
in the target language.

Within each sub-tree, the reordering is applied
based on the notion of pairwise ordering distribu-
tions. Given a sentence t in a language Lt and
its UD parse tree T (t), which contains the set of
dependency labels π = (π1, ..., πn), Arviv et al.

denote the pairwise ordering distribution in lan-
guage Lt of two UD nodes with dependency labels
πi, πj , in a sub-tree with the root label πk by:

Pπk,πi,πj = p; p ∈ [0, 1] (4)

where p stands for the probability of a node with a
dependency label πi to be linearly ordered before
a node with a label πj , in a sub-tree with a root of
label πk, in a language Lt.10

Given a sub-tree Ti ∈ T (t), for each of its node
pairs, these probabilities are formulated as a con-
straint:

πk : (πi < πj) =

{
1 if Pπk,πi,πj ≥ 0.5

0 otherwise
(5)

where πk : (πi < πj) = 1 indicates that a node
with label πi should be linearly ordered before a
node with label πj if they are direct children of
a node with label πk. A constraint is said to be
satisfied if and only if the node with label πi is
indeed positioned in the sentence before the node
with label πj . For each individual sub-tree Ti, all
its pairwise constrains are extracted, and an SMT
solver is used to compute a legal ordering which
satisfies all the constraints.11

C Lexical manipulation: Implementation
Details

Tokenization and Lemmatization. Before we per-
form word-to-word alignment, we have to separate
the sentences’ tokens and lemmatize them. For
this purpose we use Trankit (Nguyen et al., 2021),
a multilingual NLP toolkit based on XLM-R. For
Simplified Chinese, however, we prefer the Jieba
tokenizer.

Graph Filtering. When considering the filtering
of the graph, we face two choices: we can either
apply identical parameters for all languages or cus-
tomize parameters for each language in a way that
ensures a similar percentage of alignment instances
is filtered from the graph. The first option main-
tains a similar level of noise across languages but
has a drawback: when we apply the lexical manip-
ulation, removing a high percentage of alignment
instances from the graph results in selecting the

10Note that a single node can act both as a representative of
its sub-tree and the head of that sub-tree.

11If it is not possible to fulfill all the constraints, the algo-
rithm maintains the original order of the sub-tree.

https://universaldependencies.org/
https://trankit.readthedocs.io/en/latest/
https://github.com/fxsjy/jieba


most common word too frequently (see step 4c in
the lexical manipulation procedure), and therefore
loses the ability to make meaningful comparisons
across different languages.

In our chosen method, we aim for the middle
ground. We start by removing from the graph ev-
ery edge with a weight below the threshold of 5
to exclude matches that are not substantial. Then,
for each language, we set a specific threshold to
remove edges whose weight is relatively small com-
pared to other edges originating from the same ver-
tex. We set this second threshold in such a way that
for each language, a total of approximately 12% of
the alignment instances are filtered out. In the case
of Spanish and Greek, the appropriate threshold is
2%, while for Simplified Chinese, it is 0.15%.

D Comparing Alignments to Gold
Standard

We evaluate the alignment results of our algorithm
against the original Simalign alignments, using
the gold standard provided by (Graça et al., 2008).
We focus our comparison on the English–Spanish
alignments, as this language pair is the sole one
utilized in our research. The obtained results are
as presented in Table 6. We can see that our algo-
rithm’s outputs achieve higher precision but lower
recall, resulting in a slightly better F1 score overall.

To further understand this point, let us examine
a specific example (as others are similar): the sen-
tence We take note of your statement is translated
into Tomamos nota de esa declaración. While the
Simalign auto-aligner aligns your with esa, our
algorithm filters out this alignment, as these two
words are rarely translations of one another in the
larger corpus. Although we miss a correct align-
ment in the gold standard, this approach conforms
to our goal of mapping lexicons consistently.

Precision Recall F1
Original simalign 73.39 90.8 81.17
Our algorithm 76.55 86.58 81.26

Table 6: Comparison of Alignments to Gold Standard

E Datasets

TED. The bitext we use for training and intrinsic
evaluation of the student models throughout all ma-
nipulation experiments is the TED-2020 parallel
corpus (Reimers and Gurevych, 2020). This corpus
contains a crawl of nearly 4000 TED transcripts

from July 2020, which have been translated into
over 100 languages by a global community of vol-
unteers. We select this corpus because it contains
languages from different language families, and
because its translations are of relatively high qual-
ity. To further simplify it, we lowercase the entire
dataset and filter it to include only sentences with
familiar characters, up to one punctuation mark,
and word counts ranging from 4 to 16.12 The cor-
pus is licensed under CC BY–NC–ND 4.0.

CC-100. When we require a larger corpus, but not
necessarily a parallel one, we turn to the CC-100
corpus (Wenzek et al., 2020). This corpus serves
us for training the tokenizers (See Appendix F).
Our goal in tokenizer training is to prevent over-
specialization on the limited number of sentences
used for training the student model. To achieve this,
we use the largest and most diverse corpus avail-
able to us, namely, CC-100. Our experiments sim-
ulate scenarios where there is a significant amount
of monolingual data for a specific language but
minimal parallel data, which is the case for many
low-resource languages. Additionally, we employ
this corpus for our English–English experiments
(see Appendix A.1). In both cases, we apply the
same simplifying process as for TED, bringing the
formats of the two datasets closer to each other.
The license of this corpus is unspecified by the au-
thors, but they state that they will make it publicly
available.

XNLI. For extrinsic evaluation we use Natural Lan-
guage Inference (NLI), as it is a well-known sen-
tence level semantic task. The task is to determine
the inference relation between two sentences: en-
tailment, contradiction, or neutral. The corpus we
use is the Cross-lingual Natural Language Infer-
ence (XNLI) (Conneau et al., 2018), which contains
15 different languages. There is no need to apply a
simplifying process to this dataset, as the sentences
are already relatively short and do not contain un-
conventional characters. The corpus is licensed
under CC BY-NC 4.0.

Europarl. In order to extract a bipartite graph
which is statistically meaningful for our lexical ma-
nipulation, we require a large parallel corpus. We
use Europarl, which consists of the proceedings
of the European Parliament from 1996 to 2012.
This corpus contains only European languages, so

12Except for Simplified Chinese, where, due to the different
nature of logographic writing systems, we filter by counting
5-25 symbols.

https://opus.nlpl.eu/TED2020.php
https://huggingface.co/datasets/cc100
https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
https://www.statmt.org/europarl/


we must turn to other sources when experiment-
ing with languages from different language groups.
The corpus is freely available.
UM. We extract our English–Chinese bipartite
graph from the UM parallel corpus (Tian et al.,
2014). It contains more than 2M English–Chinese
sentence pairs from a great variety of domains. The
corpus is licensed under CC BY–NC–ND 4.0.

F Tokenizers

When training English models, we examine two dif-
ferent tokenizers: the original teachers’ tokenizer,
and a new tokenizer we train on the simplified CC-
100 corpus. In the case of other languages, we train
a new tokenizer on the simplified CC-100 corpus.

The cases of the script and lexical manipulations
each require its special treatment. In the case of
the script manipulations, we create an artificial lan-
guage which is composed of English words with
foreign symbols, so we require a tokenizer which is
familiar with this specific language. We simply ap-
ply the manipulation to the English CC-100 corpus
and train a tokenizer on the transformed sentences.

In the case of the lexical manipulation, we swap
some English words while retaining others, result-
ing in an artificial language which is a fusion of
two languages. Therefore, a bilingual tokenizer is
required. We train a bilingual tokenizer for each
language pair using the CC-100 corpus.13

13Note that the word-reorder manipulation, as it maintains
the same set of words as in the original sentence, does not
require any special treatment.

http://nlp2ct.cis.umac.mo/um-corpus/
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