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Abstract

Recent works integrating Knowledge Graphs
(KGs) have led to promising improvements
in enhancing the reasoning accuracy of Large
Language Models (LLMs). However, cur-
rent benchmarks focus mainly on closed-ended
tasks, leaving a gap in the assessment of more
complex real-world scenarios. This gap has
also obscured the evaluation of KGs’ poten-
tial to mitigate the problem of hallucination in
LLMs. To fill the gap, we introduce OKGQA,
a new benchmark specifically designed to as-
sess LLMs enhanced with KGs under open-
ended, real-world question answering scenar-
ios. OKGQA is designed to closely reflect
the complexities of practical applications using
questions from different types, and incorporates
specific metrics to measure both hallucination
ratio and the enhancement in reasoning capa-
bilities. To consider the scenario in which KGs
may have varying levels of mistakes, we pro-
pose another benchmark variant OKGQA-P to
assess model performance when the semantics
and structure of KGs are deliberately perturbed
and contaminated. OKGQA aims to (1) explore
whether KGs can make LLMs more trustwor-
thy in an open-ended setting, and (2) conduct a
comparative analysis to shed light on method
design. We believe that this study can facilitate
a more complete performance comparison and
encourage continuous improvement in integrat-
ing KGs with LLMs to reduce hallucination.

1 Introduction

Contemporary LLMs are prone to producing
hallucinations due to gaps in their knowl-
edge (Gekhman et al., 2024; Lee et al., 2023).
These inaccuracies commonly stem from misin-
formation, biases, or errors in the training data,
and lead to responses that seem plausible but may
be irrelevant or incorrect (Weng, 2024). This is-
sue is particularly concerning in high-stakes con-
texts such as healthcare (He et al., 2023) and sci-

Close-ended Q: Who founded Microsoft?
Answer: Bill Gates.

Open-ended Q: Why did Bill Gates and Seregy
Brin all give up day-to-day control of at
Microsoft and Google at such young ages?
Answer: Bill Gates Microsoft in 1975 and
remained its CEO until 2000 when he handed
over the role to Steve Ballmer. His decision to
step back was largely influenced by his desire
to focus on his philanthropic efforts through
the Bill & Melinda Gates Foundation, a major
part of his life’s work...

Figure 1: Comparison between Open-ended Question and
Close-ended Question over Knowledge Graph.

ence (Taylor et al., 2022)".

To address this limitation, researchers have
turned to leveraging external knowledge graphs
(KGs) as a complementary (Pan et al., 2024; Luo
et al., 2023a; Hu et al., 2023; Sui et al., 2024).
KGs offer structured and explicit factual informa-
tion—often domain-specific—and allow each piece
of data to be traced back to its source (Zheng et al.,
2023; Agrawal et al., 2023). This traceability not
only enables verification of the model’s reasoning
but also brings transparency to the decision-making
process, making KGs a promising method for en-
hancing the reliability of LLM reasoning. Find
more details of related works in §C.

However, current benchmarks for testing these
LLM+KG models are predominantly closed-
ended (Jin et al., 2020; Puerto et al., 2023), re-
stricting the model’s output to a limited set of enti-
ties, relations (Talmor et al., 2019; Mihaylov et al.,
2018) or logical forms (Yih et al., 2016; Talmor
and Berant, 2018). While these benchmarks are
useful to measure retrieval and basic reasoning,
they do not adequately capture whether a model is
hallucinating. In closed-ended settings, errors can
stem from incorrect retrieval or from fabricating
(hallucinating) answers, yet conventional metrics
(e.g., accuracy or precision) cannot distinguish be-
tween these two issues. This becomes problematic
for more complex, real-world applications that de-
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mand nuanced answers (Kantharaj et al., 2022).

In contrast, our work focuses on open-ended
KGQA, where LLMs are prompted to generate
more elaborate answers, include reasoning paths
and supporting facts derived from the KG (as
shown in Figure 1). This broader output space
offers two key advantages: First, it enables di-
rect assessments of hallucination with metrics like
FActScore (Min et al., 2023) or SAFE (Wei et al.,
2024)), which decompose longer responses into
atomic statements for factual consistency checks
with external knowledge sources like Wikipedia.
Second, it increases the likelihood of exposing fac-
tual errors which helps to assess the phenomenon
indicated in Qiu et al. (2024): where longer, more
complex responses provide more opportunities for
errors to occur. By adopting this open-ended ap-
proach, we aim to (1) explore whether KGs can
make LL.Ms more trustworthy in the open-ended
setting, and (2) conduct a comparative analysis
to shed light on methods design and direction for
leveraging KGs to reduce LLMs’ hallucination.

To achieve this, we introduce a new bench-
mark, Open-ended Knowledge-Graphs Question
Answering (OKGQA), specifically designed to as-
sess LL.Ms enhanced with KGs in an open-ended
QA setting. OKGQA is designed to closely re-
flect the complexities of practical applications with
diverse questions types as mentioned in Table 1,
ensuring that all the queries cannot be answered
simply by retrieving isolated KG facts. To con-
sider the scenarios for potentially contaminated or
imperfect KGs (i.e., attributes may be mislabeled,
relations may not exist, etc.), we also propose a
variant OKGQA-P (§2.2) to assess model perfor-
mance under conditions where KGs’ semantics and
structure are deliberately perturbed and contam-
inated. In both settings, we measure the degree
of hallucination and the overall quality of the re-
sponses (see §4.1 for details).

Based on our experiments, we find that (1) in-
tegrating KG information generally mitigates fac-
tual errors, especially for queries requiring deep
reasoning; (2) directly performing reasoning in
the LLM itself (e.g., internal reasoning strategies
like Chain-of-thought (Kim et al., 2023) and Self-
Consistency (Wang et al., 2022)) may cause bias
and hallucination; (3) subgraph-based methods of-
ten achieve the best performance for simpler query
types; and (4) incorporating KGs effectively re-
duces hallucinations in LLMs even when the KG
is partially contaminated.

2 OKGQA: An Open-ended Knowledge
Graph Question-Answering Benchmark

OKGQA is a comprehensive benchmark designed
to assess how effectively LLMs enhanced with KGs
perform in open-ended, real-world-like question an-
swering scenarios. Unlike existing benchmarks that
focus primarily on closed-ended tasks, OKGQA
presents diverse open-ended question types that
mirror the variable nature of practical applications.
As illustrated in Figure 1, given a complex query
and its corresponding subgraph in a KG, the system
must be capable of understanding the relationships
within the data and performing human-like reason-
ing over the KG content to compose a paragraph-
long answer. In the following section, we first
describe our dataset construction, including query
generation via LLM templates and KG subgraph
extraction with PPR pruning. We then introduce
OKGQA-P, a benchmark variant designed to eval-
uate model robustness under KG perturbations, de-
tailing our perturbation methods and the metrics
used to assess semantic and structural deviations.
Due to the page limitation, we also include some
extension of our benchmark in Appendix §B, in-
cluding multilingual setup, and more analysis.

2.1 Dataset Construction

Queries. We utilize a template-based approach
to generate a diverse range of queries using LL.Ms,
including categories such as descriptive, explana-
tory, predictive, comparative, and critical queries.
Details regarding specific templates and example
queries can be found in Table 1, while the corre-
sponding prompts are provided in the Appendix D.
To ensure that the generated queries represent real-
world scenarios and complexities, we employ an
iterative optimization approach that utilizes both au-
tomated and human evaluation to refine the query
generation process (the details are given in Ap-
pendix A.1). Initially, we generate a diverse set of
query candidates from a seed instruction. These
candidates undergo automated evaluation using
an LLM-based evaluator, which assigns quality
scores Sauto ON a scale of 1-10, with higher scores
indicating better performance across multiple met-
rics. Subsequently, human evaluators assess the
same queries, producing corresponding normalized
scores Spyman Within the same range. To refine
the dataset, we iteratively optimize the input in-
structions by minimizing the discrepancy between
Shuman and Sauto. This optimization process ensures



Statistics (on average)

Tokens in query 23.97
Total number of queries 850 — 2,050
Number of unique DBPedia entities 816

Before Pruning — After PPR Pruning

Tokens in subgraph 348,715 — 2,452

Number of nodes 7,171 — 48
Number of Edges 8,213 — 152
Avg. Degree 1.15 = 3.17
Clustering Coefficient 0.00 — 0.69
Graph Density 0.00 — 0.07
Query Type Simple Complex
Descriptive 78 11
Explanatory 195 56
Predictive 110 55
Comparative 72 74
Critical 182 17
Total 637 213

(a) Dataset statistics and query types

Historical Comparison

Event Description
4.1% 6:5%
3.8% 11.2%

Cause Explanation

Trend Prediction Character Description

Application and Practice

3.6%

Evaluation and Reflection
16.5% 12.6%

13.1%
15.3%

13.4% Relationship Explanation

Outcome Prediction

Contrast Analysis

(b) Distribution of sub-query types

Figure 2: (left) Dataset statistics and query types, (right) Sub-query type distribution

alignment between automated and human quality
assessments. The queries are also categorized by
complexity with detailed statistics in Figure 2.

KG Sub-graphs. To reduce the size of KGs
while retaining relevant information, we follow
previous work (Yih et al., 2016; Talmor and Be-
rant, 2018) by sampling subgraphs from DBpedia
(Noted that all queries in OKGQA can be answered
using DBpedia). We extract all triples contained
within the K-hop neighbors from the entities men-
tioned in the query. We set ' = 2 to balance graph
size and computational feasibility. As increasing
beyond 2-hop subgraphs generally leads to expo-
nential growth in edges and nodes (Jin et al., 2020),
which increase excessive noise and complicating
information retrieval’. To further reduce the size
of the 2-hop subgraphs, we leverage Personalized
Page-Rank (PPR) (Bahmani et al., 2010) to prune
the nodes/edges that are not relevant to the query
(the details of the PPR algorithm are discussed in
Appendix A.2). We compare the statistics of sub-
graphs before and after PPR pruning in Figure 2a.

2.2 OKGQA-P: Benchmark with Noise &
Perturbations in KGs

KGs are often annotated by humans and can con-
tain errors such as mislabeled attributes or miss-
ing relations. To mimic the real situations where
KGs’ quality may not be fully reliable, we propose
OKGQA-P to assess the model performance under
deliberately perturbed and contaminated KGs. We
introduce various perturbation scenarios including

This choice is also informed by common practices in
other benchmarks, such as WebQSP (Yih et al., 2016) and
CWQ (Talmor and Berant, 2018), where 2-hop subgraphs are
widely used for similar KGQA tasks.

mislabeled attributes, incorrect relations, and miss-
ing connections to test how well models can handle
flawed or incomplete KG data. To quantify the
degree of perturbation, we measure the semantic
and structural similarity between the original and
the modified KG as defined below.

Notation. Let Fy be a KG-augmented model,
and KGas G = (V,&,T), where V is the set of en-
tities (nodes), £ is the set of relation types (edges),
and 7 = {(vi,e,v2)|v1,v2 € V,e € E} is the
set of triplets composed of entities and relations.
Let G = (V,&',T’) be the KG after perturbing
G, where & # £ and T’ # T. Let f(G,G’) be
a function that measures the similarity between G
and G'. Let g(G) be the downstream performance
when evaluating Fy on data samples X and G.

High-level Procedure. First, we test Fy on data
samples X and G to get the original performance
9(G). Second, we perturb G to obtain G’. Third, we
evaluate Fy on data samples X and G’ to get the
perturbed performance g(G’). Finally, we measure
9(G) — g(G’) and f(G,3G’) to assess how robust
Fy is, i.e., to assess the model performance under
conditions where KGs’ semantics and structure are
deliberately perturbed.

To quantify how much the perturbed KG has
deviated from the original KG, i.e., f(G,G’), we
leverage metrics from (Raman et al., 2020) for cap-
turing semantics (ATS) and structural (SC2D, SD2)
similarity between KGs. Intuitively, ATS leverages
a pre-trained LM for link prediction to measure
the probability of each edge from G’ existing in
G, while SC2D and SD2 measure the structural
similarity between two KGs based on local cluster-
ing coefficient and degree distribution. For each
of the three metrics, higher value indicates higher



Type Sub-Type

Description / Template

Example

Character Description

Describe a [person|’s significant contributions

Please describe Albert Einstein’s contributions to the

o during their career. field of physics.
Descriptive
- Provide a detailed description of the background Please provide a detailed description of the background
Event Description .
,,,,,,,,,,,,,,,,,,,,,,,,, and course of an fevent]. ________________andcourseof the French Revolution. .
Cause Explanation Why did [person] take [action] at [time]? ?Zlii‘;i:i Nixon choose to resign from the presidency
Explanatory .

Relationship Explanation [entity B] and its significance.

Trend Prediction

Explain the relationship between [entity A | and

Based on the historical behavior of [entity], what
do you think it might do in the future?

Explain the relationship between Alexander the Great
and Aristotle and its significance.

Based on Tesla’s historical behavior, in which fields do
you think it might innovate in the future?

Predictive
. Based on the current situation, how do you predict Based on the current international situation, how do you
Outcome Prediction . R . .
[event] will develop? predict climate change polic ill develop?
. Compare and contrast the similarities and differences Compare and contrast the leadership styles of Steve Jobs
Contrast Analysis . . R P
. between [entity A] and [entity B] in [aspect]. and Bill Gates.
Comparative

Historical Comparison . .
P [historical event B].

Evaluation and Reflection
Critical

Compare the impact of [historical event A| and

How do you evaluate the impact of [person/event]
on [field]? Please explain your viewpoint.

Compare the impact of World War I and World War II
on the global order.

How do you evaluate Martin Luther King’s impact on
the civil rights movement? Please explain your viewpoint.

Application and Practice A
PP to [practical issue]?

How do you think [theory/method] can be applied

How do you think machine learning technology can be
applied to medical diagnostics?

Table 1: Query types and examples in OKGQA. Brown is used to highlight the placeholders (e.g., [person], [event]) in
description, while Teal highlights the specific entities to replace the placeholders.

similarity. The detailed description can be found in
Appendix A.5, with visualization in Figure 5.

For the perturbation methods, we consider four
edge-based perturbation heuristics based on (Ra-
man et al., 2020) as follows:

* Relation Swapping (RS) randomly chooses two
edges from 7 and swaps their relations.

* Relation Replacement (RR) randomly chooses
an edge (v1, e,v2) € T, and replaces the e; with
another relation ey = argmin,ccSg(v1, €, v2),
where Sg(+) is a KG score function adapted from
ATS. This yield “harder negatives” - triplets that
are semantically similar but incorrect.

* Edge Rewiring (ER) randomly chooses an edge
(v1,e,v2) € T, then replaces vy with another
entity vz € E\N1(v1), where N1 (v1) represents
the 1-hop neighborhood of v;.

* Edge Deletion (ED) randomly chooses an edge
(vi,e,v2) € T and deletes it.

We control perturbation level by adjusting the
percentage of edges in G that are perturbed. Refer
to Figures 5 and 6 for empirical results.

3 Exploring KG-augmented framework
for Reducing Hallucination

To explore whether KG-augmented approaches can
mitigate LLMs’ hallucination, we propose a uni-
fied framework as shown in Figure 3. Our frame-
work follows the paradigm of retrieval augmented
generation (RAG) (Edge et al., 2024; Baek et al.,
2023a), which retrieves essential information from
the KGs, and then uses the retrieved knowledge to

enhance the LLM’s generation (§3.1). It consists of
two components, i.e., Graph-guided retrieval
(§3.2) and Graph-guided generator (§3.3), with
a variety of algorithmic design choices. We analyze
the strategies within each component in §4, aiming
to shed light on the best practices for leveraging
KGs for reducing hallucinations in LLMs.

3.1 Formalization

We formalize the KG-augmented framework for
reducing hallucination as follows. Given a user
query ¢, a pretrained language model generates a
paragraph-like answer a by modeling the condi-
tional probability p(a|q). To explore whether KGs
help reduce hallucinations of LLMs, we introduce
retrieved knowledge Z from the KG and define:

plalg) = pslala, Z2)pe(Zlg,G), (1)
ZCG

where pg(alg, Z) is the likelihood of generating
the paragraph-like answer a conditioned on ¢ and
Z (parameterized by ¢), and py(Z|q,G) mod-
els the retrieval of knowledge subsets (parame-
terized by ¢). Because the number of possible
subsets Z can be exponentially large relative to
the size of G, we approximate the sum by select-
ing the most probable knowledge subset: Z* =

argmax zpo(Z|q, G), yielding:
plalg) = py(alg, Z)pe(271q.G) ()

3.2 Graph-guided retrieval (G-retrieval)

Our goal in G-retrieval is to extract a compact yet
informative subset Z* from the KG that best sup-
ports answering the user query g. We first encode
the query and all KG elements (nodes/edges) into



Query: Please describe Albert Einstein’s
contributions to the field of physics.
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Figure 3: Overview of KG-augmented framework.

a unified embedding space using a language model.
We then measure the relevance of each element to
q (e.g., via cosine similarity) and identify a set of
top-k nodes and edges for the query.

To balance retrieving as many relevant nodes
and edges as possible while keeping the Z* size
manageable, we adopt a prize-cost trade-off strat-
egy (Balas, 1989) to guide the retrieval process:
(1) Prize assignment: based on the computed simi-
larity scores, we assign prizes to nodes and edges
to quantify their relevance to the query. Specif-
ically, we assign the top-k nodes/edges with de-
scending prize values from k to 1, while nodes
and edges outside the top-k receive a prize of 0.
Formally: p, = max(0,k — rank(v) + 1) and
pe = max(0,k — rank(e) + 1). (2) Cost alloca-
tion: to manage the retrieved knowledge size, we
assign penalties as cost C, during the expansion
of the retrieved paths or subgraphs. The final re-
trieval process aims to maximize the total prize
(i.e., relevance) while minimizing associated costs.

We explore three retrieval variants for G-retrieval
design (e.g., triplets, paths and subgraphs) as
demonstrated in Figure 3.

* Triplet-retrieval: retrieves a fixed number of
triplets with the highest total prize assigned to
their respective triplets.

* Path-retrieval: starting from a fixed number of
k of high-prize nodes, we greedily expand paths
P = {v1,e1,v2,...,n_1,0,} to maximize
score: S(P) = Y1y puy 3 11 Pei—2opey Ce-
We use a priority queue to iteratively return paths
with top-scores and subject to maximum lengths
and cycles. The details of path-retrieval can be
found in Appendix A.3.

* Sub-graph retrieval: building on He et al.
(2024a), we use the Prize-Collecting Steiner
Tree (PCST) algorithm to find a connected sub-
graph S that maximizes S(S) = >_, cy. Pu; +

> ecs Pei = cinkg Ce- Unlike in path-retrieval,
we only yield one subgraph that maximizes the
total score.

3.3 Graph-guided Generation (G-Generator)

After retrieving Z*, the G-Generator use this
knowledge to generate the paragraph-like response
the user query. The generation is modeled as a
sequential decision-making process: at each time
step t, token a; is generated conditioned on ¢, Z*,
and the previously generated tokens ag.¢—1:

T
plalg, 2%) = [[ po(aila. 2%, a0e—1),  (3)
t=1
where 6 denotes the parameters of a neural text

generation model. The generation stops when an
end-of-sequence token is produced or when the
maximum sequence length 7' is reached.

4 Experiments

In this section, we first introduce the evaluation
metrics, and then focus on two main research ques-
tions: RQI1: Can KGs reduce hallucination in
LLMs? and RQ2: How are KG-Aware methods
affected by noise/perturbations in KGs?

4.1 Evaluation Metrics & Setup

We quantify LLM hallucinations using two pub-
lic metrics: FActScore (Min et al., 2023) and
SAFE (Wei et al., 2024). FActScore measures
factual precision by decomposing a long-form text
into atomic facts and validating each against a re-
liable knowledge base like Wikipedia. In contrast,
SAFE employs a language model as an investiga-
tive agent that iteratively employs Google Search
queries to assess whether search results support the
fact. For both metrics, we report the proportion of
supported atomic facts out of the total atomic facts
extracted from LLM responses.

In addition to the hallucination metrics, we
propose four metrics using LL.M-as-evaluator (Li
et al., 2024) to quantify the quality of generated re-
sponses from LLM (Edge et al., 2024; Wang et al.,
2023). In specific, we use G-Eval (Liu et al., 2023)
framework for the evaluation and provide relevant
Wikipedia pages of each query as context to en-
hance G-Eval’s robustness and stability. The four
metrics are defined as follows: Context Relevance:
measures how well the generated response aligns
with the provided context. Comprehensiveness:
assesses how thoroughly the answer addresses all
aspects and details of the question. Correctness:



measures the clarity and specificity of the generated
answer to the question. Empowerment: evaluates
how well the generated answer helps the reader
understand the topic and make informed decisions.
The detailed prompt can be found in Appendix D.

We use gpt-4o-mini (from November 2024 to
January 2025) as LLM backbone for all the evalu-
ation metrics. As using LLM-as-evaluator frame-
works may raise concern regarding potential self-
enhancement or bias from the selection of the mod-
els (Gu et al., 2024; Li et al., 2024), we conduct
additional validation in Appendix A.4 (including
human evaluation alignment and cross-validation
across different LLM backbones), and find that
the choice of LLM in the LLM-as-evaluator frame-
work has little impact on the overall evaluation
and demonstrate high correlation with the human
evaluation, supporting the reliability of our testing.

For other testing LLM backbones mentioned
in this section, we consider a range of widely
used LLMs of different scales, including GPT-40,
GPT-40-mini (from November 2024 to January
2025), Llama-3.1-8B-instruct (Dubey et al., 2024),
Mistral-7B-instruct-v0.3 (Jiang et al., 2023a), and
Gemma-2-9B-it (Team et al., 2024). Considering
the trade-off between cost and performance, we
use text-embedding-3-small model from OpenAl
(from November 2024 to January 2025) as embed-
ding model for G-retrieval process.

4.2 RQ1: Main Results - Can KGs Reduce
Hallucination in LLMs?

To explore whether KGs can help reduce hallucina-
tion in LLMs, we benchmark the LLMs in different
settings. We use zero-shot and few-shot prompting
as baselines without injecting external knowledge.
In addition, we consider leveraging LLMs’ inter-
nal knowledge to do Chain-of-thought (Kim et al.,
2023), or self-consistency (Wang et al., 2022), and
more general RAG systems like IRCoT (Trivedi
et al., 2022a) which retrieves paragraphs from
Wikipedia to augment CoT generation. For LLMs
augmented with KGs, we consider three KG re-
trieval variants: triplets, paths, and subgraphs to
study the impact of G-retrieval for reducing LLMs’
hallucinations. The results are shown in Table 2
and Figure 4. We obtain some intriguing findings:

Retrieving KG information can indeed mit-
igate factual errors in the responses. Methods
integrating knowledge extracted from KGs show
clear improvements in factual accuracy and com-
prehension scores compared to the baselines. For

Character Description
10

Application and Practice Event Description

o8

Evaluation and Reflection Cause Explanation

Historical Comparisoft Relationship Explanation

Contrast Analysis Trend Prediction

Outcome Prediction

Triplets Paths Subgraphs Baseline (w/o external knowledge)

Figure 4: Comparison results of different forms of informa-
tion over different queries.

example, under Var-2 (triplet retrieval), GPT-4o0
achieves a FActScore of 72.55% =+ 0.85%, which
is a significant increase over the baseline score of
55.35% +0.95%. Moreover, these methods can be
combined with strategies like CoT+SC, enhancing
response quality with minimal increase in halluci-
nation ratio. The radar chart in Figure 4 further
emphasizes that in most query types, integrating
knowledge retrieved from KGs mitigates the hallu-
cination issue compared to baselines, particularly
in query types such as “Evaluation and Reflec-
tion,” “Outcome Prediction,” and “Cause Expla-
nation,” which require more reasoning and analysis
rather than merely listing information. The find-
ings also apply to open-source models like mistral-
7B-Instruct-v0.3 and Llama-3.1-8B-instruct, illus-
trating the consistency of the finding. In addi-
tion, compared with RAG method IRCoT (Trivedi
et al., 2022b), leveraging Wikipedia documents,
improves performance over zero-shot and 4-shot
prompting by providing broad contextual support,
it struggles with correctness and hallucination con-
trol due to the potential introduction of irrelevant
or conflicting information. Our KG-based meth-
ods consistently outperform IRCoT, particularly in
correctness, SAFE, and FActScore.

Directly performing reasoning in the LLM
itself does not mitigate hallucinations. We bench-
mark the hallucination ratio of LLMs using internal
reasoning strategies like CoT and Self-consistency,
as shown in Var-1 in Table 2. It shows that these
methods can improve response quality (i.e., G-
Eval) compared to baselines, but do not consis-
tently improve factuality, and sometimes even di-
minish. This shows that relying solely on internal
reasoning is inadequate for mitigating hallucina-



G-Eval

Hallucination

Models

Context Relevance  Comprehensiveness

Correctness Empowerment SAFE FActScore

Baseline: Without External Knowledge (Zero-shot prompting)

68.12% + 0.88%
63.21% + 0.49%
57.12% + 0.91%
55.71% + 1.21%
53.63% + 1.33%

65.41% =+ 0.79%
60.11% + 0.47%
54.74% + 1.20%
52.00% + 1.31%
50.00% + 1.33%

GPT-40

GPT-40-mini
1lama-3.1-8b-instruct
mistral-7B-Instruct-v0.3
gemma-2-9b-it

60.41% + 0.38%
55.43% + 0.63%
49.01% + 0.61%
47.03% £ 0.94%
45.72% £ 0.71%

62.41% + 0.84%
58.72% + 0.62%
52.21% + 0.71%
50.13% + 1.04%
48.15% + 0.93%

82.47% + 0.62%
80.14% + 0.89%
79.33% + 0.91%
78.27% + 0.83%
77.11% £ 0.78%

55.34% + 0.93%
50.23% + 1.01%
45.14% + 0.32%
44.37% +1.23%
40.94% + 0.83%

Baseline: Without External Knowledge (4-shot prompting)

70.61% + 0.62%
65.53% + 0.94%
59.43% + 0.32%
57.34% + 1.04%
55.24% + 1.49%

67.43% + 0.81%
62.33% + 1.03%
56.31% + 0.78%
54.13% + 1.31%
52.27% +1.21%

GPT-40

GPT-40-mini
Ilama-3.1-8b-instruct
mistral-7B-Instruct-v0.3
gemma-2-9b-it

62.33% + 0.37%
57.23% + 0.68%
51.27% + 0.32%
49.27% + 0.84%
47.14% £ 0.36%

64.51% + 0.12%
60.47% + 0.83%
54.33% + 0.41%
52.46% + 0.94%
50.36% + 0.51%

83.39% + 0.53%
81.62% + 0.69%
80.27% + 0.78%
79.12% + 0.87%
78.00% + 0.77%

57.45% + 0.78%
52.34% + 0.76%
47.24% + 1.03%
45.13% + 1.42%
44.32% + 1.58%

Baseline: With Wikipedia documents

73.12% + 0.32%
70.31% + 0.32%

69.23% =+ 0.42%
64.42% +1.31%

GPT-40 - IRCoT
GPT-40-mini - IRCoT

66.33% + 0.34%
61.37% + 0.48%

65.51% + 0.11%
63.89% + 0.72%

87.39% + 0.68%
84.72% + 0.48%

69.45% + 0.34%
65.72% + 1.03%

Var-1: With CoT Prompting

72.76% + 0.92%
75.81% + 0.65%
63.69% + 0.32%
61.35% + 0.93%
59.42% + 0.27%

69.56% =+ 0.74%
71.62% + 0.74%
60.44% =+ 0.59%
58.33% + 1.02%
56.27% + 0.84%

GPT-40 - CoT

GPT-40 - CoT+SC
1lama-3.1-8b-instruct - CoT+SC
mistral-7B-Instruct-v0.3 - CoT+SC
gemma-2-9b-it - CoT+SC

64.48% + 0.63%
66.55% + 0.75%
55.46% + 0.52%
53.42% + 0.79%
51.34% + 1.42%

66.69% =+ 0.69%
68.74% + 0.15%
58.53% + 1.11%
56.47% + 0.85%
54.34% + 1.31%

80.07% + 0.83%
79.03% + 0.48%
76.00% + 0.63%
74.30% + 0.21%
71.09% + 0.43%

54.30% + 0.87%
53.23% + 0.78%
45.05% + 0.97%
42.00% =+ 0.29%
39.85% + 1.03%

Var-2: With Triplets Extracted from KGs Provided

74.62% + 0.65%
69.50% + 0.81%
63.45% + 1.13%
61.34% + 0.31%
59.25% + 1.06%
76.71% + 0.53%

70.44% + 0.79%
65.03% + 0.92%
59.33% + 1.05%
57.21% + 0.89%
55.29% + 0.44%
72.34% + 0.21%

GPT-40

GPT-40-mini
Ilama-3.1-8b-instruct
mistral-7B-Instruct-v0.3
gemma-2-9b-it

GPT-40 - CoT+SC

65.37% + 0.72%
60.21% + 0.65%
54.23% + 0.75%
52.29% + 0.32%
50.15% + 0.85%
67.33% + 1.31%

67.12% + 0.71%
63.43% + 1.01%
57.33% +0.12%
55.12% + 0.43%
53.73% + 0.95%
69.64% + 0.33%

89.20% + 1.42%
87.52% + 0.34%
85.37% + 0.72%
84.21% + 0.84%
83.18% + 0.43%
88.11% + 0.57%

72.53% + 0.83%
67.73% + 0.95%
62.37% + 0.82%
60.28% + 1.05%
58.13% + 0.91%
71.45% + 0.53%

Var-3: With Paths Extracted from KGs Provided

78.71% + 0.53%
73.64% + 0.93%
67.51% + 0.46%
65.48% + 0.94%
63.35% + 1.37%
80.87% + 0.42%

74.53% + 0.31%
69.41% + 0.22%
63.62% + 1.39%
61.37% + 1.01%
59.23% + 0.91%
76.60% + 0.65%

GPT-40

GPT-40-mini
1lama-3.1-8b-instruct
mistral-7B-Instruct-v0.3
gemma-2-9b-it

GPT-40 - CoT+SC

69.42% + 0.23%
64.35% + 0.72%
58.41% + 0.93%
56.34% + 0.23%
54.31% + 0.91%
71.54% + 0.53%

71.63% + 0.61%
67.52% + 0.82%
61.57% + 0.94%
59.45% + 0.43%
57.41% + 0.27%
73.79% +1.21%

90.20% + 0.59%
88.22% + 0.34%
86.33% + 0.94%
85.26% + 0.85%
84.13% + 0.21%
89.11% + 0.63%

75.61% =+ 0.51%
70.53% + 0.24%
65.42% + 0.95%
63.31% + 1.33%
61.23% + 1.04%
74.53% + 0.24%

Var-4: With Subgraphs Extracted from KGs Provided

80.81% + 0.43%
75.70% + 0.44%
69.61% + 0.84%
67.55% + 0.87%
65.45% + 0.95%
82.90% =+ 0.57%

76.63% + 0.65%
71.51% + 0.83%
65.45% + 0.93%
63.35% + 0.43%
61.23% + 1.0%
78.72% =+ 0.61%

GPT-40

GPT-40-mini
1lama-3.1-8b-instruct
mistral-7B-Instruct-v0.3
gemma-2-9b-it

GPT-40 - CoT+SC

71.57% + 0.51%
66.43% + 0.76%
60.41% + 0.65%
58.37% + 0.71%
56.31% + 0.35%
73.64% + 0.43%

73.70% % 0.62%
69.60% + 0.65%
63.42% + 0.45%
61.45% + 0.32%
59.40% + 0.85%
75.80% + 0.75%

90.83% =+ 0.63%
88.71% + 0.72%
86.12% + 0.35%
85.21% + 0.81%
84.51% + 0.99%
89.12% + 0.94%

75.33% % 0.29%
70.12% + 0.87%
65.44% + 0.87%
63.12% + 0.94%
63.74% + 0.49%
75.42% +1.31%

Table 2: Comparison results of various forms of information extracted from the KGs.

tions, highlighting the necessity for external knowl-
edge to address this issue effectively.

Subgraph retrieval generally achieves best
performance across different query types, es-
pecially for simpler queries. We demonstrate the
performance of different retrieval methods across
different query types in Figure 4, showing that sub-
graphs achieve the best performance. Especially
for simpler queries (“Character Description” and
“Event Description” which do not require intensive
reasoning). Even for queries like ‘“Relationship
Explanation” and “Cause Explanation” which re-
quire stepwise reasoning, subgraph methods still
demonstrate promising performance. This suggests
that while different forms of retrieved knowledge
offer unique benefits for specific types of queries,
subgraphs provide consistently good performance.

4.3 RQ2: How Are KG-Aware Methods
Affected by Noise / Perturbations in KGs?

We benchmark different KG-augmented LLMs on
our OKGQA-P setting, where we deliberately per-
turb and contaminate the semantics and structure

of KGs to simulate the real-world situation where
KGs may not have high quality. Specifically, we
consider different perturbation methods discussed
in §2.2 and control the perturbation level based on
the percentage of KG edges being perturbed. We
first illustrate how much the perturbed KG has been
deviated from the original KG with the increase of
perturbation level, shown in Figure 5. It shows
that the perturbation methods like edge deletion,
rewiring and swapping have relatively weak influ-
ence on ATS (which intuitively measures semantic
similarity), even as the perturbation level increases.
For the edge deletion methods, only if the perturba-
tion level reaches 1.0, the ATS goes to 0, otherwise,
the ATS remains higher compared to other settings.

Figure 6 illustrates the hallucination ratio us-
ing different methods on the perturbed KGs. We
observe that (1) FS-SG consistently outperforms
FS-T and FS-P even at higher perturbation lev-
els, demonstrating its robustness by maintaining
higher scores as perturbations increase. (2) FS-T
and FS-P exhibit similar trends, each showing a
significant performance drop as perturbation levels



Edge Deletion Edge Rewiring

(%] (%]
Sos Sos
< =
] 0.4 1] 0.4
= ATS s ATS

0.2 —e—SC2D 02 —e— SC2D

sD2 sp2
0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10

Perturbation Level Perturbation Level

(a) Edge Deletion (b) Edge Rewiring

Relation Replacement Relation Swaping

ATS ATS
0.2  —e— SC2D 0.2 —e— SC2D
SD2 SD2

06 08 10 00 02 04 06 08 10
Perturbation Level

0.0 0.2 0.4
Perturbation Level

(c) Relation Replacement (d) Relation Swapping

Figure 5: Performance Metrics (ATS, SC2D, SD2) vs. Perturbation Level for Different Perturbation Methods.
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Figure 6: Performance Metric (FActScore) vs. Perturbation Level for Different Perturbation Methods and Different Retrieval
Methods. FS-T refers to FActScore metric using triplets, FS-P refers to using paths, and FS-SG refers to using sub-graphs.

increase. Particularly, performance of FS-T and FS-
P deteriorate when the perturbation level reaches
50%, i.e., becoming worse than the baseline using
CoT. (3) On the setting using Relation Replace-
ment which severely harms the semantics of the
KGs, FS-T and FS-P decline more sharply than
FS-SG. However, it still outperforms the baseline
when the perturbation level is smaller than 40%.
In summary, we find that effectiveness of KG-
derived information diminishes with a perturbation
level at 50%, surpassing this level leads to a further
decrease in performance. We think that before this
perturbation level at 50%, incorporating external
knowledge from KGs can mitigate hallucinations in
LLMs compared to baseline using CoT. Consider-
ing practical scenarios, platforms like Wikidata are
less likely to have perturbations as severe as 50%
due to their ongoing updates and community-based
quality control. This ensures the relevance and
applicability of our findings in real-world settings.

5 Conclusion

In this paper, we propose OKGQA and variant
OKGQA-P, to assess LLMs enhanced with KGs
under open-ended, real-world question answering
scenarios. Unlike existing benchmarks that focus
primarily on closed ended tasks, OKGQA presents
diverse open-ended question types that mirror the
unpredictable nature of practical applications. We
conduct a series of experiments and analyze the ef-
fectiveness of various retrieval methods and LLMs
of different magnitudes, providing insights for fur-

ther research. Our results underscore the signifi-
cance of integrating KGs with LLMs to help re-
duce hallucination of LLMs, even in circumstances
where the KGs are contaminated.

6 Limitations

Our proposed benchmark primarily use DBpedia
as the knowledge source, which may not general-
ize well to testing scenarios requiring highly spe-
cialized or domain-specific knowledge. Testing
domain-specific open-ended QA may require con-
structing sub-graphs from domain-specific KGs. In
addition, the study assumes a static KG for reason-
ing and retrieval. In dynamic environments where
knowledge is continuously updated, maintaining
and integrating real-time changes remains a chal-
lenge and may requires further design.
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A Implementation Details

A.1 Query Construction

In this section, we discuss the details of the query
construction of OKGQA. We first introduce the
human-in-the-loop process to optimize the instruc-
tion for generating the queries, as shown in §A.1.1.
We then present the metrics for quantify the gen-
erated queries in §A.1.2. Subsequently, we pro-
vide experiments results of human-in-the-loop pro-
cess and demonstrate the Pearson correlation co-
efficients between human and LLM scores across
rounds of optimization, and verify the inter-rater
reliability across our evaluators in §A.1.3.

A.1.1 Human-in-the-loop for instruction
optimization

To ensure that the generated queries accurately rep-
resent real-world scenarios and complexities, we
propose a human-in-the-loop process to optimize
the instruction used for generation, as shown in
Figure 7. To ensure clarity, we summarize this
optimization process here:

* Step 1: Generate a set of queries from an
initial instruction.

» Step 2: Collect automatic evaluation scores
Sauto by LLMs and human-label scores
Shuman DY human annotators for these
queries (normalized to the same range).

 Step 3: Identify patterns of discrepancies be-
tween these scores.

* Step 4: Let the LLM analysis the identified
patterns to generate new instructions,

The step 3 and 4 are conducted by prompting
LLM with prompt specified in §D.3, and steps 1
to 4 are running iteratively to reducing sayuto and
Shuman discrepancies. This process quite mimics
the way of reinforcement learning with human feed-
back (RLHF) (Ouyang et al., 2022) and inherits the
benefit that labeling the reward of the LLMs’ out-
put is much easier than labeling the output directly.

Human Evaluation
Fﬂutl)

Flgure 7: Human-in-the-loop of query construction.

Intial Instruction

;

Compare Squto

and Shuman
(explore errors)

LLM Evaluator
(e.g., Naturalness,
Relevance, Specificality)

Adapt

(Refine best instruction)

EE |

new instruction

12

A.1.2 Metrics for generated queries

We consider five metrics to measure the quality
of the generated queries: (1) Naturalness: assess-
ing how fluid and human-like the query sounds;
(2) Relevance: measuring whether the query per-
tains directly to the entity and the context provided;
(3) Specificity: determining the level of detail and
granularity included in the query, ensuring it is
not too broad or vague; (4) Novelty: evaluating
the uniqueness of the query, ensuring it is not just
a repetitive or common question; (5) Actionabil-
ity: gauging whether the query prompts clear, defi-
nite answers or actions that are feasible within the
given context. Each of these angles contributes to a
holistic evaluation of the query’s effectiveness and
relevance in real-world applications.

A.1.3 Verifying human-in-the-loop

For the human-label scores spuman collection, we
have three evaluators participating in the manual
assessment of query quality. All of the evaluators
are computer science majors with fluent English
skills. As the evaluation centers on various linguis-
tic metrics such as naturalness, relevance, speci-
ficity, novelty, and actionability, we only require
the evaluators to possess a fundamental understand-
ing of English without restricting their majors. We
calculate the Pearson correlation coefficients be-
tween human and LLM scores as shown in Table 3.
It shows that as the rounds progress, agreement
between humans and LLMs increases, suggesting
that iterative feedback improves alignment between
human annotation and LLLM responses.

Metric Round1 Round2 Round3 Round4
Naturalness 0.60 0.65 0.69 0.74
Relevance 0.55 0.59 0.64 0.70
Specificity 0.46 0.54 0.60 0.65
Novelty 0.49 0.57 0.63 0.67
Actionability 0.33 0.41 0.48 0.53

Table 3: Pearson correlation coefficients between human
and LLM scores across rounds.

In addition, we also consider verifying the inter-
rater reliability across three evaluators as shown
in Table 4. We report the Cohen’s Kappa coeffi-
cient for each pair of evaluators as follows. Using
the (Landis and Koch, 1977) interpretation guide-
lines, the Cohen’s Kappa coefficients for Natural-
ness and Relevance (ranging from 0.79 to 0.85) fall
within the “Substantial” to “Almost Perfect” cate-
gories, indicating strong inter-rater reliability for
these metrics. This reflects a shared understanding



of the evaluation criteria, resulting in consistent
ratings among evaluators. For Specificity, Novelty,
and Actionability, the coefficients range from 0.58
to 0.68, placing them primarily in the “Moderate”
to “Substantial” categories. These results suggest
moderate reliability for these metrics, likely due
to subjective interpretation and less clearly defined
evaluation guidelines. Novelty, with lower coeffi-
cients around 0.61 to 0.63, highlights variability in
ratings, suggesting that evaluators may have differ-
ing perspectives on what qualifies as novel (but the
inter-rater reliability is still considered “Substan-
tial”). Meanwhile, Actionability performs slightly
better, nearing the “Substantial” range, indicating
moderately consistent criteria.

Metric Evaluator 1 & 2 Evaluator 1 & 3 Evaluator 2 & 3
Naturalness 0.85 0.83 0.84
Relevance 0.81 0.79 0.80
Specificity 0.65 0.63 0.66
Novelty 0.60 0.58 0.61
Actionability 0.67 0.65 0.68

Table 4: Cohen’s Kappa coefficient for various metrics.

A.2 Personalized PageRank (PPR)

In this section, we discuss the details of the PPR
algorithm used in §2.1 to prune the graph from DB-
Pedia and concentrate on nodes most pertinent to
the central nodes of interest. The PPR is calculated
using the iterative formula:

p=aA'p+(l—a)s, €5

where p € R" is the PPR vector representing the
relevance scores of n nodes in the graph. « is
the damping factor controlling the probability of
continuing the random walk versus restarting from
the personalization vector. A" is the transpose of
the column-normalized adjacency matrix A of the
graph, representing transition probabilities between
nodes. s € R"™ is the personalization vector, where
we assign a value of 1 to the central nodes and 0 to
all other nodes to emphasize their importance. To
ensure convergence and computational efficiency,
we set a tolerance parameter tol = 1 x 1076 and
a maximum iteration limit max_iter = 100. After
computing the PPR vector p, we apply a thresh-
old of 1 x 107 to prune the graph. Nodes with
PPR scores below this threshold are considered in-
significant with respect to the central nodes and are
thus removed. This process effectively filters out
less relevant nodes, resulting in a pruned graph that
highlights the most significant relationships and
structures pertinent to our analysis.
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A.3 Prize-Cost-based Path Retrieval

In this section, we detail the path-retrieval method
used in §3.2. It is designed to construct and eval-
uate paths in a graph based on predefined prize
assignments and cost allocations. The objective is
to form sequences of nodes and edges, represented
as P = {v1,e1,v2,...,€en_1,Vp}, that maximize
the overall score and minimize the costs. To effi-
ciently manage the exploration of potential paths,
we utilize a priority queue, a data structure that
allows paths to be organized based on their scores,
ensuring that the highest-scoring paths are pro-
cessed first. The method starts by picking a num-
ber of starting nodes with high prizes. We then ex-
pand these starting points by exploring neighboring
nodes. For each neighbor, the method calculates
a new score. This score is the sum of the neigh-
bor’s prize and the edge’s prize minus the edge’s
cost. If this neighbor hasn’t been visited before,
which helps avoid looping, the algorithm adds this
neighbor to the path. This new path is then added
to the priority queue. This expansion keeps going
until the path reaches a maximum length or can’t
be extended further. The algorithm keeps track of
paths already explored to avoid repetition and en-
sure paths don’t loop back on themselves. When
no more paths can be added or the priority queue is
empty, the algorithm sorts the paths by their scores
from highest to lowest.

A.4 LLM Evaluation Clarity

To address the concern regarding potential self-
enhancement bias in LLM-as-evaluator frame-
works, we have conducted extensive validation of
our evaluation approach. In specific, we randomly
sample 100 questions and evaluated them using
three different LLMs (gpt-40-mini, llama-3.1-8b-
instruct, and gemma-2-9b-it). We measured inter-
model agreement using Cohen’s Kappa as shown
in Table 6, which showed substantial to almost per-
fect consistency. This indicates that the evaluation
results are consistent across different LLMs, even
when the model generating the responses is not the
same as the one evaluating them (e.g., using gpt-
4o0-mini for generation and llama-3.1-8b-instruct
for evaluation). These findings confirm that the
evaluation is robust and independent of the specific
LLM used as the evaluator.

In addition, we also collect human evaluations
for these 100 samples. Three experts annotators
rate each anonymized response on context rele-



Setting Context Relevance Comprehensiveness

Correctness

Empowerment SAFE FActScore

OKGQA (subgraphs)
+ Multi-lingual context

75.70% + 0.44%
75.14% + 0.33%

71.51% + 0.83%
72.32% £ 0.19%

66.43% £ 0.76%
66.72% + 0.74%

69.60% =+ 0.65%
70.32% + 0.57%

88.71% £ 0.72%
90.32% + 0.48%

70.12% + 0.87%
72.83% + 0.93%

Table 5: Comparison of GPT-40-mini Performance Using Monolingual and Multilingual Subgraphs

Metric LIM1&2 LIM1&3 LLM2&3
G-Eval 0.84 0.81 0.82
FactScore 0.78 0.74 0.78
SAFE 0.74 0.70 0.72

Table 6: Cohen’s Kappa coefficient for different LLM pair
comparisons. For the G-Eval, we use the average score of four
sub-metrics for better readability. LLM 1: gpt-40-mini; LLM
2: llama-3.1-8b-instruct; LLM 3: gemma-2-9b-it)

vance, comprehensiveness, correctness and empow-
erment using a 1-5 Likert scale. The average human
ratings are computed and compared with automated
scores using G-Eval. The Pearson’s correlation
yields a score of 0.78, indicating strong alignment
between human judgment and LL.M-based evalu-
ation. Combined with the inter-model agreement
shown in Table 6, these results confirm that our
evaluation is robust, consistent, and largely inde-
pendent of the specific LLM used as the evaluator.

A.5 KG Similarity Metrics

In this section, we introduce the metrics used in
§2 to measure the deviation of the perturbed KGs
from the original KG. These metrics are adapted
from (Raman et al., 2020) as presented below. ATS
is mainly used to measure the semantic similarity
between two KGs, while SC2D and SD2 are used
to measure the structural similarity.

Aggregated Triple Score (ATS): ATS measures
semantic similarity between two KGs. Let s¢g be an
edge (triple) scoring function, such that sg(e1,r, e2)
measures how likely edge (e, r, e2) is to exist in G.
Also, assume sg has been pre-trained on G for link
prediction. Then, ATS is defined as furs(G,G ) =
ﬁ Y (ermenyer Soler,me2) € [0,1], which denotes
the mean sg score across all edges in G’. Intuitively,
if a high percentage of edges in G’ are also likely to
exist in G (i.e., high ATS), then we say that ¢’ and
G have high semantic similarity. sg is task-specific,
as KGs from different tasks may differ greatly in
semantics. We use the sg from (Li et al., 2016);
while ATS captures semantic KG differences, it is
not sensitive to KG connectivity structure. Note
that fars(G,G) may not equal 1, since sg may not
perfectly generalize to KGs beyond those it was
trained on.
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Similarity in Clustering Coefficient Distribution
(SC2D): SC2D measures structural similarity be-
tween two KGs and is derived from the local clus-
tering coefficient (Saramiki et al., 2007; Onnela
et al., 2005; Fagiolo, 2007). For a given entity
in G (treated here as undirected), the local cluster-
ing coefficient is the fraction of possible triangles
through the entity that exist (i.e., how tightly the
entity’s neighbors cluster around it). For entity
e; € &, the local clustering coefficient is defined as
¢i = 2Tri(e;)/(deg(e;)(deg(e;)—1)), where Tri(e;) is the
number of triangles through e;, and deg(e;) is the de-
gree of e;. For each relation r € R, let G” be the sub-
graph of G consisting of all edges in 7 with r . That
is, G = (&,r,T ), where T = {(e,r,¢') | e,¢' € E}.
Let c” denote the |€|-dimensional clustering co-
efficient vector for G”, where the ith element of
¢ is ¢;. Then, the mean clustering coefficient
vectors for G and ¢’ are ¢, = 77>, crc” and
¢ = [ 2rens € > tespectively. SC2D is defined
as fseon(G,G) =1 — de=<el2_ ¢ 19 1], with higher

[[co—cplla+1
value indicating higher similarity.

Similarity in Degree Distribution (SD2): SD2
also measures structural similarity between two
KGs, while addressing SC2D’s ineffectiveness
when the KGs’ entities have tiny local clustering co-
efficients (e.g., the item KG used by recommender
systems is roughly bipartite). In such cases, SC2D
is always close to one regardless of the perturba-
tion method, thus rendering SC2D useless. Let
d” denote the |£|-dimensional degree vector for
G", where the ith element of d” is deg(e;). Then,
the mean degree vectors for G and G’ are d, =
] Lrer d” and dp = 57 30, o d7, TESpECtively.
SD2 is defined as fspa(G,G') = 1—Ade=delz_ < (o 1],

oy A . Mdo=dpl2t1
with higher value indicating higher similarity.

B Extension of OKGQA

In this section, we extend our benchmark by in-
corporating multilingual context and validating our
query generation against DBpedia’s structure. We
first introduce the multilingual setup of our dataset
anc compare the performance of multilingual sub-
graphs with the monolingual subgraphs (§B.1). We
then analyze the relationship between generated
queries and DBpedia by examining query genera-
tion, entity/relation coverage, and subgraph align-



ment (§B.2). We also compare OKGQA with the
existing widely used benchmarks in Table 7.

B.1 Multilingual Setup of OKGQA

KGs typically include entities and relations in mul-
tiple languages, providing a richer context that can
benefit our OKGQA setting. In this experiment,
we investigate whether incorporating multilingual
context improves overall performance. Specifically,
we randomly sample 300 queries from our dataset
and generate subgraphs that include multilingual
entities and relations from DBpedia. We then apply
PPR consistent with our original method in §2.1 to
reduce the KG size. For this multilingual setting,
we consider five languages—Greek, Polish, Por-
tuguese, Spanish, and English—which cover the
majority of entities in DBpedia. We compare the
performance of GPT-40-mini using the new multi-
lingual subgraphs against the original monolingual
subgraphs, as shown in Table 5. Our findings indi-
cate that including multilingual context generally
leads to better performance across multiple met-
rics. Intuitively, this additional multi-lingual con-
text may provides more knowledge from different
perspectives (which could provide more context,
but also may requires more techniques for handle
challenges like duplicates across languages) and
also provide another way to validate the factual-
ity of the resources stored in the KGs (which can
provide more authenticity through cross validation
from different languages).

B.2 Generated Query-DBpedia Alignment

We analyze the alignment between our gener-
ated queries and DBpedia along three dimensions:
query generation, entity/relation coverage, and sub-
graph alignment as follows:

Query Generation: Each query is directly gen-
erated from DBpedia entities and their relation-
ships. For example, when asking about Microsoft’s
founder, we first confirm that both “Microsoft” and
“Bill Gates” exist in DBpedia and are connected by
the founded_by relation, ensuring that our queries
are firmly grounded in the knowledge graph.

Entity and Relation Coverage:
dicates that:

Our analysis in-

* 92% entities mentioned in the queries can be
detected from DBpedia entities.

* 87% queries have complete relation paths con-
necting the relevant entities from DBPedia.
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* Entities/relations mentioned in queries cover
72% of DBpedia’s most common enti-
ties/predicates and span diverse entity types
(e.g., Person, Organization, and Event).

Subgraph Alignment: We evaluate the structure
of the sampled subgraphs for each query and find
that:

* 75% of the queries retrieve subgraphs within
3—4 hops, which aligns with the typical depth
for DBpedia reasoning tasks.

* On average, each subgraph contains 48 nodes
and 152 edges, with an average node degree
of 3.17 and a clustering coefficient of 0.69,
which also aligns with the property of DBPe-
dia.

These statistics support that our dataset ac-
curately reflects DBpedia’s structure, ensuring
both authenticity and complexity in the generated
queries.

C Related Work

Due to the stochastic decoding process of Large
Language Models (LLMs), i.e., sampling the next
token in the sequence, LLMs exhibit probabilistic
behaviors: (1) potentially yielding varied outputs of
the same input across different instances (Agrawal
et al., 2023); (2) cannot accurately interpret phrases
or terms when the context is vague and resides in a
knowledge gap of the model. This will lead to out-
puts that may sound plausible but are often irrele-
vant or incorrect. This will lead to outputs that may
sound plausible but are often irrelevant or incorrect.
This “hallucinations” undermines the reliability of
LLMs (Huang et al., 2023). One emerging research
trend is enhancing LLMs through integrating exter-
nal knowledge graphs (Agrawal et al., 2023). KGs
offer structured, explicit, and up-to-date factual
knowledge, including domain-specific knowledge,
providing a faithful knowledge source for reason-
ing (Zheng et al., 2023; Agrawal et al., 2023; Sui
et al., 2022). Moreover, each piece of information
in KGs can be traced back to its source, provid-
ing context and provenance. This traceability not
only aids in verifying the reliability of the informa-
tion but also provides clear pathways of reasoning,
making the interpretation process transparent.
Researchers employ diverse strategies to aug-
ment the LLLMs by integrating external KGs (Sui



Dataset # Questions Question Type Focus Areas

ion Detection Unreliable KG

Source of Q Base [

Ki 2

OKGQA 850/2,050  Open-ended Evaluating hallucination and

requiring complex reasoning

g ing capabilities in LLMs
when augmented with Knowledge Graphs; diverse queries

Curated DBPedia

on simple factual information

Questions derived from Google Suggest queries, focusing

ComplexWebQuestions 34,689

tions requiring compositional reasoning

Extends WebQuestions with more complex, multi-hop ques-

GrailQA Varied Factoid

different levels of reasoning

Evaluates generalization in KBQA with questions requiring

User queries Freebase X X
User queries Freebase X X
Crowdsourced Freebase X X

Table 7: Comparison of OKGQA with existing benchmarks along with their question types, focus areas, and additional

properties.

et al., 2024; He et al., 2024b). For example, KAP-
ING (Baek et al., 2023b) matches entities in ques-
tions to retrieve related triples from knowledge
graphs for zero-shot question answering. Wu et al.
(2023) finds that converting these triples into tex-
tualized statements can further enhance LLM per-
formance. StructGPT (Jiang et al., 2023b) pro-
pose to convert user query into structured for-
mats (e.g., SPARQL) for information extraction
from KGs. Following the succuess of internal
reasoning-enhancement methods like Chain-of-
thoughts (CoT) (Wei et al., 2022), Reflexion (Shinn
et al., 2024), and Tree-of-thoughts (ToT), He et al.
(2022) propose “rethinking with retrieval” to use
decomposed reasoning steps from CoT prompting
to retrieve external knowledge, leading to more ac-
curate and faithful explanations. IR-CoT (Trivedi
et al., 2022b) interleaves the generation of CoT
with knowledge retrieval from corresponding KGs,
iteratively guiding both retrieval and reasoning
for multi-step questions. MindMap (Wen et al.,
2023) introduce a plug-and-play approach to evoke
graph-of-thoughts reasoning in LLMs. Similarly,
RoG (Luo et al., 2023b) use KGs to create faith-
ful reasoning paths based on various relations, en-
abling interpretable reasoning in LLMs.

However, current benchmarks for testing the ca-
pabilities of these LLM+KG models are predomi-
nantly closed-ended, restricting responses to a lim-
ited set of entities/relations or a set of logical forms
derived from specific facts of KG. Hence, they
can only test a very limited subset of the LLM’s
tendency to hallucinate, leaving a gap in the as-
sessment of complex, real-world scenarios. Partic-
ularly, standard metrics such as FActScore (Min
et al., 2023) and SAFE (Wei et al., 2024) for evalu-
ating the hallucination rate of LLMs require open-
ended settings, i.e., questions are phrased as a state-
ment which requires a longer answer. Compared
with previous works, our proposed OKGQA is tai-
lored for evaluating LLMs enhanced with KGs un-
der open-ended, real-world question-answering sce-
narios. The benchmark extends the assessment of
closed-ended question answering to an open-ended
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setting, which can further support the assessment
of hallucination of LLMs.

D Prompt List

In this section, we present all the prompts required
for the main experiments. To enhance clarity, we
provide only one example in the prompt labeled as
Example 1; the other few-shot examples utilized
are labeled as Other In-Context Few-shots
within the prompt.

D.1 Knowledge-Augmented Generation

System Instruction: “You are a helpful assistant
designed to answer the users’ open-ended ques-
tions. Your task is to provide accurate, concise,
and useful information to foster understanding and
solve problems. Whether the questions relate to
complex scientific concepts, historical events, prac-
tical advice, or everyday life, your goal is to assist
by offering thoughtful and informative responses.”
In-Context Few-shots

Question: {Question}

Below are the facts that might be relevant to
answer the question: {Retrieved-knowledge}
Answer:

D.2 OKGOQA Query Generation Prompting

System Instruction: “Generate open-ended ques-
tions about different types: character description,
event description, cause explanation, relationship
explanation, trend prediction, outcome prediction,
contrast analysis, historical comparison, evalua-
tion and reflection, and application and practice.
Please provide specific suggestions. Generate the
questions, the type of the questions, the placehold-
ers, the naturalness of your generated questions
(choose from high, medium, and unnatural), the
difficulty of the generated questions (choose from
hard, medium and easy) and DBPedia_entities (link
the placeholders to DBPedia entities) in JSON for-
mat.”

Example 1: as shown in Figure 8.

Other In-Context Few-shots

Generation:



{
2 "question": "Compare and contrast the similarities and
differences between the Apple iPhone and Samsung
Galaxy in terms of user interface design.",

3 "type": "contrast analysis",

4 "placeholders": {

5 "entity A": "Apple iPhone",

6 "entity B": "Samsung Galaxy",

7 "aspect": "user interface design"
8 b

9 "naturalness": "high",

"difficulty": "medium",

"dbpedia_entities": {
"entity A": "http://dbpedia.org/resource/IPhone",
"entity B": "http://dbpedia.org/resource/
Samsung_Galaxy"

14 }

15 }

Figure 8: Example 1 Demonstration.

D.3 Prompts for Instruction Tuner

Act as an “Instruction Tuner” for the LLM, you
will be given the inputs: (1) the {Current Instruc-
tion} used to guide the LLMs’s evaluation, includ-
ing specific examples with ground truth labels; (2)
{Current Errors} that emerged with this instruction
are applied to the dataset.

The current errors are presented in the follow-
ing format: (1) INPUT: {input text} (2) PRE-
DICTED OUTPUT: {predicted label}, (3) EX-
PECTED OUTPUT: {ground truth label}. Care-
fully analyze these errors and craft a revised con-
cise instruction for the LLM to fit the expected
outputs. Include 2-3 examples at the end of your
response to demonstrate how the new instruction
would be applied.

D.4 Metrics Prompt for G-eval

System Instruction: “You are a helpful assistant
designed to evaluate the quality of the response to
a query. Your task is to rate the response on one
metric defined as below:”

Empowerment Criteria: Evaluate whether the
“Actual Output” can help the reader understand the
topic and make informed decisions regarding the
“Input”. A response with high empowerment pro-
vides accurate information and explanations that
enhance the reader’s understanding. When evalu-
ating empowerment, consider the relevance of the
information provided in the “Actual Output” to the
“Input” and the “Retrieval Context”.
Comprehensiveness Criteria: Evaluate the ex-
tent to which the “Actual Output” covers all aspects
and details of the question “Input”. A comprehen-
sive answer should thoroughly address every part
of the question, leaving no important points un-
addressed. When evaluating comprehensiveness,
consider the relevance of the information provided
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in the “Actual Output” to the “Input” and the “Re-
trieval Context”.

Correctness Criteria: Measure how clearly
and specifically the “Actual output” responds to the
question “input”. A highly direct response stays
focused on the question, providing clear and unam-
biguous information. When evaluating correctness,
consider the relevance of the information provided
in the “Actual Output” to the “Input” and the “Re-
trieval Context”.

Context Relevance Criteria: Evaluate the ex-
tent to which the “Actual output” incorporates rel-
evant information from the “Retrieval Context”.
This includes assessing whether the output adheres
to the thematic, factual, and situational specifics
presented in the “Retrieval Context”. Relevant
responses not only address the direct query but
also align closely with the contextual elements pro-
vided, ensuring a seamless and coherent transition
between the “Retrieval Context” and the “Actual
Output”. The most contextually relevant responses
demonstrate an understanding and appropriate re-
flection of the given circumstances, historical facts,
or conceptual background, thereby contributing to
the overall accuracy and utility of the information
provided.

Response: [Respond with metric and the corre-
sponding score.]
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