Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study Over Open-ended Question Answering

Anonymous ACL submission

Abstract

Recent works integrating Knowledge Graphs (KGs) have led to promising improvements in enhancing the reasoning accuracy of Large Language Models (LLMs). However, current benchmarks focus mainly on closed-ended tasks, leaving a gap in the assessment of more complex real-world scenarios. This gap has also obscured the evaluation of KGs' potential to mitigate the problem of hallucination in LLMs. To fill the gap, we introduce OKGQA, a new benchmark specifically designed to assess LLMs enhanced with KGs under open-012 ended, real-world question answering scenarios. OKGQA is designed to closely reflect 015 the complexities of practical applications using questions from different types, and incorporates specific metrics to measure both hallucination 017 ratio and the enhancement in reasoning capabilities. To consider the scenario in which KGs may have varying levels of mistakes, we propose another benchmark variant OKGQA-P to assess model performance when the semantics and structure of KGs are deliberately perturbed and contaminated. OKGQA aims to (1) explore whether KGs can make LLMs more trustworthy in an open-ended setting, and (2) conduct a comparative analysis to shed light on method design. We believe that this study can facilitate a more complete performance comparison and encourage continuous improvement in integrating KGs with LLMs to reduce hallucination.

1 Introduction

004

007

027

033

037

041

Contemporary LLMs are prone to producing hallucinations due to gaps in their knowledge (Gekhman et al., 2024; Lee et al., 2023). These inaccuracies commonly stem from misinformation, biases, or errors in the training data, and lead to responses that seem plausible but may be irrelevant or incorrect (Weng, 2024). This issue is particularly concerning in high-stakes contexts such as healthcare (He et al., 2023) and sci-

Close-ended Q: Who founded Microsoft Answer: Bill Gates.

Open-ended Q: Why did Bill Gates and Seregy Brin all give up day-to-day control of at Microsoft and Google at such young ages? Answer: Bill Gates Microsoft in 1975 and remained its CEO until 2000 when he hand over the role to Steve Ballmer. His decision to step back was largely influenced by his desire to focus on his philanthropic efforts through the E dation, a majo a Gates Fo part of his life's work

042

045

046

047

048

051

054

060

061

062

063

064

065

067

068

069

070

Figure 1: Comparison between Open-ended Question and Close-ended Question over Knowledge Graph.

ence (Taylor et al., 2022)¹.

To address this limitation, researchers have turned to leveraging external knowledge graphs (KGs) as a complementary (Pan et al., 2024; Luo et al., 2023a; Hu et al., 2023; Sui et al., 2024). KGs offer structured and explicit factual information-often domain-specific-and allow each piece of data to be traced back to its source (Zheng et al., 2023; Agrawal et al., 2023). This traceability not only enables verification of the model's reasoning but also brings transparency to the decision-making process, making KGs a promising method for enhancing the reliability of LLM reasoning. Find more details of related works in §C.

However, current benchmarks for testing these LLM+KG models are predominantly closedended (Jin et al., 2020; Puerto et al., 2023), restricting the model's output to a limited set of entities, relations (Talmor et al., 2019; Mihaylov et al., 2018) or logical forms (Yih et al., 2016; Talmor and Berant, 2018). While these benchmarks are useful to measure retrieval and basic reasoning, they do not adequately capture whether a model is hallucinating. In closed-ended settings, errors can stem from incorrect retrieval or from fabricating (hallucinating) answers, yet conventional metrics (e.g., accuracy or precision) cannot distinguish between these two issues. This becomes problematic for more complex, real-world applications that de-

¹Code and data are released at https://anonymous. 4open.science/r/OKGQA-CBB0

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

123

mand nuanced answers (Kantharaj et al., 2022).

071

073

077

084

085

091

094

095

100

101

102

103

105

106

107

108

109

110

In contrast, our work focuses on open-ended KGQA, where LLMs are prompted to generate more elaborate answers, include reasoning paths and supporting facts derived from the KG (as shown in Figure 1). This broader output space offers two key advantages: First, it enables direct assessments of hallucination with metrics like FActScore (Min et al., 2023) or SAFE (Wei et al., 2024)), which decompose longer responses into atomic statements for factual consistency checks with external knowledge sources like Wikipedia. Second, it increases the likelihood of exposing factual errors which helps to assess the phenomenon indicated in Qiu et al. (2024): where longer, more complex responses provide more opportunities for errors to occur. By adopting this open-ended approach, we aim to (1) explore whether KGs can make LLMs more trustworthy in the open-ended setting, and (2) conduct a comparative analysis to shed light on methods design and direction for leveraging KGs to reduce LLMs' hallucination.

To achieve this, we introduce a new benchmark, Open-ended Knowledge-Graphs Question Answering (OKGQA), specifically designed to assess LLMs enhanced with KGs in an open-ended QA setting. OKGQA is designed to closely reflect the complexities of practical applications with diverse questions types as mentioned in Table 1, ensuring that all the queries cannot be answered simply by retrieving isolated KG facts. To consider the scenarios for potentially contaminated or imperfect KGs (*i.e.*, attributes may be mislabeled, relations may not exist, etc.), we also propose a variant OKGQA-P (§2.2) to assess model performance under conditions where KGs' semantics and structure are deliberately perturbed and contaminated. In both settings, we measure the degree of hallucination and the overall quality of the responses (see §4.1 for details).

Based on our experiments, we find that (1) in-111 tegrating KG information generally mitigates fac-112 tual errors, especially for queries requiring deep 113 reasoning; (2) directly performing reasoning in 114 the LLM itself (e.g., internal reasoning strategies 115 like Chain-of-thought (Kim et al., 2023) and Self-116 Consistency (Wang et al., 2022)) may cause bias 117 118 and hallucination; (3) subgraph-based methods often achieve the best performance for simpler query 119 types; and (4) incorporating KGs effectively re-120 duces hallucinations in LLMs even when the KG 121 is partially contaminated. 122

2 OKGQA: An Open-ended Knowledge Graph Question-Answering Benchmark

OKGQA is a comprehensive benchmark designed to assess how effectively LLMs enhanced with KGs perform in open-ended, real-world-like question answering scenarios. Unlike existing benchmarks that focus primarily on closed-ended tasks, OKGQA presents diverse open-ended question types that mirror the variable nature of practical applications. As illustrated in Figure 1, given a complex query and its corresponding subgraph in a KG, the system must be capable of understanding the relationships within the data and performing human-like reasoning over the KG content to compose a paragraphlong answer. In the following section, we first describe our dataset construction, including query generation via LLM templates and KG subgraph extraction with PPR pruning. We then introduce OKGQA-P, a benchmark variant designed to evaluate model robustness under KG perturbations, detailing our perturbation methods and the metrics used to assess semantic and structural deviations. Due to the page limitation, we also include some extension of our benchmark in Appendix §B, including multilingual setup, and more analysis.

2.1 Dataset Construction

Queries. We utilize a template-based approach to generate a diverse range of queries using LLMs, including categories such as descriptive, explanatory, predictive, comparative, and critical queries. Details regarding specific templates and example queries can be found in Table 1, while the corresponding prompts are provided in the Appendix D. To ensure that the generated queries represent realworld scenarios and complexities, we employ an iterative optimization approach that utilizes both automated and human evaluation to refine the query generation process (the details are given in Appendix A.1). Initially, we generate a diverse set of query candidates from a seed instruction. These candidates undergo automated evaluation using an LLM-based evaluator, which assigns quality scores s_{auto} on a scale of 1-10, with higher scores indicating better performance across multiple metrics. Subsequently, human evaluators assess the same queries, producing corresponding normalized scores s_{human} within the same range. To refine the dataset, we iteratively optimize the input instructions by minimizing the discrepancy between s_{human} and s_{auto} . This optimization process ensures

(a) Dataset statistics and query types

173

174

175

178

179

181

183

184

185

186

190

191

192

194

195

196

197

199

201

(b) Distribution of sub-query types

Figure 2: (left) Dataset statistics and query types, (right) Sub-query type distribution

alignment between automated and human quality assessments. The queries are also categorized by complexity with detailed statistics in Figure 2.

KG Sub-graphs. To reduce the size of KGs while retaining relevant information, we follow previous work (Yih et al., 2016; Talmor and Berant, 2018) by sampling subgraphs from DBpedia (Noted that all queries in OKGQA can be answered using DBpedia). We extract all triples contained within the K-hop neighbors from the entities mentioned in the query. We set K = 2 to balance graph size and computational feasibility. As increasing beyond 2-hop subgraphs generally leads to exponential growth in edges and nodes (Jin et al., 2020), which increase excessive noise and complicating information retrieval². To further reduce the size of the 2-hop subgraphs, we leverage Personalized Page-Rank (PPR) (Bahmani et al., 2010) to prune the nodes/edges that are not relevant to the query (the details of the PPR algorithm are discussed in Appendix A.2). We compare the statistics of subgraphs before and after PPR pruning in Figure 2a.

2.2 OKGQA-P: Benchmark with Noise & Perturbations in KGs

KGs are often annotated by humans and can contain errors such as mislabeled attributes or missing relations. To mimic the real situations where KGs' quality may not be fully reliable, we propose **OKGQA-P** to assess the model performance under deliberately perturbed and contaminated KGs. We introduce various perturbation scenarios including mislabeled attributes, incorrect relations, and missing connections to test how well models can handle flawed or incomplete KG data. To quantify the degree of perturbation, we measure the semantic and structural similarity between the original and the modified KG as defined below. 204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

223

224

225

226

227

229

230

231

232

233

234

235

236

237

238

239

Notation. Let \mathcal{F}_{θ} be a KG-augmented model, and KG as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{T})$, where \mathcal{V} is the set of entities (nodes), \mathcal{E} is the set of relation types (edges), and $\mathcal{T} = \{(v_1, e, v_2) | v_1, v_2 \in \mathcal{V}, e \in \mathcal{E}\}$ is the set of triplets composed of entities and relations. Let $\mathcal{G}' = (\mathcal{V}, \mathcal{E}', \mathcal{T}')$ be the KG after perturbing \mathcal{G} , where $\mathcal{E}' \neq \mathcal{E}$ and $\mathcal{T}' \neq \mathcal{T}$. Let $f(\mathcal{G}, \mathcal{G}')$ be a function that measures the similarity between \mathcal{G} and \mathcal{G}' . Let $g(\mathcal{G})$ be the downstream performance when evaluating \mathcal{F}_{θ} on data samples X and \mathcal{G} .

High-level Procedure. First, we test \mathcal{F}_{θ} on data samples X and \mathcal{G} to get the original performance $g(\mathcal{G})$. Second, we perturb \mathcal{G} to obtain \mathcal{G}' . Third, we evaluate \mathcal{F}_{θ} on data samples X and \mathcal{G}' to get the perturbed performance $g(\mathcal{G}')$. Finally, we measure $g(\mathcal{G}) - g(\mathcal{G}')$ and $f(\mathcal{G}, \mathcal{G}')$ to assess how robust \mathcal{F}_{θ} is, *i.e.*, to assess the model performance under conditions where KGs' semantics and structure are deliberately perturbed.

To quantify how much the perturbed KG has deviated from the original KG, *i.e.*, $f(\mathcal{G}, \mathcal{G}')$, we leverage metrics from (Raman et al., 2020) for capturing semantics (ATS) and structural (SC2D, SD2) similarity between KGs. Intuitively, ATS leverages a pre-trained LM for link prediction to measure the probability of each edge from \mathcal{G}' existing in \mathcal{G} , while SC2D and SD2 measure the structural similarity between two KGs based on local clustering coefficient and degree distribution. For each of the three metrics, higher value indicates higher

²This choice is also informed by common practices in other benchmarks, such as WebQSP (Yih et al., 2016) and CWQ (Talmor and Berant, 2018), where 2-hop subgraphs are widely used for similar KGQA tasks.

Туре	Sub-Type	Description / Template	Example
Descriptive	Character Description	Describe a [person]'s significant contributions during their career.	Please describe Albert Einstein's contributions to the field of physics.
	Event Description	Provide a detailed description of the background and course of an [event].	Please provide a detailed description of the background and course of the French Revolution.
Explanatory	Cause Explanation	Why did [person] take [action] at [time]?	Why did Nixon choose to resign from the presidency in 1974?
	Relationship Explanation	Explain the relationship between [entity A] and [entity B] and its significance.	Explain the relationship between Alexander the Great and Aristotle and its significance.
Predictive	Trend Prediction	Based on the historical behavior of [entity], what do you think it might do in the future?	Based on Tesla 's historical behavior, in which fields do you think it might innovate in the future?
	Outcome Prediction	Based on the current situation, how do you predict [event] will develop?	Based on the current international situation, how do you predict climate change policies will develop?
Comparative	Contrast Analysis	Compare and contrast the similarities and differences between [entity A] and [entity B] in [aspect].	Compare and contrast the leadership styles of Steve Jobs and Bill Gates .
	Historical Comparison	Compare the impact of [historical event A] and [historical event B].	Compare the impact of World War I and World War II on the global order.
Critical	Evaluation and Reflection	How do you evaluate the impact of [person/event] on [field]? Please explain your viewpoint.	How do you evaluate Martin Luther King's impact on the civil rights movement? Please explain your viewpoint.
	Application and Practice	How do you think [theory/method] can be applied to [practical issue]?	How do you think machine learning technology can be applied to medical diagnostics?

Table 1: Query types and examples in OKGQA. **Brown** is used to highlight the placeholders (*e.g.*, [person], [event]) in description, while **Teal** highlights the specific entities to replace the placeholders.

similarity. The detailed description can be found in Appendix A.5, with visualization in Figure 5.

240

241

242

243

245

246

247

248

249

251

252

254

256

257

261

262

263

265

270

For the perturbation methods, we consider four edge-based perturbation heuristics based on (Raman et al., 2020) as follows:

- Relation Swapping (RS) randomly chooses two edges from \mathcal{T} and swaps their relations.
- Relation Replacement (RR) randomly chooses an edge (v₁, e, v₂) ∈ T, and replaces the e₁ with another relation e₂ = argmin_{e∈E}S_G(v₁, e, v₂), where S_G(·) is a KG score function adapted from ATS. This yield "harder negatives" - triplets that are semantically similar but incorrect.
- Edge Rewiring (ER) randomly chooses an edge $(v_1, e, v_2) \in \mathcal{T}$, then replaces v_2 with another entity $v_3 \in \mathcal{E} \setminus \mathcal{N}_1(v_1)$, where $\mathcal{N}_1(v_1)$ represents the 1-hop neighborhood of v_1 .
- Edge Deletion (ED) randomly chooses an edge $(v_1, e, v_2) \in \mathcal{T}$ and deletes it.

We control perturbation level by adjusting the percentage of edges in \mathcal{G} that are perturbed. Refer to Figures 5 and 6 for empirical results.

3 Exploring KG-augmented framework for Reducing Hallucination

To explore whether KG-augmented approaches can mitigate LLMs' hallucination, we propose a unified framework as shown in Figure 3. Our framework follows the paradigm of retrieval augmented generation (RAG) (Edge et al., 2024; Baek et al., 2023a), which retrieves essential information from the KGs, and then uses the retrieved knowledge to enhance the LLM's generation (§3.1). It consists of two components, *i.e.*, Graph-guided retrieval (§3.2) and Graph-guided generator (§3.3), with a variety of algorithmic design choices. We analyze the strategies within each component in §4, aiming to shed light on the best practices for leveraging KGs for reducing hallucinations in LLMs. 271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

287

289

290

291

292

293

294

295 296

297

299

300

301

3.1 Formalization

We formalize the KG-augmented framework for reducing hallucination as follows. Given a user query q, a pretrained language model generates a paragraph-like answer a by modeling the conditional probability p(a|q). To explore whether KGs help reduce hallucinations of LLMs, we introduce retrieved knowledge Z from the KG and define:

$$p(a|q) = \sum_{\mathcal{Z} \subseteq \mathcal{G}} p_{\phi}(a|q, \mathcal{Z}) p_{\theta}(\mathcal{Z}|q, \mathcal{G}), \quad (1)$$

where $p_{\phi}(a|q, \mathcal{Z})$ is the likelihood of generating the paragraph-like answer *a* conditioned on *q* and \mathcal{Z} (parameterized by ϕ), and $p_{\theta}(\mathcal{Z}|q, \mathcal{G})$ models the retrieval of knowledge subsets (parameterized by θ). Because the number of possible subsets \mathcal{Z} can be exponentially large relative to the size of \mathcal{G} , we approximate the sum by selecting the most probable knowledge subset: $\mathcal{Z}^* =$ $\operatorname{argmax}_{\mathcal{Z} \in \mathcal{G}} p_{\theta}(\mathcal{Z}|q, \mathcal{G})$, yielding:

$$p(a|q) \approx p_{\phi}(a|q, \mathcal{Z}^*) p_{\theta}(\mathcal{Z}^*|q, \mathcal{G})$$
 (2)

3.2 Graph-guided retrieval (G-retrieval)

Our goal in G-retrieval is to extract a compact yet informative subset \mathcal{Z}^* from the KG that best supports answering the user query q. We first encode the query and all KG elements (nodes/edges) into

Figure 3: Overview of KG-augmented framework.

a unified embedding space using a language model. We then measure the relevance of each element to q (e.g., via cosine similarity) and identify a set of top-k nodes and edges for the query.

To balance retrieving as many relevant nodes and edges as possible while keeping the \mathcal{Z}^* size manageable, we adopt a prize-cost trade-off strategy (Balas, 1989) to guide the retrieval process: (1) Prize assignment: based on the computed similarity scores, we assign prizes to nodes and edges to quantify their relevance to the query. Specifically, we assign the top-k nodes/edges with descending prize values from k to 1, while nodes and edges outside the top-k receive a prize of 0. Formally: $p_v = \max(0, k - \operatorname{rank}(v) + 1)$ and $p_e = \max(0, k - \operatorname{rank}(e) + 1).$ (2) Cost allocation: to manage the retrieved knowledge size, we assign penalties as cost C_e during the expansion of the retrieved paths or subgraphs. The final retrieval process aims to maximize the total prize (i.e., relevance) while minimizing associated costs.

We explore three retrieval variants for G-retrieval design (e.g., triplets, paths and subgraphs) as demonstrated in Figure 3.

- **Triplet-retrieval**: retrieves a fixed number of triplets with the highest total prize assigned to their respective triplets.
- **Path-retrieval**: starting from a fixed number of k of high-prize nodes, we greedily expand paths $\mathcal{P} = \{v_1, e_1, v_2, \dots, e_{n-1}, v_n\}$ to maximize score: $S(\mathcal{P}) = \sum_{i=1}^{n} p_{v_i} + \sum_{i=1}^{n-1} p_{e_i} - \sum_{i=1}^{n-1} c_e$. We use a priority queue to iteratively return paths with top-scores and subject to maximum lengths and cycles. The details of path-retrieval can be found in Appendix A.3.
- Sub-graph retrieval: building on He et al. (2024a), we use the Prize-Collecting Steiner Tree (PCST) algorithm to find a connected subgraph S that maximizes $S(S) = \sum_{n \in V_S} p_{v_i} +$

 $\sum_{e \in E_S} p_{e_i} - \sum_{einE_S} c_e$. Unlike in path-retrieval, we only yield one subgraph that maximizes the total score.

341 342

344

345

346

347

348

349

351

352

353

354

355

356

358

359

361

363

364

365

367

369

370

371

373

374

375

376

377

378

379

381

383

384

385

387

3.3 Graph-guided Generation (G-Generator)

After retrieving \mathcal{Z}^* , the G-Generator use this knowledge to generate the paragraph-like response the user query. The generation is modeled as a sequential decision-making process: at each time step t, token a_t is generated conditioned on q, \mathcal{Z}^* , and the previously generated tokens $a_{0:t-1}$:

$$p(a|q, \mathcal{Z}^*) = \prod_{t=1}^{I} p_{\theta}(a_t|q, \mathcal{Z}^*, a_{0:t-1}), \quad (3)$$

where θ denotes the parameters of a neural text generation model. The generation stops when an end-of-sequence token is produced or when the maximum sequence length T is reached.

4 Experiments

In this section, we first introduce the evaluation metrics, and then focus on two main research questions: RQ1: Can KGs reduce hallucination in LLMs? and RQ2: How are KG-Aware methods affected by noise/perturbations in KGs?

4.1 Evaluation Metrics & Setup

We quantify LLM hallucinations using two public metrics: **FActScore** (Min et al., 2023) and **SAFE** (Wei et al., 2024). **FActScore** measures factual precision by decomposing a long-form text into atomic facts and validating each against a reliable knowledge base like Wikipedia. In contrast, **SAFE** employs a language model as an investigative agent that iteratively employs Google Search queries to assess whether search results support the fact. For both metrics, we report the proportion of supported atomic facts out of the total atomic facts extracted from LLM responses.

In addition to the hallucination metrics, we propose four metrics using LLM-as-evaluator (Li et al., 2024) to quantify the quality of generated responses from LLM (Edge et al., 2024; Wang et al., 2023). In specific, we use G-Eval (Liu et al., 2023) framework for the evaluation and provide relevant Wikipedia pages of each query as context to enhance G-Eval's robustness and stability. The four metrics are defined as follows: **Context Relevance**: measures how well the generated response aligns with the provided context. **Comprehensiveness**: assesses how thoroughly the answer addresses all aspects and details of the question. **Correctness**:

340

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433 434

435

436

437

438

measures the clarity and specificity of the generated answer to the question. **Empowerment**: evaluates how well the generated answer helps the reader understand the topic and make informed decisions. The detailed prompt can be found in Appendix D.

We use gpt-4o-mini (from November 2024 to January 2025) as LLM backbone for all the evaluation metrics. As using LLM-as-evaluator frameworks may raise concern regarding **potential selfenhancement** or bias from the selection of the models (Gu et al., 2024; Li et al., 2024), we conduct additional validation in Appendix A.4 (including human evaluation alignment and cross-validation across different LLM backbones), and find that the choice of LLM in the LLM-as-evaluator framework has little impact on the overall evaluation and demonstrate high correlation with the human evaluation, supporting the reliability of our testing.

For other testing LLM backbones mentioned in this section, we consider a range of widely used LLMs of different scales, including GPT-40, GPT-40-mini (from November 2024 to January 2025), Llama-3.1-8B-instruct (Dubey et al., 2024), Mistral-7B-instruct-v0.3 (Jiang et al., 2023a), and Gemma-2-9B-it (Team et al., 2024). Considering the trade-off between cost and performance, we use text-embedding-3-small model from OpenAI (from November 2024 to January 2025) as embedding model for G-retrieval process.

4.2 RQ1: Main Results - Can KGs Reduce Hallucination in LLMs?

To explore whether KGs can help reduce hallucination in LLMs, we benchmark the LLMs in different settings. We use zero-shot and few-shot prompting as baselines without injecting external knowledge. In addition, we consider leveraging LLMs' internal knowledge to do Chain-of-thought (Kim et al., 2023), or self-consistency (Wang et al., 2022), and more general RAG systems like IRCoT (Trivedi et al., 2022a) which retrieves paragraphs from Wikipedia to augment CoT generation. For LLMs augmented with KGs, we consider three KG retrieval variants: triplets, paths, and subgraphs to study the impact of G-retrieval for reducing LLMs' hallucinations. The results are shown in Table 2 and Figure 4. We obtain some intriguing findings:

Retrieving KG information can indeed mitigate factual errors in the responses. Methods integrating knowledge extracted from KGs show clear improvements in factual accuracy and comprehension scores compared to the baselines. For

Figure 4: Comparison results of different forms of information over different queries.

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

example, under Var-2 (triplet retrieval), GPT-40 achieves a FActScore of 72.55% \pm 0.85%, which is a significant increase over the baseline score of 55.35% ± 0.95 %. Moreover, these methods can be combined with strategies like CoT+SC, enhancing response quality with minimal increase in hallucination ratio. The radar chart in Figure 4 further emphasizes that in most query types, integrating knowledge retrieved from KGs mitigates the hallucination issue compared to baselines, particularly in query types such as "Evaluation and Reflection," "Outcome Prediction," and "Cause Explanation," which require more reasoning and analysis rather than merely listing information. The findings also apply to open-source models like mistral-7B-Instruct-v0.3 and Llama-3.1-8B-instruct, illustrating the consistency of the finding. In addition, compared with RAG method IRCoT (Trivedi et al., 2022b), leveraging Wikipedia documents, improves performance over zero-shot and 4-shot prompting by providing broad contextual support, it struggles with correctness and hallucination control due to the potential introduction of irrelevant or conflicting information. Our KG-based methods consistently outperform IRCoT, particularly in correctness, SAFE, and FActScore.

Directly performing reasoning in the LLM itself does not mitigate hallucinations. We benchmark the hallucination ratio of LLMs using internal reasoning strategies like CoT and Self-consistency, as shown in Var-1 in Table 2. It shows that these methods can improve response quality (i.e., G-Eval) compared to baselines, but do not consistently improve factuality, and sometimes even diminish. This shows that relying solely on internal reasoning is inadequate for mitigating hallucina-

	G-Eval				Hallucination		
Models	Context Relevance	Comprehensiveness	Correctness	Empowerment	SAFE	FActScore	
	Baseline:	Without External Ki	nowledge (Zero-shot	t prompting)			
GPT-40	$68.12\% \pm 0.88\%$	$65.41\% \pm 0.79\%$	$60.41\% \pm 0.38\%$	$62.41\% \pm 0.84\%$	$82.47\% \pm 0.62\%$	$55.34\% \pm 0.93\%$	
GPT-4o-mini	$63.21\% \pm 0.49\%$	$60.11\% \pm 0.47\%$	$55.43\% \pm 0.63\%$	$58.72\% \pm 0.62\%$	$80.14\% \pm 0.89\%$	$50.23\% \pm 1.01\%$	
llama-3.1-8b-instruct	$57.12\% \pm 0.91\%$	$54.74\% \pm 1.20\%$	$49.01\%\pm 0.61\%$	$52.21\% \pm 0.71\%$	$79.33\% \pm 0.91\%$	$45.14\% \pm 0.32\%$	
mistral-7B-Instruct-v0.3	$55.71\% \pm 1.21\%$	$52.00\% \pm 1.31\%$	$47.03\% \pm 0.94\%$	$50.13\% \pm 1.04\%$	$78.27\% \pm 0.83\%$	$44.37\% \pm 1.23\%$	
gemma-2-9b-it	$53.63\% \pm 1.33\%$	$50.00\% \pm 1.33\%$	$45.72\% \pm 0.71\%$	$48.15\%\pm 0.93\%$	$77.11\% \pm 0.78\%$	$40.94\%\pm 0.83\%$	
	Baseline	e: Without External l	Knowledge (4-shot p	prompting)			
GPT-40	$70.61\% \pm 0.62\%$	$67.43\% \pm 0.81\%$	$62.33\% \pm 0.37\%$	$64.51\% \pm 0.12\%$	$83.39\% \pm 0.53\%$	$57.45\% \pm 0.78\%$	
GPT-4o-mini	$65.53\% \pm 0.94\%$	$62.33\% \pm 1.03\%$	$57.23\% \pm 0.68\%$	$60.47\% \pm 0.83\%$	$81.62\% \pm 0.69\%$	$52.34\% \pm 0.76\%$	
llama-3.1-8b-instruct	$59.43\% \pm 0.32\%$	$56.31\% \pm 0.78\%$	$51.27\% \pm 0.32\%$	$54.33\% \pm 0.41\%$	$80.27\% \pm 0.78\%$	$47.24\% \pm 1.03\%$	
mistral-7B-Instruct-v0.3	$57.34\% \pm 1.04\%$	$54.13\% \pm 1.31\%$	$49.27\% \pm 0.84\%$	$52.46\% \pm 0.94\%$	$79.12\% \pm 0.87\%$	$45.13\% \pm 1.42\%$	
gemma-2-9b-it	$55.24\% \pm 1.49\%$	$52.27\% \pm 1.21\%$	$47.14\%\pm 0.36\%$	$50.36\%\pm 0.51\%$	$78.00\% \pm 0.77\%$	$44.32\% \pm 1.58\%$	
		Baseline: With W	ikipedia documents				
GPT-40 - IRCoT	$73.12\% \pm 0.32\%$	$69.23\% \pm 0.42\%$	$66.33\% \pm 0.34\%$	$65.51\% \pm 0.11\%$	$87.39\% \pm 0.68\%$	$69.45\% \pm 0.34\%$	
GPT-4o-mini - IRCoT	$70.31\% \pm 0.32\%$	$64.42\% \pm 1.31\%$	$61.37\% \pm 0.48\%$	$63.89\% \pm 0.72\%$	$84.72\% \pm 0.48\%$	$65.72\% \pm 1.03\%$	
		Var-1: With O	CoT Prompting				
GPT-40 - CoT	$72.76\% \pm 0.92\%$	$69.56\% \pm 0.74\%$	$64.48\% \pm 0.63\%$	$66.69\% \pm 0.69\%$	$80.07\% \pm 0.83\%$	$54.30\% \pm 0.87\%$	
GPT-40 - CoT+SC	$75.81\% \pm 0.65\%$	$71.62\% \pm 0.74\%$	$66.55\% \pm 0.75\%$	$68.74\% \pm 0.15\%$	$79.03\% \pm 0.48\%$	$53.23\% \pm 0.78\%$	
llama-3.1-8b-instruct - CoT+SC	$63.69\% \pm 0.32\%$	$60.44\% \pm 0.59\%$	$55.46\% \pm 0.52\%$	$58.53\% \pm 1.11\%$	$76.00\% \pm 0.63\%$	$45.05\% \pm 0.97\%$	
mistral-7B-Instruct-v0.3 - CoT+SC	$61.35\% \pm 0.93\%$	$58.33\% \pm 1.02\%$	$53.42\% \pm 0.79\%$	$56.47\% \pm 0.85\%$	$74.30\% \pm 0.21\%$	$42.00\% \pm 0.29\%$	
gemma-2-9b-it - CoT+SC	$59.42\% \pm 0.27\%$	$56.27\% \pm 0.84\%$	$51.34\% \pm 1.42\%$	$54.34\% \pm 1.31\%$	$71.09\% \pm 0.43\%$	$39.85\% \pm 1.03\%$	
	Var-	2: With Triplets Ext	racted from KGs Pr	ovided			
GPT-40	$74.62\% \pm 0.65\%$	$70.44\% \pm 0.79\%$	$65.37\% \pm 0.72\%$	$67.12\% \pm 0.71\%$	$89.20\% \pm 1.42\%$	$72.53\% \pm 0.83\%$	
GPT-4o-mini	$69.50\% \pm 0.81\%$	$65.03\% \pm 0.92\%$	$60.21\% \pm 0.65\%$	$63.43\% \pm 1.01\%$	$87.52\% \pm 0.34\%$	$67.73\% \pm 0.95\%$	
llama-3.1-8b-instruct	$63.45\% \pm 1.13\%$	$59.33\% \pm 1.05\%$	$54.23\% \pm 0.75\%$	$57.33\% \pm 0.12\%$	$85.37\% \pm 0.72\%$	$62.37\% \pm 0.82\%$	
mistral-7B-Instruct-v0.3	$61.34\% \pm 0.31\%$	$57.21\% \pm 0.89\%$	$52.29\% \pm 0.32\%$	$55.12\% \pm 0.43\%$	$84.21\% \pm 0.84\%$	$60.28\% \pm 1.05\%$	
gemma-2-9b-it	$59.25\% \pm 1.06\%$	$55.29\% \pm 0.44\%$	$50.15\% \pm 0.85\%$	$53.73\% \pm 0.95\%$	$83.18\% \pm 0.43\%$	$58.13\% \pm 0.91\%$	
GPT-40 - CoT+SC	$76.71\% \pm 0.53\%$	$72.34\% \pm 0.21\%$	$67.33\% \pm 1.31\%$	$69.64\% \pm 0.33\%$	$88.11\% \pm 0.57\%$	$71.45\% \pm 0.53\%$	
	Va	r-3: With Paths Extra	acted from KGs Pro	vided			
GPT-40	$78.71\% \pm 0.53\%$	$74.53\% \pm 0.31\%$	$69.42\% \pm 0.23\%$	$71.63\% \pm 0.61\%$	$90.20\% \pm 0.59\%$	$75.61\% \pm 0.51\%$	
GPT-4o-mini	$73.64\% \pm 0.93\%$	$69.41\% \pm 0.22\%$	$64.35\% \pm 0.72\%$	$67.52\% \pm 0.82\%$	$88.22\% \pm 0.34\%$	$70.53\% \pm 0.24\%$	
llama-3.1-8b-instruct	$67.51\% \pm 0.46\%$	$63.62\% \pm 1.39\%$	$58.41\% \pm 0.93\%$	$61.57\% \pm 0.94\%$	$86.33\% \pm 0.94\%$	$65.42\% \pm 0.95\%$	
mistral-7B-Instruct-v0.3	$65.48\% \pm 0.94\%$	$61.37\% \pm 1.01\%$	$56.34\% \pm 0.23\%$	$59.45\% \pm 0.43\%$	$85.26\% \pm 0.85\%$	$63.31\% \pm 1.33\%$	
gemma-2-9b-it	$63.35\% \pm 1.37\%$	$59.23\% \pm 0.91\%$	$54.31\% \pm 0.91\%$	$57.41\% \pm 0.27\%$	$84.13\% \pm 0.21\%$	$61.23\% \pm 1.04\%$	
GPT-40 - CoT+SC	$80.87\% \pm 0.42\%$	$76.60\% \pm 0.65\%$	$71.54\% \pm 0.53\%$	$73.79\% \pm 1.21\%$	$89.11\% \pm 0.63\%$	$74.53\% \pm 0.24\%$	
	Var-4	: With Subgraphs Ex	tracted from KGs I	Provided			
GPT-40	$80.81\% \pm 0.43\%$	$76.63\% \pm 0.65\%$	$71.57\% \pm 0.51\%$	$73.70\% \pm 0.62\%$	$90.83\%\pm 0.63\%$	$75.33\% \pm 0.29\%$	
GPT-4o-mini	$75.70\% \pm 0.44\%$	$71.51\% \pm 0.83\%$	$66.43\% \pm 0.76\%$	$69.60\% \pm 0.65\%$	$88.71\% \pm 0.72\%$	$70.12\% \pm 0.87\%$	
llama-3.1-8b-instruct	$69.61\% \pm 0.84\%$	$65.45\% \pm 0.93\%$	$60.41\% \pm 0.65\%$	$63.42\% \pm 0.45\%$	$86.12\% \pm 0.35\%$	$65.44\% \pm 0.87\%$	
mistral-7B-Instruct-v0.3	$67.55\% \pm 0.87\%$	$63.35\% \pm 0.43\%$	$58.37\% \pm 0.71\%$	$61.45\% \pm 0.32\%$	$85.21\% \pm 0.81\%$	$63.12\% \pm 0.94\%$	
gemma-2-9b-it	$65.45\% \pm 0.95\%$	$61.23\% \pm 1.0\%$	$56.31\%\pm 0.35\%$	$59.40\% \pm 0.85\%$	$84.51\% \pm 0.99\%$	$63.74\% \pm 0.49\%$	
GPT-40 - CoT+SC	$82.90\%\pm 0.57\%$	$78.72\%\pm 0.61\%$	$73.64\% \pm 0.43\%$	$75.80\% \pm 0.75\%$	$89.12\% \pm 0.94\%$	$75.42\% \pm 1.31\%$	

Table 2: Comparison results of various forms of information extracted from the KGs.

tions, highlighting the necessity for external knowledge to address this issue effectively.

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

Subgraph retrieval generally achieves best performance across different query types, especially for simpler queries. We demonstrate the performance of different retrieval methods across different query types in Figure 4, showing that subgraphs achieve the best performance. Especially for simpler queries ("Character Description" and "Event Description" which do not require intensive reasoning). Even for queries like "Relationship Explanation" and "Cause Explanation" which require stepwise reasoning, subgraph methods still demonstrate promising performance. This suggests that while different forms of retrieved knowledge offer unique benefits for specific types of queries, subgraphs provide consistently good performance.

4.3 RQ2: How Are KG-Aware Methods Affected by Noise / Perturbations in KGs?

We benchmark different KG-augmented LLMs on our OKGQA-P setting, where we deliberately perturb and contaminate the semantics and structure of KGs to simulate the real-world situation where KGs may not have high quality. Specifically, we consider different perturbation methods discussed in §2.2 and control the perturbation level based on the percentage of KG edges being perturbed. We first illustrate how much the perturbed KG has been deviated from the original KG with the increase of perturbation level, shown in Figure 5. It shows that the perturbation methods like edge deletion, rewiring and swapping have relatively weak influence on ATS (which intuitively measures semantic similarity), even as the perturbation level increases. For the edge deletion methods, only if the perturbation level reaches 1.0, the ATS goes to 0, otherwise, the ATS remains higher compared to other settings.

497

498

499

500

501

503

504

505

506

508

509

510

511

512

513

514

515

516

517

518

519

Figure 6 illustrates the hallucination ratio using different methods on the perturbed KGs. We observe that (1) FS-SG consistently outperforms FS-T and FS-P even at higher perturbation levels, demonstrating its robustness by maintaining higher scores as perturbations increase. (2) FS-T and FS-P exhibit similar trends, each showing a significant performance drop as perturbation levels

Figure 6: Performance Metric (FActScore) vs. Perturbation Level for Different Perturbation Methods and Different Retrieval Methods. **FS-T** refers to FActScore metric using triplets, **FS-P** refers to using paths, and **FS-SG** refers to using sub-graphs.

increase. Particularly, performance of FS-T and FS-P deteriorate when the perturbation level reaches 50%, *i.e.*, becoming worse than the baseline using CoT. (3) On the setting using Relation Replacement which severely harms the semantics of the KGs, FS-T and FS-P decline more sharply than FS-SG. However, it still outperforms the baseline when the perturbation level is smaller than 40%. In summary, we find that effectiveness of KGderived information diminishes with a perturbation level at 50%, surpassing this level leads to a further decrease in performance. We think that before this perturbation level at 50%, incorporating external knowledge from KGs can mitigate hallucinations in LLMs compared to baseline using CoT. Considering practical scenarios, platforms like Wikidata are less likely to have perturbations as severe as 50% due to their ongoing updates and community-based quality control. This ensures the relevance and applicability of our findings in real-world settings.

5 Conclusion

520

522

528

530

531

535

In this paper, we propose OKGQA and variant OKGQA-P, to assess LLMs enhanced with KGs under open-ended, real-world question answering scenarios. Unlike existing benchmarks that focus primarily on closed ended tasks, OKGQA presents diverse open-ended question types that mirror the unpredictable nature of practical applications. We conduct a series of experiments and analyze the effectiveness of various retrieval methods and LLMs of different magnitudes, providing insights for further research. Our results underscore the significance of integrating KGs with LLMs to help reduce hallucination of LLMs, even in circumstances where the KGs are contaminated. 551

552

553

554

555

556

557

558

559

560

561

563

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

6 Limitations

Our proposed benchmark primarily use DBpedia as the knowledge source, which may not generalize well to testing scenarios requiring highly specialized or domain-specific knowledge. Testing domain-specific open-ended QA may require constructing sub-graphs from domain-specific KGs. In addition, the study assumes a static KG for reasoning and retrieval. In dynamic environments where knowledge is continuously updated, maintaining and integrating real-time changes remains a challenge and may requires further design.

References

- Garima Agrawal, Tharindu Kumarage, Zeyad Alghami, and Huan Liu. 2023. Can knowledge graphs reduce hallucinations in llms?: A survey. *arXiv preprint arXiv:2311.07914*.
- Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023a. Knowledge-augmented language model prompting for zero-shot knowledge graph question answering. In Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE), pages 78–106, Toronto, Canada. Association for Computational Linguistics.
- Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023b. Knowledge-augmented language model prompting

581

634

for zero-shot knowledge graph question answering. In Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE), pages 78–106, Toronto, Canada. Association for Computational Linguistics.

- Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast incremental and personalized pagerank. arXiv preprint arXiv:1006.2880.
- Egon Balas. 1989. The prize collecting traveling salesman problem. Networks, 19(6):621–636.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783.
- Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, and Jonathan Larson. 2024. From local to global: A graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130.
- Giorgio Fagiolo. 2007. Clustering in complex directed networks. Physical Review E, 76(2):026107.
- Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal, Amir Feder, Roi Reichart, and Jonathan Herzig. 2024. Does fine-tuning llms on new knowledge encourage hallucinations? Preprint, arXiv:2405.05904.
- Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni, and Jian Guo. 2024. A survey on llm-as-a-judge. arXiv preprint arXiv: 2411.15594.
- Hangfeng He, Hongming Zhang, and Dan Roth. 2022. Rethinking with retrieval: Faithful large language model inference. arXiv preprint arXiv:2301.00303.
- Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, and Erik Cambria. 2023. A survey of large language models for healthcare: from data, technology, and applications to accountability and ethics. arXiv preprint arXiv:2310.05694.
- Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson, and Bryan Hooi. 2024a. G-retriever: Retrievalaugmented generation for textual graph understanding and question answering. arXiv preprint arXiv:2402.07630.
- Yufei He, Yuan Sui, Xiaoxin He, and Bryan Hooi. 2024b. Unigraph: Learning a unified cross-domain foundation model for text-attributed graphs. arXiv preprint arXiv: 2402.13630.
- Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang Nie, and Juanzi Li. 2023. A survey of knowledge enhanced pre-trained language models. IEEE Transactions on Knowledge and Data Engineering.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232.

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023a. Mistral 7b. Preprint, arXiv:2310.06825.
- Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Structgpt: A general framework for large language model to reason over structured data. arXiv preprint arXiv:2305.09645.
- Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. 2020. What disease does this patient have? a large-scale open domain question answering dataset from medical exams. arXiv preprint arXiv:2009.13081.
- Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Leong, Jia Qing Tan, Enamul Hoque, and Shafiq Joty. 2022. OpenCQA: Open-ended question answering with charts. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 11817–11837, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon Seo. 2023. The cot collection: Improving zero-shot and few-shot learning of language models via chain-of-thought fine-tuning. arXiv preprint arXiv:2305.14045.
- J Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics, 33 1:159-74.
- Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale Fung, Mohammad Shoeybi, and Bryan Catanzaro. 2023. Factuality enhanced language models for open-ended text generation. Preprint, arXiv:2206.04624.
- Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. 2024. Llms-as-judges: A comprehensive survey on llmbased evaluation methods. arXiv preprint arXiv: 2412.05579.
- Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel. 2016. Commonsense knowledge base completion. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1445–1455, Berlin, Germany. Association for Computational Linguistics.

- 744 745 747 748 749 750 751 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 772 773 774 778 779 780 781 782 783 784 785 786 787 790 791 792 793 794 795
- 796 797 798

- Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. 2023. G-eval: Nlg evaluation using gpt-4 with better human alignment. Preprint, arXiv:2303.16634.
 - Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. 2023a. Reasoning on graphs: Faithful and interpretable large language model reasoning. arXiv preprint arXiv:2310.01061.
 - Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. 2023b. Reasoning on graphs: Faithful and interpretable large language model reasoning. arXiv preprint arXiv:2310.01061.
 - Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a suit of armor conduct electricity? a new dataset for open book question answering. In EMNLP.

710 711

712

713

714

715

716

717

718

719

720

721

722

724

727

728

729

731

733

734

735

736

737

738

740

741

742

- Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-grained atomic evaluation of factual precision in long form text generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 12076–12100, Singapore. Association for Computational Linguistics.
- Jukka-Pekka Onnela, Jari Saramäki, János Kertész, and Kimmo Kaski. 2005. Intensity and coherence of motifs in weighted complex networks. Physical Review *E*, 71(6):065103.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35:27730–27744.
- Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. 2024. Unifying large language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data Engineering.
- Haritz Puerto, Gözde Gül Şahin, and Iryna Gurevych. 2023. Metaqa: Combining expert agents for multi-skill question answering. Preprint, arXiv:2112.01922.
- Han Qiu, Jiaxing Huang, Peng Gao, Qin Qi, Xiaoqin Zhang, Ling Shao, and Shijian Lu. 2024. Longhalqa: Long-context hallucination evaluation for multimodal large language models. Preprint, arXiv:2410.09962.
- Mrigank Raman, Aaron Chan, Siddhant Agarwal, PeiFeng Wang, Hansen Wang, Sungchul Kim, Ryan Rossi, Handong Zhao, Nedim Lipka, and Xiang Ren. 2020. Learning to deceive knowledge graph augmented models via targeted perturbation. arXiv preprint arXiv:2010.12872.

- Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and Janos Kertesz. 2007. Generalizations of the clustering coefficient to weighted complex networks. Physical Review E, 75(2):027105.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2024. Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36.
- Yuan Sui, Shanshan Feng, Huaxiang Zhang, Jian Cao, Liang Hu, and Nengjun Zhu. 2022. Causality-aware enhanced model for multi-hop question answering over knowledge graphs. Knowledge-Based Systems, 250:108943.
- Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, and Bryan Hooi. 2024. Fidelis: Faithful reasoning in large language model for knowledge graph question answering. Preprint, arXiv:2405.13873.
- Alon Talmor and Jonathan Berant. 2018. The web as a knowledge-base for answering complex questions. ArXiv, abs/1803.06643.
- Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. Commonsensega: A question answering challenge targeting commonsense knowledge. Preprint, arXiv:1811.00937.
- Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. 2022. Galactica: A large language model for science. arXiv preprint arXiv:2211.09085.
- Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, et al. 2024. Gemma 2: Improving open language models at a practical size. Preprint, arXiv:2408.00118.
- H. Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. 2022a. Interleaving retrieval with chain-of-thought reasoning for knowledgeintensive multi-step questions. Annual Meeting of the Association for Computational Linguistics.
- Harsh Trivedi, Niranjan Balasubramanjan, Tushar Khot, and Ashish Sabharwal. 2022b. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint arXiv:2212.10509.
- Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie Zhou. 2023. Is chatgpt a good nlg evaluator? a preliminary study. arXiv preprint arXiv:2303.04048.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain of thought reasoning in language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837.

799

800 801

802

803

804

805

810

811 812

813

814

815

816 817

818

819 820

821

822

823

824

- Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. 2024. Long-form factuality in large language models. *Preprint*, arXiv:2403.18802.
- Yilin Wen, Zifeng Wang, and Jimeng Sun. 2023. Mindmap: Knowledge graph prompting sparks graph of thoughts in large language models. *arXiv preprint arXiv:2308.09729*.
 - Lilian Weng. 2024. Extrinsic hallucinations in llms. *lilianweng.github.io*.
 - Yike Wu, Nan Hu, Guilin Qi, Sheng Bi, Jie Ren, Anhuan Xie, and Wei Song. 2023. Retrieve-rewriteanswer: A kg-to-text enhanced llms framework for knowledge graph question answering. *arXiv preprint arXiv:2309.11206*.
 - Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. 2016. The value of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 201–206.
- Shen Zheng, Jie Huang, and Kevin Chen-Chuan Chang. 2023. Why does chatgpt fall short in answering questions faithfully? *arXiv preprint arXiv:2304.10513*.

A Implementation Details

A.1 Query Construction

829

833

834

835

841

844

852

853

855

857

861

867

In this section, we discuss the details of the query construction of OKGQA. We first introduce the human-in-the-loop process to optimize the instruction for generating the queries, as shown in §A.1.1. We then present the metrics for quantify the generated queries in §A.1.2. Subsequently, we provide experiments results of human-in-the-loop process and demonstrate the Pearson correlation coefficients between human and LLM scores across rounds of optimization, and verify the inter-rater reliability across our evaluators in §A.1.3.

A.1.1 Human-in-the-loop for instruction optimization

To ensure that the generated queries accurately represent real-world scenarios and complexities, we propose a human-in-the-loop process to optimize the instruction used for generation, as shown in Figure 7. To ensure clarity, we summarize this optimization process here:

- Step 1: Generate a set of queries from an initial instruction.
- Step 2: Collect automatic evaluation scores s_{auto} by LLMs and human-label scores s_{human} by human annotators for these queries (normalized to the same range).
- Step 3: Identify patterns of discrepancies between these scores.
- Step 4: Let the LLM analysis the identified patterns to generate new instructions,

The step 3 and 4 are conducted by prompting LLM with prompt specified in §D.3, and steps 1 to 4 are running iteratively to reducing s_{auto} and s_{human} discrepancies. This process quite mimics the way of reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022) and inherits the benefit that labeling the reward of the LLMs' output is much easier than labeling the output directly.

Figure 7: Human-in-the-loop of query construction.

A.1.2 Metrics for generated queries

We consider five metrics to measure the quality of the generated queries: (1) **Naturalness**: assessing how fluid and human-like the query sounds; (2) **Relevance**: measuring whether the query pertains directly to the entity and the context provided; (3) **Specificity**: determining the level of detail and granularity included in the query, ensuring it is not too broad or vague; (4) **Novelty**: evaluating the uniqueness of the query, ensuring it is not just a repetitive or common question; (5) **Actionability**: gauging whether the query prompts clear, definite answers or actions that are feasible within the given context. Each of these angles contributes to a holistic evaluation of the query's effectiveness and relevance in real-world applications.

A.1.3 Verifying human-in-the-loop

For the human-label scores s_{human} collection, we have three evaluators participating in the manual assessment of query quality. All of the evaluators are computer science majors with fluent English skills. As the evaluation centers on various linguistic metrics such as naturalness, relevance, specificity, novelty, and actionability, we only require the evaluators to possess a fundamental understanding of English without restricting their majors. We calculate the Pearson correlation coefficients between human and LLM scores as shown in Table 3. It shows that as the rounds progress, agreement between humans and LLMs increases, suggesting that iterative feedback improves alignment between human annotation and LLM responses.

Metric	Round 1	Round 2	Round 3	Round 4
Naturalness	0.60	0.65	0.69	0.74
Relevance	0.55	0.59	0.64	0.70
Specificity	0.46	0.54	0.60	0.65
Novelty	0.49	0.57	0.63	0.67
Actionability	0.33	0.41	0.48	0.53

 Table 3: Pearson correlation coefficients between human

 and LLM scores across rounds.

In addition, we also consider verifying the interrater reliability across three evaluators as shown in Table 4. We report the Cohen's Kappa coefficient for each pair of evaluators as follows. Using the (Landis and Koch, 1977) interpretation guidelines, the Cohen's Kappa coefficients for Naturalness and Relevance (ranging from 0.79 to 0.85) fall within the "Substantial" to "Almost Perfect" categories, indicating strong inter-rater reliability for these metrics. This reflects a shared understanding

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

of the evaluation criteria, resulting in consistent 910 ratings among evaluators. For Specificity, Novelty, 911 and Actionability, the coefficients range from 0.58 912 to 0.68, placing them primarily in the "Moderate" 913 to "Substantial" categories. These results suggest moderate reliability for these metrics, likely due 915 to subjective interpretation and less clearly defined 916 evaluation guidelines. Novelty, with lower coeffi-917 cients around 0.61 to 0.63, highlights variability in 918 ratings, suggesting that evaluators may have differ-919 ing perspectives on what qualifies as novel (but the inter-rater reliability is still considered "Substan-921 tial"). Meanwhile, Actionability performs slightly 922 better, nearing the "Substantial" range, indicating moderately consistent criteria.

Metric	Evaluator 1 & 2	Evaluator 1 & 3	Evaluator 2 & 3
Naturalness	0.85	0.83	0.84
Relevance	0.81	0.79	0.80
Specificity	0.65	0.63	0.66
Novelty	0.60	0.58	0.61
Actionability	0.67	0.65	0.68

Table 4: Cohen's Kappa coefficient for various metrics.

A.2 Personalized PageRank (PPR)

925

926

927

931

In this section, we discuss the details of the PPR algorithm used in §2.1 to prune the graph from DB-Pedia and concentrate on nodes most pertinent to the central nodes of interest. The PPR is calculated using the iterative formula:

$$\mathbf{p} = \alpha \mathbf{A}^{\top} \mathbf{p} + (1 - \alpha) \mathbf{s}, \tag{4}$$

where $\mathbf{p} \in \mathbb{R}^n$ is the PPR vector representing the relevance scores of n nodes in the graph. α is the damping factor controlling the probability of 934 935 continuing the random walk versus restarting from the personalization vector. \mathbf{A}^{\top} is the transpose of 936 the column-normalized adjacency matrix A of the 937 graph, representing transition probabilities between nodes. $\mathbf{s} \in \mathbb{R}^n$ is the personalization vector, where 939 we assign a value of 1 to the central nodes and 0 to all other nodes to emphasize their importance. To 941 ensure convergence and computational efficiency, 942 we set a tolerance parameter tol = 1×10^{-6} and a maximum iteration limit max_iter = 100. After 944 computing the PPR vector **p**, we apply a threshold of 1×10^{-5} to prune the graph. Nodes with PPR scores below this threshold are considered insignificant with respect to the central nodes and are thus removed. This process effectively filters out 949 less relevant nodes, resulting in a pruned graph that highlights the most significant relationships and structures pertinent to our analysis. 952

A.3 Prize-Cost-based Path Retrieval

In this section, we detail the path-retrieval method used in §3.2. It is designed to construct and evaluate paths in a graph based on predefined prize assignments and cost allocations. The objective is to form sequences of nodes and edges, represented as $\mathcal{P} = \{v_1, e_1, v_2, ..., e_{n-1}, v_n\}$, that maximize the overall score and minimize the costs. To efficiently manage the exploration of potential paths, we utilize a priority queue, a data structure that allows paths to be organized based on their scores, ensuring that the highest-scoring paths are processed first. The method starts by picking a number of starting nodes with high prizes. We then expand these starting points by exploring neighboring nodes. For each neighbor, the method calculates a new score. This score is the sum of the neighbor's prize and the edge's prize minus the edge's cost. If this neighbor hasn't been visited before, which helps avoid looping, the algorithm adds this neighbor to the path. This new path is then added to the priority queue. This expansion keeps going until the path reaches a maximum length or can't be extended further. The algorithm keeps track of paths already explored to avoid repetition and ensure paths don't loop back on themselves. When no more paths can be added or the priority queue is empty, the algorithm sorts the paths by their scores from highest to lowest.

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1002

A.4 LLM Evaluation Clarity

To address the concern regarding potential selfenhancement bias in LLM-as-evaluator frameworks, we have conducted extensive validation of our evaluation approach. In specific, we randomly sample 100 questions and evaluated them using three different LLMs (gpt-4o-mini, llama-3.1-8binstruct, and gemma-2-9b-it). We measured intermodel agreement using Cohen's Kappa as shown in Table 6, which showed substantial to almost perfect consistency. This indicates that the evaluation results are consistent across different LLMs, even when the model generating the responses is not the same as the one evaluating them (e.g., using gpt-40-mini for generation and llama-3.1-8b-instruct for evaluation). These findings confirm that the evaluation is robust and independent of the specific LLM used as the evaluator.

In addition, we also collect human evaluations for these 100 samples. Three experts annotators rate each anonymized response on context rele-

Setting	Context Relevance	Comprehensiveness	Correctness	Empowerment	SAFE	FActScore
OKGQA (subgraphs)	$75.70\% \pm 0.44\%$	$71.51\% \pm 0.83\%$	$66.43\% \pm 0.76\%$	$69.60\% \pm 0.65\%$	$88.71\% \pm 0.72\%$	$70.12\% \pm 0.87\%$
+ Multi-lingual context	$75.14\% \pm 0.33\%$	$72.32\%\pm 0.19\%$	$66.72\% \pm 0.74\%$	$70.32\%\pm 0.57\%$	$90.32\% \pm 0.48\%$	$72.83\% \pm 0.93\%$
Table 5: Comparison of GPT-4o-mini Performance Using Monolingual and Multilingual Subgraphs						
Metric LLM	1&2 LLM12	& 3 LLM 2 & 3	- Similarit	v in Clusterii	ng Coefficient	t Distribution

Metric	LLM I & 2	LLM I & 3	LLM 2 & 3
G-Eval	0.84	0.81	0.82
FactScore	0.78	0.74	0.78
SAFE	0.74	0.70	0.72

Table 6: Cohen's Kappa coefficient for different LLM pair comparisons. For the G-Eval, we use the average score of four sub-metrics for better readability. LLM 1: gpt-4o-mini; LLM 2: llama-3.1-8b-instruct; LLM 3: gemma-2-9b-it)

vance, comprehensiveness, correctness and empowerment using a 1-5 Likert scale. The average human ratings are computed and compared with automated scores using G-Eval. The Pearson's correlation yields a score of 0.78, indicating strong alignment between human judgment and LLM-based evaluation. Combined with the inter-model agreement shown in Table 6, these results confirm that our evaluation is robust, consistent, and largely independent of the specific LLM used as the evaluator.

A.5 KG Similarity Metrics

1003

1005

1007

1008

1010

1011

1012

1013

1015

1016

1017

1020

1021

1022

1023

1025

1028

1030

1031

1034

1035

1036

1038

In this section, we introduce the metrics used in §2 to measure the deviation of the perturbed KGs from the original KG. These metrics are adapted from (Raman et al., 2020) as presented below. ATS is mainly used to measure the semantic similarity between two KGs, while SC2D and SD2 are used to measure the structural similarity.

Aggregated Triple Score (ATS): ATS measures semantic similarity between two KGs. Let s_{G} be an edge (triple) scoring function, such that $s_{\mathcal{G}}(e_1, r, e_2)$ measures how likely edge (e_1, r, e_2) is to exist in \mathcal{G} . Also, assume $s_{\mathcal{G}}$ has been pre-trained on \mathcal{G} for link prediction. Then, ATS is defined as $f_{ATS}(\mathcal{G}, \mathcal{G}') =$ $\frac{1}{|\mathcal{T}'|}\sum_{(e_1,r,e_2)\in\mathcal{T}'}s_{\mathcal{G}}(e_1,r,e_2)\in[0,1]$, which denotes the mean $s_{\mathcal{G}}$ score across all edges in \mathcal{G}' . Intuitively, if a high percentage of edges in \mathcal{G}' are also likely to exist in \mathcal{G} (i.e., high ATS), then we say that \mathcal{G}' and \mathcal{G} have high semantic similarity. $s_{\mathcal{G}}$ is task-specific, as KGs from different tasks may differ greatly in semantics. We use the $s_{\mathcal{G}}$ from (Li et al., 2016); while ATS captures semantic KG differences, it is not sensitive to KG connectivity structure. Note that $f_{ATS}(\mathcal{G}, \mathcal{G})$ may not equal 1, since $s_{\mathcal{G}}$ may not perfectly generalize to KGs beyond those it was trained on.

ig Coe (SC2D): SC2D measures structural similarity between two KGs and is derived from the local clustering coefficient (Saramäki et al., 2007; Onnela et al., 2005; Fagiolo, 2007). For a given entity in \mathcal{G} (treated here as undirected), the local clustering coefficient is the fraction of possible triangles through the entity that exist (i.e., how tightly the entity's neighbors cluster around it). For entity $e_i \in \mathcal{E}$, the local clustering coefficient is defined as $c_i = 2\text{Tri}(e_i)/(\text{deg}(e_i)(\text{deg}(e_i)-1)))$, where $\text{Tri}(e_i)$ is the number of triangles through e_i , and $deg(e_i)$ is the degree of e_i . For each relation $r \in \mathcal{R}$, let \mathcal{G}^r be the subgraph of \mathcal{G} consisting of all edges in \mathcal{T} with r. That is, $\mathcal{G}^r = (\mathcal{E}, r, \mathcal{T}')$, where $\mathcal{T}' = \{(e, r, e') \mid e, e' \in \mathcal{E}\}$. Let \mathbf{c}^r denote the $|\mathcal{E}|$ -dimensional clustering coefficient vector for \mathcal{G}^r , where the *i*th element of \mathbf{c}^r is c_i . Then, the mean clustering coefficient vectors for \mathcal{G} and \mathcal{G}' are $\mathbf{c}_o = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \mathbf{c}^r$ and $\mathbf{c}_p = \frac{1}{|\mathcal{R}'|} \sum_{r \in \mathcal{R}'} \mathbf{c}^r$, respectively. SC2D is defined as $f_{\text{SC2D}}(\mathcal{G}, \mathcal{G}') = 1 - \frac{\|\mathbf{c}_o - \mathbf{c}_p\|_2}{\|\mathbf{c}_o - \mathbf{c}_p\|_{2+1}} \in [0, 1]$, with higher value indicating higher similarity.

1039

1040

1041

1042

1043

1044

1045

1046

1047

1049

1050

1051

1053

1054

1055

1057

1058

1059

1062

1063

1065

1066

1068

1069

1070

1071

1074

1075

1076

1077

1079

1080

1081

1082

1084

Similarity in Degree Distribution (SD2): SD2 also measures structural similarity between two KGs, while addressing SC2D's ineffectiveness when the KGs' entities have tiny local clustering coefficients (e.g., the item KG used by recommender systems is roughly bipartite). In such cases, SC2D is always close to one regardless of the perturbation method, thus rendering SC2D useless. Let d^r denote the $|\mathcal{E}|$ -dimensional degree vector for \mathcal{G}^r , where the *i*th element of d^r is deg(e_i). Then, the mean degree vectors for \mathcal{G} and \mathcal{G}' are $d_o =$ $\frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} d^r$ and $d_p = \frac{1}{|\mathcal{R}'|} \sum_{r \in \mathcal{R}'} d^r$, respectively. SD2 is defined as $f_{\text{SD2}}(\mathcal{G}, \mathcal{G}') = 1 - \frac{\|\mathbf{d}_o - \mathbf{d}_p\|_2}{\|\mathbf{d}_o - \mathbf{d}_p\|_2} \in [0, 1]$, with higher value indicating higher similarity.

B Extension of OKGQA

In this section, we extend our benchmark by incorporating multilingual context and validating our query generation against DBpedia's structure. We first introduce the multilingual setup of our dataset anc compare the performance of multilingual subgraphs with the monolingual subgraphs (§B.1). We then analyze the relationship between generated queries and DBpedia by examining query generation, entity/relation coverage, and subgraph align-

1088 1089

1090

1091

1093

1094

1095

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

ment (§B.2). We also compare OKGQA with the existing widely used benchmarks in Table 7.

B.1 Multilingual Setup of OKGQA

KGs typically include entities and relations in multiple languages, providing a richer context that can benefit our OKGQA setting. In this experiment, we investigate whether incorporating multilingual context improves overall performance. Specifically, we randomly sample 300 queries from our dataset and generate subgraphs that include multilingual entities and relations from DBpedia. We then apply PPR consistent with our original method in §2.1 to reduce the KG size. For this multilingual setting, we consider five languages-Greek, Polish, Portuguese, Spanish, and English-which cover the majority of entities in DBpedia. We compare the performance of GPT-40-mini using the new multilingual subgraphs against the original monolingual subgraphs, as shown in Table 5. Our findings indicate that including multilingual context generally leads to better performance across multiple metrics. Intuitively, this additional multi-lingual context may provides more knowledge from different perspectives (which could provide more context, but also may requires more techniques for handle challenges like duplicates across languages) and also provide another way to validate the factuality of the resources stored in the KGs (which can provide more authenticity through cross validation from different languages).

B.2 Generated Query-DBpedia Alignment

We analyze the alignment between our generated queries and DBpedia along three dimensions: query generation, entity/relation coverage, and subgraph alignment as follows:

Query Generation: Each query is directly generated from DBpedia entities and their relationships. For example, when asking about Microsoft's founder, we first confirm that both "Microsoft" and "Bill Gates" exist in DBpedia and are connected by the founded_by relation, ensuring that our queries are firmly grounded in the knowledge graph.

Entity and Relation Coverage: Our analysis indicates that:

- 92% entities mentioned in the queries can be detected from DBpedia entities.
- 87% queries have complete relation paths connecting the relevant entities from DBPedia.

Entities/relations mentioned in queries cover 1133 72% of DBpedia's most common entities/predicates and span diverse entity types (e.g., Person, Organization, and Event).

1137

1138

1139

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1178

1179

Subgraph Alignment: We evaluate the structure of the sampled subgraphs for each query and find that:

- 75% of the queries retrieve subgraphs within 3–4 hops, which aligns with the typical depth for DBpedia reasoning tasks.
- On average, each subgraph contains 48 nodes and 152 edges, with an average node degree of 3.17 and a clustering coefficient of 0.69, which also aligns with the property of DBPedia.

These statistics support that our dataset accurately reflects DBpedia's structure, ensuring both authenticity and complexity in the generated queries.

C Related Work

Due to the stochastic decoding process of Large 1153 Language Models (LLMs), *i.e.*, sampling the next 1154 token in the sequence, LLMs exhibit probabilistic 1155 behaviors: (1) potentially yielding varied outputs of 1156 the same input across different instances (Agrawal 1157 et al., 2023); (2) cannot accurately interpret phrases 1158 or terms when the context is vague and resides in a 1159 knowledge gap of the model. This will lead to out-1160 puts that may sound plausible but are often irrele-1161 vant or incorrect. This will lead to outputs that may 1162 sound plausible but are often irrelevant or incorrect. 1163 This "hallucinations" undermines the reliability of 1164 LLMs (Huang et al., 2023). One emerging research 1165 trend is enhancing LLMs through integrating exter-1166 nal knowledge graphs (Agrawal et al., 2023). KGs 1167 offer structured, explicit, and up-to-date factual 1168 knowledge, including domain-specific knowledge, 1169 providing a faithful knowledge source for reason-1170 ing (Zheng et al., 2023; Agrawal et al., 2023; Sui 1171 et al., 2022). Moreover, each piece of information 1172 in KGs can be traced back to its source, provid-1173 ing context and provenance. This traceability not 1174 only aids in verifying the reliability of the informa-1175 tion but also provides clear pathways of reasoning, 1176 making the interpretation process transparent. 1177

Researchers employ diverse strategies to augment the LLMs by integrating external KGs (Sui

Dataset	# Questions	Question Type	Focus Areas	Source of Questions	Knowledge Base	Hallucination Detection	Unreliable KG
OKGQA	850 / 2,050	Open-ended	Evaluating hallucination and reasoning capabilities in LLMs when augmented with Knowledge Graphs; diverse queries requiring complex reasoning	Curated	DBPedia	1	1
WebQuestions	5,810	Factoid	Questions derived from Google Suggest queries, focusing on simple factual information	User queries	Freebase	×	×
ComplexWebQuestions	34,689	Multi-hop Factoid	Extends WebQuestions with more complex, multi-hop ques- tions requiring compositional reasoning	User queries	Freebase	×	×
GrailQA	64,331	Varied Factoid	Evaluates generalization in KBQA with questions requiring different levels of reasoning	Crowdsourced	Freebase	X	×

Table 7: Comparison of OKGQA with existing benchmarks along with their question types, focus areas, and additional properties.

et al., 2024; He et al., 2024b). For example, KAP-1180 ING (Baek et al., 2023b) matches entities in gues-1181 tions to retrieve related triples from knowledge 1182 graphs for zero-shot question answering. Wu et al. 1183 (2023) finds that converting these triples into tex-1184 tualized statements can further enhance LLM per-1185 formance. StructGPT (Jiang et al., 2023b) pro-1186 1187 pose to convert user query into structured formats (e.g., SPARQL) for information extraction 1188 from KGs. Following the succuess of internal 1189 reasoning-enhancement methods like Chain-of-1190 thoughts (CoT) (Wei et al., 2022), Reflexion (Shinn 1191 et al., 2024), and Tree-of-thoughts (ToT), He et al. 1192 (2022) propose "rethinking with retrieval" to use 1193 decomposed reasoning steps from CoT prompting 1194 to retrieve external knowledge, leading to more ac-1195 curate and faithful explanations. IR-CoT (Trivedi 1196 et al., 2022b) interleaves the generation of CoT 1197 with knowledge retrieval from corresponding KGs, 1198 iteratively guiding both retrieval and reasoning 1199 for multi-step questions. MindMap (Wen et al., 1200 2023) introduce a plug-and-play approach to evoke 1201 graph-of-thoughts reasoning in LLMs. Similarly, 1202 RoG (Luo et al., 2023b) use KGs to create faith-1203 ful reasoning paths based on various relations, en-1204 abling interpretable reasoning in LLMs. 1205

1206

1207

1208

1210

1211

1212

1213

1214

1215

1216

1217

1218 1219

1220

1221

1222

1223

However, current benchmarks for testing the capabilities of these LLM+KG models are predominantly closed-ended, restricting responses to a limited set of entities/relations or a set of logical forms derived from specific facts of KG. Hence, they can only test a very limited subset of the LLM's tendency to hallucinate, leaving a gap in the assessment of complex, real-world scenarios. Particularly, standard metrics such as FActScore (Min et al., 2023) and SAFE (Wei et al., 2024) for evaluating the hallucination rate of LLMs require openended settings, *i.e.*, questions are phrased as a statement which requires a longer answer. Compared with previous works, our proposed OKGQA is tailored for evaluating LLMs enhanced with KGs under open-ended, real-world question-answering scenarios. The benchmark extends the assessment of closed-ended question answering to an open-ended

setting, which can further support the assessment of hallucination of LLMs.

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

D Prompt List

In this section, we present all the prompts required for the main experiments. To enhance clarity, we provide only one example in the prompt labeled as Example 1; the other few-shot examples utilized are labeled as Other In-Context Few-shots within the prompt.

D.1 Knowledge-Augmented Generation

System Instruction: "You are a helpful assistant designed to answer the users' open-ended questions. Your task is to provide accurate, concise, and useful information to foster understanding and solve problems. Whether the questions relate to complex scientific concepts, historical events, practical advice, or everyday life, your goal is to assist by offering thoughtful and informative responses." In-Context Few-shots

Question: {Question}

Below are the facts that might be relevant to answer the question: {Retrieved-knowledge} Answer:

D.2 OKGQA Query Generation Prompting

System Instruction: "Generate open-ended ques-1248 tions about different types: character description, 1249 event description, cause explanation, relationship 1250 explanation, trend prediction, outcome prediction, 1251 contrast analysis, historical comparison, evalua-1252 tion and reflection, and application and practice. 1253 Please provide specific suggestions. Generate the 1254 questions, the type of the questions, the placehold-1255 ers, the naturalness of your generated questions 1256 (choose from high, medium, and unnatural), the 1257 difficulty of the generated questions (choose from 1258 hard, medium and easy) and DBPedia_entities (link 1259 the placeholders to DBPedia entities) in JSON for-1260 mat." 1261

Example 1: as shown in Figure 8.	1262
Other In-Context Few-shots	1263
Generation:	1264

```
1
     {
       "question": "Compare and contrast the similarities and
2
       differences between the Apple iPhone and Samsung
       Galaxy in terms of user interface design.",
3
       "type": "contrast analysis",
       "placeholders": {
4
          "entity A": "Apple iPhone",
5
          "entity B": "Samsung Galaxy"
6
         "aspect": "user interface design"
7
8
       }.
       "naturalness": "high",
9
10
       "difficulty": "medium"
        "dbpedia_entities": {
11
12
          "entity A": "http://dbpedia.org/resource/IPhone",
         "entity B": "http://dbpedia.org/resource/
13
         Samsung_Galaxy"
14
       3
15
```

Figure 8: Example 1 Demonstration.

D.3 Prompts for Instruction Tuner

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1282

1283

1284

1285

1286

1288

1289

1290

1291

1292

1293

1294

Act as an "Instruction Tuner" for the LLM, you will be given the inputs: (1) the {Current Instruction} used to guide the LLMs's evaluation, including specific examples with ground truth labels; (2) {Current Errors} that emerged with this instruction are applied to the dataset.

The current errors are presented in the following format: (1) INPUT: {input text} (2) PRE-DICTED OUTPUT: {predicted label}, (3) EX-PECTED OUTPUT: {ground truth label}. Carefully analyze these errors and craft a revised concise instruction for the LLM to fit the expected outputs. Include 2-3 examples at the end of your response to demonstrate how the new instruction would be applied.

D.4 Metrics Prompt for G-eval

System Instruction: "You are a helpful assistant designed to evaluate the quality of the response to a query. Your task is to rate the response on one metric defined as below:"

Empowerment Criteria: Evaluate whether the "Actual Output" can help the reader understand the topic and make informed decisions regarding the "Input". A response with high empowerment provides accurate information and explanations that enhance the reader's understanding. When evaluating empowerment, consider the relevance of the information provided in the "Actual Output" to the "Input" and the "Retrieval Context".

1295Comprehensiveness Criteria: Evaluate the ex-1296tent to which the "Actual Output" covers all aspects1297and details of the question "Input". A comprehen-1298sive answer should thoroughly address every part1299of the question, leaving no important points un-1300addressed. When evaluating comprehensiveness,1301consider the relevance of the information provided

in the "Actual Output" to the "Input" and the "Retrieval Context". 1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1324

1325

1326

1328

1329

Correctness Criteria: Measure how clearly and specifically the "Actual output" responds to the question "input". A highly direct response stays focused on the question, providing clear and unambiguous information. When evaluating correctness, consider the relevance of the information provided in the "Actual Output" to the "Input" and the "Retrieval Context".

Context Relevance Criteria: Evaluate the extent to which the "Actual output" incorporates relevant information from the "Retrieval Context". This includes assessing whether the output adheres to the thematic, factual, and situational specifics presented in the "Retrieval Context". Relevant responses not only address the direct query but also align closely with the contextual elements provided, ensuring a seamless and coherent transition between the "Retrieval Context" and the "Actual Output". The most contextually relevant responses demonstrate an understanding and appropriate reflection of the given circumstances, historical facts, or conceptual background, thereby contributing to the overall accuracy and utility of the information provided.

Response: [Respond with metric and the corresponding score.]