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Abstract

Recent works integrating Knowledge Graphs001
(KGs) have led to promising improvements002
in enhancing the reasoning accuracy of Large003
Language Models (LLMs). However, cur-004
rent benchmarks focus mainly on closed-ended005
tasks, leaving a gap in the assessment of more006
complex real-world scenarios. This gap has007
also obscured the evaluation of KGs’ poten-008
tial to mitigate the problem of hallucination in009
LLMs. To fill the gap, we introduce OKGQA,010
a new benchmark specifically designed to as-011
sess LLMs enhanced with KGs under open-012
ended, real-world question answering scenar-013
ios. OKGQA is designed to closely reflect014
the complexities of practical applications using015
questions from different types, and incorporates016
specific metrics to measure both hallucination017
ratio and the enhancement in reasoning capa-018
bilities. To consider the scenario in which KGs019
may have varying levels of mistakes, we pro-020
pose another benchmark variant OKGQA-P to021
assess model performance when the semantics022
and structure of KGs are deliberately perturbed023
and contaminated. OKGQA aims to (1) explore024
whether KGs can make LLMs more trustwor-025
thy in an open-ended setting, and (2) conduct a026
comparative analysis to shed light on method027
design. We believe that this study can facilitate028
a more complete performance comparison and029
encourage continuous improvement in integrat-030
ing KGs with LLMs to reduce hallucination.031

1 Introduction032

Contemporary LLMs are prone to producing033

hallucinations due to gaps in their knowl-034

edge (Gekhman et al., 2024; Lee et al., 2023).035

These inaccuracies commonly stem from misin-036

formation, biases, or errors in the training data,037

and lead to responses that seem plausible but may038

be irrelevant or incorrect (Weng, 2024). This is-039

sue is particularly concerning in high-stakes con-040

texts such as healthcare (He et al., 2023) and sci-041

Close-ended Q: Who founded Microsoft?
Answer: Bill Gates.

Open-ended Q: Why did Bill Gates and Seregy 
Brin all give up day-to-day control of at 
Microsoft and Google at such young ages?
Answer: Bill Gates Microsoft in 1975 and 
remained its CEO until 2000 when he handed 
over the role to Steve Ballmer. His decision to 
step back was largely influenced by his desire 
to focus on his philanthropic efforts through 
the Bill & Melinda Gates Foundation, a major 
part of his life’s work…

Figure 1: Comparison between Open-ended Question and
Close-ended Question over Knowledge Graph.

ence (Taylor et al., 2022)1. 042

To address this limitation, researchers have 043

turned to leveraging external knowledge graphs 044

(KGs) as a complementary (Pan et al., 2024; Luo 045

et al., 2023a; Hu et al., 2023; Sui et al., 2024). 046

KGs offer structured and explicit factual informa- 047

tion—often domain-specific—and allow each piece 048

of data to be traced back to its source (Zheng et al., 049

2023; Agrawal et al., 2023). This traceability not 050

only enables verification of the model’s reasoning 051

but also brings transparency to the decision-making 052

process, making KGs a promising method for en- 053

hancing the reliability of LLM reasoning. Find 054

more details of related works in §C. 055

However, current benchmarks for testing these 056

LLM+KG models are predominantly closed- 057

ended (Jin et al., 2020; Puerto et al., 2023), re- 058

stricting the model’s output to a limited set of enti- 059

ties, relations (Talmor et al., 2019; Mihaylov et al., 060

2018) or logical forms (Yih et al., 2016; Talmor 061

and Berant, 2018). While these benchmarks are 062

useful to measure retrieval and basic reasoning, 063

they do not adequately capture whether a model is 064

hallucinating. In closed-ended settings, errors can 065

stem from incorrect retrieval or from fabricating 066

(hallucinating) answers, yet conventional metrics 067

(e.g., accuracy or precision) cannot distinguish be- 068

tween these two issues. This becomes problematic 069

for more complex, real-world applications that de- 070

1Code and data are released at https://anonymous.
4open.science/r/OKGQA-CBB0
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mand nuanced answers (Kantharaj et al., 2022).071

In contrast, our work focuses on open-ended072

KGQA, where LLMs are prompted to generate073

more elaborate answers, include reasoning paths074

and supporting facts derived from the KG (as075

shown in Figure 1). This broader output space076

offers two key advantages: First, it enables di-077

rect assessments of hallucination with metrics like078

FActScore (Min et al., 2023) or SAFE (Wei et al.,079

2024)), which decompose longer responses into080

atomic statements for factual consistency checks081

with external knowledge sources like Wikipedia.082

Second, it increases the likelihood of exposing fac-083

tual errors which helps to assess the phenomenon084

indicated in Qiu et al. (2024): where longer, more085

complex responses provide more opportunities for086

errors to occur. By adopting this open-ended ap-087

proach, we aim to (1) explore whether KGs can088

make LLMs more trustworthy in the open-ended089

setting, and (2) conduct a comparative analysis090

to shed light on methods design and direction for091

leveraging KGs to reduce LLMs’ hallucination.092

To achieve this, we introduce a new bench-093

mark, Open-ended Knowledge-Graphs Question094

Answering (OKGQA), specifically designed to as-095

sess LLMs enhanced with KGs in an open-ended096

QA setting. OKGQA is designed to closely re-097

flect the complexities of practical applications with098

diverse questions types as mentioned in Table 1,099

ensuring that all the queries cannot be answered100

simply by retrieving isolated KG facts. To con-101

sider the scenarios for potentially contaminated or102

imperfect KGs (i.e., attributes may be mislabeled,103

relations may not exist, etc.), we also propose a104

variant OKGQA-P (§2.2) to assess model perfor-105

mance under conditions where KGs’ semantics and106

structure are deliberately perturbed and contam-107

inated. In both settings, we measure the degree108

of hallucination and the overall quality of the re-109

sponses (see §4.1 for details).110

Based on our experiments, we find that (1) in-111

tegrating KG information generally mitigates fac-112

tual errors, especially for queries requiring deep113

reasoning; (2) directly performing reasoning in114

the LLM itself (e.g., internal reasoning strategies115

like Chain-of-thought (Kim et al., 2023) and Self-116

Consistency (Wang et al., 2022)) may cause bias117

and hallucination; (3) subgraph-based methods of-118

ten achieve the best performance for simpler query119

types; and (4) incorporating KGs effectively re-120

duces hallucinations in LLMs even when the KG121

is partially contaminated.122

2 OKGQA: An Open-ended Knowledge 123

Graph Question-Answering Benchmark 124

OKGQA is a comprehensive benchmark designed 125

to assess how effectively LLMs enhanced with KGs 126

perform in open-ended, real-world-like question an- 127

swering scenarios. Unlike existing benchmarks that 128

focus primarily on closed-ended tasks, OKGQA 129

presents diverse open-ended question types that 130

mirror the variable nature of practical applications. 131

As illustrated in Figure 1, given a complex query 132

and its corresponding subgraph in a KG, the system 133

must be capable of understanding the relationships 134

within the data and performing human-like reason- 135

ing over the KG content to compose a paragraph- 136

long answer. In the following section, we first 137

describe our dataset construction, including query 138

generation via LLM templates and KG subgraph 139

extraction with PPR pruning. We then introduce 140

OKGQA-P, a benchmark variant designed to eval- 141

uate model robustness under KG perturbations, de- 142

tailing our perturbation methods and the metrics 143

used to assess semantic and structural deviations. 144

Due to the page limitation, we also include some 145

extension of our benchmark in Appendix §B, in- 146

cluding multilingual setup, and more analysis. 147

2.1 Dataset Construction 148

Queries. We utilize a template-based approach 149

to generate a diverse range of queries using LLMs, 150

including categories such as descriptive, explana- 151

tory, predictive, comparative, and critical queries. 152

Details regarding specific templates and example 153

queries can be found in Table 1, while the corre- 154

sponding prompts are provided in the Appendix D. 155

To ensure that the generated queries represent real- 156

world scenarios and complexities, we employ an 157

iterative optimization approach that utilizes both au- 158

tomated and human evaluation to refine the query 159

generation process (the details are given in Ap- 160

pendix A.1). Initially, we generate a diverse set of 161

query candidates from a seed instruction. These 162

candidates undergo automated evaluation using 163

an LLM-based evaluator, which assigns quality 164

scores sauto on a scale of 1-10, with higher scores 165

indicating better performance across multiple met- 166

rics. Subsequently, human evaluators assess the 167

same queries, producing corresponding normalized 168

scores shuman within the same range. To refine 169

the dataset, we iteratively optimize the input in- 170

structions by minimizing the discrepancy between 171

shuman and sauto. This optimization process ensures 172
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Statistics (on average)

Tokens in query 23.97
Total number of queries 850 → 2,050
Number of unique DBPedia entities 816

Before Pruning → After PPR Pruning

Tokens in subgraph 348,715 → 2,452
Number of nodes 7,171 → 48
Number of Edges 8,213 → 152
Avg. Degree 1.15 → 3.17
Clustering Coefficient 0.00 → 0.69
Graph Density 0.00 → 0.07

Query Type Simple Complex

Descriptive 78 11
Explanatory 195 56
Predictive 110 55
Comparative 72 74
Critical 182 17
Total 637 213

(a) Dataset statistics and query types (b) Distribution of sub-query types

Figure 2: (left) Dataset statistics and query types, (right) Sub-query type distribution

alignment between automated and human quality173

assessments. The queries are also categorized by174

complexity with detailed statistics in Figure 2.175

KG Sub-graphs. To reduce the size of KGs176

while retaining relevant information, we follow177

previous work (Yih et al., 2016; Talmor and Be-178

rant, 2018) by sampling subgraphs from DBpedia179

(Noted that all queries in OKGQA can be answered180

using DBpedia). We extract all triples contained181

within the K-hop neighbors from the entities men-182

tioned in the query. We set K = 2 to balance graph183

size and computational feasibility. As increasing184

beyond 2-hop subgraphs generally leads to expo-185

nential growth in edges and nodes (Jin et al., 2020),186

which increase excessive noise and complicating187

information retrieval2. To further reduce the size188

of the 2-hop subgraphs, we leverage Personalized189

Page-Rank (PPR) (Bahmani et al., 2010) to prune190

the nodes/edges that are not relevant to the query191

(the details of the PPR algorithm are discussed in192

Appendix A.2). We compare the statistics of sub-193

graphs before and after PPR pruning in Figure 2a.194

2.2 OKGQA-P: Benchmark with Noise &195

Perturbations in KGs196

KGs are often annotated by humans and can con-197

tain errors such as mislabeled attributes or miss-198

ing relations. To mimic the real situations where199

KGs’ quality may not be fully reliable, we propose200

OKGQA-P to assess the model performance under201

deliberately perturbed and contaminated KGs. We202

introduce various perturbation scenarios including203

2This choice is also informed by common practices in
other benchmarks, such as WebQSP (Yih et al., 2016) and
CWQ (Talmor and Berant, 2018), where 2-hop subgraphs are
widely used for similar KGQA tasks.

mislabeled attributes, incorrect relations, and miss- 204

ing connections to test how well models can handle 205

flawed or incomplete KG data. To quantify the 206

degree of perturbation, we measure the semantic 207

and structural similarity between the original and 208

the modified KG as defined below. 209

Notation. Let Fθ be a KG-augmented model, 210

and KG as G = (V, E , T ), where V is the set of en- 211

tities (nodes), E is the set of relation types (edges), 212

and T = {(v1, e, v2)|v1, v2 ∈ V, e ∈ E} is the 213

set of triplets composed of entities and relations. 214

Let G′ = (V, E ′, T ′) be the KG after perturbing 215

G, where E ′ ̸= E and T ′ ̸= T . Let f(G,G′) be 216

a function that measures the similarity between G 217

and G′. Let g(G) be the downstream performance 218

when evaluating Fθ on data samples X and G. 219

High-level Procedure. First, we test Fθ on data 220

samples X and G to get the original performance 221

g(G). Second, we perturb G to obtain G′. Third, we 222

evaluate Fθ on data samples X and G′ to get the 223

perturbed performance g(G′). Finally, we measure 224

g(G) − g(G′) and f(G,G′) to assess how robust 225

Fθ is, i.e., to assess the model performance under 226

conditions where KGs’ semantics and structure are 227

deliberately perturbed. 228

To quantify how much the perturbed KG has 229

deviated from the original KG, i.e., f(G,G′), we 230

leverage metrics from (Raman et al., 2020) for cap- 231

turing semantics (ATS) and structural (SC2D, SD2) 232

similarity between KGs. Intuitively, ATS leverages 233

a pre-trained LM for link prediction to measure 234

the probability of each edge from G′ existing in 235

G, while SC2D and SD2 measure the structural 236

similarity between two KGs based on local cluster- 237

ing coefficient and degree distribution. For each 238

of the three metrics, higher value indicates higher 239
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Type Sub-Type Description / Template Example

Descriptive
Character Description

Describe a [person]’s significant contributions
during their career.

Please describe Albert Einstein’s contributions to the
field of physics.

Event Description
Provide a detailed description of the background
and course of an [event].

Please provide a detailed description of the background
and course of the French Revolution.

Explanatory
Cause Explanation Why did [person] take [action] at [time]? Why did Nixon choose to resign from the presidency

in 1974?

Relationship Explanation
Explain the relationship between [entity A] and
[entity B] and its significance.

Explain the relationship between Alexander the Great
and Aristotle and its significance.

Predictive
Trend Prediction

Based on the historical behavior of [entity], what
do you think it might do in the future?

Based on Tesla’s historical behavior, in which fields do
you think it might innovate in the future?

Outcome Prediction
Based on the current situation, how do you predict
[event] will develop?

Based on the current international situation, how do you
predict climate change policies will develop?

Comparative
Contrast Analysis

Compare and contrast the similarities and differences
between [entity A] and [entity B] in [aspect].

Compare and contrast the leadership styles of Steve Jobs
and Bill Gates.

Historical Comparison
Compare the impact of [historical event A] and
[historical event B].

Compare the impact of World War I and World War II
on the global order.

Critical
Evaluation and Reflection

How do you evaluate the impact of [person/event]
on [field]? Please explain your viewpoint.

How do you evaluate Martin Luther King’s impact on
the civil rights movement? Please explain your viewpoint.

Application and Practice
How do you think [theory/method] can be applied
to [practical issue]?

How do you think machine learning technology can be
applied to medical diagnostics?

Table 1: Query types and examples in OKGQA. Brown is used to highlight the placeholders (e.g., [person], [event]) in
description, while Teal highlights the specific entities to replace the placeholders.

similarity. The detailed description can be found in240

Appendix A.5, with visualization in Figure 5.241

For the perturbation methods, we consider four242

edge-based perturbation heuristics based on (Ra-243

man et al., 2020) as follows:244

• Relation Swapping (RS) randomly chooses two245

edges from T and swaps their relations.246

• Relation Replacement (RR) randomly chooses247

an edge (v1, e, v2) ∈ T , and replaces the e1 with248

another relation e2 = argmine∈ESG(v1, e, v2),249

where SG(·) is a KG score function adapted from250

ATS. This yield “harder negatives” - triplets that251

are semantically similar but incorrect.252

• Edge Rewiring (ER) randomly chooses an edge253

(v1, e, v2) ∈ T , then replaces v2 with another254

entity v3 ∈ E\N1(v1), where N1(v1) represents255

the 1-hop neighborhood of v1.256

• Edge Deletion (ED) randomly chooses an edge257

(v1, e, v2) ∈ T and deletes it.258

We control perturbation level by adjusting the259

percentage of edges in G that are perturbed. Refer260

to Figures 5 and 6 for empirical results.261

3 Exploring KG-augmented framework262

for Reducing Hallucination263

To explore whether KG-augmented approaches can264

mitigate LLMs’ hallucination, we propose a uni-265

fied framework as shown in Figure 3. Our frame-266

work follows the paradigm of retrieval augmented267

generation (RAG) (Edge et al., 2024; Baek et al.,268

2023a), which retrieves essential information from269

the KGs, and then uses the retrieved knowledge to270

enhance the LLM’s generation (§3.1). It consists of 271

two components, i.e., Graph-guided retrieval 272

(§3.2) and Graph-guided generator (§3.3), with 273

a variety of algorithmic design choices. We analyze 274

the strategies within each component in §4, aiming 275

to shed light on the best practices for leveraging 276

KGs for reducing hallucinations in LLMs. 277

3.1 Formalization 278

We formalize the KG-augmented framework for 279

reducing hallucination as follows. Given a user 280

query q, a pretrained language model generates a 281

paragraph-like answer a by modeling the condi- 282

tional probability p(a|q). To explore whether KGs 283

help reduce hallucinations of LLMs, we introduce 284

retrieved knowledge Z from the KG and define: 285

p(a|q) =
∑
Z⊆G

pϕ(a|q,Z)pθ(Z|q,G), (1) 286

where pϕ(a|q,Z) is the likelihood of generating 287

the paragraph-like answer a conditioned on q and 288

Z (parameterized by ϕ), and pθ(Z|q,G) mod- 289

els the retrieval of knowledge subsets (parame- 290

terized by θ). Because the number of possible 291

subsets Z can be exponentially large relative to 292

the size of G, we approximate the sum by select- 293

ing the most probable knowledge subset: Z∗ = 294

argmaxZ∈Gpθ(Z|q,G), yielding: 295

p(a|q) ≈ pϕ(a|q,Z∗)pθ(Z∗|q,G) (2) 296

3.2 Graph-guided retrieval (G-retrieval) 297

Our goal in G-retrieval is to extract a compact yet 298

informative subset Z∗ from the KG that best sup- 299

ports answering the user query q. We first encode 300

the query and all KG elements (nodes/edges) into 301
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Query: Please describe Albert Einstein’s 
contributions to the field of physics.

G-Eval
FactScore …hallucination?

Graph-guided retrieval

Graph Database & Indexing

Open knowledge 
graphs

Self-constructed 
Graph Data

Graph-indexing Node/Edge 
Emebddings

Graph-guided 
generation

Evaluator

Retrieved 
elements: 

path

Retrieved 
elements: 
Triplets

Retrieved 
elements: 
Subgraphs

Retrieval Forms

Cost allocationPrize 
assignment

Figure 3: Overview of KG-augmented framework.

a unified embedding space using a language model.302

We then measure the relevance of each element to303

q (e.g., via cosine similarity) and identify a set of304

top-k nodes and edges for the query.305

To balance retrieving as many relevant nodes306

and edges as possible while keeping the Z∗ size307

manageable, we adopt a prize-cost trade-off strat-308

egy (Balas, 1989) to guide the retrieval process:309

(1) Prize assignment: based on the computed simi-310

larity scores, we assign prizes to nodes and edges311

to quantify their relevance to the query. Specif-312

ically, we assign the top-k nodes/edges with de-313

scending prize values from k to 1, while nodes314

and edges outside the top-k receive a prize of 0.315

Formally: pv = max(0, k − rank(v) + 1) and316

pe = max(0, k − rank(e) + 1). (2) Cost alloca-317

tion: to manage the retrieved knowledge size, we318

assign penalties as cost Ce during the expansion319

of the retrieved paths or subgraphs. The final re-320

trieval process aims to maximize the total prize321

(i.e., relevance) while minimizing associated costs.322

We explore three retrieval variants for G-retrieval323

design (e.g., triplets, paths and subgraphs) as324

demonstrated in Figure 3.325

• Triplet-retrieval: retrieves a fixed number of326

triplets with the highest total prize assigned to327

their respective triplets.328

• Path-retrieval: starting from a fixed number of329

k of high-prize nodes, we greedily expand paths330

P = {v1, e1, v2, . . . , en−1, vn} to maximize331

score: S(P) =
∑n

i=1 pvi+
∑n−1

i=1 pei−
∑n−1

i=1 ce.332

We use a priority queue to iteratively return paths333

with top-scores and subject to maximum lengths334

and cycles. The details of path-retrieval can be335

found in Appendix A.3.336

• Sub-graph retrieval: building on He et al.337

(2024a), we use the Prize-Collecting Steiner338

Tree (PCST) algorithm to find a connected sub-339

graph S that maximizes S(S) =
∑

n∈VS
pvi +340

∑
e∈ES

pei−
∑

einES
ce. Unlike in path-retrieval, 341

we only yield one subgraph that maximizes the 342

total score. 343

3.3 Graph-guided Generation (G-Generator) 344

After retrieving Z∗, the G-Generator use this 345

knowledge to generate the paragraph-like response 346

the user query. The generation is modeled as a 347

sequential decision-making process: at each time 348

step t, token at is generated conditioned on q, Z∗, 349

and the previously generated tokens a0:t−1: 350

p(a|q,Z∗) =

T∏
t=1

pθ(at|q,Z∗, a0:t−1), (3) 351

where θ denotes the parameters of a neural text 352

generation model. The generation stops when an 353

end-of-sequence token is produced or when the 354

maximum sequence length T is reached. 355

4 Experiments 356

In this section, we first introduce the evaluation 357

metrics, and then focus on two main research ques- 358

tions: RQ1: Can KGs reduce hallucination in 359

LLMs? and RQ2: How are KG-Aware methods 360

affected by noise/perturbations in KGs? 361

4.1 Evaluation Metrics & Setup 362

We quantify LLM hallucinations using two pub- 363

lic metrics: FActScore (Min et al., 2023) and 364

SAFE (Wei et al., 2024). FActScore measures 365

factual precision by decomposing a long-form text 366

into atomic facts and validating each against a re- 367

liable knowledge base like Wikipedia. In contrast, 368

SAFE employs a language model as an investiga- 369

tive agent that iteratively employs Google Search 370

queries to assess whether search results support the 371

fact. For both metrics, we report the proportion of 372

supported atomic facts out of the total atomic facts 373

extracted from LLM responses. 374

In addition to the hallucination metrics, we 375

propose four metrics using LLM-as-evaluator (Li 376

et al., 2024) to quantify the quality of generated re- 377

sponses from LLM (Edge et al., 2024; Wang et al., 378

2023). In specific, we use G-Eval (Liu et al., 2023) 379

framework for the evaluation and provide relevant 380

Wikipedia pages of each query as context to en- 381

hance G-Eval’s robustness and stability. The four 382

metrics are defined as follows: Context Relevance: 383

measures how well the generated response aligns 384

with the provided context. Comprehensiveness: 385

assesses how thoroughly the answer addresses all 386

aspects and details of the question. Correctness: 387
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measures the clarity and specificity of the generated388

answer to the question. Empowerment: evaluates389

how well the generated answer helps the reader390

understand the topic and make informed decisions.391

The detailed prompt can be found in Appendix D.392

We use gpt-4o-mini (from November 2024 to393

January 2025) as LLM backbone for all the evalu-394

ation metrics. As using LLM-as-evaluator frame-395

works may raise concern regarding potential self-396

enhancement or bias from the selection of the mod-397

els (Gu et al., 2024; Li et al., 2024), we conduct398

additional validation in Appendix A.4 (including399

human evaluation alignment and cross-validation400

across different LLM backbones), and find that401

the choice of LLM in the LLM-as-evaluator frame-402

work has little impact on the overall evaluation403

and demonstrate high correlation with the human404

evaluation, supporting the reliability of our testing.405

For other testing LLM backbones mentioned406

in this section, we consider a range of widely407

used LLMs of different scales, including GPT-4o,408

GPT-4o-mini (from November 2024 to January409

2025), Llama-3.1-8B-instruct (Dubey et al., 2024),410

Mistral-7B-instruct-v0.3 (Jiang et al., 2023a), and411

Gemma-2-9B-it (Team et al., 2024). Considering412

the trade-off between cost and performance, we413

use text-embedding-3-small model from OpenAI414

(from November 2024 to January 2025) as embed-415

ding model for G-retrieval process.416

4.2 RQ1: Main Results - Can KGs Reduce417

Hallucination in LLMs?418

To explore whether KGs can help reduce hallucina-419

tion in LLMs, we benchmark the LLMs in different420

settings. We use zero-shot and few-shot prompting421

as baselines without injecting external knowledge.422

In addition, we consider leveraging LLMs’ inter-423

nal knowledge to do Chain-of-thought (Kim et al.,424

2023), or self-consistency (Wang et al., 2022), and425

more general RAG systems like IRCoT (Trivedi426

et al., 2022a) which retrieves paragraphs from427

Wikipedia to augment CoT generation. For LLMs428

augmented with KGs, we consider three KG re-429

trieval variants: triplets, paths, and subgraphs to430

study the impact of G-retrieval for reducing LLMs’431

hallucinations. The results are shown in Table 2432

and Figure 4. We obtain some intriguing findings:433

Retrieving KG information can indeed mit-434

igate factual errors in the responses. Methods435

integrating knowledge extracted from KGs show436

clear improvements in factual accuracy and com-437

prehension scores compared to the baselines. For438

Figure 4: Comparison results of different forms of informa-
tion over different queries.

example, under Var-2 (triplet retrieval), GPT-4o 439

achieves a FActScore of 72.55% ± 0.85%, which 440

is a significant increase over the baseline score of 441

55.35% ±0.95%. Moreover, these methods can be 442

combined with strategies like CoT+SC, enhancing 443

response quality with minimal increase in halluci- 444

nation ratio. The radar chart in Figure 4 further 445

emphasizes that in most query types, integrating 446

knowledge retrieved from KGs mitigates the hallu- 447

cination issue compared to baselines, particularly 448

in query types such as “Evaluation and Reflec- 449

tion,” “Outcome Prediction,” and “Cause Expla- 450

nation,” which require more reasoning and analysis 451

rather than merely listing information. The find- 452

ings also apply to open-source models like mistral- 453

7B-Instruct-v0.3 and Llama-3.1-8B-instruct, illus- 454

trating the consistency of the finding. In addi- 455

tion, compared with RAG method IRCoT (Trivedi 456

et al., 2022b), leveraging Wikipedia documents, 457

improves performance over zero-shot and 4-shot 458

prompting by providing broad contextual support, 459

it struggles with correctness and hallucination con- 460

trol due to the potential introduction of irrelevant 461

or conflicting information. Our KG-based meth- 462

ods consistently outperform IRCoT, particularly in 463

correctness, SAFE, and FActScore. 464

Directly performing reasoning in the LLM 465

itself does not mitigate hallucinations. We bench- 466

mark the hallucination ratio of LLMs using internal 467

reasoning strategies like CoT and Self-consistency, 468

as shown in Var-1 in Table 2. It shows that these 469

methods can improve response quality (i.e., G- 470

Eval) compared to baselines, but do not consis- 471

tently improve factuality, and sometimes even di- 472

minish. This shows that relying solely on internal 473

reasoning is inadequate for mitigating hallucina- 474
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Models
G-Eval Hallucination

Context Relevance Comprehensiveness Correctness Empowerment SAFE FActScore

Baseline: Without External Knowledge (Zero-shot prompting)
GPT-4o 68.12%± 0.88% 65.41%± 0.79% 60.41%± 0.38% 62.41%± 0.84% 82.47%± 0.62% 55.34%± 0.93%
GPT-4o-mini 63.21%± 0.49% 60.11%± 0.47% 55.43%± 0.63% 58.72%± 0.62% 80.14%± 0.89% 50.23%± 1.01%
llama-3.1-8b-instruct 57.12%± 0.91% 54.74%± 1.20% 49.01%± 0.61% 52.21%± 0.71% 79.33%± 0.91% 45.14%± 0.32%
mistral-7B-Instruct-v0.3 55.71%± 1.21% 52.00%± 1.31% 47.03%± 0.94% 50.13%± 1.04% 78.27%± 0.83% 44.37%± 1.23%
gemma-2-9b-it 53.63%± 1.33% 50.00%± 1.33% 45.72%± 0.71% 48.15%± 0.93% 77.11%± 0.78% 40.94%± 0.83%

Baseline: Without External Knowledge (4-shot prompting)
GPT-4o 70.61%± 0.62% 67.43%± 0.81% 62.33%± 0.37% 64.51%± 0.12% 83.39%± 0.53% 57.45%± 0.78%
GPT-4o-mini 65.53%± 0.94% 62.33%± 1.03% 57.23%± 0.68% 60.47%± 0.83% 81.62%± 0.69% 52.34%± 0.76%
llama-3.1-8b-instruct 59.43%± 0.32% 56.31%± 0.78% 51.27%± 0.32% 54.33%± 0.41% 80.27%± 0.78% 47.24%± 1.03%
mistral-7B-Instruct-v0.3 57.34%± 1.04% 54.13%± 1.31% 49.27%± 0.84% 52.46%± 0.94% 79.12%± 0.87% 45.13%± 1.42%
gemma-2-9b-it 55.24%± 1.49% 52.27%± 1.21% 47.14%± 0.36% 50.36%± 0.51% 78.00%± 0.77% 44.32%± 1.58%

Baseline: With Wikipedia documents
GPT-4o - IRCoT 73.12%± 0.32% 69.23%± 0.42% 66.33%± 0.34% 65.51%± 0.11% 87.39%± 0.68% 69.45%± 0.34%
GPT-4o-mini - IRCoT 70.31%± 0.32% 64.42%± 1.31% 61.37%± 0.48% 63.89%± 0.72% 84.72%± 0.48% 65.72%± 1.03%

Var-1: With CoT Prompting
GPT-4o - CoT 72.76%± 0.92% 69.56%± 0.74% 64.48%± 0.63% 66.69%± 0.69% 80.07%± 0.83% 54.30%± 0.87%
GPT-4o - CoT+SC 75.81%± 0.65% 71.62%± 0.74% 66.55%± 0.75% 68.74%± 0.15% 79.03%± 0.48% 53.23%± 0.78%
llama-3.1-8b-instruct - CoT+SC 63.69%± 0.32% 60.44%± 0.59% 55.46%± 0.52% 58.53%± 1.11% 76.00%± 0.63% 45.05%± 0.97%
mistral-7B-Instruct-v0.3 - CoT+SC 61.35%± 0.93% 58.33%± 1.02% 53.42%± 0.79% 56.47%± 0.85% 74.30%± 0.21% 42.00%± 0.29%
gemma-2-9b-it - CoT+SC 59.42%± 0.27% 56.27%± 0.84% 51.34%± 1.42% 54.34%± 1.31% 71.09%± 0.43% 39.85%± 1.03%

Var-2: With Triplets Extracted from KGs Provided
GPT-4o 74.62%± 0.65% 70.44%± 0.79% 65.37%± 0.72% 67.12%± 0.71% 89.20%± 1.42% 72.53%± 0.83%
GPT-4o-mini 69.50%± 0.81% 65.03%± 0.92% 60.21%± 0.65% 63.43%± 1.01% 87.52%± 0.34% 67.73%± 0.95%
llama-3.1-8b-instruct 63.45%± 1.13% 59.33%± 1.05% 54.23%± 0.75% 57.33%± 0.12% 85.37%± 0.72% 62.37%± 0.82%
mistral-7B-Instruct-v0.3 61.34%± 0.31% 57.21%± 0.89% 52.29%± 0.32% 55.12%± 0.43% 84.21%± 0.84% 60.28%± 1.05%
gemma-2-9b-it 59.25%± 1.06% 55.29%± 0.44% 50.15%± 0.85% 53.73%± 0.95% 83.18%± 0.43% 58.13%± 0.91%
GPT-4o - CoT+SC 76.71%± 0.53% 72.34%± 0.21% 67.33%± 1.31% 69.64%± 0.33% 88.11%± 0.57% 71.45%± 0.53%

Var-3: With Paths Extracted from KGs Provided
GPT-4o 78.71%± 0.53% 74.53%± 0.31% 69.42%± 0.23% 71.63%± 0.61% 90.20%± 0.59% 75.61% ± 0.51%
GPT-4o-mini 73.64%± 0.93% 69.41%± 0.22% 64.35%± 0.72% 67.52%± 0.82% 88.22%± 0.34% 70.53%± 0.24%
llama-3.1-8b-instruct 67.51%± 0.46% 63.62%± 1.39% 58.41%± 0.93% 61.57%± 0.94% 86.33%± 0.94% 65.42%± 0.95%
mistral-7B-Instruct-v0.3 65.48%± 0.94% 61.37%± 1.01% 56.34%± 0.23% 59.45%± 0.43% 85.26%± 0.85% 63.31%± 1.33%
gemma-2-9b-it 63.35%± 1.37% 59.23%± 0.91% 54.31%± 0.91% 57.41%± 0.27% 84.13%± 0.21% 61.23%± 1.04%
GPT-4o - CoT+SC 80.87%± 0.42% 76.60%± 0.65% 71.54%± 0.53% 73.79%± 1.21% 89.11%± 0.63% 74.53%± 0.24%

Var-4: With Subgraphs Extracted from KGs Provided
GPT-4o 80.81%± 0.43% 76.63%± 0.65% 71.57%± 0.51% 73.70%± 0.62% 90.83% ± 0.63% 75.33%± 0.29%
GPT-4o-mini 75.70%± 0.44% 71.51%± 0.83% 66.43%± 0.76% 69.60%± 0.65% 88.71%± 0.72% 70.12%± 0.87%
llama-3.1-8b-instruct 69.61%± 0.84% 65.45%± 0.93% 60.41%± 0.65% 63.42%± 0.45% 86.12%± 0.35% 65.44%± 0.87%
mistral-7B-Instruct-v0.3 67.55%± 0.87% 63.35%± 0.43% 58.37%± 0.71% 61.45%± 0.32% 85.21%± 0.81% 63.12%± 0.94%
gemma-2-9b-it 65.45%± 0.95% 61.23%± 1.0% 56.31%± 0.35% 59.40%± 0.85% 84.51%± 0.99% 63.74%± 0.49%
GPT-4o - CoT+SC 82.90% ± 0.57% 78.72% ± 0.61% 73.64% ± 0.43% 75.80% ± 0.75% 89.12%± 0.94% 75.42%± 1.31%

Table 2: Comparison results of various forms of information extracted from the KGs.

tions, highlighting the necessity for external knowl-475

edge to address this issue effectively.476

Subgraph retrieval generally achieves best477

performance across different query types, es-478

pecially for simpler queries. We demonstrate the479

performance of different retrieval methods across480

different query types in Figure 4, showing that sub-481

graphs achieve the best performance. Especially482

for simpler queries (“Character Description” and483

“Event Description” which do not require intensive484

reasoning). Even for queries like “Relationship485

Explanation” and “Cause Explanation” which re-486

quire stepwise reasoning, subgraph methods still487

demonstrate promising performance. This suggests488

that while different forms of retrieved knowledge489

offer unique benefits for specific types of queries,490

subgraphs provide consistently good performance.491

4.3 RQ2: How Are KG-Aware Methods492

Affected by Noise / Perturbations in KGs?493

We benchmark different KG-augmented LLMs on494

our OKGQA-P setting, where we deliberately per-495

turb and contaminate the semantics and structure496

of KGs to simulate the real-world situation where 497

KGs may not have high quality. Specifically, we 498

consider different perturbation methods discussed 499

in §2.2 and control the perturbation level based on 500

the percentage of KG edges being perturbed. We 501

first illustrate how much the perturbed KG has been 502

deviated from the original KG with the increase of 503

perturbation level, shown in Figure 5. It shows 504

that the perturbation methods like edge deletion, 505

rewiring and swapping have relatively weak influ- 506

ence on ATS (which intuitively measures semantic 507

similarity), even as the perturbation level increases. 508

For the edge deletion methods, only if the perturba- 509

tion level reaches 1.0, the ATS goes to 0, otherwise, 510

the ATS remains higher compared to other settings. 511

Figure 6 illustrates the hallucination ratio us- 512

ing different methods on the perturbed KGs. We 513

observe that (1) FS-SG consistently outperforms 514

FS-T and FS-P even at higher perturbation lev- 515

els, demonstrating its robustness by maintaining 516

higher scores as perturbations increase. (2) FS-T 517

and FS-P exhibit similar trends, each showing a 518

significant performance drop as perturbation levels 519
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(a) Edge Deletion (b) Edge Rewiring (c) Relation Replacement (d) Relation Swapping

Figure 5: Performance Metrics (ATS, SC2D, SD2) vs. Perturbation Level for Different Perturbation Methods.

(a) Edge Deletion (b) Edge Rewiring (c) Relation Replacement (d) Relation Swapping

Figure 6: Performance Metric (FActScore) vs. Perturbation Level for Different Perturbation Methods and Different Retrieval
Methods. FS-T refers to FActScore metric using triplets, FS-P refers to using paths, and FS-SG refers to using sub-graphs.

increase. Particularly, performance of FS-T and FS-520

P deteriorate when the perturbation level reaches521

50%, i.e., becoming worse than the baseline using522

CoT. (3) On the setting using Relation Replace-523

ment which severely harms the semantics of the524

KGs, FS-T and FS-P decline more sharply than525

FS-SG. However, it still outperforms the baseline526

when the perturbation level is smaller than 40%.527

In summary, we find that effectiveness of KG-528

derived information diminishes with a perturbation529

level at 50%, surpassing this level leads to a further530

decrease in performance. We think that before this531

perturbation level at 50%, incorporating external532

knowledge from KGs can mitigate hallucinations in533

LLMs compared to baseline using CoT. Consider-534

ing practical scenarios, platforms like Wikidata are535

less likely to have perturbations as severe as 50%536

due to their ongoing updates and community-based537

quality control. This ensures the relevance and538

applicability of our findings in real-world settings.539

5 Conclusion540

In this paper, we propose OKGQA and variant541

OKGQA-P, to assess LLMs enhanced with KGs542

under open-ended, real-world question answering543

scenarios. Unlike existing benchmarks that focus544

primarily on closed ended tasks, OKGQA presents545

diverse open-ended question types that mirror the546

unpredictable nature of practical applications. We547

conduct a series of experiments and analyze the ef-548

fectiveness of various retrieval methods and LLMs549

of different magnitudes, providing insights for fur-550

ther research. Our results underscore the signifi- 551

cance of integrating KGs with LLMs to help re- 552

duce hallucination of LLMs, even in circumstances 553

where the KGs are contaminated. 554

6 Limitations 555

Our proposed benchmark primarily use DBpedia 556

as the knowledge source, which may not general- 557

ize well to testing scenarios requiring highly spe- 558

cialized or domain-specific knowledge. Testing 559

domain-specific open-ended QA may require con- 560

structing sub-graphs from domain-specific KGs. In 561

addition, the study assumes a static KG for reason- 562

ing and retrieval. In dynamic environments where 563

knowledge is continuously updated, maintaining 564

and integrating real-time changes remains a chal- 565

lenge and may requires further design. 566
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A Implementation Details829

A.1 Query Construction830

In this section, we discuss the details of the query831

construction of OKGQA. We first introduce the832

human-in-the-loop process to optimize the instruc-833

tion for generating the queries, as shown in §A.1.1.834

We then present the metrics for quantify the gen-835

erated queries in §A.1.2. Subsequently, we pro-836

vide experiments results of human-in-the-loop pro-837

cess and demonstrate the Pearson correlation co-838

efficients between human and LLM scores across839

rounds of optimization, and verify the inter-rater840

reliability across our evaluators in §A.1.3.841

A.1.1 Human-in-the-loop for instruction842

optimization843

To ensure that the generated queries accurately rep-844

resent real-world scenarios and complexities, we845

propose a human-in-the-loop process to optimize846

the instruction used for generation, as shown in847

Figure 7. To ensure clarity, we summarize this848

optimization process here:849

• Step 1: Generate a set of queries from an850

initial instruction.851

• Step 2: Collect automatic evaluation scores852

sauto by LLMs and human-label scores853

shuman by human annotators for these854

queries (normalized to the same range).855

• Step 3: Identify patterns of discrepancies be-856

tween these scores.857

• Step 4: Let the LLM analysis the identified858

patterns to generate new instructions,859

The step 3 and 4 are conducted by prompting860

LLM with prompt specified in §D.3, and steps 1861

to 4 are running iteratively to reducing sauto and862

shuman discrepancies. This process quite mimics863

the way of reinforcement learning with human feed-864

back (RLHF) (Ouyang et al., 2022) and inherits the865

benefit that labeling the reward of the LLMs’ out-866

put is much easier than labeling the output directly.867

LLM Evaluator
(e.g., Naturalness, 

Relevance, Specificality)

Compare 𝑆!"#$
and 𝑆%"&!'
(explore errors)

Human Evaluation

Adapt
(Refine best instruction)

𝑆!"#$

𝑆%"&!'

new instruction

𝑆!"#$

Intial Instruction

Figure 7: Human-in-the-loop of query construction.

A.1.2 Metrics for generated queries 868

We consider five metrics to measure the quality 869

of the generated queries: (1) Naturalness: assess- 870

ing how fluid and human-like the query sounds; 871

(2) Relevance: measuring whether the query per- 872

tains directly to the entity and the context provided; 873

(3) Specificity: determining the level of detail and 874

granularity included in the query, ensuring it is 875

not too broad or vague; (4) Novelty: evaluating 876

the uniqueness of the query, ensuring it is not just 877

a repetitive or common question; (5) Actionabil- 878

ity: gauging whether the query prompts clear, defi- 879

nite answers or actions that are feasible within the 880

given context. Each of these angles contributes to a 881

holistic evaluation of the query’s effectiveness and 882

relevance in real-world applications. 883

A.1.3 Verifying human-in-the-loop 884

For the human-label scores shuman collection, we 885

have three evaluators participating in the manual 886

assessment of query quality. All of the evaluators 887

are computer science majors with fluent English 888

skills. As the evaluation centers on various linguis- 889

tic metrics such as naturalness, relevance, speci- 890

ficity, novelty, and actionability, we only require 891

the evaluators to possess a fundamental understand- 892

ing of English without restricting their majors. We 893

calculate the Pearson correlation coefficients be- 894

tween human and LLM scores as shown in Table 3. 895

It shows that as the rounds progress, agreement 896

between humans and LLMs increases, suggesting 897

that iterative feedback improves alignment between 898

human annotation and LLM responses. 899

Metric Round 1 Round 2 Round 3 Round 4

Naturalness 0.60 0.65 0.69 0.74
Relevance 0.55 0.59 0.64 0.70
Specificity 0.46 0.54 0.60 0.65
Novelty 0.49 0.57 0.63 0.67
Actionability 0.33 0.41 0.48 0.53

Table 3: Pearson correlation coefficients between human
and LLM scores across rounds.

In addition, we also consider verifying the inter- 900

rater reliability across three evaluators as shown 901

in Table 4. We report the Cohen’s Kappa coeffi- 902

cient for each pair of evaluators as follows. Using 903

the (Landis and Koch, 1977) interpretation guide- 904

lines, the Cohen’s Kappa coefficients for Natural- 905

ness and Relevance (ranging from 0.79 to 0.85) fall 906

within the “Substantial” to “Almost Perfect” cate- 907

gories, indicating strong inter-rater reliability for 908

these metrics. This reflects a shared understanding 909
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of the evaluation criteria, resulting in consistent910

ratings among evaluators. For Specificity, Novelty,911

and Actionability, the coefficients range from 0.58912

to 0.68, placing them primarily in the “Moderate”913

to “Substantial” categories. These results suggest914

moderate reliability for these metrics, likely due915

to subjective interpretation and less clearly defined916

evaluation guidelines. Novelty, with lower coeffi-917

cients around 0.61 to 0.63, highlights variability in918

ratings, suggesting that evaluators may have differ-919

ing perspectives on what qualifies as novel (but the920

inter-rater reliability is still considered “Substan-921

tial”). Meanwhile, Actionability performs slightly922

better, nearing the “Substantial” range, indicating923

moderately consistent criteria.924

Metric Evaluator 1 & 2 Evaluator 1 & 3 Evaluator 2 & 3

Naturalness 0.85 0.83 0.84
Relevance 0.81 0.79 0.80
Specificity 0.65 0.63 0.66
Novelty 0.60 0.58 0.61
Actionability 0.67 0.65 0.68

Table 4: Cohen’s Kappa coefficient for various metrics.

A.2 Personalized PageRank (PPR)925

In this section, we discuss the details of the PPR926

algorithm used in §2.1 to prune the graph from DB-927

Pedia and concentrate on nodes most pertinent to928

the central nodes of interest. The PPR is calculated929

using the iterative formula:930

p = αA⊤p+ (1− α)s, (4)931

where p ∈ Rn is the PPR vector representing the932

relevance scores of n nodes in the graph. α is933

the damping factor controlling the probability of934

continuing the random walk versus restarting from935

the personalization vector. A⊤ is the transpose of936

the column-normalized adjacency matrix A of the937

graph, representing transition probabilities between938

nodes. s ∈ Rn is the personalization vector, where939

we assign a value of 1 to the central nodes and 0 to940

all other nodes to emphasize their importance. To941

ensure convergence and computational efficiency,942

we set a tolerance parameter tol = 1 × 10−6 and943

a maximum iteration limit max_iter = 100. After944

computing the PPR vector p, we apply a thresh-945

old of 1 × 10−5 to prune the graph. Nodes with946

PPR scores below this threshold are considered in-947

significant with respect to the central nodes and are948

thus removed. This process effectively filters out949

less relevant nodes, resulting in a pruned graph that950

highlights the most significant relationships and951

structures pertinent to our analysis.952

A.3 Prize-Cost-based Path Retrieval 953

In this section, we detail the path-retrieval method 954

used in §3.2. It is designed to construct and eval- 955

uate paths in a graph based on predefined prize 956

assignments and cost allocations. The objective is 957

to form sequences of nodes and edges, represented 958

as P = {v1, e1, v2, . . . , en−1, vn}, that maximize 959

the overall score and minimize the costs. To effi- 960

ciently manage the exploration of potential paths, 961

we utilize a priority queue, a data structure that 962

allows paths to be organized based on their scores, 963

ensuring that the highest-scoring paths are pro- 964

cessed first. The method starts by picking a num- 965

ber of starting nodes with high prizes. We then ex- 966

pand these starting points by exploring neighboring 967

nodes. For each neighbor, the method calculates 968

a new score. This score is the sum of the neigh- 969

bor’s prize and the edge’s prize minus the edge’s 970

cost. If this neighbor hasn’t been visited before, 971

which helps avoid looping, the algorithm adds this 972

neighbor to the path. This new path is then added 973

to the priority queue. This expansion keeps going 974

until the path reaches a maximum length or can’t 975

be extended further. The algorithm keeps track of 976

paths already explored to avoid repetition and en- 977

sure paths don’t loop back on themselves. When 978

no more paths can be added or the priority queue is 979

empty, the algorithm sorts the paths by their scores 980

from highest to lowest. 981

A.4 LLM Evaluation Clarity 982

To address the concern regarding potential self- 983

enhancement bias in LLM-as-evaluator frame- 984

works, we have conducted extensive validation of 985

our evaluation approach. In specific, we randomly 986

sample 100 questions and evaluated them using 987

three different LLMs (gpt-4o-mini, llama-3.1-8b- 988

instruct, and gemma-2-9b-it). We measured inter- 989

model agreement using Cohen’s Kappa as shown 990

in Table 6, which showed substantial to almost per- 991

fect consistency. This indicates that the evaluation 992

results are consistent across different LLMs, even 993

when the model generating the responses is not the 994

same as the one evaluating them (e.g., using gpt- 995

4o-mini for generation and llama-3.1-8b-instruct 996

for evaluation). These findings confirm that the 997

evaluation is robust and independent of the specific 998

LLM used as the evaluator. 999

In addition, we also collect human evaluations 1000

for these 100 samples. Three experts annotators 1001

rate each anonymized response on context rele- 1002
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Setting Context Relevance Comprehensiveness Correctness Empowerment SAFE FActScore

OKGQA (subgraphs) 75.70%± 0.44% 71.51%± 0.83% 66.43%± 0.76% 69.60%± 0.65% 88.71%± 0.72% 70.12%± 0.87%
+ Multi-lingual context 75.14%± 0.33% 72.32%± 0.19% 66.72%± 0.74% 70.32%± 0.57% 90.32%± 0.48% 72.83%± 0.93%

Table 5: Comparison of GPT-4o-mini Performance Using Monolingual and Multilingual Subgraphs

Metric LLM 1 & 2 LLM 1 & 3 LLM 2 & 3

G-Eval 0.84 0.81 0.82
FactScore 0.78 0.74 0.78
SAFE 0.74 0.70 0.72

Table 6: Cohen’s Kappa coefficient for different LLM pair
comparisons. For the G-Eval, we use the average score of four
sub-metrics for better readability. LLM 1: gpt-4o-mini; LLM
2: llama-3.1-8b-instruct; LLM 3: gemma-2-9b-it)

vance, comprehensiveness, correctness and empow-1003

erment using a 1-5 Likert scale. The average human1004

ratings are computed and compared with automated1005

scores using G-Eval. The Pearson’s correlation1006

yields a score of 0.78, indicating strong alignment1007

between human judgment and LLM-based evalu-1008

ation. Combined with the inter-model agreement1009

shown in Table 6, these results confirm that our1010

evaluation is robust, consistent, and largely inde-1011

pendent of the specific LLM used as the evaluator.1012

A.5 KG Similarity Metrics1013

In this section, we introduce the metrics used in1014

§2 to measure the deviation of the perturbed KGs1015

from the original KG. These metrics are adapted1016

from (Raman et al., 2020) as presented below. ATS1017

is mainly used to measure the semantic similarity1018

between two KGs, while SC2D and SD2 are used1019

to measure the structural similarity.1020

Aggregated Triple Score (ATS): ATS measures1021

semantic similarity between two KGs. Let sG be an1022

edge (triple) scoring function, such that sG(e1, r, e2)1023

measures how likely edge (e1, r, e2) is to exist in G.1024

Also, assume sG has been pre-trained on G for link1025

prediction. Then, ATS is defined as fATS(G,G
′
) =1026

1

|T ′ |

∑
(e1,r,e2)∈T ′ sG(e1, r, e2) ∈ [0, 1], which denotes1027

the mean sG score across all edges in G′. Intuitively,1028

if a high percentage of edges in G′ are also likely to1029

exist in G (i.e., high ATS), then we say that G′ and1030

G have high semantic similarity. sG is task-specific,1031

as KGs from different tasks may differ greatly in1032

semantics. We use the sG from (Li et al., 2016);1033

while ATS captures semantic KG differences, it is1034

not sensitive to KG connectivity structure. Note1035

that fATS(G,G) may not equal 1, since sG may not1036

perfectly generalize to KGs beyond those it was1037

trained on.1038

Similarity in Clustering Coefficient Distribution 1039

(SC2D): SC2D measures structural similarity be- 1040

tween two KGs and is derived from the local clus- 1041

tering coefficient (Saramäki et al., 2007; Onnela 1042

et al., 2005; Fagiolo, 2007). For a given entity 1043

in G (treated here as undirected), the local cluster- 1044

ing coefficient is the fraction of possible triangles 1045

through the entity that exist (i.e., how tightly the 1046

entity’s neighbors cluster around it). For entity 1047

ei ∈ E, the local clustering coefficient is defined as 1048

ci = 2Tri(ei)/(deg(ei)(deg(ei)−1)), where Tri(ei) is the 1049

number of triangles through ei, and deg(ei) is the de- 1050

gree of ei. For each relation r ∈ R, let Gr be the sub- 1051

graph of G consisting of all edges in T with r . That 1052

is, Gr = (E , r, T
′
), where T

′
= {(e, r, e′) | e, e′ ∈ E}. 1053

Let cr denote the |E|-dimensional clustering co- 1054

efficient vector for Gr, where the ith element of 1055

cr is ci. Then, the mean clustering coefficient 1056

vectors for G and G′ are co = 1
|R|

∑
r∈R cr and 1057

cp = 1
|R′|

∑
r∈R′ c

r, respectively. SC2D is defined 1058

as fSC2D(G,G
′
) = 1− ∥co−cp∥2

∥co−cp∥2+1
∈ [0, 1], with higher 1059

value indicating higher similarity. 1060

Similarity in Degree Distribution (SD2): SD2 1061

also measures structural similarity between two 1062

KGs, while addressing SC2D’s ineffectiveness 1063

when the KGs’ entities have tiny local clustering co- 1064

efficients (e.g., the item KG used by recommender 1065

systems is roughly bipartite). In such cases, SC2D 1066

is always close to one regardless of the perturba- 1067

tion method, thus rendering SC2D useless. Let 1068

dr denote the |E|-dimensional degree vector for 1069

Gr, where the ith element of dr is deg(ei). Then, 1070

the mean degree vectors for G and G′ are do = 1071
1

|R|
∑

r∈R dr and dp = 1
|R′|

∑
r∈R′ d

r, respectively. 1072

SD2 is defined as fSD2(G,G
′
) = 1− ∥do−dp∥2

∥do−dp∥2+1
∈ [0, 1], 1073

with higher value indicating higher similarity. 1074

B Extension of OKGQA 1075

In this section, we extend our benchmark by in- 1076

corporating multilingual context and validating our 1077

query generation against DBpedia’s structure. We 1078

first introduce the multilingual setup of our dataset 1079

anc compare the performance of multilingual sub- 1080

graphs with the monolingual subgraphs (§B.1). We 1081

then analyze the relationship between generated 1082

queries and DBpedia by examining query genera- 1083

tion, entity/relation coverage, and subgraph align- 1084
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ment (§B.2). We also compare OKGQA with the1085

existing widely used benchmarks in Table 7.1086

B.1 Multilingual Setup of OKGQA1087

KGs typically include entities and relations in mul-1088

tiple languages, providing a richer context that can1089

benefit our OKGQA setting. In this experiment,1090

we investigate whether incorporating multilingual1091

context improves overall performance. Specifically,1092

we randomly sample 300 queries from our dataset1093

and generate subgraphs that include multilingual1094

entities and relations from DBpedia. We then apply1095

PPR consistent with our original method in §2.1 to1096

reduce the KG size. For this multilingual setting,1097

we consider five languages—Greek, Polish, Por-1098

tuguese, Spanish, and English—which cover the1099

majority of entities in DBpedia. We compare the1100

performance of GPT-4o-mini using the new multi-1101

lingual subgraphs against the original monolingual1102

subgraphs, as shown in Table 5. Our findings indi-1103

cate that including multilingual context generally1104

leads to better performance across multiple met-1105

rics. Intuitively, this additional multi-lingual con-1106

text may provides more knowledge from different1107

perspectives (which could provide more context,1108

but also may requires more techniques for handle1109

challenges like duplicates across languages) and1110

also provide another way to validate the factual-1111

ity of the resources stored in the KGs (which can1112

provide more authenticity through cross validation1113

from different languages).1114

B.2 Generated Query-DBpedia Alignment1115

We analyze the alignment between our gener-1116

ated queries and DBpedia along three dimensions:1117

query generation, entity/relation coverage, and sub-1118

graph alignment as follows:1119

Query Generation: Each query is directly gen-1120

erated from DBpedia entities and their relation-1121

ships. For example, when asking about Microsoft’s1122

founder, we first confirm that both “Microsoft” and1123

“Bill Gates” exist in DBpedia and are connected by1124

the founded_by relation, ensuring that our queries1125

are firmly grounded in the knowledge graph.1126

Entity and Relation Coverage: Our analysis in-1127

dicates that:1128

• 92% entities mentioned in the queries can be1129

detected from DBpedia entities.1130

• 87% queries have complete relation paths con-1131

necting the relevant entities from DBPedia.1132

• Entities/relations mentioned in queries cover 1133

72% of DBpedia’s most common enti- 1134

ties/predicates and span diverse entity types 1135

(e.g., Person, Organization, and Event). 1136

Subgraph Alignment: We evaluate the structure 1137

of the sampled subgraphs for each query and find 1138

that: 1139

• 75% of the queries retrieve subgraphs within 1140

3–4 hops, which aligns with the typical depth 1141

for DBpedia reasoning tasks. 1142

• On average, each subgraph contains 48 nodes 1143

and 152 edges, with an average node degree 1144

of 3.17 and a clustering coefficient of 0.69, 1145

which also aligns with the property of DBPe- 1146

dia. 1147

These statistics support that our dataset ac- 1148

curately reflects DBpedia’s structure, ensuring 1149

both authenticity and complexity in the generated 1150

queries. 1151

C Related Work 1152

Due to the stochastic decoding process of Large 1153

Language Models (LLMs), i.e., sampling the next 1154

token in the sequence, LLMs exhibit probabilistic 1155

behaviors: (1) potentially yielding varied outputs of 1156

the same input across different instances (Agrawal 1157

et al., 2023); (2) cannot accurately interpret phrases 1158

or terms when the context is vague and resides in a 1159

knowledge gap of the model. This will lead to out- 1160

puts that may sound plausible but are often irrele- 1161

vant or incorrect. This will lead to outputs that may 1162

sound plausible but are often irrelevant or incorrect. 1163

This “hallucinations” undermines the reliability of 1164

LLMs (Huang et al., 2023). One emerging research 1165

trend is enhancing LLMs through integrating exter- 1166

nal knowledge graphs (Agrawal et al., 2023). KGs 1167

offer structured, explicit, and up-to-date factual 1168

knowledge, including domain-specific knowledge, 1169

providing a faithful knowledge source for reason- 1170

ing (Zheng et al., 2023; Agrawal et al., 2023; Sui 1171

et al., 2022). Moreover, each piece of information 1172

in KGs can be traced back to its source, provid- 1173

ing context and provenance. This traceability not 1174

only aids in verifying the reliability of the informa- 1175

tion but also provides clear pathways of reasoning, 1176

making the interpretation process transparent. 1177

Researchers employ diverse strategies to aug- 1178

ment the LLMs by integrating external KGs (Sui 1179
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Dataset # Questions Question Type Focus Areas Source of Questions Knowledge Base Hallucination Detection Unreliable KG

OKGQA 850 / 2,050 Open-ended Evaluating hallucination and reasoning capabilities in LLMs
when augmented with Knowledge Graphs; diverse queries
requiring complex reasoning

Curated DBPedia ✓ ✓

WebQuestions 5,810 Factoid Questions derived from Google Suggest queries, focusing
on simple factual information

User queries Freebase ✗ ✗

ComplexWebQuestions 34,689 Multi-hop Factoid Extends WebQuestions with more complex, multi-hop ques-
tions requiring compositional reasoning

User queries Freebase ✗ ✗

GrailQA 64,331 Varied Factoid Evaluates generalization in KBQA with questions requiring
different levels of reasoning

Crowdsourced Freebase ✗ ✗

Table 7: Comparison of OKGQA with existing benchmarks along with their question types, focus areas, and additional
properties.

et al., 2024; He et al., 2024b). For example, KAP-1180

ING (Baek et al., 2023b) matches entities in ques-1181

tions to retrieve related triples from knowledge1182

graphs for zero-shot question answering. Wu et al.1183

(2023) finds that converting these triples into tex-1184

tualized statements can further enhance LLM per-1185

formance. StructGPT (Jiang et al., 2023b) pro-1186

pose to convert user query into structured for-1187

mats (e.g., SPARQL) for information extraction1188

from KGs. Following the succuess of internal1189

reasoning-enhancement methods like Chain-of-1190

thoughts (CoT) (Wei et al., 2022), Reflexion (Shinn1191

et al., 2024), and Tree-of-thoughts (ToT), He et al.1192

(2022) propose “rethinking with retrieval” to use1193

decomposed reasoning steps from CoT prompting1194

to retrieve external knowledge, leading to more ac-1195

curate and faithful explanations. IR-CoT (Trivedi1196

et al., 2022b) interleaves the generation of CoT1197

with knowledge retrieval from corresponding KGs,1198

iteratively guiding both retrieval and reasoning1199

for multi-step questions. MindMap (Wen et al.,1200

2023) introduce a plug-and-play approach to evoke1201

graph-of-thoughts reasoning in LLMs. Similarly,1202

RoG (Luo et al., 2023b) use KGs to create faith-1203

ful reasoning paths based on various relations, en-1204

abling interpretable reasoning in LLMs.1205

However, current benchmarks for testing the ca-1206

pabilities of these LLM+KG models are predomi-1207

nantly closed-ended, restricting responses to a lim-1208

ited set of entities/relations or a set of logical forms1209

derived from specific facts of KG. Hence, they1210

can only test a very limited subset of the LLM’s1211

tendency to hallucinate, leaving a gap in the as-1212

sessment of complex, real-world scenarios. Partic-1213

ularly, standard metrics such as FActScore (Min1214

et al., 2023) and SAFE (Wei et al., 2024) for evalu-1215

ating the hallucination rate of LLMs require open-1216

ended settings, i.e., questions are phrased as a state-1217

ment which requires a longer answer. Compared1218

with previous works, our proposed OKGQA is tai-1219

lored for evaluating LLMs enhanced with KGs un-1220

der open-ended, real-world question-answering sce-1221

narios. The benchmark extends the assessment of1222

closed-ended question answering to an open-ended1223

setting, which can further support the assessment 1224

of hallucination of LLMs. 1225

D Prompt List 1226

In this section, we present all the prompts required 1227

for the main experiments. To enhance clarity, we 1228

provide only one example in the prompt labeled as 1229

Example 1; the other few-shot examples utilized 1230

are labeled as Other In-Context Few-shots 1231

within the prompt. 1232

D.1 Knowledge-Augmented Generation 1233

System Instruction: “You are a helpful assistant 1234

designed to answer the users’ open-ended ques- 1235

tions. Your task is to provide accurate, concise, 1236

and useful information to foster understanding and 1237

solve problems. Whether the questions relate to 1238

complex scientific concepts, historical events, prac- 1239

tical advice, or everyday life, your goal is to assist 1240

by offering thoughtful and informative responses.” 1241

In-Context Few-shots 1242

Question: {Question} 1243

Below are the facts that might be relevant to 1244

answer the question: {Retrieved-knowledge} 1245

Answer: 1246

D.2 OKGQA Query Generation Prompting 1247

System Instruction: “Generate open-ended ques- 1248

tions about different types: character description, 1249

event description, cause explanation, relationship 1250

explanation, trend prediction, outcome prediction, 1251

contrast analysis, historical comparison, evalua- 1252

tion and reflection, and application and practice. 1253

Please provide specific suggestions. Generate the 1254

questions, the type of the questions, the placehold- 1255

ers, the naturalness of your generated questions 1256

(choose from high, medium, and unnatural), the 1257

difficulty of the generated questions (choose from 1258

hard, medium and easy) and DBPedia_entities (link 1259

the placeholders to DBPedia entities) in JSON for- 1260

mat.” 1261

Example 1: as shown in Figure 8. 1262

Other In-Context Few-shots 1263

Generation: 1264
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Figure 8: Example 1 Demonstration.

D.3 Prompts for Instruction Tuner1265

Act as an “Instruction Tuner” for the LLM, you1266

will be given the inputs: (1) the {Current Instruc-1267

tion} used to guide the LLMs’s evaluation, includ-1268

ing specific examples with ground truth labels; (2)1269

{Current Errors} that emerged with this instruction1270

are applied to the dataset.1271

The current errors are presented in the follow-1272

ing format: (1) INPUT: {input text} (2) PRE-1273

DICTED OUTPUT: {predicted label}, (3) EX-1274

PECTED OUTPUT: {ground truth label}. Care-1275

fully analyze these errors and craft a revised con-1276

cise instruction for the LLM to fit the expected1277

outputs. Include 2-3 examples at the end of your1278

response to demonstrate how the new instruction1279

would be applied.1280

D.4 Metrics Prompt for G-eval1281

System Instruction: “You are a helpful assistant1282

designed to evaluate the quality of the response to1283

a query. Your task is to rate the response on one1284

metric defined as below:”1285

Empowerment Criteria: Evaluate whether the1286

“Actual Output” can help the reader understand the1287

topic and make informed decisions regarding the1288

“Input”. A response with high empowerment pro-1289

vides accurate information and explanations that1290

enhance the reader’s understanding. When evalu-1291

ating empowerment, consider the relevance of the1292

information provided in the “Actual Output” to the1293

“Input” and the “Retrieval Context”.1294

Comprehensiveness Criteria: Evaluate the ex-1295

tent to which the “Actual Output” covers all aspects1296

and details of the question “Input”. A comprehen-1297

sive answer should thoroughly address every part1298

of the question, leaving no important points un-1299

addressed. When evaluating comprehensiveness,1300

consider the relevance of the information provided1301

in the “Actual Output” to the “Input” and the “Re- 1302

trieval Context”. 1303

Correctness Criteria: Measure how clearly 1304

and specifically the “Actual output” responds to the 1305

question “input”. A highly direct response stays 1306

focused on the question, providing clear and unam- 1307

biguous information. When evaluating correctness, 1308

consider the relevance of the information provided 1309

in the “Actual Output” to the “Input” and the “Re- 1310

trieval Context”. 1311

Context Relevance Criteria: Evaluate the ex- 1312

tent to which the “Actual output” incorporates rel- 1313

evant information from the “Retrieval Context”. 1314

This includes assessing whether the output adheres 1315

to the thematic, factual, and situational specifics 1316

presented in the “Retrieval Context”. Relevant 1317

responses not only address the direct query but 1318

also align closely with the contextual elements pro- 1319

vided, ensuring a seamless and coherent transition 1320

between the “Retrieval Context” and the “Actual 1321

Output”. The most contextually relevant responses 1322

demonstrate an understanding and appropriate re- 1323

flection of the given circumstances, historical facts, 1324

or conceptual background, thereby contributing to 1325

the overall accuracy and utility of the information 1326

provided. 1327

Response: [Respond with metric and the corre- 1328

sponding score.] 1329
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