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ABSTRACT

Pretraining robust vision or multimodal foundation models (e.g., CLIP) relies on
large-scale datasets that may be noisy, potentially misaligned, and have long-tail
distributions. Previous works have shown promising results in augmenting datasets
by generating synthetic samples. However, they only support domain-specific ad
hoc use cases (e.g., either image or text only, but not both), and are limited in data
diversity due to a lack of fine-grained control over the synthesis process. In this
paper, we design a controllable image-text synthesis pipeline, CtrlSynth, for data-
efficient and robust multimodal learning. The key idea is to decompose the visual
semantics of an image into basic elements, apply user-specified control policies
(e.g., remove, add, or replace operations), and recompose them to synthesize images
or texts. The decompose and recompose feature in CtrlSynth allows users to control
data synthesis in a fine-grained manner by defining customized control policies to
manipulate the basic elements. CtrlSynth leverages the capabilities of pretrained
foundation models such as large language models or diffusion models to reason and
recompose basic elements such that synthetic samples are natural and composed in
diverse ways. CtrlSynth is a closed-loop, training-free, and modular framework,
making it easy to support different pretrained models. With extensive experiments
on 31 datasets spanning different vision and vision-language tasks, we show that
CtrlSynth substantially improves zero-shot classification, image-text retrieval, and
compositional reasoning performance of CLIP models.

1 INTRODUCTION

High-quality large-scale datasets have driven the success of large foundational AI models (Radford
et al., 2021; Rombach et al., 2022; Touvron et al., 2023). Collecting and annotating datasets at
large-scale is challenging and costly. One solution is to crawl data from the web; however, web data
is noisy (Lai et al., 2024; Kang et al., 2023), has long-tail distributions (Udandarao et al., 2024), and
often causes privacy or copyright issues (Schuhmann et al., 2022). Synthetic data presents a viable
and complementary alternative to overcome these challenges, as it allows for precise control over
data generation and customization to meet specific requirements. A large body of work has focused
on improving the quality of synthetic data for image and text data, from the generation of high-quality
images (Dunlap et al., 2023; Islam et al., 2024) to the improvement of synthetic captions (Lai et al.,
2024; Fan et al., 2023). While these works have shown that synthetic data successfully improves
model performance for various vision or vision-language tasks, their synthetic pipeline is often ad hoc
and tailored to specific purposes such as training better CLIP models or improving domain-specific
vision models (e.g., DiffuseMix uses diffusion models to augment images and improves accuracy
on image classification tasks Islam et al., 2024). These data synthesis works also lack explicit
fine-grained control over the generated texts or images, which are important for tasks with long-tail
distribution (e.g., augmenting tail class samples) or enforcing safety requirements (e.g., mitigating
biased or sensitive content generation Schramowski et al., 2023).

In this work, we aim to systematically control the synthetic pipeline for generating image-text data
while accommodating different use cases (e.g., improving long-tail task performance, enhancing
compositional reasoning of CLIP models, etc.). Our intuition is that large foundation models are
already pretrained on a wide range of data and contain general knowledge about concepts, objects, and
their relationships. For example, text-to-image models (e.g., Rombach et al., 2022; Podell et al., 2024)
can generate detailed high-quality images based on text instructions. Similarly, large language models
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Figure 1: CtrlSynth: A modular, closed-loop, controllable data synthesis system. The oval nodes
indicate that the pretrained models and rounded boxes represent text or image data. The text and
image controllers are used to guide the data synthesis.

(LLMs) (e.g., OpenAI, 2022; Touvron et al., 2023) have strong instruction-following capabilities,
which can be used to control the text data generation. CtrlSynth leverages these large pretrained
models to build a modular and controllable synthetic data generation pipeline. CtrlSynth allows
users to apply explicit control instructions to guide data generation for images and texts. Unlike
previous data synthesis works that use image-captioning models to directly generate captions given
an image (e.g., Li et al., 2024; Lai et al., 2024), CtrlSynth decomposes image-to-text generation
process into two separate steps, providing more fine-grained control to users for synthesizing data.
Figure 1 shows an overall architecture of the CtrlSynth pipeline. For an input image, CtrlSynth first
uses a pretrained vision model to extract key objects, attributes, and their relations as visual tags. It
then uses a text controller to create text synthesis instructions and guide the LLM to use visual tags to
generate high-quality text outputs. Similarly, we devise an image controller that steers how the text
prompts (or caption) can be used to guide the diffusion model to generate a desired image. Users can
also feed the generated synthetic images into the tagging model again, forming a closed-loop data
pipeline. Then users can start with synthetic or original images and texts and further generate more
image-text pairs. The text and image controllers are modular, allowing users to control any part of
the text or image generation process.

Compared to previous works, CtrlSynth provides three main benefits: (1) Controllable synthesis:
CtrlSynth allows users to define policies on the visual tags or texts; enabling granular control over
text and image generation; (2) Closed-loop system: CtrlSynth requires no additional training and
can synthesize text from images and vice-versa using existing pretrained models. This closed-loop
design additionally provides automatic filtering and verification capabilities to discard undesirable
synthetic samples without manual or heuristics-based rules. (3) Flexible and scalable: CtrlSynth
is modular and allows users to change its components (e.g., pretrained models) easily. We evaluate
the effectiveness of CtrlSynth on different tasks (e.g., image classification, image-text retrieval,
compositional reasoning, and long-tail tasks), covering 31 datasets for vision and vision-language
domains. We observe that CtrlSynth generated data improves the accuracy by (a) 23.4% on retrieval
tasks, (b) 5% on the SugarCrepe compositional reasoning benchmark, and (c) 16% ∼ 21% for
long-tail vision tasks.

2 RELATED WORK

Data-Efficient Vision-Language Representation Learning. Contrastive Language-Image Pretrain-
ing (CLIP) (Radford et al., 2021) has popularized visual representation learning from image-text pairs
due to its strong zero-shot transfer capabilities. Many recent works have focused on improving the
data efficiency of training CLIP models. SLIP (Mu et al., 2022) brings self-supervised learning into a
multitask learning framework to improve CLIP performance. FLIP (Li et al., 2023c) masks out image
patches during CLIP training, improving training efficiency and zero-shot accuracy over baselines.
CLIPA (Li et al., 2023b;a) further improves over FLIP ideas and reduces the number of image text
tokens by block and syntax masking for CLIP training and it significantly reduces the training costs
of CLIP models. LiT (Zhai et al., 2022) freezes the image encoder in CLIP models and achieves
strong zero-shot transfer for CLIP models using much fewer data samples. All these techniques focus
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on improving the training methods for CLIP models to enable better vision-language representations.
CtrlSynth improves data augmentation for CLIP training by synthesizing diverse image text samples.
Our method is orthogonal and could potentially benefit from these methods.

Image-text Data Augmentation. Much recent work aims to improve the caption quality of image-
text pairs. For example, VeCLIP (Lai et al., 2024), LaCLIP (Fan et al., 2023), and ReCap (Li
et al., 2024) leverage LLMs to synthesize new captions that are more informative and contain rich
descriptions about the image. The key difference of CtrlSynth is that we provide more diverse and
high-quality captions that outperform prior works (we will show in Table 5 and Table 6). This
is because CtrlSynth breaks down the image semantics to allow more fine-grained control and
recombination using LLM. Another line of work uses text-to-image models like diffusion models to
generate synthetic images and augment downstream vision tasks. ALIA (Dunlap et al., 2023) uses
language to guide the image editing process and provides domain-specific diversity to augment the
image samples. DiffuseMix (Islam et al., 2024) augments image samples using diffusion models
to blend original and generated images. EDA (Trabucco et al., 2023) generates variations of real
images using diffusion models to maintain the semantics while augmenting image samples. These
semantic image augmentation methods provide strong performance improvements on various vision
datasets. Our CtrlSynth instead unifies the image and text synthesis via a closed-loop pipeline, it
provides more flexibility and diverse synthetic samples while allowing more fine-grained control over
the sample generation process. Prior image editing works like InstructPix2Pix (Brooks et al., 2023)
and MagicBrush (Zhang et al., 2023) provide methods and datasets to enable precise control over
image generation. While the image synthesis path in our pipeline could benefit from these works, our
focus is to enable diverse data synthesis. It is an open research question to automatically generate
the image editing instruction for each sample in a dataset. Our pipeline can also be combined with
previous work (Mishra et al., 2024) to improve the performance of cross-domain retrieval tasks or
when the target task has little real data to retrieve (Geng et al., 2024).

3 CTRLSYNTH

CtrlSynth leverages semantic knowledge and reasoning skills of pretrained foundation models (e.g.,
large language and diffusion models) to generate diverse synthetic data samples in a controlled
manner. Specifically, CtrlSynth consists of three foundation models: (1) a vision tagging model, (2) a
large language model, and (3) a text-to-image model; plus the two text and image controllers. For a
given real ( 1a in Figure 1) or synthetic ( 1c ) input image, a vision tagging model ( 2a ) extracts visual
tags (e.g., objects, attributes, and their relationships) ( 1e ). These tags describe the image’s visual
concepts and semantic contexts. The text controller ( 3a ) takes the image tags and user-defined control
policies as inputs and generates instructions for synthesizing new text. An example control policy is
to edit the tags or optionally add the text ( 1b ) associated with the image. A large language model (
2b ) then follows the instructions and generates the synthetic text ( 1d ). The image controller ( 3b )
operates on the given input text and applies user-defined image control policies to output instructions
for image synthesis. An example policy is to specify the style for generating artistic, cinematic, or
realistic images. A text-to-image model ( 2c ) takes an image synthesis instruction provided by the
image controller as an input and produces a synthetic image as an output ( 1c ).

3.1 KEY COMPONENTS

Objects and attributes: light candle, pat-
terned rug, white coffee table, sectional sofa
Relations: in front of, on top, covered with
Figure 2: Visual tags of an example
image1. Tags are non-exhaustive.

Vision Tagging Model. The goal of a vision tagging
model (VTM) is to extract the basic visual elements (or
tags) of an image, including all objects or entities, at-
tributes (e.g., color, shape, and size), and visual relations
(e.g., interaction between objects).

An example of extracting visual tags from VTM is shown
in Figure 2. The tagging model can be either a multi-label
image classifier (Mehta et al., 2024b) that predicts diverse
tags in the image, or a black box system (e.g. an API
service) that takes the input image and outputs the tags.

1Image credit: https://unsplash.com/photos/light-candle-on-round-white-coffee-table-and-sectional-sofa-GZ5cKOgeIB0
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Write a faithful caption by integrating the given phrases with the original sentence. Ensure any
objects from the original caption are preserved while elaborating on the visual relationships
and attributes provided in the phrases to create a more detailed depiction. Given sentence:
{caption}. Given phrases: {phrases}. The caption should not contain any NSFW words. It should
be grammatically correct. It should be concise, but not too short. Directly output the caption and
do not add any formatting.

Figure 3: An example instruction for LLMs to synthesize texts.

VTM, as a key component in CtrlSynth, can be a combination of an advanced captioning model (Xiao
et al., 2024) that generates comprehensive image descriptions and an LLM that extracts the visual
tags from the captions to decompose the visual semantics of an image into a set of fine-grained visual
concepts. Appendix A.4 includes more details about this hybrid VTM. These fine-grained visual
concepts can be easily modified and recomposed to create new visual contexts. This decompose-
recompose feature of vision tags provides a large control space for synthesizing diverse texts.

Existing caption rewriting works (e.g., VeCLIP (Lai et al., 2024)) rely on a multimodal captioning
model to generate captions that are short sentences containing visual concepts. Image captions can
be very descriptive but often only cover the most salient object of the scene, they are coarse-grained
in structure (whole sentence or paragraph), and are hard to modify. Our key distinction is that VTM
produces a comprehensive list of metadata information that describes the visual concepts in an image
as completely as possible.

Language Model. Large language models (LLMs) have exhibited strong instruction-following
capabilities. The goal of an LLM in CtrlSynth is to take an input textual instruction on how to
generate a synthetic text that meets the requirements specified in the instruction. CtrlSynth employs
the reasoning and composition capability of LLMs to recombine the visual image tags in the task
instruction and compose new synthetic texts. The instruction for an LLM consists of three parts
(Figure 3): (i) task template that specifies the details of the text synthesis task, (ii) task content that
contains the actual visual tags (phrases) and an optional caption paired with the image, and (iii) task
constraint that describes the style and formatting of the output text. Users can also apply custom
policies over the instructions to guide the text synthesis process.

Text-to-Image Model. Text-to-image models generate novel and diverse image samples based on
different input text prompts. CtrlSynth applies an image controller to account for the user-specified
control policies and accordingly, updates the input text instructions from the previous step (i.e.,
language model). These updated instructions are then fed to text-to-image models for generating the
image as an output. In our experiments, we use StableDiffusion models for text-to-image generation.

Text and Image Controllers. The controller in CtrlSynth is a function that takes an input text and
transforms it into a specific text instruction for the LLM or text-to-image model.

The text controller accepts the visual tags of an image and a user-defined policy along with an
optional original text as input and produces instructions to control the generation of synthetic text.
In CtrlSynth, we study three predefined policies: (a) editing (remove, add, or replace) visual tags,
(b) constraining the semantic meaning of a given sentence, and (c) styling the output text. Editing
visual tags allows fine-grained control of synthetic visual content, for example, one can remove
unwanted objects or attributes so they do not appear in the generated text. Constraining the meaning
of synthetic text is useful in generating high-quality captions because many web-crawled captions are
noisy. Enforcing the styling of output texts such as outputting into structured formats (e.g., JSON)
makes the texts easier to use in downstream tasks. In our experiments, we use 10 example text control
policies for synthesizing image captions (see Appendix A.1 for details).

The image controller is similar to the text controller in functionality. It mainly steers image generation
via specific prompting. We study two simple control policies to show the controllability and utility of
CtrlSynth. The first one involves weighting particular tags in the input prompt (lower or increase
individual weights for a given tag) so that the output image has a different focus on the objects
or attributes. The second policy applies different styles (e.g., cinematic, realistic, or art) to the
output images for generating diverse content. Note that the control policies are flexible and can be
easily modified for diverse use cases. For example, one can integrate more complex policies such as
layout-guided (Lian et al., 2023) or planning-based (Yang et al., 2024b) image generation.
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3.2 IMAGE TEXT SYNTHESIS IN CTRLSYNTH

CtrlSynth is a modular and closed-loop system by design and supports diverse image and text
synthesis configurations. In this section, we first introduce different synthesis paths in CtrlSynth and
then describe how the closed-loop feature allows CtrlSynth to filter out low-quality samples.

Flexible and diverse synthesis paths. A data synthesis path (SP ) starts and ends with a data node
(rounded box in Figure 1). We define the following synthesis paths:

SP (1): 1a → 2a → 1e → 3a → 2b → 1d. This path (Figure 4a) means CtrlSynth generates a new
text that describes the original image. The synthetic text 1d may not align with the semantics in the
original image since the LLM can create new combinations of the visual tags and add information
that does not exist in the image. Such new information provides useful semantic augmentation over
the original image while containing similar visual concepts.

(a) Synthesis path SP (1) (b) Synthesis path SP (2)

(c) Synthesis path SP (3) (d) Synthesis path SP (4)

Figure 4: Different synthesis paths in CtrlSynth.

SP (2): 1a → 2a → 1e
1b−→ 3a → 2b → 1d. This path (Figure 4b) is similar to the previous path

but a key difference is that it constrains the synthetic text to be faithful2 to an original text. We can
consider it as using the VTM and LLM to synthesize an improved text over the original one. We will
show later in Section 4.5 that text samples generated from this path outperform previous works (Lai
et al., 2024; Fan et al., 2023) that rewrite noisy captions. We include the example prompts to reflect
the control policies in Appendix A.1.

SP (3): 1a → 2a → 1e → 3a → 2b → 1d → 3b → 2c → 1c. This path (Figure 4c) provides both
synthetic text (1d) and image (1c) samples. 1c can be an effective image sample that augments the
original image (1a) or can be paired with (1d) to augment the original image-text pair (1a and 1b).

SP (4): 1b → 3b → 2c → 1c. This path (Figure 4d) bypasses the language model and the original
text is directly fed to the image controller and then generates a synthetic image (1c). The image sample
could be a strong augmentation sample to the original image if the original text has a comprehensive
and high-quality description.

Note that CtrlSynth supports more synthesis paths that are not listed above. For example, one can
start with original text and use LLM to add creative elements and generate synthetic text and further
use it to generate an image, i.e. 1b → 3a → 2b → 1d → 3b → 2c → 1c. Another category of
examples includes starting with synthetic texts or images and creating more synthetic samples.

Self-filtering for better synthetic data. Synthetic samples often suffer from degraded quality
especially when running at large scale. Synthetic systems often rely on heuristics or rule-based
filtering techniques to filter out bad-quality samples. Because CtrlSynth pipeline is closed-loop, it
implicitly provides self-filtering functionality. To check the quality of the synthetic text, we detect
if the synthetic text (1d) contains the visual tags (1e), to filter out potentially misaligned or lower
quality synthetic text samples, we define that at least some ratio pf of the visual tags exist. For the

2Or the opposite depending on the user-specified policy
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synthetic image, we run it through the VTM again and output the visual tags, then we do the same
check against the starting node text (1b or 1d). Later in Section 4.4, we will show that self-filtering
improves the synthetic samples.

4 EXPERIMENTS

4.1 SETUP

Tasks and Datasets. We adopt the CLIP (Radford et al., 2021) model architecture for multimodal
representation learning. For pretraining CLIP models, we use two public image-text datasets:
CC3M (Sharma et al., 2018) and CC12M (Changpinyo et al., 2021). To evaluate the representation
quality of pretrained CLIP models, we measure the zero-shot performance on classification, retrieval,
and compositional reasoning tasks. For image classification, we use 25 common vision datasets,
including five ImageNet (Deng et al., 2009; Recht et al., 2019) variants and the tasks from the
VTAB benchmark (Zhai et al., 2020). We list the detailed dataset information in Appendix A.2. We
use COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) for image-to-text and text-to-
image retrieval tasks and report the metrics in recall@1. SugarCrepe (Hsieh et al., 2023) is a recent
benchmark that measures the compositional understanding of vision-language models, we report the
zero-shot accuracy numbers. Additionally, to study the effects of CtrlSynth on long-tail tasks, we
evaluate the task accuracy of Places-LT and ImageNet-LT datasets (Liu et al., 2019) by augmenting
the tail classes with CtrlSynth synthetic data.

Training and Baselines. Note that CtrlSynth itself does not require any training. We conduct
pretraining experiments on CLIP models to evaluate the quality of synthetic data. We use ViT-
B/16 (Dosovitskiy et al., 2020) architecture for the CLIP vision backbone. For a fair comparison,
we train all models for the same number of iterations on the original dataset (baseline) and the
dataset mixed with CtrlSynth augmented samples. We use CtrlSynth-cap to denote the original
image and synthetic text pair (1a, 1d) from synthesis path SP (1). CtrlSynth-img stands for the
synthetic image and original text pair (1b, 1c) from synthesis path SP (4). CtrlSynth-capimg means
the synthetic image and text pair (1d, 1c) from synthesis path SP (3). We define CtrlSynth-mix as
taking one image-text pair from CtrlSynth-cap and another from CtrlSynth-capimg. We do not take
CtrlSynth-img image-text pairs since we found the original texts are noisy and thus a substantial
portion of synthetic images are bad quality. We refer CtrlSynth-mix as the default setting unless
otherwise stated. We list detailed information in Appendix A.3.

CtrlSynth Models. For the VTM, we adopt a hybrid approach by default, we combine the tags
from a captioning plus tag extraction pipeline and an advanced multi-label image classifier. We
use a recent vision foundation model called Florence-large (Xiao et al., 2024) to generate detailed
image descriptions and then extract the objects, attributes, and relations using the Qwen2-7B-
Instruct (Yang et al., 2024a) LLM. Then we use an accurate image classifier, the huge variant of
CatLIP (Mehta et al., 2024b), to output multiple high-confidence objects and attributes. We show
later in Section 4.5 that this hybrid VTM provides the best visual tags compared with using individual
approach alone. For the LLM, we use Mistral-NeMo-instruct model (AI, 2024) by default due to
its strong instruction-following capability. We choose the stable-diffusion-xl-base-1.0 (Podell et al.,
2024) for the text-to-image model by default. We describe the detailed setup in Appendix A.4. In
Section 4.5, we study different pretrained models for each of the three modules in CtrlSynth.

4.2 MAIN RESULTS

Image Classification Evaluation. We conduct the zero-shot evaluation for image classification tasks.
Table 1 shows the results across 20 commonly used vision datasets and Table 2 shows the results of
6 ImageNet-related datasets. Notably, CtrlSynth outperforms the baseline consistently by 2.5% to
9.4% for the CLIP models trained on the CC3M and CC12M datasets. We observe that CtrlSynth
significantly improves the zero-shot performance (by over 7.7%) by augmenting smaller datasets like
CC3M, while the performance gains become smaller on larger datasets like CC12M.

Image-Text Retrieval Evaluation. We evaluate the zero-shot image-text retrieval performance for
our CtrlSynth and baseline CLIP models and present the recall@1 results in Table 3. CtrlSynth
substantially improves the text-to-image and image-to-text retrieval recall by up to 24% and 36% for
the Flickr dataset, and overall improves recall by 23.4% on average for CC3M models. CtrlSynth
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Table 1: Comparison of the zero-shot classification
accuracy between the baseline and CtrlSynth. We
report top-1 accuracy for 20 commonly used down-
stream vision datasets, including 12 tasks in the VTAB
benchmark (Zhai et al., 2020) and 8 other ones.

Data \ Model CC3M CC12M
CLIP CtrlSynth CLIP CtrlSynth

CIFAR-10 41.5 70.3 75.4 82.6
CIFAR-100 14.1 34.5 47.5 53.4
CLEVR Counts 7.1 11.7 15.2 22.1
CLEVR Distance 16.1 19.8 18.6 18.0
Caltech-101 43.8 68.0 76.5 76.2
Country211 0.4 0.6 1.1 1.3
DTD 11.6 17.9 23.5 29.1
EuroSAT 12.5 15.1 25.4 27.2
FGVC Aircraft 1.3 0.8 0.7 1.8
Food-101 9.5 23.1 53.4 61.0
GTSRB 4.6 9.7 14.5 19.1
KITTI 30.2 19.5 33.9 33.9
Oxford Flowers 10.8 24.8 34.5 38.9
Oxford-IIIT Pet 3.1 7.9 8.0 9.4
PatchCamelyon 50.0 48.6 52.7 50.4
RESISC45 17.7 27.6 36.7 39.5
STL-10 70.4 90.4 92.8 94.0
SUN397 30.7 44.3 54.1 58.1
SVHN 12.2 6.8 10.6 14.0
Stanford Cars 0.6 0.6 2.3 2.0

Average 19.4 27.1 (+7.7) 33.9 36.6 (+2.5)

Table 2: Zero-shot top-1 accuracy between the base-
line and CtrlSynth on 6 ImageNet datasets.

Data \ Model CC3M CC12M
CLIP CtrlSynth CLIP CtrlSynth

ImageNet-1K 20.2 25.3 39.6 41.2
ImageNet-V2 11.0 20.7 34.0 35.5
ImageNet-S 3.5 12.4 28.3 33.8
ImageNet-A 3.0 6.5 12.0 14.9
ImageNet-O 18.6 30.7 44.2 45.9
ImageNet-R 11.6 28.4 47.6 55.1

Average 11.3 20.7 (+9.4) 34.3 37.7 (+3.4)

Table 3: Zero-shot retrieval evaluation on the Flickr
and COCO datasets. We report the recall@1 numbers.
I2T means image-to-text retrieval, and T2I denotes
text-to-image retrieval.

Data \ Model CC3M CC12M
CLIP CtrlSynth CLIP CtrlSynth

COCO I2T 10.9 32.3 40.5 49.8
COCO T2I 7.6 19.8 26.7 32.2

Flickr I2T 21.3 57.3 65.5 77.2
Flickr T2I 14.8 39.0 48.9 58.2

Average 13.7 37.1 (+23.4) 45.4 54.4 (+9.0)

Table 4: We evaluate the compositional reasoning accuracy on the SugarCrepe (Hsieh et al., 2023) benchmark.

Data Model ADD REPLACE SWAP AVERAGE
Attribute Object Attribute Object Relation Attribute Object

CC3M CLIP 69.2 71.0 69.3 80.3 55.2 52.6 50.6 64.0
CtrlSynth 66.2 71.0 73.1 82.8 59.5 67.4 59.6 68.5 (+4.5)

CC12M CLIP 70.7 77.8 78.7 88.4 66.7 61.7 62.0 72.3
CtrlSynth 71.7 78.7 82.6 88.3 69.3 72.7 63.7 75.3 (+3.0)

also brings over 9% retrieval gains for CC12M models on average. The improvements show that data
samples from CtrlSynth have better coverage of visual concepts.

Compositional Reasoning Results. A key strength in CtrlSynth is the inclusion of visual tags that
contain objects, attributes and relations from an image. To understand how the fine-grained visual
attributes and relations affect visual reasoning performance, we evaluate CtrlSynth and baseline on the
SugarCrepe (Hsieh et al., 2023) benchmark which measures the compositional reasoning capability
of vision language models. We present the results in Table 4. CtrlSynth improves the baseline CLIP
compositional reasoning by a large margin (4.5% for CC3M and 3% for CC12M on average). Note
that most of the improvements come from the attribute and relation forms in the REPLACE and SWAP
categories, for example, CtrlSynth on CC3M improves the REPLACE relation accuracy by 4.3% and
SWAP attribute by 14.8%, indicating CtrlSynth models are robust to the attribute and relation changes.

Comparison with Prior Work. CtrlSynth pipeline is flexible and supports synthesizing data
from different paths. Previous work like VeCLIP (Lai et al., 2024) and LaCLIP (Fan et al., 2023)
synthesizing new texts for the images by improving the captions. Though it is impossible to have a
completely fair comparison with them3, the synthetic texts from the synthesis path (2) in CtrlSynth
provide similar effects. We present the results on CLIP ViT/B16 models trained on CC3M for the
tasks reported in each work. Table 5 shows that CtrlSynth outperforms VeCLIP on most VTAB
datasets and improves zero-shot accuracy by 4.8% on average. CtrlSynth also surpasses VeCLIP
by 7.9% on the ImageNet 1K dataset. We observe a similar trend when comparing CtrlSynth with
LaCLIP in Table 6. Specifically, CtrlSynth achieves an average of 3.4% better accuracy than LaCLIP
on 15 common datasets and 2.3% better accuracy on ImageNet 1K.

3Factors that prohibit apple-to-apple comparison include training software, variations of CC3M samples due
to missing images, exact hardware set up, etc.
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Table 5: Comparison of the zero-shot classification accuracy between VeCLIP (Vasu et al., 2024) and CtrlSynth
for CLIP trained on the CC3M. We report top-1 accuracy (%) for the VTAB benchmark (Zhai et al., 2020) across
9 tasks (6 from natural and 3 from specialized sets). We highlight the best numbers in bold.

Model Natural Sets Specialized Sets Average ImageNet 1KCaltech101 CIFAR100 SVHN DTD OxPet Flowers102 EuroSAT RESISC45 Camelyon

CLIP 39.50 9.83 20.89 7.42 7.44 10.40 11.94 7.93 50.65 18.45 5.46
VeCLIP 54.30 17.74 18.74 11.23 10.09 22.75 7.35 16.54 52.52 23.48 15.98

CtrlSynth 66.10 34.09 17.66 16.76 7.77 15.55 20.83 24.59 50.79 28.24 23.82

Table 6: We report the zero-shot performance on ImageNet 1K and 15 common downstream datasets for both
LaCLIP (Fan et al., 2023) and CtrlSynth for CLIP trained on CC3M. We highlight the best numbers in bold.
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CLIP 10.3 54.9 21.8 25.0 0.8 1.4 10.5 12.8 43.3 10.2 77.6 14.1 19.1 6.9 0.6 20.6 15.8
LaCLIP 14.2 57.1 27.5 35.1 1.6 1.6 16.6 15.6 52.7 14.7 86.2 15.0 24.3 6.4 1.0 24.6 21.5

CtrlSynth 17.8 69.5 34.1 44.9 0.7 1.2 16.8 7.8 66.1 15.5 88.3 20.8 24.6 10.9 0.7 28.0 23.8

Table 7: Long-tail accuracy on the ImagetNet-LT and Places-LT datasets for the baseline and CtrlSynth models.

Model ImageNet-LT Places-LT
Overall Tail Medium Head Overall Tail Medium Head

Baseline 60.8 13.8 56.7 82.6 34.9 8.2 31.3 53.7
CtrlSynth 66.2 (+5.4) 35.1 (+21.3) 62.8 (+6.1) 81.4 38.6 (+3.7) 24.4 (+16.2) 34.6 (+3.3) 51.2

4.3 PERFORMANCE ON LONG-TAIL TASKS.

Real-world data often have long-tail distributions. Much recent research (Shi et al., 2024; Liu
et al., 2019) has focused on developing new learning methods for long-tail recognition tasks. Data
augmentation remains an important solution, especially when the tail classes only have a few samples.
In this section, we evaluate the effectiveness of synthetic samples from CtrlSynth for long-tail tasks.

Setup. We conduct experiments on the ImageNet-LT (Liu et al., 2019) and Places-LT (Liu et al.,
2019) datasets. ImageNet-LT is a subset of the original ImageNet-2012 (Deng et al., 2009) and
contains 115.8K images from 1000 classes, with 5 to 1280 images per class. Places-LT is even more
imbalanced and contains 62.5K images from 365 classes, with 5 to 4980 images per class. The test
sets of both datasets are balanced. Following the same setup in (Liu et al., 2019), we report the
overall accuracy as well as the accuracy across the head (>100 images), medium (20∼100), and tail
(<20) classes. We take the same baseline in (Shi et al., 2024) and fine-tune the classifier head of a
pretrained CLIP model (ViT-B/16) for 10 epochs (or the same number of iterations for CtrlSynth).
For CtrlSynth synthetic samples, we choose the synthetic path SP (3) to generate synthetic images
for the tail classes. We mix the CtrlSynth image samples with the original training set of each dataset.
We describe more details in Appendix A.2.
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Figure 5: Data efficiency comparison between
baseline and CtrlSynth for pretraining CLIP mod-
els on CC3M. We normalize the iterations by di-
viding the total iterations with checkpoint steps.

Key Results. Table 7 shows that CtrlSynth im-
proves the tail class accuracy by 21.3% on ImageNet-
LT and by 16.2% on Places-LT. Synthetic samples
from CtrlSynth also improve the overall and medium
class accuracy by 3∼6%, though slightly decrease
the head class accuracy.

4.4 ANALYSIS

Data-Efficiency of CtrlSynth in Training CLIP.
To study the data efficiency of CtrlSynth samples, we
plot the top1 zero-shot accuracy of the ImageNet
validation set in Section 4.3 for the baseline and
CtrlSynth CLIP models trained on CC3M. CtrlSynth
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Figure 6: Study of different filtering thresholds and mixing ratios of CtrlSynth samples. The accuracy
numbers are top1 zero-shot accuracy on the ImageNet-1K validation set. The CLIP models are
trained on the CC3M dataset and CtrlSynth samples.

reaches the 20% accuracy with 40% fewer iterations than the baseline, indicating that using CtrlSynth
samples is more data-efficient. Furthermore, our method can be combined with previous techniques
that perform deduplication, filtering, and pruning (Mahmoud et al., 2024; Abbas et al., 2023; Zhang
et al., 2024) to further improve data efficiency.

Statistics and visualization of CtrlSynth Samples. In this section, we provide the statistics for
the synthetic samples from CtrlSynth. We observe that the text samples from CtrlSynth are usually
longer and contain richer information about the image. On average, CtrlSynth texts have over 60
words while original captions contain 8 words. We plot the histogram of the number of words in
Figure 7 at Appendix A.6 and visualize examples of CtrlSynth images and texts compared with the
original real samples in Figure 8 at Appendix A.6.

Effects of Self-Filtering. CtrlSynth provides off-the-shelf self-filtering to control the quality of
synthetic samples. We study the effects of applying different filtering thresholds pf for the synthetic
text and image. We set the same filtering thresholds for both synthetic text and image samples.
Intuitively, a higher threshold filters out more synthetic samples thus providing better quality samples
that align with original real samples. On the contrary, a lower threshold keeps relatively less aligned
samples but encourages more diverse samples. Section 4.4 plots the zero-shot accuracy numbers
of CLIP model on ImageNet under different threshold settings, we show that thresholds 10%∼30%
provide similar accuracy numbers and setting the filtering threshold to 20% provides the best accuracy.
Thresholds higher than 50% do not provide accuracy gains, likely because the aligned synthetic
samples lack diversity and fail to augment the original samples.

Mixing Ratios of Synthetic Samples. To better understand how the synthetic image text samples
improve CLIP model training, we study different ratios (pr) of mixing CtrlSynth samples with
original real ones. During CLIP training, we randomly sample the original sample with probability
0 < pr < 1 and our sample with 1− pr. Section 4.4 shows that even adding a small portion (< 20%)
of CtrlSynth samples improves the zero-shot accuracy while mixing with 50% provides best accuracy
gains. Further higher mixing ratios show diminishing improvements though still better than the
baseline that uses all real data.

4.5 ABLATION STUDY

In this section, we evaluate the effectiveness of visual tags, the impact of using different pretrained
models in the CtrlSynth pipeline, and mixing and filtering effects for CtrlSynth samples. We use the
same text and image control policy described in Section 3.2 for all settings. We experiment with
CC3M dataset for CLIP pretraining and report the accuracy on the SugarCrepe benchmark, zero-shot
accuracy of common downstream vision tasks (same tasks in Table 1), and top1 accuracy on the
ImageNet 1k validation set.
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Table 8: Evaluation of using different models, visual tags, and synthetic samples in CtrlSynth. ’-’ denotes the
same value from the last row (default setting).

Study Model Tags Samples Common Tasks ImageNet-1K SugarCrepe

Models
Qwen2-7B, SDXL - - 24.7 23.5 65.1
Qwen2-7B, SD3M - - 26.1 23.8 65.2
Mistral-Nemo, SD3M - - 26.6 25.1 68.1

Tags - Obj - 26.4 24.7 64.3
- Obj+Attr - 26.2 24.8 65.4

Samples
- - CtrlSynth-cap, SP(1) 26.2 24.5 67.2
- - CtrlSynth-img, SP(4) 22.1 21.8 64.4
- - CtrlSynth-capimg, SP(3) 26.5 24.8 67.5

CtrlSynth Mistral-Nemo, SDXL Obj+Attr+Rel CtrlSynth-mix 27.1 25.3 68.5

Different Pretrained Models. We choose an alternate LLM and a different text-to-image model
to understand how different pretrained models affect the quality of synthetic samples. CtrlSynth
pipeline is flexible so we can easily swap the pretrained LLM and text-to-image models. Specifically,
we use Qwen2-7B (Yang et al., 2024a) for the LLM and Stable Diffusion 3 Medium (Esser et al.,
2024) (SD3M) for the text-to-image model. Comparing the first and last rows in Table 8, we find
using a smaller LLM like Qwen2-7B degrades the task performance on all three tasks, indicating
that using a strong LLM is key to synthesizing high quality texts. The accuracy boost (+3%) on
SugarCrepe benchmark shows the LLM is effective in recombining the visual tags in a compositional
way to form diverse synthetic texts. We also point out that using a more recent diffusion model like
SD3M provides similar task performance numbers, this is likely because SD3M has fewer (2B versus
3.5B) parameters compared to SDXL, limiting the image generation capability.

Effectiveness of Visual Tags. We study the effects of using different categories of visual tags, i.e.,
using only objects (Obj), objects plus attributes (Obj+Attr), and all categories including relations
(Obj+Attr+Rel). In Table 8, comparing the second and last row, we show attributes marginally
improve the CLIP performance on compositional reasoning but not much on zero-shot vision tasks.
Importantly, visual relations improves the performance on all three tasks, and significantly improves
compositional reasoning performance by over 4%.

CtrlSynth Samples from Different Synthesis Paths. CtrlSynth pipeline supports synthesizing
images or texts from different paths, we evaluate their quality by measuring the downstream task
accuracy of the CLIP models trained on them. The penultimate and last rows in Section 4.5 show
all CtrlSynth samples provides performance gains on downstream tasks, except the CtrlSynth-img
samples where they do not improve compositional reasoning performance. CtrlSynth-img samples
have the least augmentation benefits and are likely due to the original real texts are noisy and thus the
generated images are not of high quality. Notably, mixing with synthetic captions (CtrlSynth-cap,
CtrlSynth-capimg, and CtrlSynth-mix) provides meaningful augmentation benefits, highlight the
importance of using LLMs to recombine the visual tags.

5 CONCLUSION

Synthetic data emerges as a viable solution to address challenges in curating high-quality samples
from noisy, misaligned, and long-tail web data. However, existing data synthesis pipelines are rigid
and the generation process is hard to control and thus being tailored for ad hoc use cases. We develop
CtrlSynth, a new image-text synthesis pipeline that allows users to control the data generation in
a fine-grained way. CtrlSynth decomposes the semantics of images and texts into basic elements
and uses pretrained foundation models to recompose them based on specified control policies. This
way, CtrlSynth provides flexible and diverse image-text samples. Synthetic samples from CtrlSynth
improve the long-tail task performance by a large margin. They also significantly boost the zero-shot
and compositional capability of CLIP models and enable data-efficient multimodal learning.
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A APPENDIX

A.1 CONTROL POLICIES

Text Prompt Templates. We provide example control policies for text synthesis as predefined
prompt templates, the first five templates do not include original text:

1. "Create a detailed and high-quality caption using phrases that represent the entities or
objects, their unique attributes, and the visual relationships in the scene depicted. Phrases:
{phrases}."

2. "Compose a rich and immersive caption by incorporating a set of phrases that illustrate the
entities or objects, their defining attributes, and the interconnections presented within the
image. Phrases: {phrases}."

3. "Formulate an articulate and informative caption by using a series of phrases that outline
the entities, their attributes, and their visual relationships depicted in an image. Phrases:
{phrases}."

4. "Using a set of phrases that highlight the entities, attributes, and their visual associations in
an image, craft a detailed and expressive caption. Phrases: {phrases}."

5. "Construct a comprehensive and expressive caption by integrating phrases that detail the
entities, their features, and the spatial or thematic relationships in an image. Phrases:
{phrases}."

The following five templates include the original text, which is useful for maintaining the original
meaning:

1. "Create a comprehensive caption that faithfully represents the objects, attributes, and their
relationships contained within the provided sentence and phrases. Given sentence: {caption}.
Given phrases: {phrases}. If the original caption specifies particular give phrases, maintain
their integrity while using the phrases to enhance the description."

2. "Write a faithful caption by integrating the given phrases with the original sentence. Given
sentence: {caption}. Given phrases: {phrases}. Ensure any objects or specific nouns from
the original caption are preserved while elaborating on the visual relationships and attributes
provided in the phrases to create a more detailed depiction."

3. "Provide a faithful and informative image caption using a given sentence and few phrases.
Sentence: {caption}, phrases: {phrases}. Consider the initial sentence as a base for the
overall context and ensure that specific objects or nouns such as numbers, car models,
animals, etc., are preserved in the new caption. Integrate the given phrases, which describe
entities, attributes, or visual relationships, to enrich and elaborate on the original meaning.
Maintain fidelity to the original content while enhancing descriptive quality."

4. "Make a detailed caption based on the given phrases and a given sentence. Given phrases:
{phrases}. Given sentence: {caption}. The sentence serves as a foundation, while the
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phrases elaborate on elements depicted in the image, like objects, their characteristics,
and interactions. Preserve any pivotal information concerning objects, attributes, and their
relations present in the sentence."

5. "Write a new faithful and high-quality caption based on the given phrases and a given
sentence. The given sentence is the original caption and the phrases are entities or objects,
attributes, and their visual relationships in an image. Given sentence: {caption}. Given
phrases: {phrases}. If the sentence contains objects or nouns (e.g. digits, car models, planes,
pets, animals, etc.), the new caption should be faithful and keep this information. Otherwise,
use the phrases to create the new caption."

Image Prompt Templates. We provide five image prompt templates:

1. "real": "a real photo. {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly
detailed",

2. "nocap": "a real photo showing {prompt}. highly detailed"

3. "isometric": "isometric style {prompt} . vibrant, beautiful, crisp, detailed, ultra detailed,
intricate"

4. "enhance": "breathtaking {prompt}. award-winning, professional, highly detailed"

5. "quality": "masterpiece, best quality, ultra detailed, {prompt}. intricate details"

A.2 DATASETS DETAILS

Evaluation Datasets. We list the vision datasets for evaluation in Table 9.

Table 9: Details of evaluation datasets.

Dataset Metric Classes Test Set Size

CIFAR-10 (Krizhevsky, 2009) Accuracy 10 10000
CIFAR-100 (Krizhevsky, 2009) Accuracy 100 10000
CLEVR Counts Accuracy 8 15000
CLEVR Distance Accuracy 6 15000
Caltech-101 (Fei-Fei et al., 2006) Mean Per Class Recall 102 6085
Country211 (Radford et al., 2021) Accuracy 211 21100
DTD (Cimpoi et al., 2014) Accuracy 47 1880
EuroSAT (Helber et al., 2018) Accuracy 10 5400
FGVC Aircraft (Maji et al., 2013) Mean Per Class Recall 100 3333
Food-101 (Bossard et al., 2014) Accuracy 101 25250
GTSRB (Stallkamp et al., 2011) Accuracy 43 12630
KITTI (Geiger et al., 2013) Accuracy 4 711
Oxford Flowers-102 (Nilsback & Zisserman, 2008) Mean Per Class Recall 102 6149
Oxford-IIIT Pet (Parkhi et al., 2012) Mean Per Class Recall 37 3669
PatchCamelyon (Veeling et al., 2018) Accuracy 2 32768
RESISC45 (Cheng et al., 2017) Accuracy 45 6300
STL-10 (Coates et al., 2011) Accuracy 10 8000
SUN397 (Xiao et al., 2010) Accuracy 397 108754
SVHN (Netzer et al., 2011) Accuracy 10 26032
Stanford Cars (Krause et al., 2013) Accuracy 196 8041
ImageNet-1K (Deng et al., 2009) Accuracy 1000 50000
ImageNet-V2 (Recht et al., 2019) Accuracy 1000 10000
ImageNet-S (Wang et al., 2019) Accuracy 1000 50889
ImageNet-A (Hendrycks et al., 2021b) Accuracy 200 7500
ImageNet-O (Hendrycks et al., 2021b) Accuracy 200 2000
ImageNet-R (Hendrycks et al., 2021a) Accuracy 200 30000
Flickr (Plummer et al., 2015) Mean Recall@1 - 1000
MSCOCO (Lin et al., 2014) Mean Recall@1 - 5000

Long-tail Datasets. For the tail classes in ImageNet-LT and Places-LT, we generate synthetic
images using the “real” style of image prompt template, and we generate 7 samples per tail class so
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Table 10: Training hyper-parameters.

(a) Pretraining CLIP on CC3M and CC12M.

Hyperparameter CC3M CC12M

Total iterations 56,429 55,429
Warmup iterations 2822 2771
Image size 224 224
LR scheduler Cosine Cosine
Max. LR 0.002 0.002
Min. LR 0.00002 0.00002
Optimizer AdamW AdamW
AdamW β’s (0.9, 0.98) (0.9, 0.98)
Weight decay 0.2 0.2
Batch size per GPU 256 256
# A100 GPUs 8 32
A100 GPU Memory 40 GB 40 GB

(b) Finetuning CLIP on Places-LT and ImageNet-LT.

Hyperparameter Places-LT ImageNet-LT

Total Iterations 56,429 55,429
Warmup Iterations 2822 2771
Image size 224 224
Loss type CrossEntropy CrossEntropy
LR scheduler Cosine Cosine
Learning rate 0.01 0.01
Optimizer SGD SGD
Momentum 0.9 0.9
Weight decay 5e-4 5e-4
Batch size per GPU 128 128
# A100 GPUs 1 1
A100 GPU Memory 40 GB 40 GB

that we roughly double the size of the original real datasets. We obtain 80.4k synthetic samples for
ImageNet-LT and 55.2K for Places-LT.

A.3 TRAINING DETAILS

Pretraining Hyper-parameters. We pretrain the CLIP for the same number of iterations for both
the baseline and CtrlSynth. For example, suppose we train for E epochs, if the original dataset has N
samples, CtrlSynth has generated N ′ samples (N ′ <= N due to filtering), then the total samples are
E ∗N , we train CtrlSynth models for E∗N

N+N ′ epochs. This guarantees that the baseline and CtrlSynth
CLIP models have seen the same number of data samples.

Table 10 lists the hyper-parameters used for pretraining on CC3M and CC12m. We use
AdamW (Loshchilov & Hutter, 2018) with default β values as an optimizer and binary cross-entropy
loss as an objective function. We use cosine learning rate schedule (Loshchilov & Hutter, 2022). We
use the CoreNet library (Mehta et al., 2024a; 2022) for all pretraining experiments. We adapt the
LIFT codebase (Shi et al., 2024) for fine-tuning long-tail tasks, main modifications include adding
support for iteration-based training and data loader for multiple datasets.

A.4 CTRLSYNTH INFERENCE DETAILS

VTM. We use a hybrid tagging model consisting of two stages. We first run the ViT-Huge variant
of CatLIP (Mehta et al., 2024b) for each image and output top20 classes based on the sigmoid score
of prediction logits, then we convert the class indices to actual word labels. The vocabulary size of
CatLIP is 24320. Most of the vocabulary words are nouns and single-word attributes. We then run the
Florence-large (Xiao et al., 2024) for each image to extract detailed captions using the task prompt
<MORE_DETAILED_CAPTION>. After that, we run Qwen2-7B-Instruct (Yang et al., 2024a) to extract
objects, attributes, and relations from the Florence captions. We then merge the objects field with
CatLIP-predicted labels. The extraction instruction contains a 2-shot example and we list the prompt
template below:

For a given image caption, identify all the attributes, objects or entities, and visual
relationships or actions that are phrases. The phrases should only come from the
caption. Separate the phrases by comma without formatting. Output three lines:

attributes: phrases
objects: phrases
relations: phrases

Examples:

caption: The image is a close-up portrait of a middle-aged man wearing a white cowboy
hat. He appears to be in his late 60s or early 70s, with gray hair and a serious
expression on his face. He is wearing a dark suit jacket and a light blue collared
shirt. The background is a clear blue sky with trees visible in the distance. The
man is looking off to the side with a slight smile on his lips.

attributes: close-up, middle-aged, white cowboy hat, gray hair, serious expression,
light blue
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objects: portrait, man, hat, face, dark suit jacket, shirt, blue sky, trees, lips
relations: wearing a, visible in the distance, looking off to the side, slight smile on

his lips

caption: The image shows a female singer performing on a stage. She is standing on a set
of stairs with her legs spread apart and holding a microphone in her hand. The
stage is lit up with red and blue lights and there is a large circular screen in
the background. The singer is wearing a black and white patterned outfit with high
heels. She appears to be in the middle of a song or performance.

attributes: female singer, stage, set of stairs, red and blue lights, large circular
screen, black and white patterned outfit, high heels

objects: female singer, stage, set of stairs, legs, microphone, screen, outfit, high
heels, song, performance

relations: performing on a stage, standing on, her legs spread apart, holding, lit up,
background, wearing, in the middle of a song

caption: {caption}

CatLIP is available in CoreNet so we use it directly for inference and we wrap the Florence Trans-
formers (Wolf et al., 2020) code into the CoreNet inference pipeline for easier integration.

LLM. We use the vLLM engine (Kwon et al., 2023) for offline inference in Qwen2 and Mistral-
Nemo. We use greedy decoding for the generation.

Text-to-image Model. We use the diffusers (von Platen et al., 2022) library for diffusion model
inference. For both SDXL and SD3M models, we use float16 dtype with a guidance scale of 7.0 and
set the diffusion steps to 28.

A.5 CTRLSYNTH SELF-FILTERING DETAILS

CtrlSynth is a closed-loop system and supports self-filtering for bad-quality synthetic text or image
samples. To implement synthetic text filtering, we first compute the percentage of visual tags
that appear in the synthetic text compared to the original text, then we filter out the sample if the
percentage of visual tags is lower than a predefined threshold pf . We empirically choose pf based on
the zero-shot accuracy of trained CLIP models evaluated on the ImageNet validation set. Similarly,
to filter synthetic images, we first extract the visual tags of the synthetic images by running them
through VTM, then compute the percentage of visual tags in the original image and filter out image
samples if the percentage is lower than pf .

A.6 MORE ANALYSIS DETAILS

CtrlSynth Samples. For CC3M, the original dataset has 2.8 million image-caption pairs, CtrlSynth-
cap contains 2.6 million captions, CtrlSynth-img contains 2.4 million images, and CtrlSynth-mix
contains 5.1 million image-caption pairs. Original CC12M has 11.3 million image-caption samples,
CtrlSynth-cap consists of 10.2 million captions, CtrlSynth-img contains 9.5 million images, and
CtrlSynth-mix has 19.7 million image-caption pairs.

CtrlSynth Synthetic Texts. We plot the number of words for synthetic texts generated by CtrlSynth
and compare them with original real texts in Figure 7.

Visualization. We show examples of CtrlSynth images and texts compared with the original real
samples in Figure 8.
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Figure 7: Number of words for the original captions and CtrlSynth synthetic texts on CC3M.
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wisteria, with its purple flowers, hangs
from the eaves and twines around the
wrought iron railing, decorating the
small porch of the old, black and white
painted cottage.

freshly caught, red shrimp, arranged in a
pile at the bustling seafood market, their
small black spots visible, overlapping
and cooked to perfection, surrounded by
a blur of herbs and spices.

a living room, where a large pendant
light hangs from the ceiling. on the right,
a wooden table is covered with a floral
tablecloth, set with a wooden bowl of
red tomatoes and a lamp.

tuscan sun casting a warm, orange glow
over the serene italian countryside, with
tall cypress trees arranged in neat rows
along the winding road, the sun setting
in the background.

Figure 8: Randomly selected CC3M examples of real images and captions (the first row) with their
corresponding CtrlSynth synthetic samples (the second row).
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