
GUI-G1: Understanding R1-Zero-Like Training for
Visual Grounding in GUI Agents

Yuqi Zhou1, Sunhao Dai1, Shuai Wang2*, Kaiwen Zhou2, Qinglin Jia2, Jun Xu1∗
1Gaoling School of Artificial Intelligence, Renmin University of China

2Huawei Noah’s Ark Lab
{yuqizhou,sunhaodai}@ruc.edu.cn

Abstract

Recent Graphical User Interface (GUI) agents replicate the R1-Zero paradigm,
coupling online Reinforcement Learning (RL) with explicit chain-of-thought rea-
soning prior to object grounding and thereby achieving substantial performance
gains. In this paper, we first conduct extensive analysis experiments of three key
components of that training pipeline: input design, output evaluation, and policy
update—each revealing distinct challenges arising from blindly applying general-
purpose RL without adapting to GUI grounding tasks. Input design: Current
templates encourage the model to generate chain-of-thought reasoning, but longer
chains unexpectedly lead to worse grounding performance. Output evaluation:
Reward functions based on hit signals or box area allow models to exploit box size,
leading to reward hacking and poor localization quality. Policy update: Online RL
tends to overfit easy examples due to biases in length and sample difficulty, leading
to under-optimization on harder cases. To address these issues, we propose three
targeted solutions. First, we adopt a Fast Thinking Template that encourages
direct answer generation, reducing excessive reasoning during training. Second,
we incorporate a box size constraint into the reward function to mitigate reward
hacking. Third, we revise the RL objective by adjusting length normalization
and adding a difficulty-aware scaling factor, enabling better optimization on hard
samples. Our GUI-G1-3B, trained on 17K public samples with Qwen2.5-VL-3B-
Instruct, achieves 90.3% accuracy on ScreenSpot and 37.1% on ScreenSpot-Pro.
This surpasses all prior models of similar size and even outperforms the larger
UI-TARS-7B, establishing a new state-of-the-art in GUI agent grounding. The
project repository is available at https://github.com/Yuqi-Zhou/GUI-G1.
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Figure 1: This framework employs the GRPO algorithm for optimization, emphasizing three critical
components: input design, output evaluation, and policy update.
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1 Introduction

DeepSeek-R1-Zero [12] revolutionizes the post-training pipeline of Large Language Models (LLMs)
by introducing the R1-Zero paradigm, which applies RL directly to base LLMs without relying
on supervised fine-tuning (SFT) as an intermediate step. Motivated by this approach, recent work
in the domain of GUI agents [25, 28, 40] has increasingly adopted RL, particularly the GRPO
algorithm [34], in order to address two key limitations: (1) SFT requires large-scale, high-quality
labeled datasets, resulting in significant computational costs; (2) existing open-source GUI agents
trained with SFT often exhibit poor generalization to out-of-domain (OOD) scenarios [5, 27].

While RL has emerged as a popular choice for training GUI agents in recent work, attributing
performance gains solely to the algorithm itself remains nontrivial. These R1-style models often
differ in multiple dimensions—including backbone architectures, data sources, and training proto-
cols—making it difficult to isolate the specific contribution of online RL. To better isolate the role
of RL, we focus exclusively on the grounding task [11, 23], which we consider the core capability
for effective GUI interaction [24]. Building on these observations, this work rethinks the role of
RL in R1-style GUI agents training by (1) disentangling its algorithmic contributions from other
system-level factors, and (2) focusing exclusively on grounding as the reinforcement objective.

For this, we decompose the R1-Zero-like training pipeline into three core components: input design,
output evaluation, and policy update. Each reveals distinct challenges arising from blindly applying
general-purpose RL without adapting to grounding tasks. First, we observe that the grounding
performance of the state-of-the-art R1-style model, InfiGUI-R1 [25], drops as reasoning increases in
Sec. 3.1, suggesting that reasoning templates may not benefit grounding in GUI agents. Second, we
find that commonly used reward functions based on hit signals or box area lead to opposite forms of
reward hacking in Sec. 3.2: the former encourages smaller boxes with higher accuracy, while the
latter favors larger boxes to increase Intersection over Union (IoU). Finally, we identify two biases in
the GRPO objective: length bias [26] and difficulty bias in Sec. 3.3. Length bias encourages longer
but incorrect responses, which, as previously observed, further degrade grounding performance.
Difficulty bias treats all samples equally, hindering the model’s ability to learn from more challenging
examples. Together, these biases make it harder for the model to learn from difficult samples.

To address the above issues, we implement the following improvements. First, we introduce the
Fast Thinking Template, which encourages the policy to generate answers directly during training.
Second, to counteract the hacking in common reward functions that prefer boxes of different sizes
during policy optimization, we propose a box-size-based reward function as a constraint. Finally,
we remove the length normalization term from the original GRPO objective, following [26]. We
also introduce a difficulty coefficient for each sample’s loss, allowing the model to receive greater
gradients for more challenging samples. The difficulty coefficient is calculated from the relative box
size, which serves as a proxy difficulty indicator in the grounding task [18].

Building on the above solutions, we train our model, GUI-G1-3B, using Qwen2.5-VL-3B-Instruct and
a small (about 17K) set of grounding samples, showing strong performance with limited supervision
from public datasets such as UI-BERT [3] and OS-Atlas [39]. Our model achieves new state-of-the-art
performance on GUI grounding benchmarks, with 90.3% accuracy on ScreenSpot [8] and 37.1%
on ScreenSpot-Pro [18]. It surpasses the previous best R1-style GUI agent, InfiGUI-R1 [25], while
requiring significantly less data, fewer output tokens, and fewer training stages.

In summary, the contributions of this paper are as follows: (1) We identify three distinct challenges in
the R1-Zero-like training pipeline of R1-style GUI agents: grounding is harmed by longer reasoning
due to grounding’s reliance on image tokens; common reward functions induce size-sensitive reward
hacking; and GRPO biases agents toward simpler examples due to its objective. (2) We further analyze
and propose three solutions: a Fast Thinking Template for policy training, a box size–based reward
to regularize box size, and a modified GRPO with difficulty weighting and no length normalization. (3)
Trained on only 17K fully open-source grounding samples, our GUI-G1-3B achieves state-of-the-art
performance while using fewer tokens when testing.

2 R1-Zero-Like Training Paradigm for GUI Grounding

We begin by describing how to train Multimodal Large Language Models (MLLMs) for grounding
tasks. Given a screenshot s and a textual description d, the MLLM is trained to predict the target

2



location B, typically represented as a bounding box or a point. Following prior work [8], we formulate
grounding as a language generation task, where the MLLM produces a response o that includes
the predicted location as well as additional components such as the reasoning process or objective
descriptions in Figure 1. In our implementation, the predicted location is expressed as a bounding box
Bpred = (x̂1, ŷ1, x̂2, ŷ2), where x and y denote the horizontal and vertical coordinates, respectively.
This prediction is evaluated against the ground-truth box Bgt = (x1, y1, x2, y2).

When RL is applied via the algorithm like GRPO [34], a template is first used to guide the response
format, and the model generates N candidate responses O = {o1, o2, . . . , oN}. Each response is
then evaluated using a set of rule-based reward functions, yielding a reward set {r1, r2, . . . , rN}. The
relative advantage Ai of each response is computed as:

Ai =
ri − mean(r1, r2, . . . , rN )

std(r1, r2, . . . , rN )
, (1)

where mean and std denote the mean and standard deviation of the rewards, respectively. Finally,
the policy model is optimized using the GRPO objective with KL-divergence regularization.

3 How R1-Zero-Like Training Affects Grounding for GUI Agents?

We first aim to understand R1-Zero-like training paradigm for grounding task in GUI agents by
examining three essential components: the input design (template) (Sec. 3.1), the output evaluation
(reward function) (Sec. 3.2), and policy update (RL objective) (Sec. 3.3). Finally, we present our
model, GUI-G1, in Sec. 3.4, where we also summarize and compare our approach with existing
R1-style agents to demonstrate its advantages in grounding tasks.

3.1 Analysis on Template

Recent R1-style GUI agents have increasingly incorporated explicit reasoning by prompting the model
to “think before action” [25, 28, 40], as illustrated in Figure 1. For example, InfiGUI-R1 [25] uses a
Slow Thinking Template. While such reasoning-augmented agents achieve strong performance,
it remains unclear whether the gains truly arise from the reasoning process itself. In fact, we
find that reasoning is often unnecessary for the grounding task in GUI agents. Before conducting
the analysis, we formalize the model’s input and output to ensure consistency across experiments.
The input consists of an image segment s and an instruction component tins, which includes the user
query and a guiding template. The output o comprises the reasoning trace tthink and the final response
tans, where tans contains the predicted location Bpred. We define the number of reasoning tokens nthink
as output tokens, and the tokens derived from the image nimg as image tokens. The text ratio is
given by nins+nthink

nimg+nins+nthink
, where nins is the instruction tokens number.
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Figure 2: (Left) shows the grounding accuracy under varying numbers of output tokens and image
tokens. “Text” refers to cases where the target is a textual element, while “Icon” refers to image
targets. (Right) presents the grounding accuracy on the Text and Icon subsets across different image
sizes. Within each group, samples are evenly divided based on their text ratio.

Longer thinking leads to worse grounding performance. While prior work, such as OpenAI-
o1 [30] and DeepSeek-R1 [12] demonstrates that longer reasoning chains can enhance performance
on System-2 tasks like mathematics and programming, more recent studies [19, 44] have found that
introducing intermediate reasoning steps may impair performance in tasks such as image classification
and GUI grounding. Building on these observations, we further find that longer reasoning chains
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consistently degrade grounding accuracy on the ScreenSpot dataset [8], as shown in Figure 2(Left).
This suggests that longer chains are not only unnecessary but can be increasingly detrimental in GUI
grounding, especially when the target item to be grounded is text.

Grounding benefits from appropriately scaled image tokens rather than from scaled text
thinking. In Figure 2 (Left Middle), we observe that the grounding performance of InfiGUI-R1-3B
improves as the number of image tokens increases. This observation raises a central question: Is
grounding more reliant on image tokens or text tokens? To investigate this, we first partition the
test samples based on the number of image tokens, ensuring each subset has a comparable level of
visual input. Within each subset, we further divide samples into two categories according to their
text ratio and evaluate grounding accuracy for each. As shown in Figure 2 (Right), a higher text ratio
consistently correlates with lower grounding performance, indicating that enriching visual content is
more effective than injecting additional textual reasoning.

As shown in Figure 2, explicit reasoning does not always improve grounding accuracy. Inspired by
Thinking, Fast and Slow [15], we propose a Fast Thinking Template that guides the model to generate
grounding outputs directly without reasoning steps. As detailed in Appendix B, models trained with
this template outperform baselines on ScreenSpot and ScreenSpot-Pro.

Template 1 (Fast Thinking Template) You are a helpful assistant. \nUser: Grounding instruction
is: {question} Please help to locate and output the bbox coordinates in JSON format.\nAssistant:

Template 2 (Slow Thinking Template) You FIRST think about the reasoning process as an inter-
nal monologue and then provide the final answer.\nThe reasoning process MUST BE enclosed
within <think> </think> tags. \n User: The screen’s resolution is {width}x{height}. \nPoint
to the UI element most relevant to “{question}”, output its coordinates using JSON format:\n

“‘json\n[\n{{“point_2d”: [x, y], “label”: “object name/description”}}\n]“‘\nAssistant:

3.2 Analysis on Reward Function

The rule-based reward function introduced in DeepSeek-R1 [12] exemplifies a simple yet effective
approach based on exact match. In grounding tasks, current reward functions for R1-style GUI agents
are mainly categorized into Hit-based rewards [25, 28, 40] and IoU-based rewards [25] in Table 1.
Here, (xp, yp) is the center of the predicted box, computed as xp = (x̂1 + x̂2)/2, yp = (ŷ1 + ŷ2)/2.
The Hit-based reward checks whether predicted box center hits within Bgt, while the IoU-based
reward measures the IoU between Bpred and Bgt. While prior work has employed RHit and RIoU as
reward signals for grounding-based RL, it remains unclear how these objectives jointly influence
training dynamics. To answer this, we implement both types of reward functions for a comparative
analysis. The detailed experimental settings and evaluation metrics can be found in Appendix C.
Unless otherwise specified, all subsequent analyses follow the same setup.

Table 1: Comparison of rule-based reward functions and their effects on training dynamics. “–”
indicates failure to optimize (e.g., RBox alone).

Reward Formula Driven By Box Size(↑↓) Accuracy(↑↓) IoU(↑↓)

RHit 1((xp, yp) ∈ Bgt) Point Accuracy ↓ ↑ ↓
RIoU IoU(Bpred, Bgt) IoU ↑ ↓ ↑

RBox RBox = 4
xp1

+xp2
+yp1+yp2

Box Size - - -

Individually optimizing RHit and RIoU leads to conflicting reward hacking behaviors. As shown
in Figure 3 (Left), optimizing RHit improves accuracy but causes IoU to drop in later training.
Conversely, optimizing RIoU enhances overlap quality but reduces accuracy. This illustrates reward
hacking in GUI grounding, where models overfit to one objective at the cost of others. These metrics
capture complementary yet competing aspects: RHit focuses on correctly identifying the target box,
while RIoU measures overlap with ground truth. Their conflict when optimized separately highlights
the challenge of designing balanced rewards.

GRPO’s sample selection bias toward different box sizes leads to reward hacking. To investigate
the cause of reward hacking, we visualize two cases with predicted bounding boxes in Figure 4 (Left).
Models trained with RHit tend to produce boxes smaller than the ground truth, while RIoU leads to
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Figure 3: Changes in accuracy (Left), IoU (Middle), and relative box size (Right) across policy
iterations during model training on the ScreenSpot dataset.

significantly larger boxes. This pattern is quantitatively confirmed in Figure 3 (Right), where the
relative size of predicted boxes increases over training under RIoU, but decreases under RHit. Further,
as illustrated in Figure 4 (Right), the cause of these opposite trends lies in how GRPO’s sample
selection interacts with the reward functions: optimizing RHit encourages the model to pick smaller
boxes that better capture the core target region, improving accuracy, whereas optimizing RIoU favors
larger boxes that yield higher overlap with ground truth, thus boosting IoU.

RBox helps mitigate reward hacking by regularizing box size. To address reward hacking, a
straightforward solution is to jointly optimize both RHit and RIoU. However, as shown in Figure 3,
training may still be dominated by one of the two, resulting in suboptimal balance. To alleviate this,
we introduce a new reward function RBox in Table 1. Here, xp1

= 1
1−|x̂1−x1|/image width , with similar

definitions for the other terms. This reward encourages the predicted bounding box to match the
ground truth in terms of size. As shown in Figure 3, incorporating RBox leads to further improvements
in both accuracy and IoU, with predicted box sizes becoming more aligned with the ground truth. We
also experiment with using RBox alone, but the model fails to produce outputs in the correct format.
We hypothesize this is because RBox assigns non-zero rewards even to poorly grounded predictions,
encouraging optimization on uninformative samples. Therefore, RBox should be used in conjunction
with RHit and RIoU, which directly reflect the evaluation metrics and serve as auxiliary constraints.
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Figure 4: (Left) Two cases with predicted bounding boxes and golden-truth boxes. (Right) Two
examples illustrating why RIoU favors larger boxes, while RHit prefers smaller ones.

3.3 Analysis on GRPO Objective

Recent approaches to improving GUI agents [25, 28, 40] have adopted RL techniques, such as the
GRPO algorithm proposed by DeepSeekMath [34]. GRPO optimizes the policy πθ by sampling a set
of candidate responses {oi}Ni=1 from the old policy πθold for each input query q, where each response
oi has length |oi|. The policy is updated based on a normalized advantage Âi,t computed for each
token, forming the objective JGRPO(πθ):
JGRPO(πθ) = Eq∼pQ,{oi}Ni=1∼πθold

(·|q)

1

N

N∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
Âi,t, clip

(
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]}
,

(2)

where t is the index of the token in the response, ϵ is a hyperparameter that controls the maximum
allowed deviation from the old policy, and clip(·, 1− ϵ, 1 + ϵ) applies clipping to stabilize training.

In the setting of GUI grounding tasks, Eq. 2 introduces two biases (see also in Figure 5):
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Figure 5: Illustration of the response-level length biases and query-level difficulty biases in GRPO.

• Response-level length bias [26]: It has been observed [26] that GRPO introduces a length bias:
longer responses are preferred among incorrect ones, while shorter responses are favored among
correct ones. This arises from dividing the objective JGRPO(πθ) by |oi|, which amplifies the
per-token gradient for shorter responses when the advantage is positive (Âi,t > 0), pushing the
policy toward simpler correct outputs. Conversely, it encourages unnecessarily long incorrect
answers. As shown in Figure 6 (Left), training gradually results in longer incorrect and shorter
correct responses. This trend further harms performance, as longer outputs are shown to degrade
accuracy in Section 3.1. Therefore, length bias in grounding tasks is especially problematic: it
not only increases token count but also reduces overall quality.

• Question-level difficulty bias: It has been noted in [26] that dividing the centered outcome
rewards by std(r1, r2, . . . , rN ) can lead the model to focus disproportionately on either harder
or easier samples. However, we argue that assigning higher weights to harder samples during
policy updates is desirable. In grounding tasks, the relative box size of the target can serve
as a proxy for task difficulty [18]. Based on this intuition, we modify the original objective
to wq · JGRPO(πθ), where wq reflects the difficulty of query q. The weight wq is computed
based on the relative box size, where a larger relative size indicates an easier grounding instance.
Detailed computation is provided in Appendix C.3. Multiplying the objective by wq assigns
greater gradients to harder samples, thus encouraging the model to focus on more challenging
instances. In fact, length bias can also be viewed as a form of difficulty bias, as it guides the
model toward generating longer incorrect responses, which exacerbates the difficulty of
learning from such examples and indirectly shifts the focus toward easier samples.
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Figure 6: Changes in output length and proportion of extreme samples during policy training.

Experimental Results. We implement both improvements, with the results reported in Table 2 and
in Table 9 (Appendix D.2). Mitigating length and difficulty biases consistently enhances model
performance. Figure 6 (middle and right) further tracks the ratio of extreme samples, where all
sampled responses are either correct or incorrect, throughout training. In the middle plot, our method
initially lags on easy samples due to their lower weights, but gradually outperforms the original
GRPO as these examples are eventually learned. In the right plot, our method maintains a lower
proportion of extreme cases on hard samples, indicating that difficulty re-weighting facilitates better
learning from challenging instances.

Table 2: Evaluation results on ScreenSpot after mitigating length and difficulty biases.

Training Objective Mobile Desktop Web Avg.
Text Icon Avg. Text Icon Avg. Text Icon Avg.

Standard GRPO [34] 96.5 82.4 90.6 87.6 60.7 76.3 85.0 68.4 77.3 82.3
|oi| → Max_Tokens [26] 96.5 81.9 90.4 86.6 65.7 77.8 85.4 71.9 79.1 83.2
JGRPO(πθ) → wp · JGRPO(πθ) 97.2 79.6 89.0 85.5 62.8 76.0 88.0 73.8 81.4 83.3
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3.4 GUI-G1: A Tailored RL Visual Grounding Model

Based on the above analysis, we identify key limitations in existing training paradigms for grounding
tasks. We now summarize our proposed improvements and present a comparison with prior methods.

Our method, GUI-G1, addresses the identified issues through:
• Thinking leads to poorer grounding performance in Sec. 3.1: We adopt a template without

intermediate reasoning to prevent the policy from generating long thinking during training.

• RHit and RIoU cause opposing types of reward hacking in Sec. 3.2: We combine RHit and
RIoU as the reward signal and introduce an additional RBox term to regularize predicted box
sizes, mitigating reward hacking caused by box size mismatch.

• Original GRPO introduces length and difficulty biases in Sec. 3.3: We remove these biases
by replacing |oi| with a constant Max_Tokens [26] and by weighting the GRPO objective
JGRPO(πθ) with a difficulty coefficient wp.

To make the distinctions clearer, Table 3 provides a structured comparison between GUI-G1 and
existing R1-style GUI agents in grounding tasks.

Table 3: Comparison of R1-style GUI agents for grounding tasks, focusing on RL, template, reward,
and support for length control and difficulty awareness. α and β are tunable hyperparameters.

Method RL Template Design Reward Design Length Control Difficulty Aware

U1-R1 [28] GRPO Thinking Template RHit ✗ ✗

GUI-R1 [40] GRPO Thinking Template RHit ✗ ✗

InfiGUI-R1 [25] RLOO [1, 16] Thinking Template RHit + RIoU ✗ ✗

GUI-G1 (Ours) GRPO No-Thinking Template RHit + αRIoU+βRBox ✓ ✓

4 Experiments

In this section, we introduce the experimental setup for training and evaluating our proposed GUI-
G1-3B agent. We outline the implementation details, describe the training dataset and evaluation
benchmarks, and provide a detailed comparison with state-of-the-art methods.

Implementation Details. Our model is built upon the Qwen2.5-VL-3B-Instruct and trained using
the VLM-R1 framework [35]. The reward function follows the form RHit + αRIoU + βRBox, where
α is set to 0.25 and β to 0.125. We conduct training on 4 NVIDIA H800 GPUs over 3 days, with a
global batch size of 32 and a learning rate of 1× 10−6. No KL divergence regularization is applied.
Only one training epoch is required.

Training Dataset and Evaluation Benchmarks. We construct a 17K-sample grounding dataset
spanning three domains: Mobile (from UI-BERT [3]), Web (from OS-Atlas [39]), and Desktop
(from OS-Atlas, covering Windows, Linux, and MacOS). More details of the training dataset are
provided in the Appendix D.1. To ensure data quality, each sample is prompted eight times using
Qwen2.5-VL-3B-Instruct, and those with consistently correct or incorrect responses are discarded [6].
For evaluation, we adopt ScreenSpot [8] and ScreenSpot-Pro [18]. While ScreenSpot assesses
grounding performance across diverse platforms, including Mobile, Web, and Desktop, ScreenSpot-
Pro emphasizes more challenging desktop scenarios, featuring high-resolution screens.

Performance Comparison on ScreenSpot. We compare GUI-G1-3B with a range of state-of-the-art
open-source and proprietary GUI agents, using results reported in their original papers. Table 4
summarizes performance on the ScreenSpot benchmark. GUI-G1-3B achieves state-of-the-art results,
outperforming proprietary systems like Gemini 2.0 [9], general-purpose models such as the Qwen2.5
series [4], GUI-specific SFT models like OS-Atlas [39] and UGround [11], as well as R1-style
models including UI-R1 [28], GUI-R1 [40], and InfiGUI-R1 [25]. It also surpasses larger models
like OS-Atlas-7B [39]. Despite its strong performance, our model is trained on only 17K samples
and requires no intermediate reasoning steps. Moreover, it achieves higher inference efficiency by
generating significantly fewer tokens than other methods (see Appendix D.3, Table 10).

Performance Comparison on ScreenSpot-Pro. As shown in Table 5, GUI-G1-3B achieves compet-
itive performance on the challenging ScreenSpot-Pro benchmark, with an overall average score of
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Table 4: Performance on ScreenSpot across Mobile, Desktop, and Web. Bold highlights the best
results, underlined the second-best. “-” indicates missing values due to unavailable results in the
original paper, unreleased model checkpoints, and unreleased inference code.

Model #Training Samples Accuracy (%) Avg.

Mobile Desktop Web

Text Icon Text Icon Text Icon

Proprietary Models
GPT-4o [31] - 30.5 23.2 20.6 19.4 11.1 7.8 18.8
Claude Computer Use [2] - - - - - - - 83.0
Gemini 2.0 (Project Mariner) [9] - - - - - - - 84.0

General Open-source Models
Qwen2-VL-7B [37] - 61.3 39.3 52.0 45.0 33.0 21.8 42.9
Qwen2.5-VL-3B [4] - - - - - - - 55.5
Qwen2.5-VL-7B [4] - - - - - - - 84.7

GUI-specific Models (SFT)
CogAgent-18B [13] 222M 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick-9.6B [8] 1M 78.0 52.0 72.2 30.0 55.7 32.5 53.4
UGround-7B [11] 10M 82.8 60.3 82.5 63.6 80.4 70.4 73.3
UGround-v1-7B [11] - 93.0 79.9 93.8 76.4 90.9 84.0 86.3
OS-Atlas-7B [39] 13M 93.0 72.9 91.8 62.9 90.9 74.3 82.5
ShowUI-2B [23] 256K 92.3 75.5 76.3 61.1 81.7 63.6 75.1
Aguvis-7B [41] 1M 95.6 77.7 93.8 67.1 88.3 75.2 84.4
UI-TARS-2B [33] - 93.0 75.5 90.7 68.6 84.3 74.8 82.3
UI-TARS-7B [33] - 94.5 85.2 95.9 85.7 90.0 83.5 87.7

GUI-specific Models (RL)
UI-R1-3B [28] 136 - - 90.2 59.3 85.2 73.3 -
GUI-R1-3B [40] 3K - - 93.8 64.8 89.6 72.1 -
GUI-R1-7B [40] 3K - - 91.8 73.6 91.3 75.7 -
InfiGUI-R1-3B [25] 32K 97.1 81.2 94.3 77.1 91.7 77.6 87.5

Ours
GUI-G1-3B 17K 98.6 85.8 96.4 80.7 91.4 82.3 90.3

37.1%. It outperforms the larger UI-TARS-7B model (35.7%) and significantly surpasses the best-
performing R1-based model, InfiGUI-R1-3B (35.7%). Although both GUI-G1-3B and OS-Atlas-7B
use the same training dataset, our model performs worse on the OS subset (16.1% vs. OS-Atlas-7B’s
16.8%), suggesting that its gains mainly result from post-training that activates pretrained knowledge
rather than from task-specific data. This demonstrates the robustness and generalization ability of
our approach in real-world scenarios. Additionally, we apply our improved training approach to
the GUI-G1 model across various model sizes and families, and reproduce the UI-R1 setting in the
Appendix D.4. The results confirm that GUI-G1 maintains strong performance, highlighting the
robustness and effectiveness of our method.

5 Related Work

Grounding for GUI Agents. Grounding is central to GUI agents research [38, 47], driving advances
in data collection and model design. Early works such as VUT [21] and Spotlight [17] aligned task
structures and modalities (e.g., screenshots, instructions) using BERT-based [10] representations,
while RUIG [45] employed reinforcement learning to map instructions to UI coordinates. With
MLLMs, the focus shifted to fine-tuning pretrained models for cross-platform interaction and GUI
adaptation. ShowUI [23] improved efficiency by reducing redundant visual tokens, and Ferret-
UI 2 [22] enhanced understanding via high-resolution encoding and cross-platform generalization.
Aria-UI [43] introduced multi-turn grounding with sequential reasoning for dynamic multi-step
interactions. More recently, OS-Atlas [39] and UGround [11] advanced the field by releasing large
open-source datasets and training models robust to out-of-distribution tasks. Unlike these data-
intensive, supervised approaches, our work explores how minimal data and an R1-Zero-like method
can unlock MLLM grounding capability for GUI tasks.
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Table 5: Comparison of agent models on ScreenSpot-Pro across Text, Icon, and Average task metrics.
Best results are shown in bold, with second-best results underlined.

Model
CAD Development Creative Scientific Office OS Avg.

Text Icon Avg. Text Icon Avg. Text Icon Avg. Text Icon Avg. Text Icon Avg. Text Icon Avg. Text Icon Avg.

Proprietary Models
GPT-4o [31] 2.0 0.0 1.5 1.3 0.0 0.7 1.0 0.0 0.6 2.1 0.0 1.2 1.1 0.0 0.9 0.0 0.0 0.0 1.3 0.0 0.8
Claude Computer Use [2] 14.5 3.7 11.9 22.0 3.9 12.6 25.9 3.4 16.8 33.9 15.8 25.8 30.1 16.3 26.9 11.0 4.5 8.1 23.4 7.1 17.1

General Open-source Models
Qwen2-VL-7B [37] 0.5 0.0 0.4 2.6 0.0 1.3 1.5 0.0 0.9 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
Qwen2.5-VL-3B [4] - - - - - - - - - - - - - - - - - - - - 23.9
Qwen2.5-VL-7B [4] - - - - - - - - - - - - - - - - - - - - 29.0
Kimi-VL [36] - - - - - - - - - - - - - - - - - - - - 34.5

GUI-specific Models (SFT)
SeeClick [8] 2.5 0.0 1.9 0.6 0.0 0.3 1.0 0.0 0.6 3.5 0.0 2.0 1.1 0.0 0.9 2.8 0.0 1.5 1.8 0.0 1.1
CogAgent-18B [13] 7.1 3.1 6.1 14.9 0.7 8.0 9.6 0.0 5.6 22.2 1.8 13.4 13.0 0.0 10.0 5.6 0.0 3.1 12.0 0.8 7.7
Aria-UI [43] 7.6 1.6 6.1 16.2 0.0 8.4 23.7 2.1 14.7 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
OS-Atlas-4B [39] 2.0 0.0 1.5 7.1 0.0 3.7 3.0 1.4 2.3 9.0 5.5 7.5 5.1 3.8 4.8 5.6 0.0 3.1 5.0 1.7 3.7
OS-Atlas-7B [39] 12.2 4.7 10.3 33.1 1.4 17.7 28.8 2.8 17.9 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 28.1 4.0 18.9
ShowUI-2B [23] 2.5 0.0 1.9 16.9 1.4 9.4 9.1 0.0 5.3 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7
UGround-7B [11] 14.2 1.6 11.1 26.6 2.1 14.7 27.3 2.8 17.0 31.9 2.7 19.3 31.6 11.3 27.0 17.8 0.0 9.7 25.0 2.8 16.5
UGround-V1-7B [11] - - 13.5 - - 35.5 - - 27.8 - - 38.8 - - 48.8 - - 26.1 - - 31.1
UI-TARS-2B [33] 17.8 4.7 14.6 47.4 4.1 26.4 42.9 6.3 27.6 56.9 17.3 39.8 50.3 17.0 42.6 21.5 5.6 14.3 39.6 8.4 27.7
UI-TARS-7B [33] 20.8 9.4 18.0 58.4 12.4 36.1 50.0 9.1 32.8 63.9 31.8 50.0 63.3 20.8 53.5 30.8 16.9 24.5 47.8 16.2 35.7

GUI-specific Models (RL)
InfiGUI-R1-3B [25] 33.0 14.1 28.4 51.3 12.4 32.4 44.9 7.0 29.0 58.3 20.0 41.7 65.5 28.3 57.0 43.9 12.4 29.6 49.1 14.1 35.7
UI-R1-3B [28] 11.2 6.3 - 22.7 4.1 - 27.3 3.5 - 42.4 11.8 - 32.2 11.3 - 13.1 4.5 - - - 17.8
GUI-R1-3B [40] 26.4 7.8 - 33.8 4.8 - 40.9 5.6 - 61.8 17.3 - 53.6 17.0 - 28.1 5.6 - - - -
GUI-R1-7B [40] 23.9 6.3 - 49.4 4.8 - 38.9 8.4 - 55.6 11.8 - 58.7 26.4 - 42.1 16.9 - - - -

Ours
GUI-G1-3B 39.6 9.4 32.2 50.7 10.3 31.1 36.6 11.9 26.6 61.8 30.0 48.0 67.2 32.1 59.1 23.5 10.6 16.1 49.5 16.8 37.1

R1-Zero-like Training for MLLMs. DeepSeek-R1-Zero [12] introduced a GRPO-based post-
training framework that enhances reasoning via structured outputs. This approach was extended
to multimodal settings by Vision-R1 [14], MM-EUREKA [29], and VisualThinker-R1-Zero [46],
all improving vision-language reasoning. LMM-R1 [32] achieved strong results with a two-stage
RL scheme and low cost. However, recent work [19] found that reasoning-averse models can
outperform reasoning-based ones in multimodal classification, suggesting reasoning is not always
beneficial. In GUI agents, studies such as UI-R1 [28], GUI-R1 [40], and InfiGUI-R1 [25] verified the
effectiveness of R1-Zero-like training in action prediction and grounding, showing consistent gains on
ScreenSpot [8], ScreenSpot-Pro [18], and AndroidControl [20]. This work focuses on the grounding
task and revisits whether the standard R1-Zero-like settings are suitable for GUI scenarios.

6 Conclusion

In this work, we revisit the R1-Zero-style training setup for GUI grounding agents from three aspects:
input design, reward evaluation, and policy update. We show that lengthy reasoning impairs grounding
performance and propose a Fast Thinking Template to address it. We then find and analyze opposing
types of reward hacking issues in existing reward designs and introduce a box-size constraint to
mitigate them, leading to improved performance. Finally, we examine GRPO’s length and difficulty
biases in grounding tasks and address them by removing length normalization and incorporating
difficulty-based weighting. With only 17K samples, our GUI-G1-3B surpasses larger R1-style
models on ScreenSpot and ScreenSpot-Pro.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract and introduction clearly state our key findings and contributions,
including critical analysis of R1-Zero components and the proposal of a new method, which
are supported by experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated “Limitations” section in the Appendix A
that clearly discusses the constraints of our approach. These include dataset coverage,
key assumptions made during modeling, and the sensitivity of the method to specific
configurations. The section also reflects on the generalizability of the results and the
computational considerations, offering a transparent view of the work’s scope.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer:[NA]
Justification: The paper does not include any theoretical results or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: The paper provides all necessary information to reproduce the main experimen-
tal results. We include detailed descriptions of the training objectives in Sec 3.3. The training
settings, dataset preprocessing procedures, computing resources, evaluation protocols, and
model architecture are specified in Sec 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include code, data, and reproduction instructions (including environment
and commands) via an anonymous link in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental settings and necessary details in the appendix
and supplemental material, with a summary provided in Sec. 4 of the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Due to the computational cost of large-scale experiments, we did not perform
repeated trials or statistical significance testing. All reported results are from single runs
under fixed settings, ensuring consistency across comparisons.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report compute details in Sec. 4. All training was conducted on 4 NVIDIA
H800 GPUs and took approximately 3 days.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
complies with all relevant ethical guidelines. Our work does not involve human subjects,
sensitive data, or foreseeable negative societal impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper includes a dedicated “Broader Impacts” section in the Appendix E,
where we discuss potential positive outcomes such as improving accessibility and automation
via GUI agents, as well as possible negative consequences, including reward hacking and
model bias. We also highlight the importance of fairness and robustness in real-world
deployment.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not release any new pretrained models or datasets that pose a
risk of misuse. The study is based on public datasets and models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used the publicly released Qwen2.5-VL-3B-Instruct model, which is
licensed under the “Qwen RESEARCH LICENSE AGREEMENT,” and cited the official
release. We also used the ScreenSpot and ScreenSpot-Pro datasets, which are publicly
available and cited accordingly in the paper. All assets were used under their respective
licenses and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We do not release a new model checkpoint, but we provide the dataset and code
as supplementary material. Comprehensive documentation, including usage instructions,
dataset details, and limitations, is included alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects
and thus no IRB approval was needed.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The research employs multimodal large language models (MLLMs) as a key
component in the proposed method, specifically using Qwen2.5-VL-3B-Instruct for training
the GUI agent, which is central to the approach and results.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

While our method demonstrates strong performance in GUI grounding, there remain several lim-
itations that offer directions for future work: (1) Focus on grounding. The current work focuses
on grounding, which is essential for GUI agents, but does not cover tasks like action prediction or
long-horizon planning. Future research can extend this approach to support full decision-making in
GUI interaction. (2) Scope of RL analysis. The study mainly examines online reinforcement learning,
especially GRPO. Other factors such as dataset composition, model design, and hyperparameter
tuning are not fully explored and deserve further analysis. (3) Limited training data. Our model is
trained on a relatively small set of public datasets, which constrains its performance ceiling. In future
work, we plan to scale up training using larger and more diverse datasets, such as those adopted in
GUI-R1 [40], to further improve generalization and robustness.

B Fast Thinking Template versus Slow Thinking Template

To examine the role of reasoning in grounding tasks, we formally define two instruction templates,
the Fast Thinking Template and the Slow Thinking Template. We then train models under both
settings to compare their effects on grounding performance. The detailed training configurations and
implementation settings are provided in Section B.2.

B.1 Formal Definition of Fast and Slow Thinking

Following Thinking, Fast and Slow [15], Fast Thinking corresponds to System 1, characterized by
intuitive, automatic, and effortless responses. Slow Thinking corresponds to System 2, characterized
by deliberate, analytical, and effortful reasoning. In the context of large language models, Fast
Thinking denotes direct answer generation without intermediate reasoning, as exemplified by the
non-thinking mode in Qwen3 [42]. Slow Thinking refers to explicit multi-step reasoning processes,
such as those elicited through chain-of-thought prompting. In our work, Fast Thinking represents
direct grounding prediction from visual inputs, whereas Slow Thinking involves reasoning over the
observed scene before producing the final grounding output.

B.2 Experimental Setting

We train our Qwen2.5-VL-3B-Instruct model on the UI-R1-3B-Train dataset2, which consists of 101
samples with grounding annotations. During training, the vision encoder is kept frozen. We set the
learning rate to 1× 10−6 and the sampling temperature to 0.9, generating eight responses per prompt.
Training is performed on four L20 (48G) GPUs with a batch size of four samples per GPU, β = 0,
and a gradient accumulation step of one.

B.3 Experimental Results

The results in Table 6 and Table 7 show that encouraging direct answers with Fast Thinking Template
consistently leads to better performance, supporting our hypothesis that explicit reasoning can hinder
grounding effectiveness.

Table 6: Results on ScreenSpot after optimization with Fast and Slow Thinking Templates.
Template Mobile Desktop Web Avg.

Slow Thinking Template 94.6 84.7 84.9 88.7

Fast Thinking Template 96.2 87.4 84.3 89.8

2https://huggingface.co/datasets/LZXzju/UI-R1-3B-Train
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Table 7: Results on ScreenSpot-Pro after optimization with Fast and Slow Thinking Templates.
Template CAD Development Creative Scientific Office OS Avg.

Slow Thinking Template 18.0 19.1 20.5 32.3 40.0 19.4 24.4

Fast Thinking Template 20.3 19.1 21.1 33.1 43.5 17.3 25.3

C Analysis Experiments Settings

C.1 Training Details

We fine-tune all parameters of the Qwen2.5-VL-3B-Instruct model using samples evenly drawn from
three domains: mobile (UIBERT [3]), web, and desktop (OS-Atlas [39]). Due to computational
constraints, we randomly sample 300 grounding examples from each domain. Despite the relatively
small dataset, the model achieves strong performance after fine-tuning, ensuring the reliability of
our subsequent analysis. Training follows the default setup of the VLM-R1 repository [35], using 8
rollouts per example and no KL-divergence regularization by default.

C.2 Evaluation Metrics

Specifically, we use the relative box size to measure the size of the predicted bounding box. It is
calculated as:

λ =
ŷ2 + x̂2 − ŷ1 − x̂1

IMAGE_WIDTH+ IMAGE_HEIGHT
,

where IMAGE_WIDTH and IMAGE_HEIGHT denote the pixel width and height of the input image,
respectively.

C.3 Difficulty-Aware Weighting Strategy

To compute the difficulty weight wq for each sample based on its relative box size λq ∈ (0, 1], we
first take the inverse of the size to reflect the intuition that smaller boxes are harder: λ′

q = 1
λi

. We

then normalize the inverted values to the range [0, 1] by computing λ̃q =
λ′
q−mini λ

′
i

maxi λ′
i−mini λ′

i
. Finally, we

linearly rescale the normalized scores to the interval (0.5, 1.5] to obtain the final difficulty weights:
wq = 0.5 + λ̃q . Putting everything together, the final formula is

wq = 0.5 +

1
λq

−mini

(
1
λi

)
maxi

(
1
λi

)
−mini

(
1
λi

) .
This ensures that harder samples (with smaller boxes) receive higher weights, while keeping the
values in a stable and bounded range.

D More Experiments Details

D.1 Training Data Composition

To provide a comprehensive grounding resource across diverse platforms, we construct a dataset
containing 17K samples distributed across three representative domains: Mobile, Web, and Desktop.

• The Mobile domain is derived from the UI-BERT dataset [3], which consists of user interface
data collected from Android applications.

• The Web domain is sourced from OS-Atlas [39], including interactive web elements and browser-
based environments.

• The Desktop domain is also based on OS-Atlas, but focuses on native applications and interfaces
from major desktop operating systems, including Windows, Linux, and MacOS.
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Each domain contains a balanced set of grounding instances that pair natural language commands
with corresponding UI elements. Table 8 summarizes the number of samples collected in each
domain.

Table 8: Statistics and sources of the grounding dataset across five platforms.

Mobile Web Windows Linux MacOS

Source UI-BERT [3] OS-Atlas [39] OS-Atlas [39] OS-Atlas [39] OS-Atlas [39]

Size 575 7,832 5,576 1,667 1,835

D.2 Debias Results on ScreenSpot-Pro

The results in Table 9 indicate that both length bias correction and difficulty reweighting enhance
performance on ScreenSpot-Pro. The limited effect of length bias removal may stem from the
predominance of high-resolution images, where text tokens contribute little relative to image tokens.
In contrast, difficulty reweighting produces notable improvements, validating its benefit for harder
samples.

Table 9: Evaluation results on ScreenSpot-Pro after mitigating length and difficulty biases.

Model CAD Development Creative Scientific Office OS Avg.

Standard GRPO [34] 17.2 18.4 20.8 30.7 40.4 14.8 23.5
|oi| → Max_Tokens [26] 16.1 19.7 21.4 32.3 40.4 14.8 23.9
JGRPO(πθ) → wp · JGRPO(πθ) 21.5 20.1 22.0 31.1 45.2 15.8 25.6

D.3 Output Token Efficiency Analysis

To assess the efficiency of different models during inference, we compare the average number of
output tokens generated per example across Mobile, Desktop, and Web domains on ScreenSpot [8].
As shown in Table 10, GUI-G1-3B generates substantially fewer tokens than InfiGUI-R1-3B [25] in
all domains—approximately one-third as many on average—while maintaining or even improving
task accuracy. This compact output not only reduces computational cost but also reflects the model’s
ability to produce precise and concise responses without relying on verbose intermediate reasoning.

Table 10: Average number of output tokens generated per example on ScreenSpot during inference.
Model Mobile Desktop Web

InfiGUI-R1-3B [25] 107 107 114

GUI-G1-3B 37 39 39

D.4 Experiments Across Various Model Sizes and Families

To evaluate the generality of our method, we conduct experiments across different model families
and sizes. We apply our approach to three models: InternVL3-2B-Instruct (a smaller model from
a different family), Qwen2.5-VL-3B-Instruct, and Qwen2.5-VL-7B-Instruct (a larger variant). Fol-
lowing the training protocol of UI-R1 [28], we retrain the 7B and 2B models on the same dataset,
while Qwen2.5-VL-3B-Instruct is retrained using our proposed method for direct comparison. Due
to resource constraints, LoRA fine-tuning is applied to the 7B model, whereas the others are fully
fine-tuned. All models use identical training data and hyperparameter settings for a fair comparison.
Additional training details are provided in Appendix B.2.

The results in Table 11 and Table 12 show that our method consistently improve performance across
both Qwen and InternVL families, although InternVL generally shows lower baselines. This trend
aligns with recent observations that most leading GUI agents [28, 40, 25] adopt Qwen as their
backbone. In terms of model scale, increasing from 3B to 7B unexpectedly results in lower grounding
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accuracy. We attribute this to two factors: (a) the 7B model relies on LoRA instead of full fine-tuning,
and (b) larger models tend to benefit less from task-specific grounding fine-tuning, as similarly
observed in Table 1 of GUI-R1 [40]. For example, UI-TARS-72B performs worse on ScreenSpot
(88.4) than the smaller UI-TARS-7B (89.5). Our results on the Qwen series further confirm that
grounding performance does not necessarily scale with model size.

Table 11: Performance on ScreenSpot across model sizes and families under our method and the
UI-R1 [28] setting.

Model Mobile Desktop Web Avg.

Qwen2.5-VL-3B
Base Model 85.6 70.4 65.9 74.8
UI-R1 [28] - - - 85.4
Our Method 96.2 87.4 84.3 89.8

Qwen2.5-VL-7B
Base Model 88.2 80.5 80.1 83.4
UI-R1 [28] 80.6 78.7 84.2 81.4
Our Method 88.8 82.3 80.8 84.4

InternVL3-2B-Instruct [7]
Base Model 0.2 13.2 0.2 3.6
UI-R1 [28] 0.4 14.4 0.5 4.1
Our Method 0.8 16.8 0.2 4.8

Table 12: Performance on ScreenSpot-Pro across model sizes and families under our method and the
UI-R1 [28] setting.

Model CAD Development Creative Scientific Office OS Avg.

Qwen2.5-VL-3B
Base Model 13.0 10.7 14.4 24.4 25.7 10.7 16.3
UI-R1 [28] - - - - - - 17.8
Our Method 20.3 19.1 21.1 33.1 43.5 17.3 25.3

Qwen2.5-VL-7B
Base Model 9.6 13.4 14.7 25.2 35.7 14.3 18.3
UI-R1 [28] 10.3 13.4 16.1 25.2 39.6 18.9 19.9
Our Method 9.6 14.1 15.5 26.7 35.2 17.4 19.2

InternVL3-2B-Instruct [7]
Base Model 1.5 0.0 0.6 1.2 0.4 0.0 0.6
UI-R1 [28] 3.1 0.7 0.9 3.5 1.3 0.0 1.6
Our Method 3.5 0.0 0.9 3.9 1.3 0.5 1.6

E Broader Impacts

Our work contributes to the development of more robust and accurate GUI agents by addressing key
training challenges in reinforcement learning for visual grounding. This could improve the reliability
of accessibility tools and human-computer interaction systems. However, care should be taken
when deploying such agents in real-world systems, as reward design choices may cause unintended
behavior such as reward hacking or bias toward easy cases. We encourage future research to further
study fairness, robustness, and privacy considerations in GUI agent training and deployment.
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