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Abstract

Generative Large Language Models (LLMs)001
are widely utilized for their excellence in vari-002
ous tasks. However, their tendency to produce003
inaccurate or misleading outputs poses a po-004
tential risk, particularly in high-stakes environ-005
ments. Therefore, estimating the correctness006
of generative LLM outputs is an important task007
for enhanced reliability. Uncertainty Estima-008
tion (UE) in generative LLMs is an evolving009
domain, where SOTA probability-based meth-010
ods commonly employ length-normalized scor-011
ing. In this work, we propose Meaning-Aware012
Response Scoring (MARS) as an alternative013
to length-normalized scoring for UE methods.014
MARS is a novel scoring function that con-015
siders the semantic contribution of each to-016
ken in the generated sequence in the context017
of the question. We demonstrate that inte-018
grating MARS into UE methods results in a019
universal and significant improvement in UE020
performance. We conduct experiments using021
three distinct closed-book question-answering022
datasets across five popular pre-trained LLMs.023
Lastly, we validate the efficacy of MARS on a024
Medical QA dataset. Code can be found here.025

1 Introduction026

Generative Large Language Models (LLMs) have027

risen in popularity due to their remarkable ability028

to understand, generate, and process human lan-029

guage at an unprecedented scale and accuracy (Ye030

et al., 2023; OpenAI, 2023; Touvron et al., 2023).031

These models have become the state-of-the-art in032

various fields, including machine translation, con-033

tent generation, and even scientific research (Huang034

et al., 2023; OpenAI, 2023) due to their capability035

to handle diverse tasks such as text summarization,036

sentiment analysis, and question-answering in a037

few-shot or zero-shot manner.038

Despite their growing popularity and success,039

generative LLMs are not infallible and can some-040

times produce erroneous or misleading outputs,041

especially when dealing with complex reasoning 042

problems or closed-book questions. This limitation 043

becomes particularly critical in question-answering 044

systems used in high-stakes environments. Quanti- 045

fying the uncertainty of generative LLM responses 046

in such scenarios is not just beneficial but essential 047

for ensuring trustworthy operation. For example, in 048

a medical advice application, accurately assessing 049

the uncertainty of the responses provided by LLMs 050

can prevent the provision of incorrect medical ad- 051

vice. This is crucial because erroneous advice may 052

lead to devastating medical missteps or misunder- 053

standings. Thus, understanding and quantifying 054

uncertainty helps in reliable risk assessment and 055

in maintaining the overall quality of the answers 056

provided, ensuring that users can assess how much 057

reliance they should place on LLM responses. 058

Uncertainty Estimation (UE) is a well-studied 059

problem in classification scenarios, especially in 060

the computer vision domain (Lakshminarayanan 061

et al., 2017; Gal and Ghahramani, 2016; Shen et al., 062

2021). The proposed UE methods in classification 063

tasks, which rely on the class probabilities, are not 064

directly applicable to generative LLMs due to the 065

auto-regressive generative structure of LLMs (Ma- 066

linin and Gales, 2021), which implies that LLMs 067

generate text sequentially by predicting each sub- 068

sequent word based on the combined context of all 069

preceding words. This process differs significantly 070

from classification tasks, where the output is typ- 071

ically a single label or a set of labels assigned to 072

an entire input, without the sequential and context- 073

accumulating nature of generative LLMs. Recent 074

work (Malinin and Gales, 2021), formalizes how 075

to adapt popular UE methods developed for clas- 076

sification tasks to the context of generative LLMs. 077

They propose using length-normalized scoring to 078

estimate the likelihood of a sequence generated by 079

the model, and the subsequent works (Kuhn et al., 080

2023; Lin et al., 2023; Chen and Mueller, 2023) 081

utilize that idea of length-normalized scoring. 082
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Figure 1: Overview of Meaning-Aware Response Scoring (MARS). Each token in the response of a generative LLM
is assigned a weight based on its importance in the meaning. The product of the weighted probabilities of these
tokens yields the response score. MARS is then used for Uncertainty Estimation (UE) methods in generative LLMs.

A downside of these existing UE techniques in083

the generative LLM literature is treating length-084

normalized scoring like the class probabilities in085

classification tasks. However, better ways may ex-086

ist for estimating uncertainty than directly using the087

length-normalized score of a sequence, as it treats088

all tokens equally. In reality, each word’s contri-089

bution to the sentence’s meaning in the question090

context might vary. For example, given the ques-091

tion “Which planet is known as the Red Planet?”092

and with the generated response “Mars is the Red093

Planet”, the tokens of “Mars” are the most critical094

ones in the response because those tokens are the095

ones actually answering the question. Thus, assign-096

ing more weight to semantically significant tokens097

in the response score calculation can improve UE098

methods, resulting in more accurate predictions.099

Based on this word importance intuition, we pro-100

pose a novel scoring function for generative LLMs101

called Meaning-Aware Response Scoring (MARS),102

as outlined in Figure 1. To compute the LLM re-103

sponse score as an input to UE methods, we first104

assign an importance coefficient to each token in105

the generation. This importance essentially reflects106

the impact of masking a token in a sequence on the107

meaning of the generated response, where tokens108

with a greater influence on the meaning receive109

higher importance. By leveraging these meaning-110

aware coefficients (wi in Figure 1), MARS returns111

the multiplication of the weighted probabilities of112

the tokens in the generated sequence.113

We list our main contributions as follows:114

• We propose a novel scoring function for UE115

in generative LLMs named Meaning-Aware116

Response Scoring (MARS).117

• We introduce a BERT-like model, efficiently118

assigning meaning-aware importance weights119

to the tokens in a single model pass within 120

MARS calculation. 121

• We evaluate probability-based UE metrics 122

with MARS on question-answer datasets and 123

show that MARS universally improves the UE 124

performance for an extensive list of LLMs. 125

2 Background 126

In this section, we will go over probability-based 127

UE methods that our work built on, for a detailed 128

discussion on related works, refer to Appendix A. 129

In the literature, UE is used as a proxy for 130

the correctness of the model output (Malinin and 131

Gales, 2021; Gal and Ghahramani, 2016; Laksh- 132

minarayanan et al., 2017; Band et al., 2021). For 133

generative LLMs in the question-answer context, 134

we consider the most probable sequence as the 135

model output and utilize UE to predict the correct- 136

ness of the response following Kuhn et al. (2023). 137

The goal of UE is to assign higher scores to incor- 138

rect responses, indicating greater uncertainty, and 139

lower scores to correct responses, signifying less 140

uncertainty. 141

2.1 Bayesian View to Estimate Uncertainty 142

Bayesian UE is used in machine learning to quan- 143

tify uncertainty in predictions. It treats model pa- 144

rameters as random variables, assigning a prior 145

probability distribution to them. Through Bayesian 146

inference, this distribution is updated with training 147

data, yielding a posterior distribution. Prediction 148

uncertainty stems from this posterior distribution. 149

Let {θi}Mi=1 be an ensemble of models sampled 150

from approximate posterior q(θ) ≈ p(θ|D) where 151

D is the training data. 152

The predictive posterior of input x ∈ X for tar- 153

get y ∈ Y is derived by expectation over the en- 154

2



semble:155

P (y|x,D) = Eq(θ)[P (y|x, θ)]

≈ 1

M

M∑
m=1

P (y|x, θm),
(1)156

where we have θm ∼ q(θ) ≈ p(θ|D). Using the157

posterior probability definition, we can define the158

entropy of predictive posterior as:159

H(x,D) = −
∑
y∈Y

P (y|x,D) logP (y|x,D). (2)160

In classification tasks, commonly used tools for161

estimating uncertainty are the entropy of the predic-162

tive posterior and the negative predictive posterior163

probability of the most probable answer (Gal and164

Ghahramani, 2016; Lakshminarayanan et al., 2017;165

Malinin and Gales, 2021; Xiao et al., 2022; Chen166

and Mueller, 2023). However, the formulation in167

(1) is not applicable to generative LLMs because168

of their auto-regressive generative structure.169

2.2 Uncertainty Estimation (UE) of170

Auto-Regressive Generative Models171

Malinin and Gales (2021) formalizes posterior172

probability definition for auto-regressive genera-173

tive models where the output s is not a single entity174

but a sequence of tokens s = {s1, s2, ..., sL}. They175

simply replace P (y|x, θ) in (1) with sequence prob-176

ability P (s|x, θ). The probability of a sequence s177

for a given model parametrized with θ is defined as178

the multiplication of probabilities of its tokens:179

P (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ) (3)180

where s<l ≜ s1, s2, .., sl−1 referring to generated181

tokens before the generation of sl. Kuhn et al.182

(2023) simplifies the ensemble sampling in (1) by183

using a single model in the ensemble due to the184

large size of foundation models. We follow the185

simplified version in the rest of the paper:186

P (s|x, D)≈P (s|x, θ)=
L∏
l=1

P (sl|s<l,x; θ). (4)187

2.3 Length-Normalized Scoring188

One of the key issues with using sequence probabil-189

ity P (s|x, θ) as a proxy for P (y|x, θ) lies in its ten-190

dency to decrease as the sequence length increases.191

To overcome this issue, Malinin and Gales (2021)192

uses a length-normalized scoring function instead 193

of sequence probability.1 Length-normalized scor- 194

ing P̃ (s|x, θ) is defined as follows: 195

P̃ (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ)
1
L , (5) 196

which assigns equal weights to each token in the 197

generation where these weights are inversely pro- 198

portional to the sequence length L. Although 199

length-normalized scoring P̃ (s|x, θ) does not cor- 200

respond to an actual probability distribution, Ma- 201

linin and Gales (2021) and Kuhn et al. (2023) con- 202

sider P̃ (s|x, θ) as auxiliary probabilities and re- 203

place the sequence probability P (s|x, θ) in (4) with 204

the length-normalized scoring given in (5). 205

2.4 Entropy-Based UE for Generative LLMs 206

To obtain the entropy of the output for given input 207

x, Malinin and Gales (2021) uses Monte-Carlo 208

approximation over beam-sampled generations of 209

a single model, as going through the entire answer 210

set is infeasible due to its exponential computation 211

complexity. Approximated entropy is defined as: 212

H(x, θ) ≈ − 1

B

B∑
b=1

ln P̃ (sb|x, θ), (6) 213

where sb is an output sampled by beam-search and 214

B is the total number of sampled generations. 215

Kuhn et al. (2023) proposes an alternative en- 216

tropy definition, named Semantic Entropy (SE), 217

considering the meaning of the generations. They 218

use the same entropy definition in (6), but clus- 219

ter sampled generations based on their meaning. 220

For example, in response to the question “What is 221

the capital city of France?”, a model might output: 222

“Paris” with score p̃1 and “It’s Paris” with score p̃2. 223

While standard entropy in (6) treats these as distinct 224

outputs, SE clusters them together as they convey 225

the same meaning in the question context, forming 226

a single cluster c with summed score p̃1+ p̃2. More 227

formally, cluster scoring is defined as: 228

P̃ (c|x, θ) =
∑
s,x∈c

P̃ (s|x, θ). (7) 229

SE follows from this cluster scoring P̃ (c|x, θ): 230

SE(x, θ) = − 1

|C|

|C|∑
i=1

log P̃ (ci|x, θ), (8) 231

1A scoring function K takes two inputs: the predicted
probability p of an event and its actual outcome o, and returns
a numerical score (Gneiting and Raftery, 2007).
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Figure 2: The most common probability-based UE methods for generative LLMs. The aim is to calculate the
uncertainty of the most probable answer (shown in darker green) to the given question. Length-normalized scoring
(5) is used in all these methods to obtain output scores. We propose MARS to replace it in these schemes.

where ci refers to each semantic cluster and C is232

the set of all clusters. Similar to length-normalized233

scoring in (5), semantic entropy lacks theoretical234

justification, yet shows empirical success (Kuhn235

et al., 2023). In Appendix B, we provide a theoreti-236

cal explanation for these heuristic design choices.237

Negative length-normalized scoring of the most238

probable answer, standard sequence entropy in (6)239

and semantic entropy in (8) are the most com-240

mon probability-based UE methods for generative241

LLMs (Malinin and Gales, 2021; Kuhn et al., 2023;242

Chen and Mueller, 2023; Lin et al., 2023) and are243

visualized in Figure 2. All of these methods de-244

pend on length-normalized scoring which we aim245

to replace with our alternative scoring, MARS.246

3 Method247

3.1 Key Intuition248

Existing literature utilizes length-normalized scor-249

ing in UE as shown in (5), (6), and (7). Length-250

normalized scoring, given in (5), assigns equal im-251

portance/weight (1/L) to each token in the gener-252

ated sentence. The normalization aims to compare253

the probabilities of short and long sequences more254

fairly (Malinin and Gales, 2021). Such a normaliza-255

tion method may fall short in considering seman-256

tic contribution of tokens, even though it balances257

length differences across sequences.258

To illustrate, consider the following example:259

Question: “Which planet is known as the Red260

Planet?” Generated Answer: “Mars is known as261

the Red Planet". In this answer, the word “Mars”262

is relatively more important as it directly addresses263

the question. Other words in the sentence primarily264

serve syntactic purposes or help achieve human- 265

like answer. Thus, while designing a scoring func- 266

tion, we should give more importance/weight to 267

the word “Mars”. With this intuition, we want 268

to replace length-normalized scoring and propose 269

an alternative scoring function that assigns impor- 270

tance/weight to each word in the sentence consid- 271

ering both its contribution to the overall meaning 272

in the given context and sequence length. 273

3.2 Meaning-Aware Response Scoring 274

Following our word importance intuition, we 275

propose to replace length-normalized scoring 276

P̃ (s|x, θ) in (5), (6), and (7) with Meaning-Aware 277

Response Scoring (MARS). MARS is defined as: 278

P̄ (s|x, θ) =
L∏
l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (9) 279

where w(·) is the weighting function that assigns 280

a weight to each token regarding the generated 281

answer, question context, and sequence length. 282

We design w(·) as a convex combination of 283

importance coefficient and 1/L, which enables 284

MARS to consider both sequence length and mean- 285

ing contribution of tokens. Formally, we define 286

w(s,x, L, l) ≜
1

2L
+

u(s,x, l)
2

, (10) 287

where u(·) is importance function taking three ar- 288

guments: generated sequence s, contextual infor- 289

mation x, and the position l of a token within the 290

sequence. The function u(·) assigns an importance 291

coefficient to each token, where this coefficient 292

ranges between 0 and 1. Additionally, it ensures 293
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that the total sum of the importance coefficient for294

all tokens in a single generation s is 1. Next, we295

explain how to design the importance function u(·).296

3.3 Importance Function Design297

We design the token importance function u(·) by298

measuring the semantic impact of removing a spe-299

cific token from the generated text. This evaluation300

of meaning is context-sensitive. In question-answer301

tasks, which is the focus of this work, the context302

is defined as the question itself. Thus, u(·) is de-303

signed to determine the importance of each token304

based on its influence on the overall meaning of the305

response within the context of the question.306

To measure the amount of semantic change in the307

given context, we employ a neural network model308

originally developed as a question-answer evalu-309

ator by Bulian et al. (2022). This model, called310

BERT matching (BEM), takes three inputs: ques-311

tion, ground truth answer, and predicted answer,312

returning a probability score indicating answer cor-313

rectness. For a question x and a generated an-314

swer s = {s1, s2, . . . , sL}, we determine the im-315

portance of each token as follows: We mask token316

sl in the generated answer and feed the question317

x, the original answer s, and masked response se-318

quence s \ {sl} into the BEM model. The output319

o, ranging from 0 to 1, indicates the impact of the320

masked token on answer correctness. A token sl321

with substantial impact yields an output o close to 0,322

whereas a lesser impact results in an output closer323

to 1. Hence, we define 1 − o as the preliminary324

coefficient of sl. Once we compute preliminary co-325

efficients for all tokens, we normalize them using a326

softmax function with a temperature parameter τ .327

In our experiments, we set τ = 0.01.328

Addressing Token Dependency. Our initial329

approach for assigning importance coefficients330

to tokens assumes their semantic independence331

even though tokens often exhibit semantic inter-332

dependencies. For example, in the sentence333

“Hamlet is written by William Shakespeare,” to-334

kens “William” and “Shakespeare” are intrinsically335

linked. Treating such tokens independently ignores336

linguistic nuances, so we refine our methodology.337

Instead of masking tokens individually, we mask338

tokens at the phrase level (details in Appendix C.1).339

This approach acknowledges and preserves the in-340

herent semantic relationships between closely re-341

lated tokens, resulting in a more accurate and con-342

textually aware assessment of token importance.343

Figure 3: Our Bert-like transformer model takes the
question and the generated answer as inputs, and out-
puts phrases in the generated answer and corresponding
importance coefficients.

In particular, a response s = {s1, s2, . . . , sL} 344

is composed of phrases {h1, h2, . . . , hK}, where 345

each token sl belongs to a phrase hk. We mask 346

phrases one by one and find the importance coef- 347

ficient of each phrase with BEM model. To trans- 348

late phrase-level importance coefficients into token- 349

level coefficients, we distribute the importance 350

score to all tokens in the phrase equally. We sum- 351

marize the enhanced algorithm in Appendix C.2. 352

Further, in Section 4.3, we show that allocating 353

importance score only to the most uncertain token 354

within a phrase also yields comparable results. 355

Reducing Computation. The necessity of per- 356

forming a separate neural network pass for each 357

phrase to determine its importance score increases 358

the computational load of the proposed approach. 359

Additionally, detecting phrases themselves requires 360

another neural network pass, further increasing the 361

computational complexity. To address these chal- 362

lenges, we have developed a BERT-like neural net- 363

work model with 110M parameters (a significantly 364

smaller model compared to LLMs). This model is 365

capable of performing both tasks simultaneously 366

for a given sequence in a single neural network 367

pass: it identifies phrases within the generated text 368

and their importance scores (see Figure 3). This 369

dual-functionality substantially reduces the compu- 370

tational cost, making the algorithm more efficient 371

and scalable. For detailed model architecture and 372

performance metrics, please refer to Appendix C. 373

4 Experiments 374

4.1 Experimental Design 375

In the UE context, we expect that if the model is un- 376

certain about the generated answer, then the answer 377

should be less reliable and tend to be incorrect. 378

Datasets. We use three closed-book Question- 379

Answer (QA) datasets for evaluation: Trivi- 380

5



aQA (Joshi et al., 2017), Natural Questions381

(Kwiatkowski et al., 2019), and WebQA (Chang382

et al., 2022). We give further details in Appendix D.383

Models. Our evaluation consists of 5 popular384

open-source LLMs. First two models are Llama-385

7B and Llama-7B-chat, where the latter one is fine-386

tuned for dialogue use cases (Touvron et al., 2023).387

We also use Mistral-7B (Jiang et al., 2023) as well388

as Falcon-7B (Almazrouei et al., 2023) which is389

fine-tuned on a mixture of chat/instruct datasets.390

To extend our analysis to larger models, we include391

Llama-13B (Touvron et al., 2023). We do not per-392

form any further training on these models, rather393

we use their pre-existing configurations. Following394

Kuhn et al. (2023), we abstain from assuming any395

ensemble of the models, considering the significant396

size and time requirements associated with LLMs.397

Baselines. As we focus on the probability-based398

UE methods, we do not include heuristic-based and399

black-box methods. We use 3 SOTA probability-400

based UE methods as baselines (see Figure 2 for401

visualization): 1. Negative length-normalized score402

(Confidence), which provides the confidence score403

of the most likely generation only by using its to-404

ken probabilities as in (5). 2. Entropy as in (6),405

which requires generating multiple answers to ob-406

tain the score for the most likely answer. 3. Se-407

mantic Entropy (SE), which considers the meaning408

of the generated answer while computing entropy,409

as shown in (8). All 3 baselines depend on length-410

normalized scoring. We replace length-normalized411

scoring with MARS and arrive at Confidence +412

MARS, Entropy + MARS, SE + MARS.413

Metrics. Following previous works (Malinin and414

Gales, 2021; Kuhn et al., 2023), we use Area Un-415

der the Receiver Operating Characteristic Curve416

(AUROC) score for our UE performance metric.417

AUROC quantifies a method’s ability to distinguish418

between two classes by plotting the true positive419

rate against the false positive rate for various thresh-420

old values. AUROC score is the area under this421

curve, ranging from 0 to 1. Higher AUROC score422

indicates a superior performance, while a score of423

0.5 implies a random chance. In our case, ground424

truth is the correctness2 of the model response to425

the question and the prediction is the output of an426

UE method.427

2We use GPT-3.5-turbo for evaluating the correctness of
the model, as in (Lin et al., 2023; Chen and Mueller, 2023).

Figure 4: Average AUROC scores of UE methods over
3 different datasets for various LLMs. The improvement
of MARS on top of baselines is shown in green.

4.2 Main Results 428

We present our detailed results in Table 1. Fig- 429

ure 4 illustrates the average AUROC scores for each 430

method and model across three distinct datasets. 431

Upon closer examination of the results, it becomes 432

apparent that the application of MARS consis- 433

tently improves all baseline methods across various 434

datasets and models. Specifically, MARS yields 435

improvements of up to 5.8 points for Confidence, 436

6.24 points for Entropy, and 1.51 points for SE. 437

It is crucial to mention that the choice among the 438

baselines depends on the available computational 439

resources. Confidence score is the least resource- 440

intensive, requiring only a single output generation. 441

Entropy, on the other hand, demands multiple gen- 442

erations (set to 5 in our experiments). SE is the 443

most computationally demanding, needing both 444

multiple generations and O(n2) Natural Language 445

Inference (NLI) model passes for clustering, where 446

n represents the number of generations. 447

One of the main contributions of MARS be- 448

comes evident when we compare SE with Con- 449

fidence+MARS or Entropy+MARS. With our 450

method, we are able to increase the scores of Con- 451

fidence+MARS and Entropy+MARS to a level 452

they can compete with basic SE. Consequently, 453

given the computational overhead of SE, Con- 454

fidence+MARS and Entropy+MARS emerge as 455

more practical and desirable alternatives. Further- 456

more, in scenarios where sampling (i.e., multiple 457

answer generation) is not feasible, the improvement 458

offered by MARS to Confidence method becomes 459

crucial with an average increase of 2.8 points. We 460

note that the additional computational and memory 461

demands of MARS are relatively minor, approxi- 462

mately 1.5% of the 7b models and 0.8% of the 13b 463

models, because MARS’s importance function is 464

implemented with 110M Bert-like model. 465
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Method Llama2-7b Llama2-7b-chat Mistral-7b Falcon-7b Llama2-13b

Tr
iv

ia
Q

A Confidence 70.18 70.40 72.55 68.47 68.19
Entropy 69.70 69.94 72.57 69.10 69.04
SE 81.10 76.19 82.17 76.78 79.49

O
ur

s Confidence + MARS 75.06 74.23 77.97 72.95 73.99
Entropy + MARS 75.94 73.82 78.51 72.87 74.95
SE + MARS 82.22 77.67 83.63 77.48 81.00

N
at

ur
al

Q
A Confidence 68.56 65.98 69.54 63.78 68.56

Entropy 67.08 65.23 68.05 63.28 68.34
SE 72.47 68.66 75.12 70.41 73.56

O
ur

s Confidence+ MARS 69.81 67.86 71.36 68.30 70.88
Entropy + MARS 69.32 67.41 70.71 67.51 70.63
SE + MARS 72.75 69.43 75.50 71.24 73.89

W
eb

Q
A

Confidence 64.76 64.06 65.66 66.56 62.60
Entropy 64.04 63.82 64.15 65.98 62.11
SE 69.44 67.11 69.51 73.16 67.31

O
ur

s Confidence + MARS 66.04 64.48 67.16 68.26 64.23
Entropy + MARS 65.83 64.69 65.76 68.44 64.02
SE + MARS 69.88 67.27 69.86 73.57 67.75

Table 1: AUROC performance of UE methods in various datasets with different pre-trained LLMs.

Method Llama2-7b Mistral-7b

To
ke

n Confidence + MARS 72.53 75.31
Entropy + MARS 74.46 77.58
SE + MARS 81.55 83.25

P
hr

as
e Confidence + MARS 75.06 77.97

Entropy + MARS 75.94 78.51
SE + MARS 82.22 83.63

Table 2: AUROC score of UE methods + MARS with
token/phrase-level importance functions on TriviaQA.

Method Distribution Llama2-7b Mistral-7b

Confidence
+ MARS

Min 69.92 72.20
Max 75.13 77.73
Equal 75.06 77.97

Entropy
+ MARS

Min 70.56 72.75
Max 77.11 79.22
Equal 75.94 78.51

SE +
MARS

Min 81.67 82.33
Max 82.07 83.62
Equal 82.22 83.63

Table 3: AUROC score of UE methods + MARS with
different coefficient distributions in phrases in impor-
tance function on TriviaQA.

4.3 Ablation Studies466

Effect of Phrase Separation. In Section 3.3, we467

suggest using a phrase-level separation instead of468

token-level separation in designing the importance469

function so that tokens having strong relations are470

evaluated together on their semantic impact on the471

sequence. To validate this design, we conduct an472

experiment where we revert to token-level separa-473

tion. The results in Table 2 demonstrate that while474

token-level separation outperforms other baselines,475

phrase-level separation consistently yields superior476

results, reaffirming the efficacy of our approach.477

Importance Coefficient Distribution in Phrases. 478

In Section 3.3, we state that we equally distribute 479

the importance of phrases to each token. Alterna- 480

tive distribution strategies might include prioriti- 481

zation of the least or most uncertain token. Those 482

strategies assign the phrase importance coefficient 483

to the least or most uncertain token of that phrase. 484

In Table 3, we provide AUROC performances when 485

different distribution strategies are adopted. No- 486

tably, we find that max-uncertain distribution is 487

nearly as effective as our adopted equally assigning 488

approach. In contrast, the min-uncertain assign- 489

ing strategy underperforms. This outcome can be 490

contextualized with a hypothetical scenario: Con- 491

sider the model’s response is “Shakespeare” to the 492

query “Who wrote Hamlet?”, which is tokenized 493

into “Shake” and “-speare”. Once “Shake” is pro- 494

duced, the subsequent arrival of “-speare” is almost 495

assured. The uncertainty primarily resides in the 496

token “Shake”, making the probability of “-speare” 497

relatively uninformative. Consequently, focusing 498

on the least uncertain (most uninformative) token 499

in a phrase drops the performance of MARS signif- 500

icantly, and focusing on the most uncertain token 501

only is still reasonable. 502

4.4 Effect of Sampling Hyperparameters 503

We explore the influence of key hyperparameters 504

on the performance of UE methods that rely on 505

sampling, specifically Entropy and SE. We focus on 506

two critical hyperparameters: Temperature, which 507

adjusts the diversity of the sampling process, and 508

the number of sampling, which dictates how many 509

samples are sampled in entropy calculation. 510
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Figure 5: AUROC scores for various temperatures and sampling numbers.

Temperature. The temperature parameter deter-511

mines the smoothness of the probabilities while512

sampling. A higher (lower) temperature value in-513

dicates more (less) diverse sampling. Figure 5514

presents the AUROC scores for Entropy, SE, and515

their enhancements via MARS for the Llama2-13b516

and Mistral-7b models on the TriviaQA dataset.517

The improvement of MARS is consistent for all518

temperature values. The choice of temperature519

is application-dependent: higher temperatures are520

advisable for tasks demanding creativity, whereas521

lower temperatures are preferable for applications522

where consistency is important.523

Number of Sampling. The number of sampled524

sequences is important for entropy and semantic525

entropy calculation. More sampling leads to bet-526

ter entropy estimation; however, the cost also in-527

creases. Beyond the sampling expense, SE incurs528

an additional cost from Natural Language Inference529

(NLI) model passes, a point elaborated in Section530

4.2. In Figure 5, we provide the AUROC perfor-531

mance of Llama2-13b and Mistral-7b models on532

TriviaQA with various sampling numbers. Notably,533

the efficacy of MARS remains stable across diverse534

sampling numbers, with its advantages becoming535

more obvious under lower sampling numbers.536

4.5 UE in Medical QA Dataset537

Next, we evaluate the UE methods using a med-538

ical QA dataset. Publicly available medical QA539

datasets typically fall into two categories: those540

with multiple-choice questions (Pal et al., 2022;541

Kotonya and Toni, 2020; Jin et al., 2021) and those542

without clear ground truths (Zhu et al., 2019, 2020).543

To tackle this, we create a subset from the MedM-544

CQA multiple-choice dataset (Pal et al., 2022), se-545

lecting questions that can be answered objectively546

without multiple choices. For this, we collaborate547

with medical professionals to ensure the accuracy548

and relevance of the selected questions, yielding549

a dataset of 415 samples. We use AdaptLLM’s550

Medicine-Chat (Cheng et al., 2023), a medical-551

domain adapted LLaMA-2-Chat-7B model3. To 552

evaluate the correctness of model-generated re- 553

sponses, we leverage GPT-4 (OpenAI, 2023) and 554

assess response validity in the medical domain. 555

In Table 4, we provide the AUROC performance 556

of the UE methods. Although MARS still con- 557

sistently improves the performance of probability- 558

based UE methods, AUROC scores are still low 559

compared to Table 1. This might be because of 560

the nature of medical questions. General knowl- 561

edge questions mostly require a straight, single- 562

sentence answer. On the other hand, although 563

we curated closed-ended questions, medical ques- 564

tions still require a more complex explanation span- 565

ning multiple sentences. This difference between 566

domains can affect the prediction performance 567

of the probability-based methods. This observa- 568

tion emphasizes the necessity for further investi- 569

gation across various specialized fields, including 570

medicine and law. Customized explorations are 571

essential to address domain-specific challenges and 572

optimize UE methods accordingly. 573

Method Medicine-Chat-7b
Confidence 62.41
Entropy 59.58
SE 62.89

O
ur

s Confidence + MARS 62.89
Entropy + MARS 60.33
SE + MARS 64.48

Table 4: AUROC score of UE methods on medical QA.

5 Conclusion 574

We introduce Meaning-Aware Response Scoring 575

(MARS), a novel scoring function designed to 576

replace length-normalized scoring in probability- 577

based UE methods when evaluating generative 578

LLMs. MARS consistently and significantly boosts 579

the performance of current probability-based UE 580

methods with minimal additional computational 581

overhead. The efficacy of MARS is shown in three 582

closed-book and closed-ended question-answer 583

datasets and a medical question-answer dataset. 584

3https://huggingface.co/AdaptLLM/medicine-chat
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6 Limitations585

The importance function model within MARS uti-586

lizes an unsupervised methodology, leveraging pre-587

existing models for its formulation. Nonetheless,588

the performance of MARS can potentially be fur-589

ther enhanced by using human labelers to assign590

importance coefficients for training the importance591

function model. Besides, our analysis is limited592

to the closed-ended question-answering domain in593

English, where a question has an objective ground-594

truth answer(s). Extensive analysis of MARS and595

other probability-based UE methods on open-ended596

question-answering tasks and other languages are597

beyond the scope of the current study and are left598

as future work.599

7 Ethics Statement600

Although probability-based UE methods combined601

with MARS have a remarkable prediction perfor-602

mance on the correctness of generative LLM out-603

puts, it is crucial to acknowledge that these methods604

do not achieve 100% accuracy. Besides, as LLMs605

may have biases against gender, ethnicity, age, etc.,606

probability-based methods can carry those biases607

to UE outputs. Thus, one should be aware of these608

potential risk factors before employing such prob-609

abilistic UE methods in real-world systems. En-610

suring fairness, transparency, and accountability611

in the deployment of these technologies is impor-612

tant in mitigating risks and fostering trust in their613

application.614
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A Related Works837
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ference. These studies represent just a fraction of848

the UE works in the field of NLP and there is an849

expanding corpus of research focusing on the in-850

vestigation of UE in NLP (Hu et al., 2023; Xiao851

and Wang, 2019; Vazhentsev et al., 2022). The vast852

majority of these studies only focus on classifica- 853

tion and regression tasks, unlike our work where 854

the goal is to study UE for generative LLMs. 855

Few recent works deal with UE of generative 856

LLMs. Xiao et al. (2020) and Fomicheva et al. 857

(2020) propose heuristic-based uncertainty metrics 858

for generative LLMs considering machine transla- 859

tion. Chen and Mueller (2023), Lin et al. (2023), 860

Cohen et al. (2023), and Kadavath et al. (2022) pro- 861

pose black-box UE methods for generative LLMs 862

under the assumption that the token probabilities 863

are not accessible. Although these works have 864

experimental validation, they lack a mathemati- 865

cal foundation. Malinin and Gales (2021) is the 866

first study adapting popular uncertainty tools in 867

Bayesian UE literature to the generative LLMs. 868

The main idea of Malinin and Gales (2021) is to 869

utilize length-normalized scoring in computing the 870

entropy of the LLM answers. A more recent ap- 871

proach by Kuhn et al. (2023) further improves this 872

result by introducing the concept of semantic en- 873

tropy, which considers the meaning of the gener- 874

ated sentences in entropy calculation in uncertainty 875

prediction. Our work is distinct from these works 876

as we no longer utilize length-normalized scoring. 877

Instead, we utilize the proposed MARS in entropy 878

computations, by also taking into consideration to- 879

ken importance to the answer correctness , thereby 880

achieving an improved UE performance. 881

B Conceptualizing the Response 882

Semantics in Generative LLM 883

Probabilities 884

In classification tasks, the class probability reflects 885

the model’s confidence in assigning a specific class 886

to an input. It is inherently tied to the semantics of 887

the class. For instance, if a well-calibrated classi- 888

fier gives a 75% probability to the label “cat” for 889

a given question, it suggests a 75% likelihood that 890

the answer of the question is indeed a cat. This 891

output probability is not only a numerical value; 892

it conveys a semantic understanding of the image 893

content as a cat. However, previously proposed 894

length-normalized scoring and semantic entropy 895

definitions for generative LLMs (Sections 2.3 and 896

2.4) do not directly correspond to the semantics 897

of the LLM generation. Moreover, they are not 898

proper probability and entropy definitions, lacking 899

theoretical background. Hence, we propose a new 900

random variable that is directly related to the se- 901

mantics of the output and provide a justification for 902

11

http://arxiv.org/abs/2006.08344
http://arxiv.org/abs/2006.08344
http://arxiv.org/abs/2006.08344
https://doi.org/10.1609/aaai.v33i01.33017322
https://doi.org/10.1609/aaai.v33i01.33017322
https://doi.org/10.1609/aaai.v33i01.33017322
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
https://doi.org/10.18653/v1/2020.findings-emnlp.342
https://doi.org/10.18653/v1/2020.findings-emnlp.342
https://doi.org/10.18653/v1/2020.findings-emnlp.342
https://doi.org/10.1145/3308558.3313699
https://doi.org/10.1145/3308558.3313699
https://doi.org/10.1145/3308558.3313699


Figure 6: In classification tasks, output probabilities
give the probability of the semantic meaning. In the case
of generative LLMs, probabilities of semantic meaning
are unknown. Thus, we propose an alternative probabil-
ity distribution MARS for generative LLMs.

the heuristic decisions of the previous works (Kuhn903

et al., 2023; Malinin and Gales, 2021).904

Let Y be a random variable with arbitrary dimen-905

sion corresponding to the meaning of the sequences906

generated by an LLM parametrized with θ. The907

values of Y can be the set of all possible meanings908

of generated sequences in a given context. For-909

mally, the set is {g(s, x)}s∈S,x∈X , where g(·) is the910

meaning function that takes generated sentence s911

and context x as inputs and returns the meaning912

as output. By defining the properties of the mean-913

ing function g(·) and the distribution of Y , we can914

rationalize the heuristic design choices made by915

previous works.916

Malinin and Gales (2021) considers g(·) as a917

one-to-one function which means that each unique918

sentence in the given context corresponds to differ-919

ent meanings. In this case, the distribution of Y is920

defined by using the length-normalized scoring of921

the generated sequences. More formally922

P (Y = y|θ) = P̃ (s|x, θ)∑
s∈S,x∈X P̃ (s|x, θ)

, (11)923

where y = g(s, x) and P̃ (s|x, θ) is the924

length-normalized scoring defined as925 ∏L
l=1 P (sl|s<l, x; θ)

1/L. To make the distri-926

bution of Y a valid probability distribution, we927

normalize each P̃ (s|x, θ) by the sum of all possible928

scores, making their summation 1. By defining Y929

as above, we essentially create an actual probability930

distribution of length-normalized scoring.931

On the other hand, Kuhn et al. (2023) claims932

different sequences can have equal meaning. By933

considering g(·) as a many-to-one function, we can934

write their proposal with the new meaning random935

variable Y as follows 936

P (Y = y|θ) =
∑

s,x∈cy P̃ (s|x, θ)∑
s∈S,x∈X P̃ (s|x, θ)

(12) 937

where cy corresponds to the meaning cluster, for- 938

mally written as cy = {s, x|g(s, x) = y}. By em- 939

ploying this new probability definition within the 940

standard entropy calculation in (6), we obtain the 941

concept of semantic entropy as follows 942

SE(x, θ) = − 1

B

B∑
b=1

logP (Y = yb|θ) (13) 943

With the new random variable Y , we essentially 944

write the semantic entropy as the standard Monte- 945

Carlo approximated entropy over a total of B dis- 946

tinct meanings. 947

Notice that the normalization term 948∑
s∈S,x∈X P̃ (s|x, θ) featured in both (11) 949

and (12), acts as a constant across all P (Y = y|θ) 950

calculations, ensuring that Y conforms to a valid 951

probability distribution. Therefore, it only shifts 952

the proposed UE scores which does not affect 953

the performance of accurately predicting the 954

correctness of the model generation. Moreover, 955

by introducing the random variable Y , we not 956

only provide a theoretical foundation for heuristic 957

choices of the previous works but also create 958

flexibility to define new distributions for Y which 959

may potentially improve the existing UE tools. 960

Using the definition of Y , we can also rational- 961

ize our scoring function MARS. We replace the 962

length-normalized scoring function with MARS as 963

in (9). We believe that MARS is a better choice to 964

define the probability distribution of Y . This is be- 965

cause MARS considers the semantic contribution 966

of tokens and the values of Y are closely related 967

to the semantics of the generated sentences in the 968

context of question. 969

Once we do that, the new probability distribu- 970

tion of P (Y = y|θ) becomes the following if we 971

consider g as a one-to-one function as the work of 972

Malinin and Gales (2021) 973

P (Y = y|θ) = P̄ (s|x, θ)∑
s∈S,x∈X P̄ (s|x, θ)

. (14) 974

If we follow Kuhn et al. (2023) and make g a 975

many-to-one function, we reach the following dis- 976

tribution for P (Y = y|θ): 977

P (Y = y|θ) =
∑

s,x∈Cy
P̄ (s|x, θ)∑

s∈S,x∈X P̄ (s|x, θ)
. (15) 978
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Overall, by defining the new random variable979

Y and the properties of meaning function g(·), we980

build a theoretical background for the heuristic de-981

sign choices of previous works (Malinin and Gales,982

2021; Kuhn et al., 2023). Moreover, this structure983

provides a background for further studies by either984

changing length-normalized scoring (as we do with985

MARS) or by re-defining the probability distribu-986

tion of Y and properties of the meaning function987

g(·).988

C Training of BERT-like Model for989

Importance Function990

As described in Section 3.3, we optimize the com-991

putational efficiency of MARS by training a single992

Bert-like model with 110M parameters to execute993

the importance function. This model is an adapta-994

tion of the pre-trained Bert-base-uncased4, modi-995

fied by removing its last layer and incorporating996

two independent fully-connected (FC) layers. The997

first FC layer focuses on phrase detection with two998

output logits: “Begin Phrase” (BP) and “Inside999

Phrase” (IP), and classifies each token as BP if it1000

marks the start of a phrase or as IP otherwise. This1001

setup enables sentence segmentation into phrases.1002

The second FC layer, tasked with assigning impor-1003

tance coefficients, produces a single output logit1004

for each token’s importance coefficient.1005

For training data, we take a subset of 69192 ques-1006

tion samples from the TriviaQA training set and1007

questions of the whole training set of NaturalQA1008

consisting of 87925. Then, we use these questions1009

as input and feed them to all 7B-sized baseline1010

models (Llama2-7b, Llama2-7b-chat, Mistral-7b,1011

Falcon-7b) to yield the responses. This provides us1012

with question-answer pairs. We use the Flair phrase1013

chunking model to determine phrase labels in the1014

answers, as described in Appendix C.1. For impor-1015

tance coefficient labels per token in the responses,1016

we follow Algorithm 1.1017

Sample outputs of our model are provided in1018

Table 5. Here, question and answer are inputs to1019

the model, and the model divides the answer into1020

phrases while assigning importance score to them.1021

We train the model only for 1 epoch with 5e-1022

5 learning rate and 32 batch size. The training1023

process involves a convex combination of two loss1024

functions: cross-entropy for phrase chunking and1025

negative log-likelihood for importance coefficient1026

assignment, with equal weight assigned to both1027

4https://huggingface.co/bert-base-uncased

losses. Table 6 displays the training and validation 1028

losses at the end of the training, indicating that our 1029

training objectives are effectively generalizable to 1030

test sets. 1031

C.1 Dividing a Sentence to Phrases 1032

To divide a sentence into phrases, we use the Flair 1033

phrase chunking model5 (Akbik et al., 2018), that 1034

uses 10 tags which are adjectival, adverbial, con- 1035

junction, interjection, list marker, noun phrase, 1036

prepositional, particle, subordinate clause and verb 1037

phrase. For example, the Flair model divides the 1038

sentence “The happy man has been eating at the 1039

dinner” as “The happy man”, “has been eating”, 1040

“at”, “the diner”. 1041

C.2 Pseudocode of the Importance Function 1042

Algorithm 1043

The pseudocode of the importance function algo- 1044

rithm is given in Algorithm 1.

Algorithm 1 Phrase-Level Importance Function

Input: Question x, generated answer s =
{s1, s2, . . . , sL}, phrases {h1, h2, . . . , hK},
token probabilities {pi = P (si|s<i,x; θ)}si∈s,
temperature τ
Output: Importance scores I
I ← []

1: for k = 1 to K do
2: smasked ← s \ {sl}sl∈hk

3: ok ← BEM(x, s, smasked)
4: for each token sl in phrase hk do
5: I[l]← (1− ok)/|hk|
6: I ← softmax(I, τ)
7: return I

1045

D Experimental Details 1046

Datasets. We employ the validation split of the 1047

Natural Questions dataset, comprising 3610 sam- 1048

ples. Following Kuhn et al. (2023), a subset of 1049

8000 QA pairs is selected from the validation split 1050

of the TriviaQA dataset. For WebQA, we com- 1051

bine its training and test splits to form a combined 1052

dataset of 6642 samples. 1053

Example Samples from Datasets. We provide 1054

data samples from the datasets we used in the eval- 1055

uation of UE methods in Table 7. 1056

5https://huggingface.co/flair/chunk-english
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Question Answer Output

Which planet is known as
Red Planet?

It is Mars
It is Mars

0.017 0.017 0.956

What is the capital city of
Japan?

Tokyo is the capital city of
Japan

Tokyo is the capital city of Japan
0.994 0.001 0.003 0.001 0.001

Which element has the
chemical symbol "O"?

The chemical symbol "O"
represents Oxygen

The chemical symbol "O" represents Oxygen
0.01 0.01 0.003 0.976

Table 5: Sample outputs of our BERT-like model used for importance function. Question and answer are given to
the model as input, and the model divides the answer into phrases while assigning importance score.

Classification Scoring
Loss Loss

Train 0.0275 0.1957
Validation 0.0205 0.1901

Table 6: Train and validation loss values calculated at
the end of training of BERT-like importance model.
Classification loss stands for cross-entropy loss for
phrase chunking, and Scoring loss indicated negative
log-likelihood loss for importance coefficient.

Number of Sampling and Temperature. Follow-1057

ing previous work (Kuhn et al., 2023), we sampled1058

5 samples and used 0.5 as the temperature value1059

for the results presented in Table 1.1060

Generation Configurations. We use the Hugging-1061

face library’s generate function for model genera-1062

tions. We set token “.” as eos_token_id which pre-1063

vents model to generate long paragraphs to closed-1064

book questions. We set num_beams = 1 which1065

corresponds to greedy decoding.1066

Computational Cost. We use 40 GB Nvidia A-1067

100 GPUs for all the experiments. The total GPU-1068

hours for Table 1 is approximately 400. Labeling1069

of the data used for training of BERT-like impor-1070

tance model takes approximately 200 GPU-hours.1071

Fine-tuning of BERT-like model on the importance1072

dataset takes 7 GPU-hours. Due to expensive com-1073

putational demands, all presented results are the1074

output of a single run.1075

Prompts. We use the same 2-shot prompt for all of1076

the models and the datasets for answer generation:1077

Answer these questions:1078

Question: What is the capital city of1079

Australia?1080

Answer: The capital city of Australia is1081

Canberra. 1082

Question: Who painted the famous 1083

artwork "Starry Night"? 1084

Answer: "Starry Night" was painted by 1085

Vincent van Gogh. 1086

Question: {sample['question']}? 1087

Answer: 1088

To evaluate the correctness of the generated an- 1089

swer, we use gpt-3.5-turbo as the evaluator. The 1090

prompt for gpt-3.5-turbo is the following: 1091

1092

You will behave as a question-answer 1093

evaluator. I will give you a question, 1094

the ground truth of the question 1095

and a generated answer by a language 1096

model. You will output "correct" 1097

if the generated answer is correct 1098

regarding question and ground truth. 1099

Otherwise, output "false". 1100

Question: {question}?, 1101

Ground Truth: {answer}, 1102

Generated Answer: {generation} 1103
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Question Answer

Tr
iv

ia
Q

A

Which American-born Sinclair won the Nobel Prize
for Literature in 1930? Sinclair Lewis

Which musical featured the song Thank Heaven for
Little Girls? Gigi

What was the first movie western called? Kit Carson

N
at

ur
al

Q
A When did the eagles win last super bowl? 2017

Who was the ruler of england in 1616? James I

What is the hot coffee mod in san andreas? a normally inaccessible mini-game

W
eb

Q
A

what character did natalie portman play in star wars? Padmé Amidala

what country is the grand bahama island in? Bahamas

where did saki live? United Kingdom

Table 7: Data samples from the datasets we use to evaluate UE methods: TriviaQA, NaturalQA, and WebQA.
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