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ABSTRACT

Steganography is the art of hiding information in plain sight. This form of covert
communication can be used by bad actors to propagate malware, exfiltrate vic-
tim data, and communicate with other bad actors. Current image steganography
defenses rely upon steganalysis, or the detection of hidden messages. These meth-
ods, however, are non-blind as they require information about known steganogra-
phy techniques and are easily bypassed. Recent work has instead focused on a
defense mechanism known as sanitization, which eliminates hidden information
from images. In this work, we introduce a novel blind deep learning steganog-
raphy sanitization method that utilizes a diffusion model framework to sanitize
universal and dependent steganography (DM-SUDS), which both sanitizes and
preserves image quality. We evaluate this approach against state-of-the-art deep
learning sanitization frameworks and provide further detailed analysis through
an ablation study. DM-SUDS outperforms previous sanitization methods and
improves image preservation MSE by 71.32%, PSNR by 22.43% and SSIM by
17.30%. This is the first blind deep learning image secret sanitization framework
to meet these image quality results.

1 INTRODUCTION

Steganography, or the art of hiding information in plain sight, is a means of covert communication
used commonly throughout history. In steganography, a secret message is embedded in a seemingly
harmless physical or digital medium, termed a cover. This combined message (secret + cover =
container) is then relayed to an intended recipient. Due to the hidden nature of the secret message,
communication can occur between parties without arousing suspicion as to the true intent of the
dispatched container.

This process can be applied to both physical mediums (e.g., microdots, invisible ink, embedded
objects, etc.) as well as digital mediums, including images, videos, audio, and text. The pervasive
nature of digital media presents a heightened risk for steganography. Its widespread accessibility and
ease of dissemination make digital platforms more susceptible to covert manipulations, potentially
enabling malicious actors to spread concealed information or malware at an unprecedented scale
and speed. In addition to the widespread effect of malware propagation, steganography via digital
mediums can also be used to exfiltrate victim data and communicate with other bad actors. As such,
advanced detection and prevention mechanisms are necessary to combat against these harmful use
cases. While various digital mediums can be used as covers, we focus on the use of images in this
work, as these are more accessible and commonly used in the wild.

Current image steganography defenses utilize a technique known as steganalysis, or the detection
of hidden messages in images Johnson & Jajodia (1998b); Bachrach & Shih (2011). Steganalysis
tools analyze images for known signatures and/or anomalies in pixel values, noise distributions, and
other statistical measures to indicate the presence of steganographic content. Recent work has also
incorporated machine learning strategies to enhance detection accuracy Zhang et al. (2018); Xu et al.
(2016); Xu (2017); Ye et al. (2017); Qian et al. (2018). These defense strategies, however, rely upon
data curated from preexisting steganographic techniques and are referred to as non-blind. While
adept at detecting known steganography, these defense mechanisms are useless against new forms
of steganography in the wild – especially ones engineered to bypass these existing systems Li et al.
(2022); Hayes & Danezis (2017); Tang et al. (2019).
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Another defense mechanism against steganography is sanitization, which eliminates the presence
of any potential secret message while maintaining the integrity of the cover media. For instance, a
picture of a dog containing an executable malware binary would be sanitized if the malware binary
is removed and the original image is minimally changed. The authors in Robinette et al. (2023)
demonstrate the success of such an approach, utilizing a variational autoencoder strategy termed
SUDS. The authors show that SUDS is able to protect against least significant bit (LSB), dependent
deep hiding (DDH), and universal deep hiding (UDH) steganography, each of which is an unseen
method by the sanitizer prior to testing (blind). Sanitization, therefore, is able to blindly protect
systems and is a more robust defense strategy compared to detection.

While SUDS is able to successfully sanitize secrets, its ability to reconstruct the original image
deteriorates as image complexity increases, which is a result of utilizing a variational autoen-
coder approach. To address the limited reconstruction capabilities of SUDS while maintaining
sanitization performance, we propose a diffusion model approach to SUDS, termed DM-SUDS.
While diffusion models are most commonly used for their generative properties, they are trained
as denoising mechanisms. By using a diffusion model to denoise potentially steganographic im-
ages, we believe that this approach will provide an improved alternative to SUDS, advancing the
state-of-the-art in blind deep learning sanitization techniques for image steganography while in-
creasing the potential breadth of its impact. All code to reproduce experiments is available at:
https://anonymous.4open.science/r/dmsuds-1D7C/README.md. The contribu-
tions of this work, therefore, are the following:

1. Implementation of a Novel Sanitization Framework: We introduce a novel blind deep
learning steganography sanitization method that utilizes a diffusion model framework to
sanitize universal and dependent steganography.

2. Demonstration of Sanitizer Capabilities: We compare this approach with the current
state-of-the-art sanitization method (SUDS) and demonstrate a 71.32% (MSE), 22.43%
(PSNR), and 17.30% (SSIM) improvement in recovered image quality while maintaining
sanitization performance.

3. Ablation Study: We further analyze this approach by conducting an ablation study on the
model framework and evaluating sanitization performance on the ImageNet dataset.

2 BACKGROUND

In this section, we introduce steganography, existing sanitization techniques, and the metrics used
for evaluation. While this work is medium agnostic, we focus on images represented by a matrix (c,
h, w), where c is the number of color channels, h is the height, and w is the width of the image.

2.1 STEGANOGRAPHY

Notation As shown by the Pre-Sanitization section in figure 1, steganography typically consists of
a cover, secret, container, and a revealed secret. A secret S is hidden within a cover C using a hide
function H to create a container C ′ such that the difference between the cover and the container is
minimal, or H(C, S) = C ′ | MSE(C,C ′) → 0. The revealed secret S′ can then be obtained from
the container using a reveal functionR, which is usually the inverse ofH. The revealed secret should
be minimally different from the original secret hidden in the cover, orR(C ′) = S′ | MSE(S, S′)→
0. In regard to sanitization, an image is sanitized with a sanitization function P to create a sanitized
image Ĉ, or P(X) = Ĉ | X ∈ {C,C ′}. An attempted revealed secret from a sanitized image is
denoted as Ŝ, or R(Ĉ) = Ŝ. In this work, P ∈ {SUDS,DM-SUDS}, where DM-SUDS is the
introduced diffusion model approach.

Hiding Methods There are many types of hiding techniques in steganography, including tradi-
tional and deep hiding. Traditional hiding involves either 1) modifying the pixels of the image
(spatial domain) or 2) altering the image using a frequency distribution (transform domain) Ched-
dad et al. (2010); Subhedar & Mankar (2014); Trivedi et al. (2016); Kishor et al. (2016); Johnson
& Jajodia (1998a). While information loss is inevitable, the user must strike a balance between
maximizing the secret retained in the container and avoiding detection, hiding capacity vs. invisi-
bility. With a higher hiding capacity, a secret is more likely to be detected in a container, but with
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Figure 1: DM-SUDS (center) takes as input a cover or a container image x0 ∈ {C,C ′} created with
any type of steganographic technique. A noisy image is then sampled from this image at timestep
t. In the reverse diffusion process, a denoising U-Net is used to predict the amount of noise added
to the image, which is then used to recover the original image, resulting in a sanitized image Ĉ. In
the pre-sanitization phase, the secret is recoverable, as demonstrated in the bottom-left of the figure
S′. After sanitization with DM-SUDS, however, a secret is not recoverable, as indicated by the
bottom-right of the figure Ŝ. This image, therefore, is successfully sanitized.

a lower invisibility, less information is transferable. Traditional methods are marred by this trade-
off. In deep hiding, however, methods are able to incorporate a high capacity of the secret while
maintaining invisibility, as these methods are capable of maintaining the pixel distributions of the
cover image. Deep hiding techniques utilize deep neural networks as both the hide and reveal func-
tions and fall into two main categories: dependent deep hiding (DDH) Volkhonskiy et al. (2020);
Yang et al. (2019); Tang et al. (2017; 2020); Wu et al. (2020); Zhu et al. (2018); Wang et al. (2018);
Baluja (2017) and universal deep hiding (UDH) Zhang et al. (2020). In DDH, the resulting container
is cover dependent, and in UDH, the secret can be combined with any cover. In this work, we utilize
a method from each of these categories 1) traditional = least significant bit (LSB) method Kurak &
McHugh (1992), 2) dependent deep = DDH, and 3) universal deep = UDH. The implementations
for DDH and UDH are CNN-based implementations from the same code base1, and the LSB imple-
mentation is from the SUDS codebase2. Please see the supplementary material for more information
on these methods.

2.2 SANITIZATION

Traditional Sanitization Sanitization, or active steganalysis, is the process of removing hidden
information from potentially steganographic images while preserving the image quality of the cover.
Traditional sanitization approaches attempt to remove hidden information by modifying the pixels
of the image or the frequency distribution of the image, much like traditional steganographic ap-
proaches. Examples include flipping the bits of N LSB planes Paul & Mukherjee (2010), adding
Gaussian noise to the image, and applying image filters Ameen & Al-Badrany (2013); Amritha
et al. (2019); Geetha et al. (2021). While traditional sanitization techniques are effective on tra-
ditional hiding algorithms, they largely degrade the image quality of the restored image and are
ineffective on deep hiding techniques.

Deep Learning Sanitization Deep learning sanitization attempts to improve upon the limited ca-
pabilities of traditional sanitization, especially in regard to deep learning steganography. In Jung
et al. (2021), the authors present PixelSteganalysis which uses an ‘analyzer’ to predict pixel and
edge distributions of a container, and an ‘eraser’ to sterilize the images by adjusting suspicious

1DDH/UDH: https://github.com/ChaoningZhang/Universal-Deep-Hiding
2SUDS Code: https://github.com/pkrobinette/suds-ecai-2023
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pixels indicated by the analyzer. Their approach is extremely inefficient and also requires known in-
formation about common hiding areas from steganographic techniques to train the edge distribution
model. In Wei et al. (2022), the authors use a median filter as a secret data remover (SDR). While
the data removal process is blind, the image fusion and latent removal components utilize stegano-
graphic images embedded with text-secrets in the training process. Convolutional neural network
(CNN) based approaches are introduced in Zhu et al. (2021), Zhu et al. (2022), and Hatoum et al.
(2021) to sanitize steganography and/or watermarked images. Each of these methods, however, only
considers text-based secrets.

To further enhance the resulting image quality of a sanitized image, some approaches have used gen-
erative models. In Corley et al. (2019), the authors apply a generative adversarial network (GAN)
based approach called Deep Digital Steganography Purifier (DDSP). Their framework is only tested
on traditional hiding methods and only considers text-based malware payloads as secrets. Addi-
tionally, DDSP requires previous knowledge of steganographic techniques in the training process
and is, therefore, a non-blind approach. In Li et al. (2021), the authors present another GAN based
approach, where a U-Net generator is trained to attack watermarked images. This approach is non-
blind as steganographic images are used in the training process. The authors in Zuppelli et al.
(2021) introduce a variational autoencoder (VAE) sanitizer, which is tested by sanitizing images
embedded with malware powershell scripts via Invoke-PSImage3. The approach is evaluated by an
open-source detection tool for LSB, StegExpose, which has comparable results to random guessing
Baluja (2017). While the authors introduce VAE sanitization, they only evaluate LSB text embed-
dings, which are more fragile than image embeddings as small perturbations can drastically affect
text semantics. The authors in Robinette et al. (2023) also utilize a variational autoencoder approach
in a framework called SUDS but provide a more thorough analysis of this approach, including
comparisons to traditional sanitization (Gaussian noise), incorporating more robust steganography
techniques (LSB, DDH, UDH), and evaluating performance on encoded image secrets rather than
text secrets. As SUDS is the most applicable to our introduced implementation, we provide a direct
comparison to their work and utilize similar evaluation techniques.

2.3 IMAGE METRICS

The metrics used to evaluate sanitization are extended from the work in Robinette et al. (2023): the
mean squared error (MSE) and peak-signal-to-noise ratio (PSNR), which measure the absolute error
between corresponding pixels of the reference and the altered images. In addition to these metrics,
we also utilize the structural similarity index measure (SSIM), which measures the perceptual quality
of an image or video in comparison to a reference. We utilize these metric implementations from the
scikit-image metrics library. For more information on these metrics, please see the supplementary
material.

3 DIFFUSION MODEL SANITIZATION

Our goal is to improve the image quality of sanitized images using a diffusion model approach to
sanitization. A diffusion model is a generative model that consists of two main features: a forward
diffusion process and a reverse diffusion process. In the forward diffusion process, an input image
x0 from a given data distribution x0 ∼ q(x0) is perturbed at timestep t with Gaussian noise with
a variance βt ∈ (0, 1) to produce a sequence of latent images x0, x1, ..., xT . This forward noising
process is defined by equations 1 and 2 and is commonly reparameterized by equation 3, which
allows for direct sampling of noised latents at arbitrary steps. Here, αt := 1 − βt, ᾱt :=

∏t
s=0 αs,

and 1− ᾱt represents the variance of the noise for an arbitrary timestep.

q(x1, . . . , xT |x0) :=

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(2)

q(xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
(3)

3Invoke-PSImage: https://github.com/peewpw/Invoke-PSImage
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Algorithm 1 Hide, Sanitize, and Evaluate

1: procedure SANITIZEANDEVALUATE (C,P,H,R)
2: S ← RandomPermute(C) ▷ Shuffle covers to get secrets
3: C ′ ← H(C, S) whereH ∈ {Hlsb ,Hddh ,Hudh} ▷ Make containers
4: S′ ← R(C ′) whereR ∈ {Rlsb ,Rddh ,Rudh} ▷ Reveal secrets prior to sanitization
5: Ĉ ← P(C ′) where P ∈ {DM-SUDS,SUDS} ▷ Sanitize containers
6: Ŝ ← R(Ĉ) whereR ∈ {Rlsb ,Rddh ,Rudh} ▷ Reveal secrets post sanitization
7: mse1, psnr1, ssim1 ← CalcImageMetrics(C ′, Ĉ) ▷ Image Preservation
8: mse2, psnr2, ssim2 ← CalcImageMetrics(S, Ŝ) ▷ Secret Elimination
9: return mse1, psnr1, ssim1,mse2, psnr2, ssim2 ▷ Return metrics

10: end procedure

The model then learns to reverse this diffusion process by refining the noised sample until it re-
sembles a sample from the target distribution. The posterior q(xt−1|xt, x0) can be calculated using
Bayes theorem in terms of β̃t and µ̃t(xt, x0), which are defined in the equations below:

β̃t :=
1− ᾱt−1

1− ᾱt
βt (4)

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (5)

q(xt−1|xt, x0) = N
(
xt−1; µ̃(xt, x0), β̃tI

)
(6)

To represent µθ(xt, t) for the reverse diffusion process, we use a U-Net model to predict the noise ϵ
added to the input image. The original image can then be predicted using equation 7.

x0 =
1√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
(7)

While diffusion models are most commonly used for generative purposes, we instead make use of
the denoising capabilities developed during training. To use the diffusion model as a sanitizer, we
can apply t timesteps of noise to a potential container using equation 3 with a cosine beta scheduler
from Ho et al. (2020), predict the noise using a neural network, and then refine the image using
equation 7, effectively preserving the image quality while maintaining sanitization performance. As
this is a blind approach to sanitization, prior knowledge of steganography techniques is not required
for the training process. To highlight this feature of the framework and to emphasize the accessibility
of this approach, we make use of a state-of-the-art, publicly available pretrained diffusion model
from Nichol & Dhariwal (2021)4. For the remainder of this paper, the diffusion model sanitization
process is referred to as DM-SUDS. An image sanitized with this process is denoted as ĈDM, and an
attempted revealed secret from ĈDM is denoted as Ŝ.

4 EXPERIMENTS

In this section, we evaluate the sanitization capabilities of DM-SUDS compared to SUDS (see sec-
tion 2.2), which is the only other blind deep learning sanitization approach tested against image
secrets.

4.1 SETUP

To compare DM-SUDS and SUDS, we evaluate their sanitization performance on image secrets
hidden with LSB, DDH, and UDH steganography using the CIFAR-10 test dataset (10000 RGB
images). This process is demonstrated in algorithm 1. The CIFAR-10 dataset was chosen as it was
used to demonstrate SUDS ability to sanitize RGB images, and it is also where the reconstruction

4Diffusion Model: https://github.com/openai/improved-diffusion
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capabilities of SUDS start to break down. As this is the issue we are trying to address with DM-
SUDS, it provides a great comparison playground for the two approaches. In order to provide fair
comparisons, the same cover and secret combinations used to make containers are kept constant for
each hiding technique, and DM-SUDS and SUDS are also evaluated on the same containers. The
SUDS model used during this evaluation is from the repository provided by the authors. For the
DM-SUDS model discussed in section 3, we use a timestep variable t = 250 in the forward and
reverse diffusion processes. The image metrics discussed in section 2.3 (MSE, PSNR, and SSIM)
are used to compare covers C with sanitized images Ĉ (Image Preservation) as well as secrets S
to revealed secrets post sanitization Ŝ (Secret Elimination). To provide a baseline comparison to
the effect that steganography has on images, a None column is also calculated, which uses these
same metrics to compare covers C with containers C ′ (Image Preservation) as well as secrets S to
revealed secrets pre sanitization S′ (Secret Elimination).

4.2 RESULTS

Sanitization From the results shown in table 1, DM-SUDS and SUDS are both able to successfully
sanitize secrets as indicated by the high MSE values for Secret Elimination. In addition to the high
MSE values, the low SSIM values also indicate that information retaining to the original secrets is
eliminated as the similarity between the attempted reveal secret and the actual secret is small. Figure
2 demonstrates this successful sanitization as indicated by the last two columns of each subfigure
showing the revealed secret before and after sanitization. As the true secret is not discernible from
any of the samples hidden with a) LSB, b) DDH, or c) UDH steganography, this is a successful
sanitization.

a

b

c

C C′ Ĉ S S′ Ŝ

✓ sanitized

(a) SUDS

a

b

c

C C′ Ĉ S S′ Ŝ

✓ sanitized

(b) DM-SUDS

Figure 2: A comparison between DM-SUDS and SUDS sanitization for a) LSB, b) DDH, and c)
UDH steganography. Sanitization performance is determined from the last two columns in each
subfigure. As S is not discernible from Ŝ for any of the approaches, sanitization is successful for
both methods.

Image Preservation While both methods successfully sanitize secrets, they differ largely in their
ability to preserve image quality in the sanitization process. In the Image Preservation section of
table 1, the MSE of the sanitized image compared to the original cover is smaller for DM-SUDS than
SUDS for all steganography methods, achieving an average % improvement of 71.32% across LSB,
DDH, and UDH. Additionally, the PSNR values are higher for DM-SUDS for all steganography
methods as well. This indicates that sanitized images with DM-SUDS have a higher image quality
with an average improvement of 22.43% for this metric. Lastly, the higher SSIM values of DM-
SUDS demonstrate that the sanitized images are even more structurally similar to the original covers
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Table 1: SUDS vs. Diffusion Model Test Stats

Compare H Metric None SUDS DM-SUDS % Imp.

Image
Preservation

LSB
MSE 37.69 382.33 103.52 72.92
PSNR 32.47 22.75 28.15 23.73
SSIM 0.96 0.76 0.91 19.74

DDH
MSE 119.72 288.63 90.18 68.76
PSNR 28.46 23.93 28.74 20.10
SSIM 0.94 0.80 0.91 13.75

UDH
MSE 23.91 392.03 108.65 72.29
PSNR 34.58 22.62 27.93 23.47
SSIM 0.97 0.76 0.90 18.42

Secret
Elimination

LSB
MSE 79.29 9519.54 9147.77
PSNR 29.17 8.46 8.65
SSIM 0.97 0.01 0.02

DDH
MSE 86.91 5231.90 3300.94
PSNR 29.54 11.32 13.29
SSIM 0.95 0.08 0.21

UDH
MSE 157.05 14985.76 15201.37
PSNR 26.75 6.92 6.84
SSIM 0.91 0.03 0.03

compared to using SUDS (average 17.30% improvement). All three metric values demonstrate that
DM-SUDS has better image preservation capabilities compared to sanitization with SUDS. Figure
3 visually compares an original cover to images sanitized with Gaussian noise, SUDS, and DM-
SUDS. While some fine details are not reproduced in the sanitized images via DM-SUDS (e.g.,
muscles along the neck of the horse), the image quality compared to Gaussian noise and SUDS
is drastically better. Gaussian noise causes significant damage to the image, and the blurry nature
of the reconstructed SUDS image compromises both its visual appeal and informational content.
DM-SUDS, therefore, improves sanitization image quality while maintaining sanitization abilities,
outperforming SUDS by 71.32% (MSE), 22.43% (PSNR), and 17.30% (SSIM).

(a) Cover (b) Gaussian Noise (c) SUDS (d) DM-SUDS

Figure 3: Image preservation comparison between an original cover and sanitization with Gaussian
noise, SUDS, and DM-SUDS. DM-SUDS achieves the highest image quality of a sanitized image.

5 ANALYSIS AND DISCUSSION

Diffusion Steps For the previous experiments, we utilized a timestep t = 250 in the diffusion
process, which means that we sample a noisy version of the input image at t = 250. In the reverse
diffusion process, this number is then encoded, and the neural network estimates the added noise
to the image from this timestep. To evaluate the robustness of the diffusion model approach and
the pervasiveness of the selected steganographic hiding methods, we evaluate the diffusion model
at various timesteps t as shown in figure 4. In regard to the sanitized image Ĉ, with too many
timesteps, the image quality of the reconstructed image starts to deteriorate, as shown by t = 1000.
The blurry nature of the resulting processed image indicates that the more noise that is added to a
container, the more difficult it is to predict the amount of added noise, affecting the resulting refined
image Ĉ. With too few timesteps, however, the secret persists after sanitization (see DDH Ŝ). This
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Ĉ

Ŝ

Ĉ

Ŝ

Ĉ

Ŝ

UDH

LSB

DDH

t = 0 25 50 75 100 125 150 175 200 225 250 275 300 1000

Figure 4: DM-SUDS with varying forward diffusion timesteps. With too few timesteps, secrets are
not sanitized, and with too many timesteps, the refined image quality degrades.

Ĉ

Ŝ

t = 0 25 50 75 100 125 150 175 200 225 250 275 300 1000

Figure 5: Sanitized images for DDH steganography with no added noise in the diffusion process
(skip forward diffusion). Even at t = 1000 timesteps, the secret survives, meaning that added noise
is necessary for the sanitization process.

is particularly important for secrets hidden with DDH, which seem to persist up until t = 125. This
is also an interesting result for the robustness of each hiding method. The order of robustness as
determined by the persistence of the secret with increased timesteps is DDH, UDH, and LSB. DDH,
therefore, is a more robust hiding method than the other two. While the number of selected timesteps
impacts performance near the edges, this value is not particularly sensitive.

Direct Denoising In the majority of this work, we sample a noisy image of the container at
timestep t, and then denoise this image to a sanitized version of the input. Another way to sanitize
via DM-SUDS is to treat the potentially steganographic image as the direct input to the denoiser,
skipping the forward diffusion process. With this approach, however, we still have to provide an
estimate t as input to the reverse diffusion neural network. To evaluate this approach, we sanitize
directly from the containers hidden with DDH at various timesteps, as DDH creates the most per-
sistent secrets (see the previous paragraph). From the results shown in figure 5, the secret is never
really sanitized from DDH as indicated by the t = 1000 column. Even at this timestep, the secret is
still distinguishable. This indicates that the true power of the diffusion model sanitization approach
lies in the added Gaussian noise in the forward diffusion process.

Evaluation on ImageNet As the reconstruction ability of SUDS decreases with an increase in
image complexity Robinette et al. (2023), we seek to determine if DM-SUDS is able to maintain its
abilities with more complex images using the ImageNet dataset with images of sizeR3×64×64. For
this experiment, we evaluate the sanitization of ImageNet secrets hidden with DDH. DDH was cho-
sen as it is the most robust of the tested hiding methods as determined by the experiments conducted
in Diffusion Steps. From the results shown in figure 6, DM-SUDS also works for more complex
datasets, as the image preservation is conserved (C to Ĉ), and the secrets are successfully sanitized
(S to Ŝ). This result is further verified by the metrics presented in table 2.
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C C′
Ĉ S S′

Ŝ

✓ sanitized

Figure 6: DM-SUDS sanitization on ImageNet steganography using DDH. Secrets are successfully
sanitized, as indicated by the last two columns – the secret is not discernable from Ŝ.

Table 2: DM-SUDS ImageNet Image Metrics

Compare Metric DM-SUDS

Image
Preservation

MSE 68.57
PSNR 30.21
SSIM 0.88

Secret
Elimination

MSE 7664.38
PSNR 9.60
SSIM 0.07

Potential Improvements and Use Cases While DM-SUDS successfully outperforms SUDS in
the sanitization of steganography, there are areas for future improvement. One potential drawback
of this approach (as with SUDS) is that DM-SUDS is trained on a specific data distribution. While
it may successfully sanitize images of various distributions, the reconstructed image quality will be
sacrificed. Most use cases, however, will likely be of the same distribution. For instance, a bank
company’s network traffic might contain images of customer identification documents, signature
cards, check images, etc., which would exhibit the same data distribution. DM-SUDS could be used
to protect the exfil of proprietary information of that bank from bad actors, as well as bad actors
attempting to introduce malware payloads into the system via steganography.

6 CONCLUSION

In this work, we introduce a novel blind deep learning steganography sanitization method that uti-
lizes a diffusion model framework to restore images called DM-SUDS. We demonstrate the success
of such an approach compared to SUDS, a previous VAE-based approach, and analyze features
specific to a diffusion model to wholistically evaluate DM-SUDS. Where SUDS has difficulty in
reconstructing images, DM-SUDS achieves a higher reconstruction ability while maintaining saniti-
zation performance, improving image preservation MSE by 71.32%, PSNR by 22.43% and SSIM by
17.3%. One of the most impactful features of DM-SUDS lies in its accessibility, as any pretrained
diffusion model of a target domain’s data distribution can be implemented to protect a system against
steganography. This work, therefore, introduces a highly effective and beneficial use case for a dif-
fusion model while marking a significant advancement in the field of steganography sanitization. In
the future, we hope to focus on optimizing DM-SUDS further and explore its application in various
domains.
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