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Abstract

Large Language Models (LLMs) have shown remarkable success
in supporting a wide range of knowledge-intensive tasks. In spe-
cialized domains, there is growing interest in leveraging LLMs
to assist subject matter experts with domain-specific challenges.
However, deploying LLMs as Saa$ solutions raises data privacy con-
cerns, while many open-source models demand significant compu-
tational resources for effective domain adaptation and deployment.
A promising alternative is to develop smaller, domain-specialized
LLMs, though this approach is often constrained by the lack of
high-quality domain-specific training data. In this work, we ad-
dress these limitations by presenting a cost-efficient and scalable
training pipeline that combines guided synthetic data generation
from a small seed corpus with bottom-up domain data curation. Our
pipeline integrates Domain-Adaptive Pre-training (DAPT), Domain-
specific Supervised Fine-Tuning (DSFT), and Direct Preference Opti-
mization (DPO) to train effective small-scale models for specialized
use cases. We demonstrate this approach through DiagnosticSLM,
a 3B-parameter language model tailored for fault diagnosis, root
cause analysis, and repair recommendation in industrial settings.
To evaluate model performance, we introduce four domain-specific
benchmarks: multiple-choice questions (DiagnosticMCQ), question
answering (DiagnosticQA), sentence completion (DiagnosticComp),
and summarization (DiagnosticSum). DiagnosticSLM achieves a 13-
25% accuracy improvement over open-source models of comparable
or larger size (2B-9B) on the MCQ task, while also outperforming
or matching them in other tasks, demonstrating strong domain-
specific reasoning and generalization capabilities.
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1 Introduction

Large Language Models (LLMs) have demonstrated remarkable po-
tential in supporting a wide range of knowledge-intensive tasks
across domains such as law [10], finance [12], and medicine [25].
This success has prompted increasing interest in applying LLMs to
specialized industrial domains, including fault diagnosis and repair.
These domains are often hindered by fragmented documentation,
shortage of skilled technicians, and the high cost and time invest-
ment required to train new personnel [5, 17]. While technicians
performing low-skill operations may rely on manuals and standard
procedures, high-skill tasks (such as fault identification, root cause
analysis, and repair planning) require deep experiential knowledge
that is rarely formalized and is often tacit [3].

Despite the promise of LLMs, there are several barriers to their
adoption in industrial settings. Proprietary models like GPT-4o0,
Gemini, and Claude pose privacy risks due to cloud-only inference
and lack of transparency, making them unsuitable for regulated
environments. Open-source LLMs, though more accessible, often
demand substantial computational resources for fine-tuning and de-
ployment. Additionally, general-purpose models typically lack the
domain-specific vocabulary, reasoning capability, and contextual
grounding needed to support technicians in high-stakes diagnostic
workflows [9].

A promising alternative is to develop small, domain-specialized
LLMs that can be deployed on-premise and customized for spe-
cific industrial use cases. Prior work on domain-adapted models
such as LawGPT [16], BloombergGPT [29], and ChipNeMo [13]
has shown that targeted pretraining on specialized corpora sig-
nificantly improves performance in expert domains. In particular,
Domain-Adaptive Pretraining (DAPT) [8] followed by Supervised
Fine-Tuning (SFT) [2] has emerged as a cost-effective strategy for
domain adaptation.
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Figure 1: Overview of the DiagnosticSLM pipeline. The figure illustrates the key stages of our approach, including domain-
specific data collection, guided synthetic data generation using a teacher model, and a three-stage training process comprising
Domain-Adaptive Pretraining (DAPT), Domain-specific Supervised Fine-Tuning (DSFT), and Direct Preference Optimization

(DPO).

However, a key bottleneck in this process is access to high-quality
domain-specific training data. Industrial data is often siloed, propri-
etary, and inconsistently documented, limiting the ability to build
or evaluate customized models. Moreover, curating clean, relevant
subsets from massive corpora like Common Crawl is labor-intensive
and prone to low recall [21]. Even with access to data, training from
scratch or full fine-tuning of large models is often cost-prohibitive
due to the extensive GPU hours and memory requirements involved
[30].

To address these challenges, we propose a scalable pipeline for
building small domain-specialized LLMs on a shoestring budget.!
Our approach combines bottom-up domain data curation with
guided synthetic data generation from a small seed corpus. We
then apply a training pipeline that integrates DAPT with Domain-
specific SFT (DSFT), and Direct Preference Optimization (DPO)
to produce effective, lightweight models suitable for real-world
deployment.

We demonstrate this approach through DiagnosticSLM, a 3B-
parameter language model tailored for industrial fault diagnosis
and repair, an essential domain where workforce shortages and
fragmented documentation hinder productivity and training. We
also introduce four domain-specific benchmarks: multiple-choice
questions (DiagnosticMCQ), question answering (DiagnosticQA),

!For reference, training Llama-3.2-3B from scratch requires an estimated 460,000 GPU
hours, whereas our method consumed approximately 5,600 GPU hours, or about 1.2%
of that compute cost.

sentence completion (DiagnosticComp), and summarization (Di-
agnosticSum), to systematically evaluate the model’s performance.
An overview of our method is shown in Figure 1.

2 Methodology

We adopted a three-step training pipeline to develop our proposed
domain-specific SLM, DiagnosticSLM. First, we perform additional
pretraining of an open source SLM, Llama-3.2-3B [6, 15], on a corpus
of Automotive domain. Next, we perform supervised fine-tuning
using automotive domain related tasks adapted from general su-
pervised fine-tuning alpaca dataset [23]. Lastly, we perform direct
preference optimization using the UltraFeedback dataset [4], which
we intend to replace using a automotive preference dataset in future
work.

2.1 Domain Adaptive Pretraining (DAPT)

2.1.1  Automotive Domain Data curation. We have selected auto-
motive as the main focus area in diagnostics. The first step in
curating automotive-specific data involved narrowing the corpus
scope to focus on diagnostic procedures, repair operations, and
core automotive concepts. We adopted a bottom-up data collection
strategy, where keyphrases were curated from a small set of inter-
nal documents and technical manuals. Using an internally hosted
LLM, we extracted task-relevant keyphrases by prompting it to
identify diagnostic procedures, repair tasks, and component-level
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operations within each document. For this task, we used the Llama-
3-70B-Instruct model [6] in a 4-bit configuration [14] on 2 x RTX
4090 GPUs, and outputs were manually verified for correctness.
These keyphrases were then used to guide focused data search and
help reduce ambiguity during search. Examples of representative
keyphrases include:

e Perform cylinder power balance tests

e Replace valve stem seals

e Cylinder Head and Valve Train Diagnosis and Repair
e Inspect cylinder deactivation system

o Check bearing preload to inspect, measure, and adjust
e Diagnose noise, vibration, and fluid leakage problems

Using the refined set of unique keyphrases, we queried relevant
web domains via the Google Custom Search API. The resulting web
scraping process yielded approximately 403 million tokens from
706,971 webpages.

2.1.2  Domain Relevance Filtering and Classification. To further
refine the dataset, we performed domain relevance filtering us-
ing a combination of LLM annotation and classical classification
techniques. A random sample of 20,000 webpages was selected
for annotation of the classification dataset. We used Llama-3-70B-
Instruct model to label each instance as relevant or irrelevant to the
automotive domain. The LLM annotated 11,621 samples as relevant
and 8,379 as irrelevant, with the full annotation process taking
approximately 11 hours. This highlights the considerable time and
computational cost of large-scale LLM-based labeling, making it im-
practical to annotate the entire dataset manually. A manual review
of a subset was conducted to validate label quality. While no correc-
tions were applied, the low observed error rate and minimal review
time ( 2 person-hours) supported continued use of the LLM-labeled
data.

This labeled subset was split 80-20 into training and test sets.
We trained a logistic regression classifier with L2 regularization
(C = 10) using the SAGA solver. The resulting model achieved an
accuracy of 88.2% on the test set. Applying this classifier to the full
dataset yielded 356,312 instances (50.39%) classified as automotive-
related, and 350,624 (49.61%) as non-automotive-related.

To enrich this automotive subset, using domain knowledge, we
created eight topic-specific descriptive text chunks representing
major automotive systems: Engine Repair, Automatic Transmis-
sion, Manual Drive Train and Final Drive, Suspension and Steering,
Brakes, Automotive Electrical/Electronics, Automotive Heating and
Air Conditioning, and Engine Performance. We then computed the
cosine similarity between the embeddings of each topic-specific
document and the 356,312 previously classified automotive-related
samples, yielding a total of 8 x 356,312 similarity scores. We merged
all scored instances, sorted them in decreasing order of similarity,
and removed duplicate text entries to ensure uniqueness while pre-
serving high relevance to at least one of the eight topics. The final
set consists of unique samples, each associated with a correspond-
ing similarity score. Samples with a cosine similarity greater than
0.25 were selected for inclusion in the main dataset.

To account for possible false negatives in the non-relevant set,
we computed cosine similarity between the topic documents and
all non-relevant samples. The top 20% most similar entries were
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retained and merged with the previously filtered set. After filter-
ing and merging, the compiled curated dataset contained 387,572
samples, totaling approximately 257 million tokens.

2.1.3  Guided Synthetic Data Augmentation. To enhance the dataset,
we employed a teacher model to expand the automotive content
by generating additional domain-relevant text and removing non-
relevant portions. This augmentation step aimed to create a more
comprehensive and detailed corpus, thereby improving the model’s
ability to understand and generate automotive-specific informa-
tion. A relatively smaller model, Gemma-2-27B [24], than a 70B
variant was selected to facilitate efficient parallel inference across
two-GPUs. For data points exceeding the single-GPU context win-
dow, we partitioned the text into smaller chunks, processed them
independently, and subsequently merged the outputs.

The augmentation process focused on enriching all relevant
samples by prompting the teacher model to add factually accurate
details and more comprehensive explanations, guided by its inter-
nal automotive knowledge. The underlying assumption is that the
teacher model already possesses a certain amount of the neces-
sary domain knowledge; rather than generating information from
scratch, the prompts encourage the model to elaborate, clarify, and
expand upon existing content. In this way, the teacher model plays
a constructive role in enhancing the dataset by injecting technical
depth and contextual breadth in a guided manner. This prompt-
based strategy not only deepened the technical content and im-
proved specificity across the dataset but also facilitated the filtering
of non-relevant samples and removal of low-value, non-technical
content inside the sample such as workshop addresses, geographic
references, and irrelevant forum conversations. The entire expan-
sion and modification pipeline consumed approximately 5,400 GPU
hours. Following augmentation, we applied fuzzy de-duplication
using MinHash [11] to remove redundant sentences including con-
tent from our automotive benchmark. The final automotive corpus
comprised 206 million tokens.

2.1.4  Model and framework. We leveraged a 3B-parameter Llama-
3.2-3B model for DAPT using our curated automotive corpus. The
model was initialized from its publicly released pretrained weights.
We employed the LlamaFactory framework [35] for training and
utilized fully sharded data parallelism (FSDP) [32] via the Accelerate
library [7] to distribute model parameters across 2 x NVIDIA RTX
4090 GPUs.

2.1.5 DAPT training. We adopted a full-parameter fine-tuning
strategy on the automotive domain-specific data. DAPT was con-
ducted using the causal language modeling (CLM) objective, con-
sistent with the pretraining objective of Llama-3 models. CLM can
be defined as the negative log-likelihood of the next token given
all previous tokens:

T
Leww = - ) | log Py(xt | x<r) (1)

=1
where x; is the token at position ¢, x<; are all preceding tokens,
and Py is the probability distribution parameterized by the model

weights 6.

Full-parameter fine-tuning was chosen over parameter-efficient
methods (e.g., LoRA) to maximize domain alignment and capture
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deeper semantic shifts specific to the automotive domain. The model
was trained using the AdamW optimizer with a learning rate of
1 x 1074, and a cosine learning rate scheduler with 10% warmup
steps. We set the per-device batch size to 1 and used gradient accu-
mulation over 8 steps, resulting in an effective global batch size of 16
across two GPUs. The input sequence length was set to 2,048 tokens,
yielding a total of 16,384 tokens processed per forward pass. Train-
ing was conducted for 1 epoch, consisting of 5,789 steps in precision
FP16. The entire training process took approximately 59 hours on
2x NVIDIA RTX 4090 GPUs. We call this model DiagnosticSLM-base.

2.2 Domain-specific Supervised Fine-Tuning
(DSFT)

2.2.1 DSFT Data Generation. To adapt the DAPT model to task-
specific objectives, we constructed a domain-specific instruction-
tuning dataset for the automotive domain. We curated 10 distinct
task types and provided three example prompts per task to the
GPT-40 [22] model. These prompts guided the generation of in-
struction—-response pairs across eight automotive topics introduced
earlier in the data collection phase (e.g., Engine Repair, Brakes, etc.).

Using this setup, we generated approximately 20,000 examples
spanning 10 NLP tasks inspired by Alpaca dataset tailored for the
automotive domain, including: Extractive Question Answering,
Multiple-Choice Question Answering, Question Generation, Open-
Ended Question Answering, True/False Classification, Sentence
Completion, Sentiment Analysis, Summarization, Text Generation,
and Topic Classification. More descriptions of each task are pro-
vided in the Appendix.

To balance domain-specific and general instruction-following
capabilities, we combined our domain task dataset with the 52,000
samples from Alpaca dataset. This produced a mixed training set
for ablation studies evaluating the effects of different dataset com-
binations. The final DSFT corpus comprises approximately 72,000
instruction-response pairs, and we refer it as DiagnosticMix.

2.2.2 DSFT Training. We fine-tuned the DAPT model on the DSFT
dataset using an auto-regressive next-token prediction objective.

T
Lspr = - ) 10gPo(yr | y<1,x) 6)
t=1

where x is the instruction prompt and y = (y3,...,yr) is the
ground-truth response. The model is trained to generate y condi-
tioned on x.

Training was performed using the LlamaFactory framework
with nearly identical hyperparameter settings as DAPT, except for
areduced learning rate of 1x10~°. The per-device batch size was set
to 2, with gradient accumulation over 8 steps, yielding an effective
global batch size of 32.

The model was trained for 1 epoch, totaling 2,130 training steps,
using precision FP16 on 2x NVIDIA RTX 4090 GPUs. The complete
training process took approximately 23.5 hours. We call this model
DiagnosticSLM-instruct.

2.3 Direct Preference Optimization (DPO)

While DAPT and DSFT enable the DiagnosticInstruct to internal-
ize domain knowledge, they do not guarantee that the model’s
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outputs align with human preferences. To address this, we per-
form additional fine-tuning through preference alignment using
the DPO [20]. DPO is a recently proposed alternative to Reinforce-
ment Learning from Human Feedback (RLHF) [18], that directly
optimizes a language model to prefer responses that align with
human-annotated preferences, without requiring a separate reward
model or reinforcement learning loop. Given a set of preference
pairs (X, Ypos, Yneg)> Where x is the input and ypos and yneg are the
preferred and less preferred responses respectively, DPO fine-tunes
the model by minimizing the following loss:

L(8) = —log o (B (log 79 (ypos | x) —log mg(yneg | ))). (3)

where 7y is the model’s output distribution, o(+) is the sigmoid
function, and f is a temperature parameter controlling the sharp-
ness of preference. This encourages the model to increase the log-
probability gap between preferred and non-preferred responses.
Compared to RLHF, DPO offers a simpler and more stable train-
ing paradigm, while maintaining strong empirical performance.
We adopt DPO in our alignment stage due to its computational
efficiency, reduced implementation complexity, and its ability to
effectively guide the model toward preferred behaviors.

2.3.1 Dataset. We utilize the UltraFeedback Binarized dataset, sourced

through HuggingFace [4]. The original UltraFeedback dataset com-
prises approximately 64,000 samples, each accompanied by four
responses generated by a mixture of proprietary and open-source
language models. These completions were evaluated by GPT-4
based on multiple criteria, including helpfulness and honesty. In
the binarized version, the highest-scoring response is labeled as the
"chosen" response, while one of the remaining three is randomly
selected as the "rejected” response. This binary format enables the
construction of pairwise preference data required for DPO.

We use this dataset to further fine-tune the DiagnosticInstruct
model. While this dataset is general-purpose, future work will focus
on constructing a domain-specific preference dataset tailored to
the automotive domain.

2.3.2 DPO Fine-Tuning. We fine-tune the Llama-3.2-3B based Di-
agnosticSLM instruct model using DPO with LoRA, a parameter-
efficient approach selected due to computational constraints. Train-
ing is conducted for 1 epoch with a per-device batch size of 1, a
learning rate of 1 x 107, and a cosine learning rate scheduler with
a 10% warm-up ratio. We use bfloat16 precision training and apply
a sigmoid-based preference loss with = 0.1. The input sequence
length is capped at 2,048 tokens, and data preprocessing is paral-
lelized across 8 workers. Evaluation is performed every 500 steps,
with 10% of the dataset reserved for validation. The entire DPO
training process took approximately 72 hours. We refer this final
model as DiagnosticSLM.

3 Experiments

3.1 Evaluation

The Automotive Service Excellence (ASE) certification exams are
widely regarded as the standard for assessing technical proficiency
in automotive diagnostics, repair, and maintenance across various
vehicle systems [26]. To evaluate the domain-specific knowledge
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Table 1: Comparison of model variants on the DiagnosticMCQ evaluation using 5-shot prompting,.

Model Params Training Type Accuracy Option Option Option Option
(Correct/Total) A B C D
Ground Truth (label dist.) - - - 240 246 205 185
DiagnosticSLM (ours) 3b DAPT+DSFT+DPO 0.4532 (397/876) 288 311 201 76
Phi-3.5-mini-instruct 3.8b Original Instruct 0.4384 (384/876) 105 203 372 196
Phi-4-mini-instruct 3.8b Original Instruct 0.4098 (359/876) 91 200 364 221
Gemma-2-2b-It 2b Original Instruct 0.3733 (327/876) 265 83 317 211
Llama-3.2-3B-Instruct 3b Original Instruct 0.3653 (320/876) 166 130 426 154
Qwen2.5-3B-Instruct 3b Original Instruct 0.3630 (318/876) 115 154 352 223
Gemma-2-2b 2b Base 0.3368 (295/876) 173 406 166 131
Qwen2.5-3B 3b Base 0.3288 (288/876) 112 122 414 161
Llama-3.2-3B 3b Base 0.2705 (237/876) 155 63 621 37
DiagnosticSLM-base (ours) 3b DAPT 0.2352 (206/876) 4 3 868 1
Llama-3.1-8B-Instruct 8b Original Instruct 0.4692 (411/876) 136 220 305 215
Gemma-2-2b-It 9b Original Instruct 0.4521 (396/876) 147 152 338 162
Ministral-8B-Instruct-2410 8b Original Instruct 0.4281 (375/876) 153 118 385 216
Llama-3.1-Tulu-3-8B 8b Original Instruct 0.4041 (354/876) 140 241 129 366
cdai-command-r7b-12-2024 7b Original Instruct 0.3984 (349/876) 216 241 331 87
Llama-3.1-8B 8b Base 0.3095 (247/876) 171 110 402 46

Table 2: Accuracy comparison of different models evaluated
on the DiagnosticQA dataset using 5-shot prompting,.

Model Params Accuracy
DiagnosticSLM (ours) 3B 0.3831
Phi-4-mini-instruct 3.8B 0.3628
Qwen2.5-3B-Instruct 3B 0.3299
Gemma-2-2B-it 2B 0.3169
Phi-3.5-mini-instruct 3.8B 0.2342
Llama-3.2-3B-Instruct 3B 0.2208

coverage of our models, we construct benchmarks inspired by the
format and subject areas of the ASE exams. Given their comprehen-
sive scope and relevance, we manually curated these benchmarks
to reflect domain-specific knowledge based on ASE exam structure
and content, enabling a quantitative assessment of model perfor-
mance. We evaluate performance across four tasks: multiple-choice
questions, question answering, sentence completion, and summa-
rization, as detailed below. For all experiments, we compare our
model with Llama3.2 [15], Qwen2.5 [31], Phi-3.5/Phi-4 [1], and
Gemma-2 [24].

3.1.1  Multiple Choice Question Task. We introduce DiagnosticMCQ,
a benchmark composed of 876 multiple-choice questions across

various automotive subtopics. Each question includes four answer

choices, one of which is designated as the correct ground-truth

answer, as shown in Figure 2. Each evaluation prompt includes

five example question—-answer pairs followed by a test question to

guide the model in understanding the structure and answer format.
Model predictions are compared against the ground truth answers

to compute accuracy.

We compare various open-source language models ranging in
size from 2B to 9B parameters on the DiagnosticMCQ benchmark.
As shown in Table 1, our final model, DiagnosticSLM, achieves an
accuracy of 45.32% (397/876), surpassing the Llama-3.2-3B-instruct
baseline (36.53%) by a substantial margin. Despite its smaller size,
DiagnosticSLM also outperforms several larger models, includ-
ing Ministral (8B, 42.81%), Llama3.1-Tulu (8B, 40.41%), and C4ai-
command-r (7B, 39.84%), and performs on par with Gemma-2 (9B,
45.21%). It also exceeds the performance of similarly sized or slightly
larger models such as Phi-4-mini-instruct (3.8B, 40.98%), Qwen2.5-
3B-Instruct(3B, 36.3%), and Gemma-2 (2B, 37.33%).

We observed that nearly all base versions of models exhibit
skewed option selection when evaluated on DiagnosticMCQ, often
favoring a specific choice regardless of the question content. This
trend shifts noticeably in their instruction-tuned variants. We no-
tice a similar trend in our own model: after DAPT, the model only
selects option C. However, following DSFT and DPO, the answer
distribution becomes more balanced. For comparison, the distribu-
tion of correct options in the ground truth is also included in the
Table 1.

3.1.2  Question-Answering Task. LLMs often exhibit selection biases
i.e., token bias toward label tokens (A/B/C/D) [19, 27], positional
bias in answer ordering [34], and context priming from in-context
examples [33]. To introduce variation in evaluation and better assess
the instruction-following capabilities of the models, we converted
the DiagnosticMCQ dataset into a question-answering (QA) format
using GPT-4o, referred as DiagnosticQA benchmark. In this setting,
the answer choices are embedded directly within the question in
natural language. An example question is shown in Figure 2. This
format aims to reduce surface-level biases by requiring models to
interpret the full input and generate an explicit answer, rather than
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Table 3: Accuracy comparison of different models evaluated
on the DiagnosticComp dataset using log-likelihood-based
scoring.

Model Params Accuracy
DiagnosticSLM (ours) 3B 0.5556
Phi-4-mini-instruct 3.8B 0.5128
Phi-3.5-mini-instruct 3.8B 0.5076
Llama-3.2-3B-Instruct 3B 0.4786
Gemma-2-2B-it 2B 0.4701
Qwen2.5-3B-Instruct 3B 0.4188

selecting a label. We evaluate models using accuracy, comparing
their generated answers against the ground truth.

{

"id": 1,

"DiagnosticMCQ_question": "Using a diagnostic strategy for engine repair,
< which of the following is generally the last step in that process
— 7"

"DiagnosticMCQ_option@": "a. Checking vehicle history",

"DiagnosticMCQ_option1": "b. Verifying the repair",

"DiagnosticMCQ_option2": "c. Doing service checks",

"DiagnosticMCQ_option3": "d. Verifying the concern",

"DiagnosticMCQ_ground_truth_label": 1,

"DiagnosticQA_question": "Using a diagnostic strategy for engine repair,
< which of the following is generally the last step in the process:
< checking vehicle history, verifying the repair, doing service
checks, or verifying the concern?"

"DiagnosticComp_sentence": "The most likely first step in a diagnostic
< strategy or scientific process of elimination for engine service
— is",

"DiagnosticComp_sentence@": "The most likely last step in a diagnostic
< strategy or scientific process of elimination for engine service
< is checking vehicle history",

"DiagnosticComp_sentencel": "The most likely first step in a diagnostic
< strategy or scientific process of elimination for engine service
< is verifying the repair",

"DiagnosticComp_sentence2": "The most likely first step in a diagnostic
< strategy or scientific process of elimination for engine service
< is doing service checks",

"DiagnosticComp_sentence3": "The most likely first step in a diagnostic
< strategy or scientific process of elimination for engine service
< is verifying the concern",

}

Figure 2: JSON representation of an example from our evalu-
ation datasets.

To assess performance in this free-form QA setting, we evalu-
ated multiple models with similar parameter sizes. As shown in
Table 2, all models experienced a drop in accuracy when shifting
from MCQ to QA format. For example, DiagnosticSLM dropped from
45.3 to 36.92, Phi-4 from 40.98 to 35.80, Qwen from 36.3 to 33.06,
Gemma-2-2B-it from 37.33 to 28.70, Phi-3.5 from 43.84 to 23.42, and
Llama-3.2-3B-instruct from 36.53 to 21.42. Despite the overall per-
formance degradation observed in the QA setting, DiagnosticSLM
consistently outperformed all other models by a substantial margin.

3.1.3  Sentence Completion Task. With the aim to further assess
domain-specific knowledge of models with reduced bias, we intro-
duce another benchmark DiagnosticComp. Each question in Diag-
nosticMCQ is reformulated into four natural language sentences,
each representing an independent completion prompt. This is done
by taking the shared question stem as a prefix and appending each
answer option to it. The resulting completions are generated us-
ing GPT-4o. Figure 2 illustrates a sample prefix along with its four
corresponding completions.
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To evaluate for each sentence prompt, we extract the model’s
output logits at every generation step, apply a softmax over the
vocabulary dimension to obtain token-level probabilities P(x; |
X<i), and compute the aggregate log-likelihood.

n
log P(x1:n | prefix) = > log P(x; | x<)- @
i=1
Because all four prompts share the same prefix, differences in
total log-likelihoods reflect only the option texts. We select the
option whose prompt attains the highest probability score.
Answering certain MCQs demands multi-step or implicit reason-
ing, which can obscure the model’s domain expertise. To focus on
surface-level domain knowledge, we manually filter and exclude
such questions based on two criteria: (1) complexity patterns such as
multi-step reasoning and negation chaining, and (2) option length.
We manually review the DiagnosticMCQ dataset and remove ex-
amples we classify as complex. Option length can introduce bias,
as longer sequences tend to accumulate lower total log-likelihoods.
To mitigate this, we restrict each candidate option to a maximum
of four words and exclude any MCQ containing a longer option.
After applying both filtering strategies, the final DiagnosticComp
set comprises 117 completion questions. As shown in Table 3, Diag-
nosticSLM performs better than other models in comparison, with
55.56% accuracy on DiagnosticComp benchmark.

3.1.4  Summarization Task. To evaluate models’ ability to summa-
rize domain-specific technical content, we introduce a benchmark
task called DiagnosticSum. Each input consists of a 3-6 line ground-
truth explanation associated with a question from the Diagnos-
ticMCQ dataset. Using GPT-40, we generate concise two-line sum-
maries of these explanations to serve as reference outputs. Models
are prompted to produce two-line summaries of the input para-
graphs, with the objective of preserving key technical information
in a compact form.

We evaluate summarization quality using a combination of lexi-
cal and semantic similarity metrics, including ROUGE-1, ROUGE-2,
ROUGE-L, BLEU, BERTScore (F1), and Cosine Similarity. ROUGE
and BLEU scores are computed using the rouge-score and nltk li-
braries, respectively, while BERTScore and Cosine Similarity are
calculated using the bert-score and sentence-transformers libraries
with the all-MiniLM-L6-v2 [28] embedding model. Given the cre-
ative nature of summarization, we conduct five independent trials
per model using a temperature setting of 0.5 to account for variabil-
ity in outputs. The aggregated results are reported in Table 4. We
observe that Phi-4-mini-instruct achieves the highest performance
among all models, while DiagnosticSLM remains competitive with
models of similar size. One possible reason for the relatively lower
performance of DiagnosticSLM is the limited number of domain-
specific training examples related to the summarization task.

3.2 Ablation study on the effect of dataset on
model training

To identify the most suitable base model for our pipeline, we initially

experimented with three candidate models: Gemma-2B, Llama-

3.2-1B, and Llama-3.2-3B. Each model underwent the same train-
ing pipeline consisting of DAPT and DSFT. We experimentally
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Table 4: Performance comparison of models on DiagnosticSum benchmark dataset (mean + std).

KDD’25 SciSoc LLM Workshop, August 2025, Toronto, ON, Canada

Model

Rouge-1

Rouge-2

Rouge-L

BLEU

BERTScore F1

Cosine Sim

DiagnosticSLM (ours)
Gemma-2-2B-It

Llama-3.2-3B-Instruct
Phi-3.5-mini-instruct
Phi-4-mini-instruct

0.5076 + 0.0035
0.5202 + 0.0029
0.4379 + 0.0032
0.3796 + 0.0018

0.5863 + 0.0007

0.4751 + 0.0022

0.2691 £ 0.0024
0.2654 + 0.0028
0.2310 £ 0.0024
0.2025 £ 0.0018

0.3917 + 0.0024
0.3889 + 0.0023
0.3296 + 0.0025
0.2796 + 0.0015

0.3455 + 0.0024 0.4671 + 0.0022

0.2448 £ 0.0017

0.3557 + 0.0020

0.1815 £ 0.0029
0.1938 £ 0.0030
0.1167 £ 0.0019
0.1067 £ 0.0005
0.2757 + 0.0031
0.1386 + 0.0015

0.9196 + 0.0006
0.9199 + 0.0007
0.8998 + 0.0011
0.8902 + 0.0020
0.9316 + 0.0002
0.9151 + 0.0004

0.8522 £ 0.0019
0.8583 + 0.0021
0.8229 £ 0.0019
0.8200 + 0.0018
0.8882 + 0.0013
0.8802 + 0.0010

Qwen2.5-3B-Instruct

Table 5: Ablation study on different datasets evaluated on
DiagnosticMCQ using 5-shot prompting. Note: SFT refers to
fine-tuning on the Alpaca dataset; DSFT refers to fine-tuning
on the DiagnosticMix dataset.

Model Name Training Type Accuracy
Llama-3.2-3B-Instruct Original Instruct 36.53
Llama-3.2-3B Base+SFT 30.71
Llama-3.2-3B Base+DAPT+SFT 37.79
Llama-3.2-3B Base+DSFT 38.24
DiagnosticSLM-instruct (ours)  Base+DAPT+DSFT 44.41
DiagnosticSLM (ours) Base+DAPT+DSFT+DPO 45.32

observed that both Gemma-2B and Llama-3.2-1B exhibited a de-
cline in accuracy on DiagnosticMCQ following DAPT and DSFT. In
contrast, Llama-3.2-3B consistently demonstrated superior perfor-
mance across the task. Based on these results, we selected Llama-
3.2-3B as the foundation for all subsequent experiments.

To evaluate the individual and combined effects of DAPT, DSFT,
and DPO, we conducted a series of ablation studies using the
Llama-3.2-3B model. Our results, as shown in Table 5, demonstrate
that neither DAPT nor DSFT alone is sufficient to achieve opti-
mal performance. Specifically, applying DAPT followed by SFT
using general-purpose Alpaca dataset yields a modest improve-
ment in DiagnosticMCQ accuracy (37.79) compared to the original
instruction-tuned model (36.53), indicating that DAPT introduces
some domain-awareness. Similarly, fine-tuning the base model di-
rectly with DiagnosticMix data without prior DAPT results in a
comparable DiagnosticMCQ accuracy of 38.24, suggesting that task-
specific supervision alone is also moderately effective. However,
combining DAPT with DiagnosticMix DSFT leads to a substantial
performance boost, achieving an DiagnosticMCQ accuracy of 44.41,
demonstrating that domain pretraining and domain-specific super-
vision work synergistically. Further incorporating DPO pushes the
DiagnosticMCQ accuracy even higher to 45.32, underscoring the
added value of preference alignment in improving model behavior.

4 Conclusion

We introduced DiagnosticSLM, a small language model tailored for
diagnostics and repair to assist frontline workers, and is lightweight
enough for edge deployment in industrial environments. Our three-
stage training pipeline consisting of Domain-Adaptive Pretrain-
ing (DAPT), Domain-specific Supervised Fine-Tuning (DSFT), and
Direct Preference Optimization (DPO) enabled effective domain

adaptation using curated and augmented data. Across tasks such as
multiple-choice questions, question-answering, sentence comple-
tion and summarization, DiagnosticSLM outperformed or matched
larger open-source models, underscoring the impact of specialized
training on domain-specific corpora. Our ablation study highlights
the complementary roles of DAPT, DSFT, and DPO in enhancing
model’s performance.
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Kumar et al.

A Automotive Tasks

We designed a set of diverse NLP tasks in the automotive context.
The tasks are described below:

Extractive Question Answering - Identifying answers
from a given automotive text.

Multiple-Choice Question Answering — Selecting the
correct answer from predefined options.

Question Generation - Creating domain-specific questions
based on a given text.

Open-Ended Question Answering — Providing free-form
responses to automotive queries.

True/False Classification - Verifying the correctness of
domain-specific statements.

Sentence Completion — Predicting missing parts of auto-
motive related text.

Sentiment Analysis and Summarization — Detecting
opinions in automotive discussions and summarizing con-
tent.

Text Generation — Producing coherent, domain-specific
automotive content.

Topic Classification — Categorizing content into automo-
tive subdomains (e.g., engine, transmission, brakes).
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