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Abstract

Standard reinforcement learning (RL) assumes
that an agent can observe a reward for each state-
action pair. However, in practical applications, it
is often difficult and costly to collect a reward for
each state-action pair. While there have been sev-
eral works considering RL with trajectory feed-
back, it is unclear if trajectory feedback is in-
efficient for learning when trajectories are long.
In this work, we consider a model named RL
with segment feedback, which offers a general
paradigm filling the gap between per-state-action
feedback and trajectory feedback. In this model,
we consider an episodic Markov decision process
(MDP), where each episode is divided into m
segments, and the agent observes reward feed-
back only at the end of each segment. Under this
model, we study two popular feedback settings:
binary feedback and sum feedback, where the
agent observes a binary outcome and a reward
sum according to the underlying reward function,
respectively. To investigate the impact of the num-
ber of segments m on learning performance, we
design efficient algorithms and establish regret
upper and lower bounds for both feedback set-
tings. Our theoretical and experimental results
show that: under binary feedback, increasing the
number of segments m decreases the regret at an
exponential rate; in contrast, surprisingly, under
sum feedback, increasing m does not reduce the
regret significantly.

Reinforcement learning (RL) is a class of sequential
decision-making algorithms, where an agent interacts with
an unknown environment through time with the goal of max-
imizing the obtained reward. RL has variant applications
such as robotics, autonomous driving and game playing.
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In classic RL, when the agent takes an action in a state, the
environment will provide a reward for this state-action pair.
However, in real-world applications, it is often difficult and
costly to collect a reward for each state-action pair. For
example, in robotics, when we instruct a robot to scramble
eggs, it is hard to specify a reward for each individual action.
In autonomous driving, it is difficult and onerous to evaluate
each action, considering multiple criteria including safety,
comfort and speed.

Motivated by this fact, there have been several works that
consider RL with trajectory feedback (Efroni et al., 2021;
Chatterji et al., 2021). In these works, the agent observes
a reward signal only at the end of each episode, instead of
at each step, with the signal indicating the quality of the
trajectory generated during the episode. While these works
mitigate the issue of impractical per-step reward feedback
in classic RL, the relationship between the frequency of
feedback and the performance of RL algorithms is unknown.
In particular, if for example we get feedback twice in each
trajectory, does that significantly improve performance over
once per trajectory feedback?

To answer this question, we study a general model called
RL with segment feedback, which bridges the gap between
per-state-action feedback in classic RL (Sutton & Barto,
2018) and trajectory feedback in recent works (Efroni et al.,
2021; Chatterji et al., 2021). In this model, we consider an
episodic Markov decision process (MDP), where an episode
is equally divided into m segments. In each episode, at each
step, the agent first observes the current state, and takes an
action, and then transitions to a next state according to the
transition distribution. The agent observes a reward signal
at the end of each segment. Under this model, we consider
two reward feedback settings: binary feedback and sum
feedback. In the binary feedback setting, the agent observes
a binary outcome (e.g., thumbs up/down) generated by a
sigmoid function of the reward on this segment. In the
sum feedback setting, the agent observes the sum of the
rewards over this segment. In our model, the agent needs
to learn the underlying reward function (i.e., the expected
reward as a function of states and actions) from binary or
sum segment feedback, and maximize the expected reward
achieved. While Tang et al. (2024) also studied this segment
model before (they called it RL from bagged reward), their
work is mostly empirical, and does not provide theoretical
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guarantees for algorithms and rigorously reveal the influence
of segments on learning.

This model is applicable to many scenarios involving hu-
man queries. For instance, in autonomous driving, a driving
trajectory is often divided into several segments, and human
annotators are asked to provide feedback for each segment,
e.g., thumbs up/down. Compared to state-action pairs or
whole trajectories, segments are easier and more efficient to
evaluate, since human annotators can focus on and rate be-
haviors in each segment, e.g., passing through intersections,
reversing the car and parking.

In this segment model, there is an interesting balance be-
tween the number of segments (queries to humans) and the
collected observations, i.e., we desire more observations, but
we also want to reduce the number of queries. Therefore, in
this problem, it is critical to investigate the trade-off between
the benefits brought by segments and the increase of queries,
which essentially comes down to a question: How does the
number of segments m impact learning performance?

To answer this question, we design efficient algorithms for
binary and sum feedback settings in both known and un-
known transition cases. Regret upper and lower bounds
are provided to rigorously show the influence of the num-
ber of segments on learning performance. We also present
experiments to validate our theoretical results.

Note that studying RL with equal segments is an impor-
tant starting point and serves as a foundation for further
investigation on more general models and analysis for RL
with unequal segments. Even under equal segments, this
problem is already very challenging: (i) This problem can-
not be solved by applying prior trajectory feedback works,
e.g., (Efroni et al., 2021), since they use the martingale
property of subsequent trajectories in analysis, while sub-
sequent segments are not a martingale due to dependency
among segments within a trajectory. (ii) In prior trajectory
feedback works (Efroni et al., 2021; Chatterji et al., 2021),
there exists a gap between upper and lower bounds for sum
feedback, and there is no lower bound for binary feedback.
This fact poses a significant challenge for us when trying to
understand the influence of the number of segments m on
learning performance.

Our work overcomes the above challenges and makes con-
tributions as follows.

1. We study a general model called RL with segment feed-
back, which bridges the gap between per-state-action
feedback in classic RL and trajectory feedback seem-
lessly. Under this model, we consider two feedback
settings: binary feedback and sum feedback.

2. For binary feedback, we design computationally-
efficient and sample-efficient algorithms SegBiTS and

SegBiTS-Tran for known and unknown transitions, re-
spectively. We provide regret upper and lower bounds
which depend on exp(=ax ), where H is the length
of each episode, and 7,4 1S a universal upper bound
of rewards. Our results exhibit that under binary feed-
back, increasing the number of segments m signifi-

cantly helps accelerate learning.

3. For sum feedback, we devise algorithms E-LinUCB and
LinUCB-Tran, which achieve near-optimal regrets in
terms of H and m. We also establish lower bounds to
validate the optimality, and show that optimal regrets
do not depend on m. Our results reveal that surpris-
ingly, under sum feedback, increasing the number of
segments m does not help expedite learning much.

4. We develop novel techniques which can be of indepen-
dent interest, including the KL divergence analysis to
derive an exponential lower bound under binary feed-
back, and the use of E-optimal experimental design
in algorithm E-LinUCB to refine the eigenvalue of the
covariance matrix and reduce the regret.

1. Related Work

In this section, we briefly review prior related works.

Algorithms and analysis for classic RL were well studied
in the literature (Sutton & Barto, 2018; Jaksch et al., 2010;
Azaretal., 2017; Jin et al., 2018; Zanette & Brunskill, 2019).
Tang et al. (2024) proposed the RL with segment feedback
problem (they called it RL from bagged rewards), and de-
signed a transformer-based algorithm. However, their work
is mostly empirical and does not provide theoretical guaran-
tees. Gao et al. (2025) considers RL with bagged decision
times, where the state transitions are non-Markovian within
abag, and a reward is observed at the end of the bag. But the
focus of (Gao et al., 2025) is to handle the non-Markovian
state transitions within a bag using a causal directed acyclic
graph, instead of investigating how to infer the reward func-
tion of state-action pairs from bagged rewards like us. In
addition, to the best of our knowledge, there is no existing
work that rigorously quantifies the influence of segments on
learning performance.

There are two prior works (Efroni et al., 2021; Chatterji
et al., 2021) studying RL with trajectory feedback, which
are most related to our work. Efroni et al. (2021) investi-
gated RL with sum trajectory feedback, and designed up-
per confidence bound (UCB)-type and Thompson sampling
(TS)-type algorithms with regret guarantees. Chatterji et al.
(2021) studied RL with binary trajectory feedback, but con-
sidered a different formulation for binary feedback from
ours. Specifically, in their formulation, the objective is to
find the policy that maximizes the expected probability of
generating feedback 1, and their optimal policy can be non-
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Markovian due to the non-linearity of the sigmoid function;
In our formulation, our objective is to find the optimal pol-
icy under the standard MDP definition by inferring rewards
from binary feedback, and thus we consider Markovian poli-
cies. The algorithms in (Chatterji et al., 2021) are either
computationally inefficient or have a suboptimal regret order
due to the non-linearity of their objective and direct maxi-
mization over all non-Markovian policies. Our algorithms
are computationally efficient by adopting the TS algorithmic
style and efficient MDP planning under Markovian policies.
Our regret results cannot be directly compared to those in
(Chatterji et al., 2021) due to the difference in formulation.

Moreover, different from (Efroni et al., 2021; Chatterji et al.,
2021), we study RL with segment feedback, which allows
feedback from multiple segments within a trajectory, with
per-state-action feedback and trajectory feedback as the two
extremes. Under sum feedback, we improve the result in
(Efroni et al., 2021) by a factor of v/H using experimental
design, when the problem reduces to the trajectory feed-
back setting. Under binary feedback, we propose TS-style
algorithms which are computationally efficient, and build
a lower bound to reveal an inevitable exponential factor in
the regret bound, which is novel to the RL literature.

Our work is also related to linear bandits (Abbasi-Yadkori
et al., 2011) and logistic bandits (Filippi et al., 2010; Faury
et al., 2020; Russac et al., 2021), and uses analytical tech-
niques from that literature.

2. Formulation

In this section, we present the formulation of RL with binary
and sum segment feedback.

We consider an episodic MDP denoted by
M(S, A H,r,p,p). Here S is the state space, and
A is the action space. H is the length of each episode.
r : 8§ XA = [~Tmax,Tmax] 18 an unknown reward
function, where r,.x > 0 is a universal constant. Define
the reward parameter 6% := [r(s,a)](s,a)esxA € RISIIAL
p: S x A — Ag is the transition distribution. For any
(s,a,8") € S x Ax S, p(s|s,a) is the probability of
transitioning to s’ if action a is taken in state s. p € Ag is
an initial state distribution.

A policy 7 : S x [H] — A is defined as a mapping from
the state space and step indices to the action space, so
that 7y, (s) specifies what action to take in state s at step
h. For any policy w, h € [H] and (s,a) € S x A, let
Vi (s) be the state value function, and Q7 (s,a) be the
state-action value function, which denote the cumulative
expected reward obtained under policy 7 till the end of
an episode, starting from s and (s, a) at step h, respec-
tively. Formally, V" (s) := ]E[Zf:h r(st,at)|sn = s, 7],
and Qf(s,a) = E[Zihr(st,atﬂsh = s,ap = a,T7.

The optimal policy is defined as 7% = argmax, V;"(s) for
all s € Sand h € [H]|. Forany s € S and h € [H], denote
Vir(s) = Vi (s).

The process of RL with segment feedback is as follows.
In each episode k, the agent chooses a policy 7% at the
beginning of this episode, and starts from s} ~ p. At each
step h € [H], the agent first observes the current state sﬁ,
and takes an action af = 7 (sF) according to her policy,

and then transitions to a next state s | ~ p(:|s, ).

Each episode is equally divided into m segments, and each
segment is of length % For convenience, assume that H
is divisible by m. For any k > 0 and i € [m], let 7% =
(sk,ak,... s¥ aF) denote the trajectory in episode k, and

k k ., 8% ,,ak ) denote the

T = (s%(i—l)-&-l’ L (j—1)417 " i

i-th segment of the trajectory in episode k.

For any trajectory or trajectory segment 7, ¢7 € RISIAl
denotes the vector where each entry ¢7 (s, a) is the number
of times (s, a) is visited in 7. For any policy 7, ¢™ € RISIIAI
denotes the vector where each entry ¢™ (s, a) is the expected
number of times (s, a) is visited in an episode under policy
m,i.e.,

H
¢ (s,a) :=E Z {sp =s,ap = a}‘w] .

h=1

In our model, the agent observes reward feedback only at
the end of each segment, instead of each step as in classic
RL. We consider two reward feedback settings as follows.

Binary Segment Feedback. Denote the sigmoid function
by p(z) = m for any x € R. In the binary segment
feedback setting, in each episode k, at the end of each
segment ¢ € [m], the agent observes a binary outcome

(i e,
’ 0, w.p. 1 —pu((o7)T0%).

Note that our formulation is different from that in prior
work for binary feedback (Chatterji et al., 2021). Chat-
terji et al. (2021) aim to find the policy that maximizes
the expected probability of generating feedback 1, i.e.,
max, By p[1((¢7) " 0%)], where the optimal policy can
be non-Markovian due to the non-linearity of y(-). In con-
trast, we aim to find the optimal policy under the standard
MDP definition, i.e., max, E,. ,[(¢7) " 6*], by inferring
reward 0* from binary feedback, and thus we consider
Markovian policies. Both formulations have value and
are applicable in different contexts. In particular, our formu-
lation is better suited to situations where we want to solve
an MDP but only get binary segment feedback. Under our
formulation, we design TS-type algorithms with confidence
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bonuses added on 6* element-wise to achieve computational
efficiency, which cannot be done without sacrificing the re-
gret order under the formulation of (Chatterji et al., 2021).

Sum Segment Feedback. In the sum segment feedback
setting, in each episode k, at each step h, the environment
generates an underlying random reward R,’i = r(s’,j, 52) +
6’,2, where EZ is a zero-mean and 1-sub-Gaussian noise, and
independent of transition. At the end of each segment 7 €

[m], the agent observes the sum of random rewards

Rf= Y RGsha)=@)Te+ > b
t=H(i-1)+1 t=H (i—1)+1

Under sum feedback, when m = H, our model degenerates
to classic RL (Azar et al., 2017; Sutton & Barto, 2018).
When m = 1, the above two settings reduce to the problems
of RL with binary (Chatterji et al., 2021) and sum trajectory
feedback (Efroni et al., 2021), respectively.

In our model, the agent needs to infer the reward function
from sparse and implicit reward feedback. Let K denote
the number of episodes played. The goal of the agent is to
minimize the cumulative regret, which is defined as

K

R(K) = (Vi (s1) = Vi (1))

k=1

We note that to the best of our knowledge, the fact that one
gets extremely coarse information about the sum reward
in the binary feedback case makes it impossible to have a
common analysis for both feedback models.

3. Reinforcement Learning with Binary
Segment Feedback

In this section, we investigate RL with binary segment feed-
back. To isolate the effect of segment feedback from tran-
sition model learning, we first design a computationally-
efficient and sample-efficient algorithm SegBiTS for the
known transition case, and establish a novel lower bound
to exhibit the indispensable exponential dependency in the
result under binary feedback. Then, we further develop an
algorithm SegBiTS-Tran with carefully-designed transition
bonuses for the unknown transition case.

3.1. Algorithm SegBiTS for Known Transition

Building upon the Thompson sampling algorithm (Thomp-
son, 1933), SegBiTS adopts the maximum likelihood esti-
mator (MLE) to learn rewards from binary feedback, and
performs posterior sampling to compute the optimal policy.
Different from prior trajectory feedback algorithms (Chat-
terji et al., 2021) which are either computationally inefficient

Algorithm 1 SegBiTS

1: Input: 6,6 := 2, v 1= exp(Hlmax ) 4 exp(— Hlmax) 4
2.\
2. fork=1,...,K do i
~ . -1 m ’
3 O — argming —(3 5y it (yF

log(u((¢7)70) + (1 — w)
(@ )T0)) = BAIOB)

4 Xp_q 227:11 > o7 (¢T,k )T+ al

5. Sample & ~ N(0,a - v(k — 1)? - $;',), where
v(k — 1) is defined in Eq. (1)

6: O < Op_1 + &

7. 7 « argmax_(¢™) " 0y

8:  Play episode k with policy 7*. Observe trajectory 7%
and binary segment feedback {y*}™

9: end for

log(l —

or have a O(K 3) regret bound, SegBiTS$ is both computa-
tionally efficient and has a O(v/K ) regret bound.

Algorithm 1 presents the procedure of SegBiTS. Specifi-
cally, in each episode k, SegBiTS first employs MLE with
past binary reward observations to obtain the estimated
reward parameter ék—l (Line 3). Then, SegBiTS calcu-
lates the feature covariance matrix of past segments 51
(Line 4). After that, SegBiTS samples a noise &, from Gaus-
sian distribution AV(0, v - v(k — 1)2 - ©-' ) (Line 5). Here
o 1s a universal upper bound of the inverse of the sigmoid
function’s derivative. For any k£ > 0, we define

Hmax
o) = T (4 Hrwan ST, H
H m mvA
HIIIELX S H2 %
\/1+r V| ”A‘w(k)+ . ~w(k)2> S
m m2\

and

(4) 1= VX (o ST + 5

SIAL, (4 (,, %
T x e \y T agapn ) ) @

v(k) is the confidence radius factor of the MLE estimate
0. With high probability, we have |¢T6* — ¢ 6| <
Va- u(k)||q5||21;1, where ¢ is the visitation indicator of
any trajectory (Lemma C.7 in Appendix C.1).

Adding noise & to 1, SegBiTS obtains a posterior re-
ward estimate 6, (Line 6). Then, it computes the optimal
policy 7% under reward 6y, i.e., argmax_ (¢™) " 0y, (Line 7).
Note that this step is computationally efficient, which can be
easily solved by any MDP planning algorithm, e.g., value
iteration, by taking 0, as the reward function. After obtain-
ing 7%, SegBiTS plays episode k, and observes trajectory
7% and binary feedback {y¥}™ , on each segment (Line 8).
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Now we provide a regret upper bound for SegBiTS.

Theorem 3.1. With probability at least 1—0, for any K > 0,
the regret of algorithm SegBiTS is bounded by

R(K) = o<exp (HQ;;;) V(K) /ST

(| imistamnc (223} 4[5 ).

In this result, the dependency on |S|, |A| and H are |S|3,
| A and exp(Hpmax) H2, respectively. Our focus here is to

reveal the exponential dependency on % in the regret
bound under binary feedback, instead of pursuing absolute
tightness of every polynomial factor. Since the exponential
factor is usually the dominating factor, this result implies
that as the number of segments m increases, the regret
decays rapidly. Thus, under binary feedback, increasing the
number of segments significantly helps accelerate learning.

The intuition behind this exponential dependency is that
when the reward scale z = % is large, the binary feed-
back is generated from the range where the sigmoid function
w(x) = m is flat, i.e., the derivative of the sigmoid
function p’ () is small. Then, the generated binary feedback
is likely always O or always 1, and it is hard to distinguish
between a good action and a bad action, leading to a higher
regret; On the contrary, when the reward scale z = Hrmax
is small, the binary feedback is generated from the range
where the sigmoid function u(x) is steep, i.e., i/ () is large.
Then, the generated binary feedback is more dispersed to be
0 or 1, and it is easier to distinguish between a good action
and a bad action, leading to a lower regret. In other words,
the regret bound depends on the inverse of the sigmoid
function’s derivative p'(z) = m

3.2. Regret Lower Bound for Known Transition

Below we provide a lower bound, which firstly demonstrates
the inevitability of the exponential factor in the regret bound
for RL with binary feedback.

Theorem 3.2. Consider RL with binary segment feed-
back and known transition. There exists a distribution
of instances where for any ¢y € (0, %) when K >

(H:;];ax) 4|S||A|m

exP Ao

the regret of any algorithm must be

Q(exp<(;co)Hj§ax> JW).

Theorem 3.2 shows that under binary feedback, the expo-
nential dependency on % in the result is indispensable,
and the exp(=ax) factor in Theorem 3.1 nearly matches
the exponential factor in the lower bound up to an arbitrarily

small factor ¢y in exp(-). Theorem 3.2 reveals that when
the number of segments m increases, the regret indeed de-
creases at an exponential rate. In addition, this lower bound
also holds for the unknown transition case, by constructing
the same problem instance as in its proof.

To the best of our knowledge, our lower bound for binary
feedback and its analysis are novel in the RL literature. In
the analysis, we calculate the KL divergence of Bernoulli
distributions with the sigmoid function being in their pa-
rameters. Then, we employ Pinsker’s inequality and the
fact that p/(z) = p(x)(1 — p(x)) to build a connection be-
tween the calculated KL divergence and ' (£Zmex). Since
w(z) = m contains an exponential factor,
we can finally derive an exponential dependency in the lower
bound. Below we give a proof sketch of Theorem 3.2, and
defer a full proof to Appendix C.2.

Proof Sketch. Consider an instance as follows: there are
n bandit states si, ..., s, (i.e., there is an optimal action
and multiple suboptimal actions), a good absorbing state
Snp+1 and a bad absorbing state s,io2. The agent starts
from s1,..., s, with equal probability ~. For any i € [n],
in state s;, under the optimal action a;, the agent tran-
sitions to s, deterministically, and r(s;,a}) = rmax;
Under any subop- (50 @) = T

timal action af®, (s, @) = (1 - &)rmae

the agent transi- a;: transition to s,

tions to S,yo de- W.p. = Sq afP: transition t0 s,,4,
terministically, and ) Sna1 D
r(si,a®) = (1 — w.p. - S52

1y g - n r(5n+1r') = Tmax

€)Tmax, Where € €
(0,%) is a param-
eter specified later.
For all actions a €
A, r(spt1,0) =

Tmax and 7(Sp42,a) = (1 — €)Tmax.

Sn+2 D

1
W.p. — [ Sn T(sp42,) = (1 = E)inax

Figure 1. Lower bound instance.

Then, the KL divergence of binary observations between
the optimal action and suboptimal actions in an episode is

yo (o (o (=5)) I ((52)

(p (Omltirmes) — (%))2

()
m

p (U ) (e o

W () ’
Here B(p) denotes the Bernoulli distribution with parameter
p. Inequality (a) uses the facts that KL(B(p)||B(q)) <
g’z;_q); and ' (z) = p(z)(1 — p(z)). Inequality (b) is due
to that p/(z) is monotonically decreasing when z > 0.

@
<m:

®)
<m:

3

Furthermore, we consider the reward scale Hr . in each
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episode, and the enumeration over each bandit state s; (i €
[n]) and each possible optimal action a] € A in the lower
bound derivation. Then, following the analysis in (Auer
et al., 2002), to learn the difference between the optimal
action and suboptimal actions, the agent must suffer a regret

1
Q (HTmax\/n-A| . 7?@ (3))

Q(W o (Hre) )
S\ (0 o) Ty’

m

Recall that ,U/l(m) = m Lete = 6(\/71?)

For any constant ¢g € (0, 3), letting K large enough (e
small enough) to satisfy € < cg, then the regret is

Q (m%ﬂp <<1 _ zgf”;nm))
_q (Wexp <(; _ co) H::)) 0

3.3. Algorithm SegBiTS-Tran for Unknown Transition
Now we extend our results to the unknown transition case.

We develop an efficient algorithm SegBiTS-Tran for binary
segment feedback and unknown transition. SegBiTS-Tran
includes a transition bonus p}” | in posterior reward esti-
mate BNZ, and replaces visitation indicator ¢™ by its estimate
¢r_,. For any (s,a), ¢F_,(s,a) is the expected number
of times (s, a) is visited in an episode under policy 7 on
empirical MDP py,_1, where pg_ is the empirical estimate
of transition distribution p. Then, SegBiTS-Tran computes
the optimal policy via argmax. (¢7_,) 7 0%, which can be
efficiently solved by any MDP planning algorithm with tran-
sition distribution 1 and reward 6%. We defer the details
of SegBiTS-Tran to Appendix C.3, and present its regret
performance as follows.

Theorem 3.3. With probability at least 1 —6, for any K > 0,
the regret of algorithm SegBiTS-Tran is bounded by

O<exp (Fp ) i) ST

(st {1} )

# (N A ) ISPIAIE VR )

Similar to algorithm SegBiTS (Theorem 3.1), the re-
gret bound of algorithm SegBiTS-Tran also has a factor
exp(L;“f") When the number of segments m increases,

the regret of SegBiTS-Tran significantly decreases. Com-
pared to SegBiTS, the regret of SegBiTS-Tran has an ad-
ditional polynomial term in |S|, |.A|, H and v/ K, which is
incurred due to learning the unknown transition distribution.

4. Reinforcement Learning with Sum Segment
Feedback

In this section, we turn to RL with sum segment feed-
back. Different from prior sum trajectory feedback algo-
rithm (Efroni et al., 2021), which directly uses the least
squares estimator and has a suboptimal regret bound, we
develop an algorithm E-LinUCB for the known transition
case, which adopts experimental design to perform an initial
exploration and achieves a near-optimal regret with respect
to H and m. To validate the optimality, we further establish
a regret lower bound. Moreover, we design an algorithm
LinUCB-Tran equipped with a variance-aware transition
bonus to handle the unknown transition case.

4.1. Algorithm E-LinUCB for Known Transition

If we regard visitation indicators ¢™ as feature vectors and
0* as the reward parameter, RL with sum segment feedback
and known transition is similar to linear bandits.

Building upon the classic linear bandit algorithm
LinUCB (Abbasi-Yadkori et al., 2011), our algorithm
E-LinUCB performs the E-optimal design (Pukelsheim,
2006) to conduct an initial exploration. This scheme en-
sures sufficient coverage of the covariance matrix and fur-
ther sharpens the norm under the inverse of the covariance
matrix, which enables an improved regret bound over prior
trajectory feedback algorithm (Efroni et al., 2021).

Algorithm 2 shows the procedure of E-LinUCB. Specif-
ically, E-LinUCB first performs the E-optimal design to
compute a distribution on policies w*, which maximizes
the minimum eigenvalue of the feature covariance matrix
e W) (0 Bryer 67 (97) 7)) (Line 2). We as-
sume that there exists a policy distribution w under which
this matrix is invertible. Then, E-LinUCB calculates the
number of samples K for initial exploration according to
the optimal value of the E-optimal design (Line 3).

Then, in Line 4, E-LinUCB calls a rounding procedure
ROUND (Allen-Zhu et al., 2021) to transform sampling distri-
bution w* into discrete sampling sequence (7!, .., 7%0),
which satisfies (see Appendix B for more details of ROUND)

H< ZE“W o™ (@7 ]>>_1 )
(xozw )(38 e W‘wm)) |

mell i=1

<(1+7)
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Algorithm 2 E-LinUCB

1: Input: 0,6’ := é JA = Lm, rounding procedure ROUND, rounding approximation parameter vy := 11—0. B(k) =
S||A
VA og (1 + >\|3|IA\ ) + 2108(%) + Famax /AISI[A, Vk > 0.
2: Letw* € Ap and z* be the optimal solution and optimal value of the optimization:
m -1
: Ti ( ATi) |
min (Zwﬂ)(ZEﬂw (67 (67) ]>> “
well =1
: Ko + [max{26(1 +7)?(z*)2H*log (2[4, 1SIALY
o (L wRo) «— ROUND({} By ore 07 (¢”)T]}ﬂen7w*,'y,K0)
. Play K episodes with policies 7', ..., w50, Observe trajectories 7', ..., 7/ and rewards {R}}/™,, ..., {RKoym |

O 1e<M+zk, X 07 (6 )T
m 7-."' T
Zk 1<_/\I+Zk'1 izl(bz((bz)

3

4

5

6: fork=Kg+1,. Kdo

7

8

9: 7k« argmaxﬂen((rbﬂ)—rék,l + Bk —

Zk’ 121 ld)

Rk’

D™l zio-1)

10:  Play episode k with policy 7*. Observe trajectory 7% and sum segment feedback { RF}™

11: end for

After that, E-LinUCB plays K episodes with (7 nko)
to perform initial exploration (Line 5). Owing to the
E-optimal design, the covariance matrix of initial explo-
ration X g, has an optimized minimum eigenvalue, and then
6™ |l(s,_,)-* has a sharp upper bound for any k& > Kj.
This is the key to the optimality of E-LinUCB.

In each episode k£ > K, E-LinUCB first calculates the least
squares reward estimate 01 using past reward observa-
tions and covariance matrix > _; (Lines 7-8). Then, it
computes the optimal policy with reward estimate 05—, and
reward confidence bonus |[¢™[[ (s, _,)-1 (Line 9). E-LinUCB
plays episode k with the computed optimal policy 7*, and
collects trajectory 7% and reward observations on each seg-
ment {Rk ", (Line 10). Below we present a regret upper
bound for algorlthm E-LinUCB.

Theorem 4.1. With probability at least 1 —6, for any K > 0,
the regret of algorithm E-LinUCB is bounded by

0<8||A¢ﬁ10g (( ﬁﬁ) 1)

+ (2*)2H" log ('S”A|) +|S|A|H>

Surprisingly, under sum feedback, when the number of
segments m increases, the regret bound does not decrease
significantly, e.g., at a rate of ——= f or Tn While this looks sur-
prising at the first glance, we discover an intuition through
analysis: The performance in RL is measured by the ex-
pected reward sum of an episode, namely, we only need to

accurately estimate the expected reward sum of an episode.

When the number of segments m increases, while we obtain

more observations, the segment features ngTik / contributed
to covariance matrix Y; shrink, which makes the reward
estimation uncertainty [|¢™[|(x;, )1 inflate. When we focus
on the estimation performance of the expected reward sum
of an episode, these two effects cancel out with each other,
and the regret result is not influenced by m distinctly.

When m = 1, our problem reduces to RL with sum trajec-
tory feedback (Efroni et al., 2021), and our result improves
theirs by a factor of v/H and achieves the optimality with
respect to H. This improvement comes from the fact that
we conduct the E-optimal design and perform an initial ex-
ploration to guarantee that [|¢7 (s, ,)-1 < 1, instead of
167 l(5p 1)1 < f as used in (Efroni et al., 2021).

Next, we study the lower bound to see if the number of
segments m really does not influence the regret bound much.

4.2. Regret Lower Bound for Known Transition

We establish a lower bound for RL with sum segment feed-
back and known transition as follows.

Theorem 4.2. Consider RL with sum segment feedback and
known transition. There exists a distribution of instances
where the regret of any algorithm must be

o (VISTAHE).

Theorem 4.2 demonstrates that our regret upper bound for
algorithm E-LinUCB (Theorem 4.1) is optimal with respect
to H and m when ignoring logarithmic factors. In addition,
this lower bound corroborates that the number of segments
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Figure 2. Experimental results for RL with binary or sum segment feedback.

m does not impact the regret result in essence.

4.3. Algorithm LinUCB-Tran for Unknown Transition

Now we investigate RL with sum segment feedback in the
unknown transition case.

For unknown transition, we design an algorithm
LinUCB-Tran, which establishes a variance-aware uncer-
tainty bound for the estimated visitation indicator é”, and
incorporates this uncertainty bound into exploration bonuses.
In analysis, we handle the estimation error of visitation in-
dicators ”ég — ¢7||1 by this variance-aware uncertainty
bound, which enables us to achieve a near-optimal regret
in terms of H. The details of LinUCB-Tran are deferred
to Appendix D.3, and we state the regret performance of
algorithm LinUCB-Tran below.

Theorem 4.3. With probability at least 1—0, for any K > 0,
the regret of algorithm LinUCB-Tran is bounded by

0 ((1 + Fmax) || |A\2H\/E) .

Theorem 4.3 shows that similar to algorithm E-LinUCB, the
regret of LinUCB-Tran does not depend on the number of
segments m when ignoring logarithmic factors. The heavier
dependency on |S|, |A| and H is due to the estimation of the
unknown transition distribution. We also provide a lower
bound for the unknown transition case, which demonstrates
that the optimal regret indeed does not depend on m and
our upper bound is near-optimal with respect to H (see
Appendix D.5).

5. Experiments

Below we present experiments for RL with segment feed-
back to validate our theoretical results.

For the binary feedback setting, we evaluate our algorithms

SegBiTS and SegBiTS-Tran in known and unknown tran-
sition cases, respectively, and we set |[S| = 9, |A| = 5
and K = 30000. For the sum feedback setting, simi-
larly, we run our algorithms E-LinUCB and LinUCB-Tran
in known and unknown transition cases, respectively. Since
E-LinUCB and LinUCB-Tran are computationally inefficient
(mainly designed to reveal the optimal dependency on m),
we use a small MDP with |S| = 3 and |A| = 5, and
set K = 1000. The details of the instances used in our
experiments are described in Appendix A. In both set-
tings, we set rpax = 0.5, 6 = 0.005, H = 100 and
m € {1,2,4,5,10,20,25,50,100}. For each algorithm,
we perform 20 independent runs, and plot the average cu-
mulative regret up to episode K across runs with a 95%
confidence interval.

Figure 2(a) reports the regrets of algorithms SegBiTS and
SegBiTS-Tran under binary feedback. One sees that as
the number of segments m increases, the regret decreases
rapidly. Specifically, when m decreases from 20 to 1, i.e.,
2L increases from exp(2.5) to exp(50), the regret grows
explosively. This matches our theoretical results, i.e., Theo-

rems 3.1 and 3.3, which show a dependency on exp(zmax).

Figure 2(b) plots the regrets of algorithms E-LinUCB and
LinUCB-Tran under sum feedback. To see the impact of
segments on regrets clearly, here we show the regrets with
respect to the number of segments m and the length of each
segment % in the left and right subfigures, respectively. In
the left subfigure, when m increases, the regrets almost keep
the same for small m and slightly decrease for large m. To
see the dependency on m more clearly, we turn to the right
subfigure: When the length of each segment % increases,
the regrets slightly increase in a logarithmic trend. This also
matches our theoretical bounds in Theorems 4.1 and 4.3,
which do not depend on m except for the log(%) factor.
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6. Conclusion

In this work, we formulate a model named RL with seg-
ment feedback, which offers a general paradigm for feed-
back, bridging the gap between per-state-action feedback
in classic RL and trajectory feedback. In the binary feed-
back setting, we deign efficient algorithms SegBiTS and
SegBiTS-Tran, and provide regret upper and lower bounds
which show a dependency on exp(£Zmex). These results
reveal that under binary feedback, increasing the number of
segments m greatly helps expedite learning. In the sum feed-
back setting, we develop near-optimal algorithms E-LinUCB
and LinUCB-Tran in terms of H and m, where the regret re-
sults do not depend on m when ignoring logarithmic factors.
These results exhibit that under sum feedback, increasing
m does not help accelerate learning much.

There are several interesting directions worth further inves-
tigation. One direction is to consider segments of unequal
lengths and study how to divide segments to optimize learn-
ing. The variable segment length will affect the noise
variance of reward feedback, and the sum analysis of seg-
ment visitation indicators. More advanced techniques are
needed to handle these challenges. Another direction is to
generalize the results to the function approximation setting.
Since our analysis is based on the fact that segment reward
feedback is generated linearly with respect to visitation in-
dicators ¢(s, a), we believe that generalizing ¢(s, a) from a
visitation indicator in the tabular setting to a feature vector
in the linear function approximation setting is viable.
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Appendix

A. Details of the Experimental Setup

In this section, we detail the instances used in our experiments.

For the binary segment feedback setting, we consider an MDP as in Figure 2(a): There are 9 states and 5 actions. For any
a € A, we have r(sg,a) =0, 7(8;,a) = rmax forany i € {1, 3,5, 7} (called good states), and r(s;,a) = —Tpayx for any
i € {2,4,6,8} (called bad states). There is an optimal action a* and four suboptimal actions a**® for all states. The agent
starts from an initial state sqg. For any 0 < ¢ < 6, in state s;, under the optimal action a*, the agent transitions to the good
state and bad state at the next horizon with probabilities 0.9 and 0.1, respectively; Under the suboptimal action a**°, the
agent transitions to the good state and bad state at the next horizon with probabilities 0.1 and 0.9, respectively. In s7 or
ss, under the optimal action a*, the agent transitions to s; and sy with probabilities 0.9 and 0.1, respectively; Under the
suboptimal action a**®, the agent transitions to s; and s, with probabilities 0.1 and 0.9, respectively.

Optimal action a*: w.p. 0.9 7(si,) = Tmax, Vi € {1,3,5,7}
: i o Sub. AN
Suboptimal action: a**”: w.p. 0.1 s — (53 — (55 s7) - {5

W@ X X XK
N .

Optimal action a*: w.p. 0.1 S2) — (5a) — (Se Sg -~ Sz

Suboptimal action a*?: w.p. 0.9

7(s,") = —Tmax Vi € {2,4,6,8}

Figure 3. Instance used in the experiment for RL with binary segment feedback.

For the sum segment feedback setting, since algorithms E-LinUCB and LinUCB-Tran are computationally inefficient (which
are mainly designed for revealing the optimal dependency on H and m), we consider a smaller MDP as in Figure 2(b):
There are 3 states and 5 actions. For any a € A, we have r(sg,a) = 0, r(s1,a) = Tmax (called a good state), and
r(82,a) = —rmax (called a bad state). There is an optimal action a* and four suboptimal actions a** for all states. The
agent starts from an initial state so. In any state s € S, under the optimal action a*, the agent transitions to s; and sg with
probabilities 0.9 and 0.1, respectively; Under the suboptimal action a**®, the agent transitions to s; and s, with probabilities
0.1 and 0.9, respectively.

Optimal action a*: w.p. 0.9 7(517) = Tinax
Suboptimal action: a**?: w.p. 0.1 s D
1

e
r(Sp,) =0 So
ol

Optimal action a*: w.p.0.1 S2 D

Suboptimal action as*?: w. p. 0.9
7(52,") = —Tax

Figure 4. Instance used in the experiment for RL with sum segment feedback.
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B. Rounding Procedure ROUND

Algorithm E-LinUCB calls a rounding procedure ROUND (Allen-Zhu et al., 2021) in the experimental design literature. Taking
X,...,X, € Si, distribution w € Ayx, ... x,}» rounding approximation error y > 0 and the number of samples 7" > %

as inputs, ROUND rounds sampling distribution w into a discrete sampling sequence (Y7,...,Yr) € {X1,..., X, }T that

satisfies
(8 Jeeolrgoms) |
i€[n]

In implementation, we can regard zz | in (Allen-Zhu et al., 2021) as >/~ | E.. .. [¢7 (¢7) ], and regard sampling weight
on z as the sampling weight on 7 in our work.

.....

<(1+49)

C. Proofs for RL with Binary Segment Feedback

In this section, we present the proofs for RL with binary segment feedback.

C.1. Proof for the Regret Upper Bound with Known Transition
First, we prove the regret upper bound (Theorem 3.1) of algorithm SegBiTS for known transition.

For any £ > 0 and § € ©, define

k'=11=1
k m

ge(0) == > u((@™)T0) 6T + N0, )
k'=11=1
k m

Ap(0) =D "W (67 )T0) 67 (67 )T + AL ©)
k'=11=1

Lemma C.1. Forany k > 0 and 0 € ©, we have

H g S
det(An(8)) < <|S|TA|m +/\> :

Proof. For any k > 0, we have

. iS4
det(Ax(6)) < Ci%fp}

1 7\ 2 |S]| Al
L kme () 4084
(BLM ( v (7) "0)

2 1141
— (H Mmaxk _"_ )\) .
|SI[Alm

IN

O

For any k > 0, let F}, denote the filtration that includes all events up to the end of episode k, and F}, denote the filtration
that includes all events before playing 7" in episode k. Then, ¥ is F},-measurable.

For any k > O and i € [m], let gy ; := yF — (qﬁT )T 0* denote the noise of binary feedback, and v,%’i = E[si’iﬁ'k] =
(¢7) 70" (1 — (¢7)T6%) = p/((¢™ )T 6*) denote the variance of ey, ; conditioning on Fj.

12
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Then, we have

Lemma C.2 (Concentration of Noises under Binary Feedback). With probability at least 1 — &', for any k > 0,

k m
% S||A H? k
Z Zek/’i .¢Ti f + Mlog ((S/ (1+ lu’lnax >) .

F=1 i1 2 W |S|AJm

A;l(e*)

Proof. According to Theorem 1 in (Faury et al., 2020), we have that with probability at least 1 — ', for any k& > 0,

k m 1 ISIIA]
VA2 (det(Ak(e*))z AT ) 2
S ewi-om < —+ —=log ; + —=I[S|Allog(2)
@ VX2 1 H? B\ 2
a 1u’max 2
< —+—1 —(1+ — log(2
S Zon (5 (1 gt} T siilont)
VA L IsiiA ( ( H2y! k)) 2
< — I 1+ ax + —|S||All 2
2
< VA L ISlIA] 10g< <1+ H umxk»
2 VA S| AlmA

where (a) uses Lemma C.1.

Define event

o0 -] ... <ot >0},

AN (6%)
Lemma C.3. It holds that
Pr(£]>1-4".

Proof. This proof is similar to that for Lemma 8 in (Faury et al., 2020).
Define

’ 4 1
(Z > (0 10 (@) T0)) +(1-yt) - tog (1-n((67 ) T0) ) ) —2A||e||%> :
k'=11i=1
Recall that §;, = argmin, L, (6). Using the facts that VL, (6x) = 0 and 1/ (x) = pu(z)(1 — pu(x)), we have
k. m o R o . k- m X!
SN wl(@) A o A= 303 g
k=1 i=1 k=1 i=1

gx(0r)

Hence, we have

kK m , k. m
g (O) — ge(0) =3 >y o™ - (Z S (@) Ter) - o +/\¢9*>
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k m ,
k
=5 S ewi o™ -0
k'=11i=1

Then, using Lemma C.2, we have that with probability at least 1 — ¢’, for any k > 0,

k m
Hgk(ek) — gx(07) A= (54) < Z ng’,i P
k k'=1i=1 A;H(67)
2,7
SV ISIAL (4 ()
2 vV iy |S][AlmA
= w(k).

For any ¢ € RISII4l and 6,, 6, € ©, define

+ "maxV/ /\‘S”A‘

k)) + max V/ A|S||A]

1
b, 01, 0) = / W((1=2) 670 + 267 05)dz.
z=0

For any k > 0 and 04, 6> € O, define

K/

k m
Ti(01,02) == > S b(6,01,02) - &7 (67 )T + AL

k'=11i=1

In the definitions of b(¢, 61, 63) and 'y (61, 62), 61 and O have the same roles and can be interchanged.

Recall that

Tmax ) rmax )

a = exp( + exp(—
Then, we have

1
sup <a,

e, 1 ((07) T0)
where 7°°¢ denotes the visitation indicator of any possible trajectory segment.
Lemma C4. Forany k > 1 and 6 € ©, we have

Proof. We have

Then, it holds that

14
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Lemma C.5. For any ¢ € RISIAl and 6,,60, € ©, we have

(@ 01) — (¢ 0a) = b(¢,02,61) - &7 (61 — ).
In addition, for any k > 0 and 01,62 € ©, we have

1601 — 92||rk(92,91) = |lgr(01) — Qk(92)||r,;1(92,91) :

Proof. The first statement follows from the mean-value theorem.

Then, using the first statement, we have that for any £ > 0,

(1) T00) = (6™ )T02)) - 67 4 A (61— 62)

NE

k
9k (61) — gr(02) = Z

‘=11

x>
=

I
NgE

Il
-

b7, 02,01) - 67 (671 )T (01— 02) + X (61— 02)
k'=11=1
=T4(0,61) - (61 — 62),

and thus

161 = 02l (9,.0,) = \/(91 —05)" -T(62,01) - (61 — 65)

= (61— 02) T(02.01) - T (02,61) - Tul02,61) - (6 — 62)
= llgr(61) = 9 (02)llp-1(g,.0,) -
which gives the second statement.

Recall that for any k > 0, Zy == 35, Y7 e - 67 .
Lemma C.6. For any k > 0, we have

-1
. A Hrmax/|S||A| H «
L (07, 0k) = (1 + - + Y 1Zkllp20e ) | Ax(67),

P . Hrmax/|S||A]
|| k”l_‘ 9* Ok) — + m

||Zk||A CA )+ \/>HZk||A (6*) "

Furthermore, assuming that event £ holds, we have

Hrmaxy/|S]| Al H 2
Z . 14+ — " w(k) + ——= - w(k)?.
” kHF o = \/ m (k) mvA (k)

Proof. This proof follows the analysis of Proposition 6 and Corollary 5 in (Russac et al., 2021).

From Eq. (7), we have that for any & > 0,

91(0) — gu(07) = Zi — \O".
Using Lemma E.1, we have that for any ¢ € RIS/l such that ||¢[|2 < Ly,
6.6, 60) > (1+]o7 (6"~ 00))  w(oTe")
= (14 |oTT 00 - ((0) - B))]) 07O
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a1 (67) gk@kﬂhk%wﬁw)_lu%¢Tﬂw

>1u’(¢>T9*)

L4 [6llp-1 g 4,

gk(ék)H

Y

L.t (0%,0k)

=
(1 + % Hgk
( 7(& 1 Z — 20" ||r (0* 9k)>_1 NI(CbTe*)

-1
> (14 Lo BTA+ 22 |2l ) - 006780)

Using the above equation with ¢ = ngi and Ly = m, we have

k m
T(0%,01) = > S " 0(0™ ,0%.6,) - 6™ (67 )T + AL

k'=11i=1
kK m -1
Hrua/ISTAL,_H e
-3 S (1 ST )T o T
k'=1i=1
-1
Hrpax/|S H
= (14 Hrme VISIAL 1Zkle—r g .0 | Aw(67).
m m\/X T, (0%,0k)
This implies
Hrmax/|S||A] H
2 max 2
1ZklT-1 - 6,y < <1+ - +mﬁ\|zk||rgl(9*7ék) 1Z4 113 o)
which is equivalent to
H 2 Hrmaxy/|S|| A
||ZkHF G \/XHZ/C||A;1(9*) ||ZkHF,;1(0*,ék)_ <1+m 1 Zk || ALY = <0.

By analysis of quadratic functions, we have

1+ Hrypaxy/|S|| Al Iz
o k||A;1(9*)

H 2
el
H max
g % e STAL o H
m

1Zkllp 2 0 64y <

O

Lemma C.7 (Concentration of qSTék under Binary Feedback). Assume that event £ holds. Then, for any k > 0 and
¢ € RISIAL

70" — ¢ 0| < Va - v(k) [pll5— -

Proof. We have
676" — T b
0*

79,6‘

= 10l 6+ 6, Tk (6%,01)
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) Hmax
\/1+ rue/ISIIA] | H

- —sY 1Zklle -2 0+ 60) 10l 00y

(

o

IN

’gk(g*) - gk(ék)’

L.t (0%,0k)

125 = A0y 1 - 1)

_\/1+Hrmax\/|5||¢4| H
m

+ m\/X ||Zk||f‘,:1(0*7ék) ||¢HA;1(9*)

Hrmaxy/|S|| Al H
s\/1+ A Wkl ey 1600y (120 e 0y e NISTIAT)

mv/A Hrmaxy/|S|| A H
=1+ +

— m m\/x ||ZkHF;1(9*,ék) ||¢||A;1(9*) :
H 7 Hrmax |8||"4|
m\/X || k‘lf‘;l(e*,ék) + T
3
mVA (| Hrw/ISTA] | H 2
<A (14 v o A o0 | 190450
2
Smx/oT L [STAL L \/1+Ta||||w(k)+w(k)2 g1
= Va (k) || ¢l -
where inequality (a) is due to Lemmas C.5 and C.6, and inequality (b) follows from Lemmas C.4 and C.6. O

Lemma C.8 (Gaussian Anti-Concentration). Assume that event £ holds. Then, for any k > 0 and F},_,-measurable random
variable X € RISl we have

_ 1
Pr [XT(J > X T F._}> .
b [ Flmt| 2 55—

Proof. This proof is originated from the analysis of Lemma 11 in (Efroni et al., 2021).

Using Lemma C.7, we have that for any &£ > 0,

X767 = XThia| < Vo vk = 1) | Xg -

It holds that

Pr [XTék > X716 | Fk_l]

XT0, —XTh,_ XTo* — XTh,
:Pr[ 0, 01 9 0,1 F

>
Va (k= DX5  Va k= DX[5
Here given Fj,_1, X "0, — X T0,_1 = X T& is a Gaussian random variable with mean 0 and standard deviation \/c -
vk = 1) Xy -
Since when event £ holds,

XTo* — XTék—l - \/& V(k‘ — 1)”)(”2;_11
Va o= DXl s~ Va k- DX,

we have

X0, — X 04
Vo vk — 1)HX||2,;11

Pr|X70, > X9 | Fk_l] > Pr l 1| Fuy

17
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X
=Pr >1| Fra
Vo vk — 1)HX||2,;11
(@) 1
2 )
2v/2me
where inequality (a) comes from that if Z ~ Fop,.(0,1), Pr[Z > 2] > \/7 e T (Borjesson & Sundberg, 1979). O

Lemma C.9. Let §, &) € RISl pe i.i.d. random variables given Fy,_q. Let p be a Fy,_1-measurable transition model,
and 1 € R"S!N be a Fy,_1-measurable random variable. For any policy T, denote the visitation indicator under policy
7 on MDP p by ¢™. Let 7% := argmax_(¢™) " (zx_1 + &). Then, we have

E {((&Tk)—r (Tr-1+&) —E [((Z~57~rk)—r (Tr—1 + &) | Fk—1D+ ’ Fk—1:|
<E[I6")Teul +1(6™) Tl | Fia]

Proof. This proof is originated from Lemma 12 in (Efroni et al., 2021).

First, using the definition of 7% and the fact that &, and & ]’C follow the same distribution, we have
~~k ~
E [(Wr )T (k1 + &) | qu} =K [mgX(W)T (Th—1 + &) | Fk—l} . (8
Then, since given Fy_1, & and & ,’c are independent, we have

E [max(6™) (2x-1+ &) | Fio1| = E [max(6")T (@r-1+ &) | Foo, &, 7
>E[(¢0™)" (xh-1+ &) | Foe1, &k Tr) - )

Hence, combining Egs. (8) and (9), we have

[( ™) (21 + &) —E[(6™)T (wrm1 + &) | Foor])” ‘kal}

<E[((0™)7 (01 + &) —E [(6™)T (2o +€0) | Fior &))" | Fic
(® [wT (w1 + €)= (™) (@i + €0 | Fior 6 7]) | P

=E {( [(®™) 6™) T | i, € 7)) ‘Fkﬂ}

<E|[[E[6™) Ték— ¢”k)T£k|Fk & ]| | P

<E[E[I(6™) 76 — (6™) Tl | Fros, €, 7] | P

=E [(6™) & — (6™) "€k | P

<E[I(6™) 76l | B | +E [[(6™) €kl | Fia .

For any k > 0 and ¢, € (0, 1), define event

Mi(3y) = {weR'S'A 676 < Va-u( <\/S||A +2,/1og( )) Il }

18
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Lemma C.10. For any k > 0 and 6y, € (0, 1), we have
Pr [Mk(5k) ‘ Fk—l] Z 1-— 5k

In addition, for a random variable X € RISl such that | X |y,-1 < Lx, we have
k—1

B [1X7 &l 1Fit] < va- ol <\/|S|A o (5 )) E[|Xllsor, [Fic

+Va - v(k—1)- Lx+/|S||A|0k.

Proof. This proof is similar to the analysis of Lemma 13 in (Efroni et al., 2021).
First, we prove the first statement.
For any ¢ € RISIAl we have
_1 1
|67 &kl = 10" B 2 501 &k
1 1
< [[=etiol], [m2aee],
1
Yr 18k

= Va vk 1) [él5 (10)

1
a-v(k—1)

2

Since given Fj,_1, NG 1§k € RIS s a vector with each entry being a standard Gaussian random variable, we

a- V(k: 1)

have that || —=—-—37_;&x||2 is chi-distributed with parameter |S||.A].

Va- V(k 1)
Then, using Lemma 1 in (Laurent & Massart, 2000), we have that with probability at least 1 — dy,

IN

1 1
|S||A| + 2 |$||A|log< )+210g( )
Ok Ok

_ ( STIA] + 10g<61k)>2+10g(51k>
\/mm,/log(;k).

1 3
[ m=nhe

2

IN

Next, we prove the second statement.
For a random variable X € RISIIMI we have
E[|X "&| [Fr-1] = PrMu(d)] - E [|X " &kl [Fr1, My (65)]
+ Pr [My(6)] - E[|X T & |Fe—1, Mi(3k)]

<Va-v (W +2\/10g<T)> E [IXlls;, Fis]

n \/Pr [Me(80)] - E [[XTEN [For, M (61)]

< Va-vik (WH\/@) B{1X]15,2, [

2

1 1
—— 218k
Hx/a-l/(k—l) A |

+Va-v(k—1),|0E lxn‘gkll. |Fr1
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< Va vk (W +2m> 1K, 1P

2
| Fr—1

+ \/E . I/(k - 1) 5kL2 22 151@

Hf =K

+Va-v(k—1)- Lx+/|S||A|0k.

Here inequality (a) follows from the Cauchy-Schwarz inequality. Inequality (b) is due to the fact that given Fj_;,
1
X7 1&k||2 is chi-distributed with parameter |S||.A|, and then E[|| \/&u(k 1)213 &kl 1 Fr—i] = |S]| Al O

KTrdn = {

Lemma C.11. Ir holds that

H\/&l/(k‘ 1)

Define event

k 4k
< -
<4H aAlOg<5’>

k
Z( e 167yt 1Bt ] = 167 sy, 1)

3= (el oima] - )

< 4Hrmaxy | klog (?f), Vk>0}. an

Pr [Feran] = 1- 25"
Proof. We prove the first inequality as follows.

For any &' > 1, we have that [|¢7[| 5, , )1 < \/L, and then [E, v (1675, y-1 [Fir—1] = 197 ll(s,, -1 | < 20

Using the Azuma-Hoeffding inequality, we have that for any fixed & > 0, with probability at least 1 — 5 k2 ,

4H? 4k2
<
< \/2 N - klog ( 5 )

Since Y -, % < ¢’, by a union bound over k, we have that with probability at least §’, for any k > 1,

k

3 (B [167 i,y 1Ft] = 1675, 1)

k=1

k

B B AH? 4k?
> (B (167 -1 1] =167 -0 )| < \/2 ax e ( 5 )
k 4k
< 4H oY log < 5 )
The second inequality can be obtained by a similar argument and the fact that \(qb”k )T0*| < Hrpax for any k > 0. O

Lemma C.12. For any K > 1, we have

H? K H2
i 2Km|S||A| - U oe (14 27 )
;;‘d) (S \/ ISl max{max } °g< +cm|8||A|m>
Proof. We have
K m N K m 9
T < .| Km ‘ F
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@ H? K
< \I2Km~max{,1} . Zlog (
mai
k=1 i=1
H? det(EK)
= /2Km - = 1. ENEE)
\/ A { mal’ } °8 (det(a)\l)

H?2 KH?
< . JER— . -
_\/QKm|S||.A| max{ma)\,l} log <1+a)\|8||,4|m>’ (12)

where inequality (a) is due to that for any « € [0, ¢] with constant ¢ > 0, it holds that z < 2max{ec, 1} -log(1 +z). O

Proof of Theorem 3.1. Letting §' = 3, we have Pr[€ N Fep..] < 1 — 6. Then, to prove this theorem, it suffices to prove

the regret bound when event £ N Fgy,., holds.

Assume that event & N Fy,., holds. Then, we have

R =Y (o) 70" = (o™)Te)

£
Il
-

(B[@)To ™) 0 1R ] + E[67) T ] - (7))

ol
Il
-

] >

<3 (8 [0 = (@) 0N )+ A K 1op (). (13)

£l
Il
-

For the first term, we have

ZEW )To = (") 0| P |

EK: ( { 0" — (¢Trk)T9~k|Fk71} +E [(q&”k)Ték - (¢Wk)T9*|Fk71D ' (14)

k=1

In the following, we prove

*

E (6™ )T0" (6™ ) Okl Frs | <2v2r¢ - E [((qs”k)Ték—E (6™ el i) |Fk1} . (1s)

IfE[(¢o™ )T 6* — (¢”k)T§k|Fk_1] < 0, then Eq. (15) trivially holds.
Otherwise, letting 2 := E[(¢™ ) T0* — (¢™ )T 01| Fy—_1], we have
E [((W’“)Ték ~E [0 TulFa]) Fk}
> 2 Pr[(0") 0k~ E [(6") 0ul P | > Z|Fk_1]
> (E [((Z)‘rr*)Te* _ (¢ﬂk)T§k‘Fk—1]) . Pr [ Tok )Te*le_l]
2 (R[0T~ (7Y Bl Fina]) - Pr [(67) T > (67) 0" B
(b) 7T s AT 5 1
2 (B[6™)T0" = @) 0IF]) - 5o

where inequality (a) uses the definition of 7*, and inequality (b) follows from Lemma C.8. Thus, we complete the proof of
Eq. (15).
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Let f,’c € RISIMI pe a random variable that is i.i.d. with ¢ given F},_1. Then, using Lemma C.9 with p’ = p, x_1 = ék—l
and 7% = 7%, we have

E[(¢7)70" = (6™) 0l Fiea ] < 2v/2me H«:[(( )6, —E <¢’f"'>T9m_1})+Fk_1}
< 2vare - E[J(r*) &l + [6(*) T€i 1Fima]

Plugging the above inequality into Eq. (14) and using Lemma C.10 with §;, = 1%4 and Lx = \/%, we have

«

E (@70 = ()T B

>

1

(2F B (16 )T+ T 1F ] +E [0 (hare) ~(67) 1) )

((2v2me +1) -E [0 6ul s + 220 B (67" el 1]

k=1

_|_

B [(6) s - (0701 )

2%((4\/%”)\/5. (k= 1) (VISI[AT + 4y/1og (¥)) EU(;S - |Fk1]
k=1 k—1
+(4\/ﬁ+ 1)\/a~z/(k1)v|‘]§2|“4|~\/%>, (16)

where inequality (a) uses Lemmas C.7 and C.10.

Here according to the definition of event Fgr,,, and Lemma C.12, we have

K K
ok . oF lm _
EE{M) =t Fk_l} ,;(E U¢ = Fle- 1] ’¢ kll) ]CZW o1
K 4K
<4H| — log <(5’>
H? KH?
R o R ) R

Therefore, plugging the above two equations into Eq. (13), we have

R(K) < (1v2re +2) Va - u(K) (VISTIA] + 4/10g (K) ) -
<4H\/a10g<45{()+\/ZKm|S|A|max{£,1}log(l+m)>
+2 (4V2me + 1) H \/%+4me K log 5,)
a0< p(fﬁjf‘»v(ff)m(\/mwnm-max{mw }+Hf>)

where in equality (a), the last two terms are absorbed into O() O

/\
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Optimal action: r(s;, @) = Tmax
Suboptimal action: (s, as“?) = (1 — &)ax
a;: transition to s,, 41

1 sub, iti
wp.t (g a$¥P: transition to sy,
n
1 Sn+1 ) T(Sn+17) = Tmax
W.p. i~ Sy
: Sn+2 ) r(5n+2:') = (1 - g)rmax
p.~ [ 5y

Figure 5. Instance for the lower bound under binary segment feedback and known transition.

C.2. Proof for the Regret Lower Bound with Known Transition

In the following, we prove the regret lower bound (Theorem 3.2) for RL with binary segment feedback and known transition.

Proof of Theorem 3.2. We construct a random instance Z as follows. As shown in Figure 5, there are n bandit states
S1,-...,8p (i.e., there is an optimal action and multiple suboptimal actions), a good absorbing state s,,11 and a bad absorbing
state s, 2. The agent starts from sy, . .., s,, with equal probability % For any ¢ € [n], in state s;, one action a s is uniformly
chosen from .4 as the optimal action. In state s;, under the optimal action a 5, the agent transitions to s,,41 deterministically,
and r(s;,ay) = rmax; Under any suboptimal action a € A\ {s;}, the agent transitions to s, 2 deterministically, and
7(si,a) = (1 — €)T'max, where € € (0, 3) is a parameter specified later. For all actions a € A, r(S,11,a) = Tmax and
7(Spt2,a) = (1 — €)rmax-

In this proof, we will also use an alternative uniform instance Z,,;;. The only difference between Z,;s and Z is that for any
i € [n], in state s;, under all actions a € A, the agent transitions to s, o deterministically, and 7(s;,a) = (1 — €)"max-

Fix an algorithm A. Let E,¢[-] denote the expectation with respect to Zyyis. Let E, ] denote the expectation with respect to Z.
Forany i € [n] and j € [|A]], let E; ;[-] denote the expectation with respect to the case where a; is the optimal action in state

si, and N; ; denote the number of episodes where algorithm A chooses a; in state s;, i.e., N; j = Zi{:l L{nt(si) = a;}.

The KL divergence of binary observations if taking a s in s; in each episode between Z,ir and Z is

iKL (8 (s (0= s ) ) |5 (1 (- 2 ))

(é) m- (M ((1 - E)Tmax : %) — M (Tmax : %))2
- W (T 47)
p (1= ) o) (o M)

! (Hmes)

()
=m-

where inequality (a) uses the fact that KL(B(p)||B(q)) < ((1]?17_'13:; , and inequality (b) is due to that p/(x) is monotonically
decreasing when x > 0.

In addition, the agent has probability only % to arrive at (observe) state s;.

Thus, using Lemma A.1 in (Auer et al., 2002), we have that for any ¢ € [n], in state s;,

K |1 (1= o) Homes)® (- Lmmax)®
E'Eunif[Ni,j} sme :U/ (%)

E; ;[N ;] < Eunie[N; 5] + 5
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2
K Hrgax |m p (1= e) e )
= Bunir[Nij] + 5 & === | = - Bumr[ N - o (o)

Summing over j € [|.A|], using the Cauchy-Schwarz inequality and the fact that Elj“i‘l Eunie[N; ;] = K, we have

KHrpae | JAK ' ((1- )H“m)

j=1 mn p (e

KHTmaxg |A|K . [L/ ((1 — Co)%)z

m

R I R

where ¢ € (0, %) is a constant which satisfies ¢y > . We will specify how to make ¢y > ¢ to satisfy this condition later.

Then, we have

R(K) =Y E, [v* _ Vm]
k=1
L& [Al
= TmaxHK — ﬁ Z (1 — E)TmaxHK + Ermdx |A| ZE i, ,j
=1
K KHrpaxe K w((1—c )Hrmx)Q
> erpmaxH | K — — —
- |A| 2 [Almn (o
Let
UM ()

g = .
2HTmax K M ((1 —c )Hrmax)2

Then, the constant ¢ should satisfy

1 | Almn ‘ W (LT"’”)

m

- 2H7rmax K 1 ((1 —c )HTrxlax)2

S Co.

Since
74 (L’;;‘”‘) _ (exp ((1 — o) Hrm“‘) + exp ( (1— cO)H:;‘L”") + 2)
(1 ) B oxp (i) + xp (1) 1
< (4exp ((1 - co)%))2
- exp (fms)

H max
:16exp<(1—260) ['ma ),
m

|Almn Hrmax
1—2¢)—— | <
2Hrmax\/ ( o) m co;
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Algorithm 3 SegBiTS-Tran
1: Input: 6,0 := %,)\.
2: fork=1,...,Kdo
A . - n = ’ -
30 o1 argming ~(Crs i L log(u((¢67)70)) + (1= yF') -log(1 = p((¢7 ) 70))) — 3A0]3)

4 S e Y Sl 6m (67 )T +add
5. Draw anoise & ~ N (0,a - v(k —1)2- 5! ), where v(k — 1) is defined in Eq. (1)

KH|SH.A\

log(
k- 1( a)

6: b (s,a) < min{2Hryax , Hrmax} forany (s,a) € S x A

7: éz Oy + &+ vy

8 i « argmax, (¢7_,) 707, where ¢7_, is defined in Eq. (18)

9:  Play episode k with policy 7. Observe 7% and binary segment feedback {y¥}™
10: end for

which is equivalent to K > % exp((1 — 2¢) Hrmax),

It suffices to let

4| Almn Hrmax
K > 722 2 ex ( - ),

TmaxC€0

and then ¢ can be any constant in (0, 3).

(0,3)and K > 4| Almn exp(Hmax)  Since

H2 12nax 0
' (L’;;;‘a") _ (exp ((1 ) H”"‘“) + exp ( (1- Co)HTm‘“‘) + 2)
(1= o)z oxp (Eomon) + exp (~ Foms) 1.2
S (exp ((1 - CO)LT"‘“))Q
- 4exp (Hrmax)

1 H max
—exp((l—Zco) " ),
4 m

we have
1 1 ( Hrmax K K
R(K) > Amn () (K T Al )
2Hrmax K /J ((1 —c )ernax) |A‘ 4

o (\/exp ((1 _ 200)}“7’7’1“”‘) |S||A|mK>

:Q(exp<(;_co)m;;ax> JW).

C.3. Pseudo-code and Detailed Description of Algorithm SegBiTS-Tran

Algorithm 3 illustrates the procedure of SegBiTS-Tran. In episode k, similar to SegBiTS, SegBiTS-Tran first uses MLE
with past binary segment observations to obtain a reward estimate 651, and calculates the covariance matrix of past
observations ;1 (Lines 3-4). After that, SegBiTS-Tran samples a Gaussian noise &, using X5 1 (Line 4).

Forany k& > 0 and (s,a) € S x A, let pi(+|s, a) denote the empirical estimate of p(:|s, a), and ny(s, a) denote the number
of times (s, a) was visited at the end of episode k. Then, SegBiTS-Tran constructs a transition bonus b}" | (s, a), which

represents the uncertainty on transition estimation. Incorporating the MLE estimate 0,1, noise &k and transition bonus
b2" (s, a), SegBiTS-Tran constitutes a posterior estimate of the reward parameter 6, (Line 7).
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For any policy 7, k > 0 and (s,a) € S x A, we define

H

OF (s, a) =K, Z 1{sp = s,ap = a}|m|, (18)

h=1

which denotes the expected number of times (s, a) is visited in an episode under policy 7 on the empirical MDP py. In
addition, let ¢} := [¢} (8,a)](s,a)esxA € RISIIAL

Then, SegBiTS-Tran finds the optimal policy via argmax (qﬁgil)Téz, which can be efficiently solved by any MDP

planning algorithm with transition pi_; and reward éz (Line 8). With the computed optimal policy 7%, SegBiTS-Tran
plays episode k, and observes a trajectory and binary feedback on each segment (Line 9).

C.4. Proof for the Regret Upper Bound with Unknown Transition

In the following, we prove the regret upper bound (Theorem 3.3) of algorithm SegBiTS-Tran for unknown transition.

/\ HTHI&X) i

Define event

o (1510

ng—1(s,a)

gHoeff = { |ﬁk,—1('|57a)—rv}j—|—1 7p("saa)TV}:<+1| S <2H7"max
V(s,a) € S x A, Vk > 0}.

Lemma C.13. It holds that

Pr [gHoeff} Z 1-— 25,

Proof. This lemma follows from the Hoeffding inequality and a union bound over ny_1(s,a) € [KH] and (s,a) €
S x A. O

Lemma C.14 (Optimism of Thompson Sampling with Unknown Transition). Assume that event £ and Gyoegr holds. Then,
for any k > 0, we have

1

ome

Pr|¢p_1(7®) T2 > (6™ )T 6" | Fr_y| > 5

Proof. This proof follows the analysis of Lemma 17 in (Efroni et al., 2021).

Using the value difference lemma (see Lemma E.2), we have

ng—l(ﬂ*)—réz o (¢ﬂ*)T0*

>
Il
i

26



Reinforcement Learning with Segment Feedback

where inequality (a) uses the definition of event Gyoefy.

Thus, by the definition of 7%, we have
T é)k_1(7Tk)Téz > (d) )TG* |P’]€ 1:| > Pr [ k— 1 ﬂ'* Té,l; > (QZSW*)TQ* |Fk_1:|
—PI‘|: Gp— 1 77* Té’z_(¢ﬂ'*)—|—9* >0|Fk,1}

> Pr k 1 7T* Ték—ggk,l(ﬂ*)TG* >0‘Fk,1]

( 1
~ 2V27e’
where inequality (a) is due to the definition of 7%, and inequality (b) follows from Lemma C.8. O
Define event
A L
OkL = KL(pk—l('|Sva’)ap('|Saa)) < —F, vk > O,V(S,a) ESxAp. (19)
ng—1(s,a)

Lemma C.15 (Concentration of Transition). It holds that
PI‘[QKL] Z 1-— 5/.
Proof. This lemma can be obtained by Theorem 3 and Lemma 3 in (Ménard et al., 2021). O]

Recall that for any & > 0 and (s,a) € S x A, n(s, a) denotes the cumulative number of times that (s, a) is visited at the
end of episode k. Forany k > 0, h € [H] and (s,a) € S x A, let wg (s, a) denote the probability that (s, a) is visited at
step h in episode k, and let wi(s,a) == Y, win(s,a).

Define event

k’l

H = {nksa Zwk/sa g(W),Vk>O,V(S,a)ESx¢4}. (20)

Lemma C.16 (Concentration of the Number of Visitations). It holds that

Pr[H]>1-7".
Proof. This lemma can be obtained from Lemma F.4 in (Dann et al., 2017) and summing over h € [H]. O
Define event
k K/ K’ 4k
Flrean = { S (B [6™ )T Fe ] — (07 TH )| < Ay [ o (5>
k=1
k ~ ~
> (B[[fra ) = o)|| 1Fier] = ||dr-a(r) = 6= )
k/=

< 8H,/klog (?j), Vk>0}.

Lemma C.17. It holds that
Pr [Flra] = 1- 25"
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Proof. This lemma can be obtained by a similar analysis as Lemma C.11, and the facts that |(q§7r )prv 1| < H?rppax and
[ pr—1(n*) — 6™ ||y < 2H for any k > 1. O

Lemma C.18. Assume that event Fir,,, N Gk N H holds. Then, we have

EK:E [Hékfl(ﬂk) — ¢ ‘1 |F;H} < 24¢'2(S|3 | A2 H? /K Llog(2K H)
k=1

+ 192¢'?|S|?|AI? H? L log <2KH5,S||A> .

Proof. First, from Lemmas D.10 and D.11, we have

k=1

K H
: L 46 H?L
< e'?|S]|A| Z > Wi (s, a) <8H + )

nk—1(s,a)  nk_1(s,a)

M

nkl

K H
H
+46¢'? (S| A|H?L ZZ +8 2|S[2| AP H? 1o (S”;‘ >

< 16@12\S|%|A|%H§\/KL log(2K H) + 184e12\8|2\A|2H2L1og(2KH)
S||AlH
+8€12|82A|2H210g<| ||6,| )

2KH
< 16¢'2|S|3 | A|2 H? /K Llog(2K H) + 192¢'2|S|*|A|?H?L 1o ('5”“‘”)

(s,a)€Dy

o’

Next, we have

K
38 6 - 1]
k=1
< St 35 (o[t 07 1] it -]
k=1 k=1
< 16e'2|S|2|A|? H? /K Llog(2K H) + 192¢*2|S|2|A|2H2L log (QKH(J,S”A'>
/ 4K
+8H /K log < 5 >
< 24e'2|S|3|A|2 H? /K Llog(2K H) + 192¢'2|S|?| A2 H2 L log (QKH;,S”AU .
O
Lemma C.19. Assume that event }"gTran holds. Then, we have
AKH
ZIE [ )T 1|Fk._1} < 20[S||A|H2rmax VE log <6|S|“4|) .
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Proof. 1t holds that

E [(6™) T8 | Fit |

= 1=

=

=S @ Y (B [T TR E | - 6T )

k:l k=1
s (151

H
Z Z wgk (s,a) | 2Hrmax

h=1 s,a

§2HTW\/O (KHSHA)ZZ s e wr’

k=1h=1(s,a)eD;, V k= 1(s,a

JrHTmaXZZ Z wh s, a) +4H Tmax Klog(4§>

k=1h=1 (s,a)¢ Dy

] >

AK
A Hrmax | 4 4H?rmaxy | K log (5,>

=
Il
—

KHIS||A S i (5,0
< 2H7‘max\/log <5/||> VKH - $ YN h<(s7a))

k=1h=1 (s,a)€ Dy

H 4K
+ 8|S | A|H?rmax log ('SH;U ) + 4H?rpax Klog< 5 )

< 2Hrmax\/log (KH;M> -VKH - \/4|S||A]log(2K H)

+S11AUH o () a2 [ 1108 ()

4KH|S
< 16|S||A|H? rmax VK log <5HA|> .
O
Proof of Theorem 3.3. Letting &' = 2, we have Pr[€ N FEp.0 N Groerr N Gk, N H N Fpan] < 1 — 8. Then, to prove this
theorem, it suffices to prove the regret bound when event € N Frn N Groetr N Gk N H N Fiip, holds.
Assume that event € N Fgran N Groett N Gk N H N Fopan holds. Then, we have
K k
R(K) =Y ((67) 70" = (67)T0")
k=1
K k k k
— Z (E |:(¢7r )TQ* _ (¢7r )T9*|Fk—1] +E |:(¢7r )T0*|Fk—1} _ (¢7r )TG*)
k=1
K
. 4K
= Z (E |:(¢7T )TQ* _ (¢7Tk)T0*|Fk_1]> + 4Hrmax Klog (&) (21)
k=1
For the first term, we have
K k
SE[@)0 — (") 0" P
k=1
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_ XK: (B [(6™)T0" = b (75 O Fra | + B [Gha(75) 70, — (6™) 07 Py ]) (22)

k=1
In the following, we prove
E[(67)70" = dioa(x) T P
< 2V2re-E [(qf}kl(ﬂkfég ~E [qzk,l(ﬂk)ré,’m,l}y |Fk1} . (23)

IFE[(¢™ )T 0* — ¢p_1(7%) T 02| Fi_1] < 0, then Eq. (23) trivially holds.
Otherwise, letting z := E[(¢™ )T 6* — g?)k_l(wk)Téka_l], we have
~ ~ ~ ~ +
B | (318~ B [s (w1 P )
> 2Pr [ (7) T8 — B [er (7)) TBI R | > 2l

> (E [(W*)T@* - ﬂgkfl(ﬂk)Télé\FkﬂD -Pr {ng—l(ﬂk)Télfi > (¢7 ) 07| Fra
(@) - N ~ 1

N T\ T g% _ N )

> (E {(¢ ) 0" — (") ek‘Fk—l}) Nor

where inequality (a) uses Lemma C.14. Thus, we complete the proof of Eq. (23).

Let ¢, € RISIMI be an i.i.d. random variable with £ given Fj,_;. Then, using Lemma C.9 with p’ = py_1, T4—1 =
Op—1 +bY" | and 7% = 7%, we have

E[(¢™) 76" = b (n") TG} P
<2V2rme-E [(ékl(ﬁk)Téz —-E {$k71(7rk)T9~2|ka1D+ |Fk1:|
< 2V3re - E [|dn-a(7) Tkl 4 |81 (7)€ [P -

Plugging the above inequality into Eq. (22) and using Lemma C.10 with 5, = k% and Lx = \/% we have

E[(¢7)70" — (6™) 70| Fi |

M=

k=1

2V2me B [|g1(n) 6| + |1 (7)€L Fia]

EM»

+
=

e—1( (9k 1+ 00+ fk) - (¢”k)T9*|Fk71] )

I
Wk

9,.
Il
N

+
&=

7 (B )~ (@) TR )

|Fk—1:|

ware+1) V- vik—1) (VIS[IA] +4v/log () ) E {H"B’“‘l(”k)’ =t

k—1

Mx

¢
((zF +1) B [I6k1 () 6] [Fet | +2v0me - [|n 1 (4) T4 [P
91

Eal
Il

1

+( Vame+1) v u(k—l)v“:y“‘” \/%
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+E [ask_l(ﬂk)T (ék_l n bgil) - (¢"k)T0*|Fk_1] > (24)
We have
E[dr1 (") (B +05",) = (7) 07| Fi s
—E b1 () (81— 07) [P | +E [(ék_l(m —o) e*Fk_l}
+E[¢k () TORY | P 1]

b
<va v(k—1)E W)k . |Fk_1} +rmaXE[
b

o

-1y — o7
+E G (7)) T | Fi 1]

Hence, plugging the above inequality into Eq. (24), we have

E[(¢7)70" — (¢7) 0" | P

MwiMx

<(4\/%+2)\/a vl = 1) (VISTAT + 4/log (8)) - [Hék_l(ﬁk)H% |Fk_1]

o

k

Il
—

|SIIA]

+ (4v2re +1) - wlk - 1)k2 5 T E[[[e-r(at) - o7

+E [qgk_l(ﬂk)TbiquFk_l} ) .

Here we have

[ —

ék*l(ﬂk)”z—l | Fre—1
L k—1

t{gw

=
Il
—

IN
=

NERINE

st |Fk—1]
1 e
s 1] *m;EW“(” )= o7|| 1Fe]
K 4K H? KH?
H\/a)\ log (5’) + \/2Km|8||A| ~max{ma)\,1} -log (1 + oz)\|S|A|m>

1 KE e
9D |-y = 6=,

where inequality (a) uses Eq. (17).

K
o |Fk—1] +) E |:H¢k (k) — o™

k=1

¢

IN
&=

¢

£
I
-

INE
S

|Fk—1:| 5

In addition, we have

{ngq(ﬂk)—rbﬁv_lwkq}

M»EM»

B (670 o] + 3B s ) — 67| 0 L 1]
k=1

>
Il

1
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K K
Z [ prv 1|Fk—1] + Hrmax Z]E {H‘ik—l(ﬂk) B

k=1

Therefore, plugging the above three equations into Eq. (21), we have

R(K) < (4\/%+ 2) Va - v(K) (\/|5|\,4| +44/log (K)) :

4.

K 4K H?
4H —log + (/2Km|S||Almax ¢ ——,1log [ 1 +
%) K ma

k=1

KH? )
a)|S||Alm

((4F+2> (\/|S\|A|+4x/log )+2Hrmax>ZE[H¢k1 )~ g™

g [ PRWIEIE] -
+Y E [(qb” ) O | Fr 1]+2 (4F+1 —+4H Fmax 5/

\ . 4

® 5 exp (ﬁ“) W(K)/ISTIAl <\/Km|8||A| max{ } +H\/7>

+ (V(K) % + Hrmax> |S|2|A|3H%\/E>,

where in equality (a), we use Lemmas C.18 and C.19, and the last three terms are absorbed into O(-). O

D. Proofs for RL with Sum Segment Feedback

In this section, we provide the proofs for RL with sum segment feedback.

D.1. Proof for the Regret Upper Bound with Known Transition

We first prove the regret upper bound (Theorem 4.1) of algorithm E-LinUCB for known transition.

Define event

2 2
) HW( (ww) A (254)
m o’ m o’

Lemma D.1 (Concentration of Initial Sampling). It holds that

Ko m m
> (Z 7 (™)~ Ery [Z ¢(7:)p(7:)

k=1 =1

PriJ]>1-4.

Proof. Note that 7!, ..., w° and K|, are fixed before sampling, E[} 7" | o (ngf)T] =

(DM o7 (d)ﬂk )T < %2 Then, using the matrix Bernstein inequality (Theorem 6.1.

obtain this lemma.
Lemma D.2 (E-optimal Design). Assume that event J holds. Then, we have

Ko m -1 1
(Zde (¢7) ) < =3

k=11i=1
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Proof. Using the guarantee of the rounding procedure ROUND (Theorem 1.1 in (Allen-Zhu et al., 2021)) and the fact that
Ko > |SAL‘2A| , we have

Ko m -t
(Z ETiNTFk lz ¢(Ti)¢(Ti)T] >
k=1 =1
. 1
1 + ’y (KO Z w* TLNWk [Z ¢(Tz)¢(Tz)T‘| )

mell i=1

< Ltz
<%

Let 0min () denote the minimum eigenvalue. Then, we have

Ko m
Cunin (Z ST e (e )T>

k=11i=1

m Ko m Ky m

= Cnin <Z ot [Z HED DDA AR I [Z ¢><n>¢><n>TD
=1 k=11i=1 k=1 =1
m Koy m Ky m

> Ginin (ZEW [Z wD— SN (@) =Y B [wa(nf] ’
=1 k=1 1i=1 k=1 =1

2 2
Ky 4H 10g<25||,4> JiG M <2|56/|A|>_ 06

>
“0+)s m

Let z = v/ K and

B 1 2_4H2 2|S||A] _4H2 2IS[AIN 2
fl@) = T x - log <(5’ x - log 5 H=.

According to the property of quadratic functions, when

2|S|].A 4H?2 2$A 4H? 2|S||.A
g(—‘é‘/‘ l) \/ log |H )) +4- (1+’y)z (m log(%>+H2>

; 27
T
we have f(z) > 0.
To make Eq. (27) hold, it suffices to set
2 2
1 2(2%)? 4H? 2 4H? 2
s CEV2EP () SESTEN o (2151
4 m o’ m o
8 2|S|| Al
————— -5H"]
IR * < &
16H*(1 4 7)%(2*)? 2|8
- ( ( ::LJ) ") +10H2(1—|—7)z*> log ( 5|/|A>.
Furthermore, since || Y- cry w*(m)E,, wox [Soi0 ¢(7:)¢(7;) '] || < H? and then z* > 41, to make the right-hand-side in
Eq. (26) no smaller than H?2, it suffices to set
. 2|S||A
Ko > 26H*(1 +7)2(2*)? log <|5,||> .
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Therefore, combining the definition of K and Eq. (26), we have

which completes the proof. O

Lemma D.3. Foranyk > 0,

Zlog(

k'=1

det(S) kH>
= < _ .
o ) ox (Geiar) ) = 114w (14 g

Proof. For any k > 0, it holds that

det(Zk) = det (Ekl + Z(lek ((bTLk)T)

i=1

= det(Xg_1) det <I + Z(Ekl)éfﬁﬁkwﬁc)—r(zkl)%)

=1
(Bg-1)" 1)
’(zk/ ok 1)'

—det(Zk 1 (

= det(A]) (
k=1

Taking the logarithm on both sides, we have

log det(Zx) = log det(A) + Z log (
k'=1

‘(Ek/ 1) 1> -

Then,

Zlog(

k'=1

‘ 1o det(Ek)
RN & det(AI)
(tr(zk)>‘SH-A|
ISIIA]

(2
ASIA|

tr(zk))
= |S|| Al lo (
Siiltos (51

NS||A| + km - 1L
< |S]|A| log< NSIA

kH?
— IS||Allog (14— )
151 '°g< +A|S||A|m)

where (a) uses the arithmetic mean-geometric mean inequality. O

Lemma D.4 (Elliptical Potential with Optimized Initialization). Assume that event J holds. Then, for any k > Ky + 1,

<1.

(Zk-1)"?
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Furthermore, for any K > Ky + 1,

ZZ\

k=Ko+1 i=1

KH?
v < [2Km|S||Allo 1+).
ol . V SkAlios (1+ 5757

Proof. Using Lemma D.2, for any k > K + 1, we have

1

(Se_1)-t (A+ 50, o™ (6™ ) THE N e 67 T) T

m i 2
<> || e
IZ (S, o (7))
< H? 1
=me m2  H?
<1.
Then, we have
K m
k
Z Z ‘ (b‘ri (Z -1 = Km b3} —1
k=Ko+1 i=1 k1) k=Ko+1 i=1 (Zr-1)
(@) m
< | Km-2 log [ 1+ ‘ r*
k ; g( Z - (B-1)” 1)
o+1
<, |Km-2 lo

(b) KH?
</2K 1 14+ ——7—
¢ iS4 °g< * A|8|A|m> |

where (a) uses the fact that © < 2log(1 + ) for any = € [0, 1], and (b) follows from Lemma D.3. O]

- s

Lemma D.5 (Concentration of ék. under Sum Feedback). Ir holds that

Define event

H‘SHA‘ kH? 1
< - _— - .
k \/ - log ( 1+ )\|S\|A|m +2log 5 +Tmax‘/>‘|$||“4|7 Vk >0 (28)

PriK]>1-4¢".

Proof. Since the sum feedback on each segment is %-sub—Gaussian given the observation of transition and ||0*| <
Tmaxy/ |S||A|, using Lemma 2 in (Abbasi-Yadkori et al., 2011), we can obtain this lemma. O

]:gpl ::{

Define event

k

Y (B (197 Brma] = 1675, y0)

K=Ko+1

g4,/klog(?f>,vzczf(o+1}. (29)
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Lemma D.6 (Concentration of Visitation Indicators). It holds that

e (7

opt

]>1—5’.

Proof. According to Lemma D.4, we have that for any ¥ > Ko + 1, [|¢75,, )+ < 1, and then
Br ot 167, 1yt 1Fmt] = 1671, ys | < 2.

Using the Azuma-Hoeffding inequality, we have that for any fixed k¥ > K¢ + 1, with probability at least 1 — 5 k2 ,

2
< \/2-4(k: Ky —1)log (4(];/ )

Since >, Kot 1 % < ¢, by a union bound over k, we have that with probability at least §’, for any k > K¢ + 1,

4k2
/ 4k
<4 klog<6/)

Proof of Theorem 4.1. Let §' = 5 . We have Pr[7 NN opt] > 1 — 4. To prove this theorem, it suffices to prove the regret
bound when event 7 N K N Fy holds

k

Z (ETNM’ [||¢T||(zk,,1)—1 |Fk’—1:| *||¢TH(2,C,,1)—1>

k'=Ko+1

k

3 (Bt 167y 1Fem] = 1675, )

k'=Ko+1

O

opt
Assume that event J N K ﬂffpt holds. Then, we have
K
IE (GENEIGRN)
k=1
@ = TN\NT ) T aP\T
< > (67 o+ Bk = 1) 67 s,y = (67)T0) + KoH
k=FKo+1
® = ™\T A wk N T
< > (™) b+ B0 = 1) 167 me oy — (7)) + KoH
k=Ko+1
K .
< Y 28(k=1)- |67 lm, )1 + KoH
k=Kop+1
K
=28(K) Y |Brenr 071 Fklll (g, )1 + KoH
k=Kp+1
© K
<28(K) " B 1971l 1P| + KoH
k=Ko+1

K
KD (B (167l 1Bt | =167 Iy #1167 )1 ) +EoH
k=Ko+1
<28(K) Y (EN 167,y 1Fra ] =167 ] )
k=Ko+1 (Zre-1)

K
+ KoH, (30)
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. . * 1
Optimal action: r(s;, a;) = (5 + s) Tmax
. . 1
Suboptimal action: r(s;, ai*”) = 2 Tmax
a;: transition to s, 41
afP: transition to s,,.,

1
Sn+1 :) r(Spe1) = (5 + s) Tmax
1
Sn+2 T(Sp42,) = Ermax

1
W.p. Z S

/

w.p.

Sk

Figure 6. Instance for the lower bound under sum segment feedback and known transition.

where inequality (a) follows from Eq. (28), inequality (b) is due to the definition of 7%, and inequality (c) uses the Jensen
inequality.

Plugging Eq. (29) and Lemma D.4 into Eq. (30) and using the fact that A := % we have

HI|S||A| KH? 1
< il L 7 = , .
R(K) <2 <\/ - log | 1+ NSIAm + 2log 5 + TmaxV/ AS||A]

4K KH?

ot (54, 4]

_ KHTIQHax 1 *\2 175 |8H"4|
—O(SHA\/HKlog((l—&—Mn) 5)—1—(2 )°H? log (6>+|S||A|H).

D.2. Proof for the Regret Lower Bound with Known Transition

Now we prove the regret lower bound (Theorem 4.2) for RL with sum segment feedback and known transition.

Proof of Theorem 4.2. We construct a random instance Z as follows. As shown in Figure 6, there are n bandit states
S1,-..,8p (i.e., there is an optimal action and multiple suboptimal actions), a good absorbing state s,,+1 and a bad absorbing
state s,,2. The agent starts from sy, .. ., s,, with equal probability % For any ¢ € [n], in state s;, one action a ; is uniformly
chosen from A as the optimal action. In state s;, under the optimal action a s, the agent transitions to s, 11 deterministically,
and r(s;,ay) = (3 + €)rmax, where £ € (0, 3] is a parameter specified later; Under any suboptimal action a € A\ {s,},
the agent transitions to s,, 1o deterministically, and r(s;,a) = %rmax. For all actions a € A, 7($p41,a) = (% + &)rmax and

7(Sn+2,@) = 3Tmax. Forany (s,a) € S x A, the reward distribution of (s, a) is Gaussian distribution /(r(s, a), 1).

In this proof, we will also use an alternative uniform instance Z,,;;. The only difference between Z,;s and Z is that for any
i € [n], in state s;, under all actions a € A, the agent transitions to s, deterministically, and r(s;,a) = %rmax.

Fix an algorithm A. Let E,y¢[-] denote the expectation with respect to Zyyir. Let . [] denote the expectation with respect to Z.
Forany i € [n] and j € [|A]], let E; ;[-] denote the expectation with respect to the case where a; is the optimal action in state
si, and N; ; denote the number of episodes where algorithm A chooses a; in state s;, i.e., N; j = Zi(:l {n¥(s;) = a;}.

The KL divergence of the reward observations if taking a ; in s; (i € [n]) between Zy,;r and Z is

= 1 H H 1 H H
Sk (8 (g e ) () o 0)
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Algorithm 4 LinUCB-Tran
I: Input: 6,8’ = S, A = Z L = log( 315 ” 2y 4 Slog(8e(l + KH)). For any k > 1, B(k) :=
SIIA
\/% log(1 + xTAtl—) + 2log(%) + rmax,/A|5||A|.
2: fork=1,..., K do
N k! ’
3 O M+ Y 1¢>T RO IDRD DD DAt el 11
k/
4: Xy 1%)\I+Zk,lzll¢'r (Tz)
s: wf e argmaxyen (67 ) 0ot + Bk = 1) 1671 1)1 + Lo Bormp BT H(51)]), where BT (s1)
is defined in Eq. (32)
6:  Play episode k with policy 7. Observe 7% and sum segment feedback { RF}™ |
7: end for

(- rmace)”
H

m

= m -

= Hr?

max
In addition, the agent has probability only %L to arrive at (observe) state s;.

Hence, using Lemma A.1 in (Auer et al., 2002), we have that for any ¢ € [n], in state s;,

K /1
E; j[Nij] < Ewit[Ni, 5] + 2\/n Eunit[Ni j] - Hr3 2.

Summing over j € [|.A|], using the Cauchy-Schwarz inequality and the fact that Elj“i‘l Eunie[V; ;] = K, we have

Al
K
ZEzj ZJ <K+ \/|A| K Hr2nax

K4 K7rmax€ /|A|HK.
2 n

Then, we have

N 4|
1 1 1
(2 + E) TmaxHK - E Z §rmaxHK + €rmax |A| ZE 0] ’J

=1

K Krypaxe |HK
= ermaxH | K — — — —_—
: ( a2 n|A|>
Recall that n = |S| — 2. > TZ'A}{ and € = 2T1 %. Then, we have

R(K) =Q (W) .

D.3. Pseudo-code and Detailed Description of Algorithm LinUCB-Tran

Algorithm 4 presents the pseudo-code of LinUCB-Tran. In each episode £, similar to algorithm E-LinUCB, LinUCB-Tran
first computes the least squares estimate of the reward parameter 6 _; and covariance matrix ;1 with past observations
(Lines 3-4).
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Then, we introduce the transition estimation in LinUCB-Tran. We first define some notation which also appears in algorithm
SegBiTS-Tran. For any & > 0 and (s,a) € S x A, let pi(+|s, a) denote the empirical estimate of p(-|s, a), and ng(s, a)
denote the number of times (s, a) was visited up to the end of episode k. In addition, for any policy , let g{)};(s, a) denote
the expected number of times (s, a) is visited in an episode under policy 7 on empirical MDP p;_; (see Eq. (18) for the
formal definition).

Below we establish a bound for the deviation between (/A)Z_l and ¢". For ease of analysis, we first connect ¢™ with a

newly-defined visitation value function G}’ 18,0’ (s;p). For any transition model p’, policy m and (s',a’) € S x A, if
regarding hitting (s’, a’) as an instantaneous reward one, then we can define a visitation value function:

{GZ;S “ (sp)

A
Guyi (s:0)

1{s=¢,m(s) =a'} +p(-\8,7rh(s))TGZf1a (1), Vse S8, Vhe[H],

31
0, Vs € S. G

GZ:’S/’QI(S; p’) denotes the expected cumulative number of times (s’,a’) was hit starting from s at step h under pol-
icy m on MDP p/, till the end of this episode. It holds that ¢™(s',a’) = B, ,[GT*"* (s1|p)] and ¢} _,(s',a') =
Eq,p[GT (s1]pp_1)] forany (s',a’) € S x A.

With the definition of G7*** , bounding the deviation between ¢7_, and ¢™ is similar to bounding the gap between the
estimated and true value functions. Then, we can build a Bernstern-type uncertainty bound between QASZ_l and ¢™ using the

. For any policy 7, (s',a’) € S x Aand k > 0, define

variance of G’ s'.a!

sl al .
ms’ a5k _ . Varﬁk,_1('\SJ;,,(S))(G;;il’a (:|pr—1))-L 13H?L
Bh (S) - mln{ 4\/ ng—1(s,7n(s)) + np—1(s,7n(s))

A s 32
(1 2) proa (s, mu(s) T BRE(). H} Vs €S, vhe [H, 2)
BEH (s) = 0, Vs € 8.
The construction of BZ;S/’“/;k (s) satisfies (see Lemma D.10 for more details)
971(5, @) = ¢7(s"s )| < Eaymp [ BT (s1)| . W(s'ia) €S x A,
T 7r s’ a H3
167 = 67l < D Bormy [BI (1) -
(s",a")
Incorporating this transition uncertainty E, . ,[BT ;Sl’a/;k(sl)] and reward uncertainty [|¢7_, ll(=,_,)-1 into exploration

bonuses, LinUCB-Tran computes the optimal policy 7% under optimistic estimation (Line 5). After that, LinUCB-Tran
plays episode k with 7%, and collects trajectory 7% and reward observation on each segment { R¥}™ , (Line 6).

D.4. Proof for the Regret Upper Bound with Unknown Transition

In the following, we prove the regret upper bound (Theorem 4.3) of algorithm LinUCB-Tran for unknown transition.
Recall the definition of events Gk, and H in Egs. (19) and (20), respectively.

For any £ > 0, define the set of state-action pairs

Dy, = {(s,a)ESx.A Zwk/ s a)>Hlog<|$||;4|H)+H}. (33)

Rl
Dy, stands for the set of state-action pairs which have sufficient visitations in expectation.
Lemma D.7. Assume that event H holds. Then, if (s,a) € Dy,

ne—1(s,a) gwk/sa

k’l
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Proof. We have

ne—1(s,a) Zwk/sa Hlo ('SH(;”H)

205
k—1 k—1
1 1 |S||A|H
:4Zwk/(s,a)+4Zwk/(s,a)—Hlog< 5
k=1 k=1
k
fklzlwk/ s, a) i;wk'(s’a)_H10g<S||;H> —%wk(s,a)

k
1 1
Z Z E wk/(s,a) + H — §Wk(87a/)

I
Il
_

vV
=] =
M-
g

X
2
&

where (a) is due to the definition of Dy (Eq. (33)).
Lemma D.8. It holds that

K H
S5 X wkalsia) < ssaos (1E),

Proof. If (s,a) ¢ Dy, then
k

i > w(s,a) < Hlog <|S||A|H> o

6/
k=1
Thus, we have

ZZ w,p (8, a) ZZZH{S@ ¢ Dy} - win(s,a)

k=1h=1 (s,a)¢ Dy (s,a) k=1h=1
—ZZ (s,a) ¢ Di} - wi(s,a)

(s,a) k
< alsijAlH 1og

S| A H
| ”gf" >+4|S|A|H

< 815|A|H log <|‘9”(;4|H> .

Lemma D.9. Assume that event H holds. Then, we have

ZZ Z “’kh Ml NANEADN <4|S\|A|log(2KH)

k=1h= 1(sa€Dk —118, @

Proof. 1t holds that
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:ZZ M.ﬂ{(&a) € Dy}

ne—1(s,a)

K
g4zz M 1{(s,a) € Dy}

k=1 (s,a) Zk’ 1wk(5 a)

=4 M-ﬂ s,a) €D
22T (e €D

(b)
< 4]S||A[log(2K H),
where (a) uses Lemma D.7, and (b) follows from the analysis of Lemma 13 in (Zanette & Brunskill, 2019). O

Lemma D.10 (Error in Visitation Vectors). Assume that event Gy holds. Then, for any k > 0 and policy ,

[i-1(m) = &(mlls < D Euymp | BT (s1)] -

s’,a’

Proof. Since ¢7 (s, a’) = Eq,,[GT* " (s1]p)] and ¢F_,(8',a’) = Eg,~,[GT*** (51|px_1)], in this proof, we investigate
the error in GJ,'° ** due to the estimation of the transition model.

In the following, we prove by induction that for any h € [H] and s € S, |GZ;S/’”’/(S|]31¢_1) - Gz;sl’al (slp)| < BZ;S,’“/;]“(S).

When h = H + 1, by definition, we have Ggi’la,(smk,l) = Ggi’l‘z,(ﬂp) = Bgiia’;k(s) = 0 for any s € S, and then the
above statement trivially holds.

When 1l < h < H,if |G2f;’“/(-|ﬁk,1) — GZjlla/(|p)| < B;{fi’“/;k(-) element-wise, then for any s € S, we have
GR* " (slpr—1) — G (s[p)]
- \ﬁk71<-|smh<s>> G Clpner) — pCls ma() TG (o)
ipk 1( |S Trh ’Gz—ila |pk—1) - szlva (.|p)’

+ | (e Gl () = pCls mn(5) T G ()

(a) s .a . s’ al
< D1 (Clsom(s) T |G Clbe-1) — G CIp) | + 2\/

HL
e 34
+ ng—1(s, mh(s))’ (34

Varp(‘ |s,7h(s)) (G‘Zfll,al ( |p)) L
Nk—1 (87 Th (8))

where (a) is due to Lemma E.4.

Here, we have

Vary (s, (s) (G (1p)

(a) 4H?L
< 2Varg, | (Js,mu(s ))(Gh+1 ( Ip)) + m

(b) sl a1 R s al A
< 4varﬁk71('|8,‘ﬂ'h(s))(Gh7+17a ('|pk—1)) + 4Hpk—1('|8’ 7T}L(S))T|GY}LJ:17Q ('|pk—1) - G(h+1 ( |p)|

4H?L
ng—1(8, mh(s))’

where (a) uses Lemma E.5 and (b) comes from Lemma E.6.
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Then,

Vary(|s,m, (s )) G (lp)) - L
ni-1(s,mn(s))

\/4Vafpk Vs () (G Clpr—1)) - L

nk—1(8, T (s))

et e 4H2L 2HL
+\/Hpk 1([s, () TIGRE (lpr—1) =GR CIp)| - +

2 \/Varpk Clsmn() (Grir” (lpe-1)) - L
- nk—l(saﬂ—h(s))
6H?L

1 T i s’ a
o1 (15, G (g ) g _
+ = Pe—1(1s,mn(s)) |GRi " ([Pr-1) it (P ng_1(s, T (5))

H
where (a) is due to the fact that \/zy < = + .
Hence, plugging Eq. (36) into Eq. (34) and using the fact that |GZ;S/’“, (s)] € [0, H], we have
GL " (slpr—1) — GR™° " (s[p)]

< 4\/Varﬁk1(‘|s,m,(s))(Gfoa/('m’“1))'L+ L3H7L
= ng—1(8,m(8)) nk—1(8, mh(s))

2 ~ s’ .a’ ~
(14 3 ) Bl m ) [R5 Cline) - 67 <|p>]> AL

< 4\/Varﬁk1(-|s,m,<s))(Gfoa/('m’“1))'L+ L3H2L
= ng—1(8,mr(8)) nk—1(s, 7 (s))

+ <1 + ;) Dot (1, () T B (- >) nH

i8',a"sk
=B, " (s),
which completes the induction proof.

Therefore,

¢7].sr—1(8/7 CL/) - ¢ﬂ(sla CL/)

= |Eorms 6T (s1l11)| = By [GT (1)
< Bormy [ |67 Gs1lpr-1) = 6T (s110)|

S E51Np |:Bir;8/7a/;k(81):| .

Summing over (s',a’) € S x A, we obtain this lemma.

Lemma D.11. Assume that event Gxi N H holds. Then, for any k > 0 and policy T,

Euyp [BT " *(s1)

H s’ ,a’
Var,(.1s o) (G107 (¢ -L 46 H?L
<233 uf(sa) s\/ peioe) G () 1 AGHTL )\ py

ng—1(s,a) ng—1(s,a)

h=1 s,a

and
K

5 Sa, 0 o)

42

ng—1(8,mx(8))  nr—1(s,mr(s))

(35)

(36)
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< 16¢'2|S|3|A|* H\/K Llog(2K H) + 192¢'2|S|?| A|?H?L1og(2K H).

Proof. First, we prove the first statement.

For any policy m, k > 0, (s',a') € S x A, h € [H] and s € S, we have

B () < 4\/Varﬁk1(~s,m<s>>(G2f1’a C1Pr-1)) - L 31T
ng—1(8, 7x(8)) nk—1(8, mn(s))

2 A 77'5/ ll/'
b 5 ) sl (o) B4 )

Var, (s, () (Gt (1r—1)) - L 13H?L
nkfl(S, 7Th(8)) nk71(87 7Th(S))
ms’,a’ik
4 5 ) s, (o) B4

1+ IQ{> (Pro—1 (|8, mn(8)) — p(-|s, () " BZf;’a/;k()

Vars,  (fsmn (o) (GRior® (1Pr—1)) - L 13H2L

ng—1(8,7h(8)) nk—-1(s,7n(s))

(
(
(
(1 i ;) p(Js, ma(s) T BEEP ()
(
(
(

s’ ,a’ sk
1 2). 2\/Varp<.s,ms>><Bh+l (DL L
nk,l(s,ﬂh(s))

H nk,l(s,wh(s))
<4 Varp,  (lsymn() (Crioy™ Clpr-1)) - L 13HL
- nk—1(8,7h(s)) nr—1(s,7(s))
2 s’ ,a’;
# (1 3 ) ol ma ()T BEEL )
2 1 i H2IL HL
1+ 2/ =p( T gk
+ +H> ( \/Hp( |S,’/Th($)) h+1 ( )nk—l(s,ﬁh(tg)) +nk_1(8,ﬂ'h(8))>
® 4\/Varm1<-|s,7rh(s))(GZf'f“'Clﬁk1)) L 22H2L,
- ng—1(s,mn(s)) ng—1(8, Th(s))
8 v
# (14 57 ) ol o) B, @)

where (a) uses Lemma E.4, and (b) follows from the fact that \/zy < = + .

In addition, we have

Varg, (Issmn(s)) (Gziil’a (‘|Pr—1))

(@) mis'al | a 4H?L
= 2varp("5777h(s))(Gh<:1a (|Pr-1)) + m
®) s’ ,a’ s’ ,a’ o)A s’ ,a’
< AVary(s,x, o) (Griy ™ (1) +4Hp(-|s,ma(s) T |GRE® Clpr—1) — GRy™ ([p)
4H2L
nk—1(s,a)
7'r‘sl a/ TF'S/ a/ A 4H2L
< AVary (s m, ) (Gl Clp)) + 4HP('|S»7Th(5))TBh41’ (|Pr—1) + (s @)’
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where (a) uses Lemma E.5, and (b) comes from Lemma E.6.

Then,

\/Varﬁk1(~|s,m(s>>(G2f1’a (o) L
nk—1(8, mh(8))

4Var s,m (Gﬂ;8/7a/("p)) -L 1 s’ a’ ~ 4H2L
p(|s,mn (s )) h+1 + 4/ =p(|s, Tn(s)T Bh+1 (-|pr_1) -
) H
_|_

ng—1(8, mx(8) Ng—1(8, Th(5))

Njo— 1(3 a)
Var, (1. ] (Gﬂs a(‘p))L 1 L
<2 p(-[s,mn(s)) h+1 . TBTr,S a1 _
a \/ ni—1(8, T (s)) N Hp( |5, 7 ()" Bpiy™ (-[Dr-1)
6H?L
() (38)

ng—1(s, mh(s))

Plugging Eq. (38) into Eq. (37) and using the clipping definition of B;;S,’a/;k(s), we have

o Var,( s . GT5% (p)) - L 46 H2?L
BT (5) < 8\/ pClsmn() Gy () L 46 N
ng—1(8, mx(8)) ng—1(8, mx(8))
12 58 a’;k
+ (14 37 plls (o) B0
Using the above inequality, taking s; ~ p, and unfolding Bf;s/’a/;k(sl) over h, we have
ms’a’sk
Eayp | BT (1)
H s’ ,a’
Var »sa(G 1 (‘p))L 46H?L
<el? Wi (s,a) | 81 —2U=0 Tt + AH. (39)
};; n(sa) \/ nk—1(s,a) ng—1(s,a)
Next, we prove the second statement.
It holds that
K
ol 18’0’3k
Z ZESV\‘P [31 (51)}
s’a’ k=1
K H ks’ a’
Var,(.(s.qa)(G (:|p)) - L 46 H?L
12 p(-1s,a) (Gri
8
PSS S vt [y S G ) L 6L

s',a’ k=1 h=1 (s,a)€ Dy,

K H
+612H\S||A\ZZ Z we,n (s, a)

k=1h=1 (s,a)¢ Dy

(<a) 8612\/72 ZZ Z Wi, h S,a Varp( s, a)(GZ:_f o ( |p))
k=1

1(s,a)€Dy

K H (s,a) ShS
1 Whn15, Q) | 121 6|1 A| - 46H2L LY > Z wkh
a)eD

nk’—l(sv CL) k=1h=1 (s, -1(5,a
H
+8612|S|2|A|2H210g<8||; >
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(b)
< 8e2|S||AVILVKH? - \/4|S|| Al log(2K H) + 184¢*2|S|?| A|? H?Llog(2K H)
S||AlH
+8612|8|2|A|2H210g< ||(';U )
< 16¢'2|S|3 | A|? H/K Llog(2K H) + 192¢"2|S|?| A|*H2 L1og(2K H),

where (a) is due to Lemma D.8, and (b) follows from Lemmas E.3 and D.9.

Lemma D.12 (Optimism under Sum Feedback and Unknown Transition). Assume that event Gxy, holds. Then, for any

k > 0 and fixed policy T,

Vlﬂ(sl) < ékfl(ﬁ)—rékfl + ﬂ(k — 1) . ||Q§k,1(7r)||(2k71)—1 “+ Tmax Z ESlNP |:Bir58/,a’?k(51) .

s’,a’
Proof. 1t holds that

Vi (s1) = ¢(m) "0
= Ge—1(m) D1 + ¢(m) 0 — dr_1(m) "0 + 1 () "0 — dpp—1(m) 01—
< Geo1(m) Ot + |6(m) — o1 (7)1 10lloc + B — 1) - [|dp—1(7) |51

@ . A . oot ol
< k1 (m) 01+ Bk —1) - [ dp-1 (M)l =1 + Tmax Y Eaynp [Bl’ sy

s',a’

where (a) uses Lemma D.10.

Lemma D.13. For any K > 1, we have

‘ 2K |S|| Al ( K H? )
<H,|—————log(14+ ——~+-7—|.
(o)1 \/ ) & NS[[Alm

Proof. We have

H2
(Sro1)~t mX

,1
(Bg—1)~

1 + min ‘ ;1
{H2 Z (Zk 1) ' }>

(Bk-1)" l)

© [2KHS]A] (1+ KH? )
= X\ & NS AJm )’

(bT

INE

[\

o

l\D

Mw
/\A’_/H

o

where inequality (a) uses the fact that < 2log(1 + ) for any 0 < < 1, inequality (b) is due to the fact that A < %2,

and inequality (c) follows from Lemma D.3.
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Define event

k

Z (ETN‘"M {H(bﬁr”(zkbl)fl |Fk/_1] B H(bﬁr”(zw—l)*l)

S
‘T'.reg {
k'=1

k 4k
vk > O}.

(40)
Event F3_ is similar to F3

reg opt> €xcept that here the universal upper bound of |4 || S )1 is f} rather than 1
Lemma D.14. It holds that

Pr[Fy,] >1-4"

Proof. Forany k' > 1, we have that [[¢" |, , -1
20

oo S Fheandthen [E o [[167Ms,, o [Pl = 167 lls,, -1 | <
ﬁ.

Using the Azuma-Hoeffding inequality, we have that for any fixed k£ > 0, with probability at least 1 —

2k2’
k

4H? 4k2
<4/2- -klo .
M 0 ko (47
Since ) ,~; 55z < ¢’, by a union bound over k, we have that with probability at least ¢’, for any £ > 1
u 4H2 4k?
<4/2- - klog ( 5 )

k 4k
O

. Then, we have Pr[K N F%, N Gk N'H] > 1 — 4. Thus, it suffices to prove the regret
upper bound when event C N F, reg ﬁ Gk N H holds.

k'=1

S (Bt 167y 1 1Foa] = 167N,y

k'=1

S (B [197 gy s 1] =167l 5,01 )

Proof of Theorem 4.3. Let §' =

Assume that event /C N .Eseg N GkL

N H holds. For any k& > 0, we have

(Vs =v™(s)

—~
S
=

M= 11

IA
i

(é’“ﬂ(w*fék_l B0k = 1) [k (5 iz F e 2 B [ BT (51)]

s’ a’
V”’“)

K
~ ~ ~ k g/ a':
<> <¢k—1(ﬂ'k)T9k~—l + Bk = 1) - (|1 (7"l (my_) -1 + Tmax Y Esimp {Bw .

> o)
_ Vﬂ'“)

(m ) By = a7 0 + G (1) 0 = (670
k=1
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+ Bk = 1) 1961 (T 5u ) + T D Eerm | BT F (o) )

s’,a’

K

(c) ~ ks al-

<Y {280k =1) [ f—1 (T 211 + 2rmax Z Esyp [Bl o ’k(sl)}
k=1

K
<28(K) Y 1 ér1 ()l 2y 1+2TmmeZEel~p[ By ’“(51)], (41)
k=1 k=1s’,a’

where (a) uses Lemma D.12, (b) is due to the definition of ¥, and (c) follows from Lemma D.10 and the definition of event

K.
Next, we first bound 37, [|dr—1 (%) [l (s _1)-1-
We have

K

Z Hék71< )”(Ek 1)~

k=1

(1™ sy + Idn1 () = 6™ Ny

<

(W’“n(zk_l)l + % N (2) — w’“nz)

(||¢ e+ 5 s )—Mnl). @)

M= T T

=~
Il
-

Here we have

|¢ Ny

M= M= T[] EMN i Mx

|| Tk [¢T|Fk—1H|(Ek,1)_1

—
o
=

B 1675,y 1]

(ETNTrk {H(bTH(Zk,l)—l |Fk—1:| - ’|¢(Tk)||(2k_l)7l + ||¢)<Tk)H(2k_l)71>
<]ETN”k [W”@H)*l |F’H} e Mg,y + z_:l‘ (zk_nl)

®) K 4K 2K|S|| A KH?
S aH, [ gy 2R (1 43
= \//\ Og(&f)+ \/ U NS ) “43)

where (a) uses the Jensen inequality, and (b) comes from the definition of frseg and Lemma D.13.

<

o7

B
I

1

Hence, plugging Eq. (43) into Eq. (42) and using Lemma D.10, we have

K
A K 4K 2K|S||A KH?
> lokr ()l < 4H¢ Stog () + H\/ A g (14 516

2 NSTIA]

ZZEQM[ B (s1)] (44)

klsa
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On the other hand, according to Eq. (39), we have

s’,a’ Var, s,a G?T;s’,a’ : -L 46H2L
B [ BT (51)] <0235 0 510) \/ e GG () L -

h=1s,a ni—1(s, a) nk—1(s,a)

Therefore, plugging Egs. (44) and (39) into Eq. (41), we have

3 (v-r)

k=1

K K 2K|S||A] K H*
< 28(K) (4H\/Alog (5> +H\/)\log (H A|S||A|m>>

() S o

a’ k=1
@) K 4K 2K|S|| Al KH?
< _ J— - -
< 28(K) <4H\/)\log(6,>+H\/ \ log 1+)\|S||.A|m
+ 45\%{) (16612|S\%|A|3H\/KL log(2K H) + 192612\S|2\A|2H2L1og(2KH))

B HIS||A| (( KH? ) 1) )
_O<(\/m log((1+ NS Am + TmaxV/ AIS]| A
K|S||A| << KH? > 1) 3 KL |S|?|AIH2L )
<H\/)\ log 1+)\|SHA| +(S|2|AIZH Y lg(KH)Jri\A log(KH)

o O((l e SPIAPHVE 106 ((1+ 0 ) £) + VEToe, fos ((1+ 550 ) 5))

|S[|A]
5 5 KH 1
+ (1 + 7max S|2? A§H2LIO KH lo (<1+> >
( )ISI2 Al g( )\/ g SAl) 5

=0 ((1 +Tmax)‘8|%|A|2H\/§+ (1 +Tmax)|8|%‘A|%H2) 7

where inequality (a) comes from Lemma D.11, and equality (b) uses the fact that \ := % O

D.5. A Lower Bound for Unknown Transition and its Proof

Below we provide a lower bound for RL with sum segment feedback and unknown transition with the proof.

Theorem D.15. Consider the problem of RL with sum segment feedback and unknown transition. There exists a distribution
of instances where the regret of any algorithm must be

Q (rmaxH |5||A|K) .

Proof of Theorem D.15. We construct a random instance Z as follows. As shown in Figure 7, there are n bandit states
S1,...,8p (i.e., there are an optimal action and multiple suboptimal actions), a good absorbing state s,; and a bad
absorbing state s,,2. The agent starts from s, . . ., s, with equal probability % For any i € [n], in state s;, one action a;
is uniformly chosen from A as the optimal action. In state s;, under the optimal action a s, the agent transitions to s,,41 and
Sn+2 With probabilities % + € and % — ¢, respectively, where ¢ € (0, i) is a parameter specified later; Under any suboptimal
action a € A\ {s,}, the agent transitions to s, 41 and s,,42 with equal probability 1.

The rewards are deterministic for all state-action pairs. For any a € A, 7(Sp41,a) = Tmax- Forany i € {1,...,n,n + 2}
and a € A, r(s;,a) = 0.
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7(si) =0 Optimal action: transition to s,,; W.p. ; +¢

1
Sn+2 W.P. 2~ &

Sn+1 ) 7(Sn+17) = Tinax
Sn+2 D T(Sp42,) =0

1
W.p. ; S1

\ Y/

W.p. % Sn
Suboptimal action: transition to s, W.p.

Sp4+2 W.P.

N RN =

Figure 7. Instance for the lower bound under sum segment feedback and unknown transition.

In this proof, we will also use an alternative uniform instance Z,;r. The only difference between Z,r and Z is that for any
i € [n], in state s;, under all actions a € .4, the agent transitions to s, and s,, 2 with equal probability %

Fix an algorithm A. Let E,¢[-] denote the expectation with respect to Zyy;s. Let E, [-] denote the expectation with respect to Z.
Foranyi € [n] and j € [|A]], let E; ;] denote the expectation with respect to the case where a; is the optimal action in state
si, and N; ; denote the number of episodes where algorithm A chooses a; in state s;, i.e., N; j = Zszl {r¥(s;) = a;}.

The KL divergence of transition distribution on (s;,a;) (i € [n]) between Z,¢ and Z is

(o(3)1e(ze)) i) +am ()

(a)
< 4e?,

where (a) uses the fact that — In(1 — z) < 2z when z € (0, 1).
In addition, the agent has probability only % to arrive at (observe) state s;.

Thus, using Lemma A.1 in (Auer et al., 2002), we have that for any ¢ € [n], in state s;,

K |1 1 1
Ei [N ] < Eant[Nij] + 2\/ © BantNi] KL <B <2) 1B (2 + 5))

K /1
S ]Eunif[Ni,j] + 2\/71 : Eunif[Ni,j] : 452

1
= ]Eunif[Niyj] + Ke E . Eunif[Nl"j].

Summing over j € [|.A|], using the Cauchy-Schwarz inequality and the fact that le“i‘l Euwit[Vi,;] = K, we have

3 Al
> EijlNigl S K+ Ksm_

j=1

Then, we have
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1
= (2 + E> (H — 1)TmaxK
Al
_*Z _1rmaxK+5(H 7Arrlawc'l.A'Z]EzJ zg

K K
> e(H = V)rpay | K — — — Key | —— | .
2 e~ 1) ( Ay |A|n>

Recall thatn = |S| — 2. Let [S| > 3, |A| > 2, H > 2, K > |Alnand e = LAl

1 /AN
1 = Then, we have

R(K) = (ruex H/[STAK )

E. Technical Tools

In this section, we introduce several technical tools.

Lemma E.1 (Self-concordance, Lemma 9 in (Faury et al., 2020)). For any x1,x2 € R, we have

exp(|z1 — @s|) —
|21 — 22

1 —exp(—|z1 — z2|

W (z1) D [ = e s < o)

|z1 — 23]

Furthermore, we have
1 /
"(1 = 2)zy + 22 dz>&.
=2y sz >
Lemma E.2 (Value Difference Lemma, Lemma E.15 in (Dann et al., 2017)). For any two MDPs M' and M"' with rewards
r" and " and transition distributions p' and p, we have that for any h € [H] and s € S,

H

Vi(s)= Vi (5) =Epr lz (7 (50 0) =" (st )+ (0l 00) =" Clss ) Vi () b = 1 |

t=h

Lemma E.3 (Law of Total Variance, Lemma 15 in (Zanette & Brunskill, 2019)). For an MDP p and a fixed policy w, we

have
81] :Eﬂ—yp 81] .

The idea of Lemma E.3 was also used in earlier works, e.g., (Munos & Moore, 1999; Lattimore & Hutter, 2012; Ghesh-
laghi Azar et al., 2013).

Lemma E.4 (Lemma 10 in (Ménard et al., 2021)). For distributions p,q € As and function f : S — [0,0], if KL(p,q) < «,
then

H

> Varg, epClsnmn (o) (Virea (sn+1))
h=1

H
Erp KZ r(sh, Wh(S))—VF(&))
h=1

I(p() —a() T f()] < 2Var,(f)a + ;ba.

Lemma E.5 (Lemma 11 in (Ménard et al., 2021)). For distributions p,q € As and function f : S — [0, b], if KL(p, q) < o,
then

Var,(f) < 2Var,(f) + 4b%a.

Lemma E.6 (Lemma 12 in (Ménard et al., 2021)). For distribution p € Ags and functions f,g : S — [0, b], we have

Vary,(f) < 2Vary(g) +20p(-) " f(-) = g()I-
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