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Abstract
Standard reinforcement learning (RL) assumes
that an agent can observe a reward for each state-
action pair. However, in practical applications, it
is often difficult and costly to collect a reward for
each state-action pair. While there have been sev-
eral works considering RL with trajectory feed-
back, it is unclear if trajectory feedback is in-
efficient for learning when trajectories are long.
In this work, we consider a model named RL
with segment feedback, which offers a general
paradigm filling the gap between per-state-action
feedback and trajectory feedback. In this model,
we consider an episodic Markov decision process
(MDP), where each episode is divided into m
segments, and the agent observes reward feed-
back only at the end of each segment. Under this
model, we study two popular feedback settings:
binary feedback and sum feedback, where the
agent observes a binary outcome and a reward
sum according to the underlying reward function,
respectively. To investigate the impact of the num-
ber of segments m on learning performance, we
design efficient algorithms and establish regret
upper and lower bounds for both feedback set-
tings. Our theoretical and experimental results
show that: under binary feedback, increasing the
number of segments m decreases the regret at an
exponential rate; in contrast, surprisingly, under
sum feedback, increasing m does not reduce the
regret significantly.

Reinforcement learning (RL) is a class of sequential
decision-making algorithms, where an agent interacts with
an unknown environment through time with the goal of max-
imizing the obtained reward. RL has variant applications
such as robotics, autonomous driving and game playing.
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In classic RL, when the agent takes an action in a state, the
environment will provide a reward for this state-action pair.
However, in real-world applications, it is often difficult and
costly to collect a reward for each state-action pair. For
example, in robotics, when we instruct a robot to scramble
eggs, it is hard to specify a reward for each individual action.
In autonomous driving, it is difficult and onerous to evaluate
each action, considering multiple criteria including safety,
comfort and speed.

Motivated by this fact, there have been several works that
consider RL with trajectory feedback (Efroni et al., 2021;
Chatterji et al., 2021). In these works, the agent observes
a reward signal only at the end of each episode, instead of
at each step, with the signal indicating the quality of the
trajectory generated during the episode. While these works
mitigate the issue of impractical per-step reward feedback
in classic RL, the relationship between the frequency of
feedback and the performance of RL algorithms is unknown.
In particular, if for example we get feedback twice in each
trajectory, does that significantly improve performance over
once per trajectory feedback?

To answer this question, we study a general model called
RL with segment feedback, which bridges the gap between
per-state-action feedback in classic RL (Sutton & Barto,
2018) and trajectory feedback in recent works (Efroni et al.,
2021; Chatterji et al., 2021). In this model, we consider an
episodic Markov decision process (MDP), where an episode
is equally divided into m segments. In each episode, at each
step, the agent first observes the current state, and takes an
action, and then transitions to a next state according to the
transition distribution. The agent observes a reward signal
at the end of each segment. Under this model, we consider
two reward feedback settings: binary feedback and sum
feedback. In the binary feedback setting, the agent observes
a binary outcome (e.g., thumbs up/down) generated by a
sigmoid function of the reward on this segment. In the
sum feedback setting, the agent observes the sum of the
rewards over this segment. In our model, the agent needs
to learn the underlying reward function (i.e., the expected
reward as a function of states and actions) from binary or
sum segment feedback, and maximize the expected reward
achieved. While Tang et al. (2024) also studied this segment
model before (they called it RL from bagged reward), their
work is mostly empirical, and does not provide theoretical
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guarantees for algorithms and rigorously reveal the influence
of segments on learning.

This model is applicable to many scenarios involving hu-
man queries. For instance, in autonomous driving, a driving
trajectory is often divided into several segments, and human
annotators are asked to provide feedback for each segment,
e.g., thumbs up/down. Compared to state-action pairs or
whole trajectories, segments are easier and more efficient to
evaluate, since human annotators can focus on and rate be-
haviors in each segment, e.g., passing through intersections,
reversing the car and parking.

In this segment model, there is an interesting balance be-
tween the number of segments (queries to humans) and the
collected observations, i.e., we desire more observations, but
we also want to reduce the number of queries. Therefore, in
this problem, it is critical to investigate the trade-off between
the benefits brought by segments and the increase of queries,
which essentially comes down to a question: How does the
number of segments m impact learning performance?

To answer this question, we design efficient algorithms for
binary and sum feedback settings in both known and un-
known transition cases. Regret upper and lower bounds
are provided to rigorously show the influence of the num-
ber of segments on learning performance. We also present
experiments to validate our theoretical results.

Note that studying RL with equal segments is an impor-
tant starting point and serves as a foundation for further
investigation on more general models and analysis for RL
with unequal segments. Even under equal segments, this
problem is already very challenging: (i) This problem can-
not be solved by applying prior trajectory feedback works,
e.g., (Efroni et al., 2021), since they use the martingale
property of subsequent trajectories in analysis, while sub-
sequent segments are not a martingale due to dependency
among segments within a trajectory. (ii) In prior trajectory
feedback works (Efroni et al., 2021; Chatterji et al., 2021),
there exists a gap between upper and lower bounds for sum
feedback, and there is no lower bound for binary feedback.
This fact poses a significant challenge for us when trying to
understand the influence of the number of segments m on
learning performance.

Our work overcomes the above challenges and makes con-
tributions as follows.

1. We study a general model called RL with segment feed-
back, which bridges the gap between per-state-action
feedback in classic RL and trajectory feedback seem-
lessly. Under this model, we consider two feedback
settings: binary feedback and sum feedback.

2. For binary feedback, we design computationally-
efficient and sample-efficient algorithms SegBiTS and

SegBiTS-Tran for known and unknown transitions, re-
spectively. We provide regret upper and lower bounds
which depend on exp(Hrmax

2m ), where H is the length
of each episode, and rmax is a universal upper bound
of rewards. Our results exhibit that under binary feed-
back, increasing the number of segments m signifi-
cantly helps accelerate learning.

3. For sum feedback, we devise algorithms E-LinUCB and
LinUCB-Tran, which achieve near-optimal regrets in
terms of H and m. We also establish lower bounds to
validate the optimality, and show that optimal regrets
do not depend on m. Our results reveal that surpris-
ingly, under sum feedback, increasing the number of
segments m does not help expedite learning much.

4. We develop novel techniques which can be of indepen-
dent interest, including the KL divergence analysis to
derive an exponential lower bound under binary feed-
back, and the use of E-optimal experimental design
in algorithm E-LinUCB to refine the eigenvalue of the
covariance matrix and reduce the regret.

1. Related Work
In this section, we briefly review prior related works.

Algorithms and analysis for classic RL were well studied
in the literature (Sutton & Barto, 2018; Jaksch et al., 2010;
Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill, 2019).
Tang et al. (2024) proposed the RL with segment feedback
problem (they called it RL from bagged rewards), and de-
signed a transformer-based algorithm. However, their work
is mostly empirical and does not provide theoretical guaran-
tees. Gao et al. (2025) considers RL with bagged decision
times, where the state transitions are non-Markovian within
a bag, and a reward is observed at the end of the bag. But the
focus of (Gao et al., 2025) is to handle the non-Markovian
state transitions within a bag using a causal directed acyclic
graph, instead of investigating how to infer the reward func-
tion of state-action pairs from bagged rewards like us. In
addition, to the best of our knowledge, there is no existing
work that rigorously quantifies the influence of segments on
learning performance.

There are two prior works (Efroni et al., 2021; Chatterji
et al., 2021) studying RL with trajectory feedback, which
are most related to our work. Efroni et al. (2021) investi-
gated RL with sum trajectory feedback, and designed up-
per confidence bound (UCB)-type and Thompson sampling
(TS)-type algorithms with regret guarantees. Chatterji et al.
(2021) studied RL with binary trajectory feedback, but con-
sidered a different formulation for binary feedback from
ours. Specifically, in their formulation, the objective is to
find the policy that maximizes the expected probability of
generating feedback 1, and their optimal policy can be non-
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Markovian due to the non-linearity of the sigmoid function;
In our formulation, our objective is to find the optimal pol-
icy under the standard MDP definition by inferring rewards
from binary feedback, and thus we consider Markovian poli-
cies. The algorithms in (Chatterji et al., 2021) are either
computationally inefficient or have a suboptimal regret order
due to the non-linearity of their objective and direct maxi-
mization over all non-Markovian policies. Our algorithms
are computationally efficient by adopting the TS algorithmic
style and efficient MDP planning under Markovian policies.
Our regret results cannot be directly compared to those in
(Chatterji et al., 2021) due to the difference in formulation.

Moreover, different from (Efroni et al., 2021; Chatterji et al.,
2021), we study RL with segment feedback, which allows
feedback from multiple segments within a trajectory, with
per-state-action feedback and trajectory feedback as the two
extremes. Under sum feedback, we improve the result in
(Efroni et al., 2021) by a factor of

√
H using experimental

design, when the problem reduces to the trajectory feed-
back setting. Under binary feedback, we propose TS-style
algorithms which are computationally efficient, and build
a lower bound to reveal an inevitable exponential factor in
the regret bound, which is novel to the RL literature.

Our work is also related to linear bandits (Abbasi-Yadkori
et al., 2011) and logistic bandits (Filippi et al., 2010; Faury
et al., 2020; Russac et al., 2021), and uses analytical tech-
niques from that literature.

2. Formulation
In this section, we present the formulation of RL with binary
and sum segment feedback.

We consider an episodic MDP denoted by
M(S,A, H, r, p, ρ). Here S is the state space, and
A is the action space. H is the length of each episode.
r : S × A → [−rmax, rmax] is an unknown reward
function, where rmax > 0 is a universal constant. Define
the reward parameter θ∗ := [r(s, a)](s,a)∈S×A ∈ R|S||A|.
p : S × A → △S is the transition distribution. For any
(s, a, s′) ∈ S × A × S, p(s′|s, a) is the probability of
transitioning to s′ if action a is taken in state s. ρ ∈ △S is
an initial state distribution.

A policy π : S × [H] → A is defined as a mapping from
the state space and step indices to the action space, so
that πh(s) specifies what action to take in state s at step
h. For any policy π, h ∈ [H] and (s, a) ∈ S × A, let
V π
h (s) be the state value function, and Qπ

h(s, a) be the
state-action value function, which denote the cumulative
expected reward obtained under policy π till the end of
an episode, starting from s and (s, a) at step h, respec-
tively. Formally, V π

h (s) := E[
∑H

t=h r(st, at)|sh = s, π],
and Qπ

h(s, a) := E[
∑H

t=h r(st, at)|sh = s, ah = a, π].

The optimal policy is defined as π∗ = argmaxπ V
π
h (s) for

all s ∈ S and h ∈ [H]. For any s ∈ S and h ∈ [H], denote
V ∗
h (s) := V π∗

h (s).

The process of RL with segment feedback is as follows.
In each episode k, the agent chooses a policy πk at the
beginning of this episode, and starts from sk1 ∼ ρ. At each
step h ∈ [H], the agent first observes the current state skh,
and takes an action akh = πk

h(s
k
h) according to her policy,

and then transitions to a next state skh+1 ∼ p(·|skh, akh).

Each episode is equally divided into m segments, and each
segment is of length H

m . For convenience, assume that H
is divisible by m. For any k > 0 and i ∈ [m], let τk =
(sk1 , a

k
1 , . . . , s

k
h, a

k
h) denote the trajectory in episode k, and

τki = (skH
m ·(i−1)+1

, akH
m ·(i−1)+1

, . . . , skH
m ·i, a

k
H
m ·i) denote the

i-th segment of the trajectory in episode k.

For any trajectory or trajectory segment τ , ϕτ ∈ R|S||A|

denotes the vector where each entry ϕτ (s, a) is the number
of times (s, a) is visited in τ . For any policy π, ϕπ ∈ R|S||A|

denotes the vector where each entry ϕπ(s, a) is the expected
number of times (s, a) is visited in an episode under policy
π, i.e.,

ϕπ(s, a) := E

[
H∑

h=1

1{sh = s, ah = a}
∣∣∣π] .

In our model, the agent observes reward feedback only at
the end of each segment, instead of each step as in classic
RL. We consider two reward feedback settings as follows.

Binary Segment Feedback. Denote the sigmoid function
by µ(x) := 1

1+exp(−x) for any x ∈ R. In the binary segment
feedback setting, in each episode k, at the end of each
segment i ∈ [m], the agent observes a binary outcome

yki =

{
1, w.p. µ((ϕτk

i )⊤θ∗),

0, w.p. 1− µ((ϕτk
i )⊤θ∗).

Note that our formulation is different from that in prior
work for binary feedback (Chatterji et al., 2021). Chat-
terji et al. (2021) aim to find the policy that maximizes
the expected probability of generating feedback 1, i.e.,
maxπ Eτ∼π,p[µ((ϕ

τ )⊤θ∗)], where the optimal policy can
be non-Markovian due to the non-linearity of µ(·). In con-
trast, we aim to find the optimal policy under the standard
MDP definition, i.e., maxπ Eτ∼π,p[(ϕ

τ )⊤θ∗], by inferring
reward θ∗ from binary feedback, and thus we consider
Markovian policies. Both formulations have value and
are applicable in different contexts. In particular, our formu-
lation is better suited to situations where we want to solve
an MDP but only get binary segment feedback. Under our
formulation, we design TS-type algorithms with confidence

3



Reinforcement Learning with Segment Feedback

bonuses added on θ∗ element-wise to achieve computational
efficiency, which cannot be done without sacrificing the re-
gret order under the formulation of (Chatterji et al., 2021).

Sum Segment Feedback. In the sum segment feedback
setting, in each episode k, at each step h, the environment
generates an underlying random reward Rk

h = r(skh, s
k
h) +

εkh, where εkh is a zero-mean and 1-sub-Gaussian noise, and
independent of transition. At the end of each segment i ∈
[m], the agent observes the sum of random rewards

Rk
i =

H
m ·i∑

t=H
m (i−1)+1

R(skt , a
k
t ) = (ϕτk

i )⊤θ∗ +

H
m ·i∑

t=H
m (i−1)+1

εkt .

Under sum feedback, when m = H , our model degenerates
to classic RL (Azar et al., 2017; Sutton & Barto, 2018).
When m = 1, the above two settings reduce to the problems
of RL with binary (Chatterji et al., 2021) and sum trajectory
feedback (Efroni et al., 2021), respectively.

In our model, the agent needs to infer the reward function
from sparse and implicit reward feedback. Let K denote
the number of episodes played. The goal of the agent is to
minimize the cumulative regret, which is defined as

R(K) :=

K∑
k=1

(V ∗
1 (s1)− V πk

1 (s1)).

We note that to the best of our knowledge, the fact that one
gets extremely coarse information about the sum reward
in the binary feedback case makes it impossible to have a
common analysis for both feedback models.

3. Reinforcement Learning with Binary
Segment Feedback

In this section, we investigate RL with binary segment feed-
back. To isolate the effect of segment feedback from tran-
sition model learning, we first design a computationally-
efficient and sample-efficient algorithm SegBiTS for the
known transition case, and establish a novel lower bound
to exhibit the indispensable exponential dependency in the
result under binary feedback. Then, we further develop an
algorithm SegBiTS-Tran with carefully-designed transition
bonuses for the unknown transition case.

3.1. Algorithm SegBiTS for Known Transition

Building upon the Thompson sampling algorithm (Thomp-
son, 1933), SegBiTS adopts the maximum likelihood esti-
mator (MLE) to learn rewards from binary feedback, and
performs posterior sampling to compute the optimal policy.
Different from prior trajectory feedback algorithms (Chat-
terji et al., 2021) which are either computationally inefficient

Algorithm 1 SegBiTS

1: Input: δ, δ′ := δ
3 , α := exp(Hrmax

m )+exp(−Hrmax

m )+
2, λ.

2: for k = 1, . . . ,K do
3: θ̂k−1 ← argminθ −(

∑k−1
k′=1

∑m
i=1(y

k′

i ·
log(µ((ϕτk′

i )⊤θ)) + (1 − yk
′

i ) · log(1 −
µ((ϕτk′

i )⊤θ)))− 1
2λ∥θ∥

2
2)

4: Σk−1 ←
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤ + αλI
5: Sample ξk ∼ N (0, α · ν(k − 1)2 · Σ−1

k−1), where
ν(k − 1) is defined in Eq. (1)

6: θ̃k ← θ̂k−1 + ξk
7: πk ← argmaxπ(ϕ

π)⊤θ̃k
8: Play episode k with policy πk. Observe trajectory τk

and binary segment feedback {yki }mi=1

9: end for

or have a O(K
2
3 ) regret bound, SegBiTS is both computa-

tionally efficient and has a O(
√
K) regret bound.

Algorithm 1 presents the procedure of SegBiTS. Specifi-
cally, in each episode k, SegBiTS first employs MLE with
past binary reward observations to obtain the estimated
reward parameter θ̂k−1 (Line 3). Then, SegBiTS calcu-
lates the feature covariance matrix of past segments Σk−1

(Line 4). After that, SegBiTS samples a noise ξk from Gaus-
sian distribution N (0, α · ν(k − 1)2 ·Σ−1

k−1) (Line 5). Here
α is a universal upper bound of the inverse of the sigmoid
function’s derivative. For any k > 0, we define

ν(k) :=
m
√
λ

H

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
·√

1 +
Hrmax

√
|S||A|

m
ω(k) +

H2

m2λ
· ω(k)2

) 3
2

, (1)

and

ω(k) :=
√
λ

(
rmax

√
|S||A|+ 1

2

)
+
|S||A|√

λ
log

(
4

δ′

(
1 +

H2k

4|S||A|λm

))
. (2)

ν(k) is the confidence radius factor of the MLE estimate
θ̂k. With high probability, we have |ϕ⊤θ∗ − ϕ⊤θ̂k| ≤√
α · ν(k)∥ϕ∥Σ−1

k
, where ϕ is the visitation indicator of

any trajectory (Lemma C.7 in Appendix C.1).

Adding noise ξk to θ̂k−1, SegBiTS obtains a posterior re-
ward estimate θ̃k (Line 6). Then, it computes the optimal
policy πk under reward θ̃k, i.e., argmaxπ(ϕ

π)⊤θ̃k (Line 7).
Note that this step is computationally efficient, which can be
easily solved by any MDP planning algorithm, e.g., value
iteration, by taking θ̃k as the reward function. After obtain-
ing πk, SegBiTS plays episode k, and observes trajectory
τk and binary feedback {yki }mi=1 on each segment (Line 8).
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Now we provide a regret upper bound for SegBiTS.

Theorem 3.1. With probability at least 1−δ, for any K > 0,
the regret of algorithm SegBiTS is bounded by

R(K) = Õ

(
exp

(
Hrmax

2m

)
ν(K)

√
|S||A|·

(√
Km|S||A|max

{
H2

mαλ
, 1

}
+H

√
K

αλ

))
.

In this result, the dependency on |S|, |A| and H are |S|3,
|A|3 and exp(Hrmax

2m )H2, respectively. Our focus here is to
reveal the exponential dependency on Hrmax

m in the regret
bound under binary feedback, instead of pursuing absolute
tightness of every polynomial factor. Since the exponential
factor is usually the dominating factor, this result implies
that as the number of segments m increases, the regret
decays rapidly. Thus, under binary feedback, increasing the
number of segments significantly helps accelerate learning.

The intuition behind this exponential dependency is that
when the reward scale x = Hrmax

m is large, the binary feed-
back is generated from the range where the sigmoid function
µ(x) = 1

1+exp(−x) is flat, i.e., the derivative of the sigmoid
function µ′(x) is small. Then, the generated binary feedback
is likely always 0 or always 1, and it is hard to distinguish
between a good action and a bad action, leading to a higher
regret; On the contrary, when the reward scale x = Hrmax

m
is small, the binary feedback is generated from the range
where the sigmoid function µ(x) is steep, i.e., µ′(x) is large.
Then, the generated binary feedback is more dispersed to be
0 or 1, and it is easier to distinguish between a good action
and a bad action, leading to a lower regret. In other words,
the regret bound depends on the inverse of the sigmoid
function’s derivative µ′(x) = 1

exp(x)+exp(−x)+2 .

3.2. Regret Lower Bound for Known Transition

Below we provide a lower bound, which firstly demonstrates
the inevitability of the exponential factor in the regret bound
for RL with binary feedback.

Theorem 3.2. Consider RL with binary segment feed-
back and known transition. There exists a distribution
of instances where for any c0 ∈ (0, 1

2 ), when K ≥
exp(Hrmax

m ) 4|S||A|m
H2r2maxc

2
0

, the regret of any algorithm must be

Ω

(
exp

((1
2
− c0

)Hrmax

m

)√
|S||A|mK

)
.

Theorem 3.2 shows that under binary feedback, the expo-
nential dependency on Hrmax

m in the result is indispensable,
and the exp(Hrmax

2m ) factor in Theorem 3.1 nearly matches
the exponential factor in the lower bound up to an arbitrarily

small factor c0 in exp(·). Theorem 3.2 reveals that when
the number of segments m increases, the regret indeed de-
creases at an exponential rate. In addition, this lower bound
also holds for the unknown transition case, by constructing
the same problem instance as in its proof.

To the best of our knowledge, our lower bound for binary
feedback and its analysis are novel in the RL literature. In
the analysis, we calculate the KL divergence of Bernoulli
distributions with the sigmoid function being in their pa-
rameters. Then, we employ Pinsker’s inequality and the
fact that µ′(x) = µ(x)(1− µ(x)) to build a connection be-
tween the calculated KL divergence and µ′(Hrmax

m ). Since
µ′(x) = 1

exp(x)+exp(−x)+2 contains an exponential factor,
we can finally derive an exponential dependency in the lower
bound. Below we give a proof sketch of Theorem 3.2, and
defer a full proof to Appendix C.2.

Proof Sketch. Consider an instance as follows: there are
n bandit states s1, . . . , sn (i.e., there is an optimal action
and multiple suboptimal actions), a good absorbing state
sn+1 and a bad absorbing state sn+2. The agent starts
from s1, . . . , sn with equal probability 1

n . For any i ∈ [n],
in state si, under the optimal action a∗i , the agent tran-
sitions to sn+1 deterministically, and r(si, a

∗
i ) = rmax;

w.p. 
1

𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

…

𝑎𝑖
∗: transition to 𝑠𝑛+1

𝑎𝑖
𝑠𝑢𝑏: transition to 𝑠𝑛+2

𝑟 𝑠𝑛+1,⋅ = 𝑟𝑚𝑎𝑥 

𝑟 𝑠𝑛+2,⋅ = 1 − 𝜀 𝑟𝑚𝑎𝑥

𝑟(𝑠𝑖 , 𝑎𝑖
∗) = 𝑟𝑚𝑎𝑥

𝑟(𝑠𝑖 , 𝑎𝑖
𝑠𝑢𝑏) = (1 − 𝜀)𝑟𝑚𝑎𝑥 

𝑠1

𝑠2

𝑠𝑛

𝑠𝑛+1

𝑠𝑛+2

Figure 1. Lower bound instance.

Under any subop-
timal action asub

i ,
the agent transi-
tions to sn+2 de-
terministically, and
r(si, a

sub
i ) = (1 −

ε)rmax, where ε ∈
(0, 1

2 ) is a param-
eter specified later.
For all actions a ∈
A, r(sn+1, a) =
rmax and r(sn+2, a) = (1− ε)rmax.

Then, the KL divergence of binary observations between
the optimal action and suboptimal actions in an episode is
m∑
i=1

KL
(
B
(
µ

(
(1− ε)Hrmax

m

))∥∥∥B(µ(Hrmax

m

)))
(a)
≤ m ·

(
µ
(

(1−ε)Hrmax

m

)
− µ

(
Hrmax

m

))2
µ′
(
Hrmax

m

)
(b)
≤ m ·

µ′
(

(1−ε)Hrmax

m

)2 (
ε · Hrmax

m

)2
µ′
(
Hrmax

m

) , (3)

Here B(p) denotes the Bernoulli distribution with parameter
p. Inequality (a) uses the facts that KL(B(p)∥B(q)) ≤
(p−q)2

q(1−q) and µ′(x) = µ(x)(1− µ(x)). Inequality (b) is due
to that µ′(x) is monotonically decreasing when x > 0.

Furthermore, we consider the reward scale Hrmax in each
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episode, and the enumeration over each bandit state si (i ∈
[n]) and each possible optimal action a∗i ∈ A in the lower
bound derivation. Then, following the analysis in (Auer
et al., 2002), to learn the difference between the optimal
action and suboptimal actions, the agent must suffer a regret

Ω

(
Hrmax

√
n|A| · 1√

Eq. (3)

)

= Ω

(√
|A|nm
ε

√√√√ µ′
(
Hrmax

m

)
µ′
(
(1− ε)Hrmax

m

)2
)
.

Recall that µ′(x) = 1
exp(x)+exp(−x)+2 . Let ε = Θ( 1√

K
).

For any constant c0 ∈ (0, 1
2 ), letting K large enough (ε

small enough) to satisfy ε ≤ c0, then the regret is

Ω

(√
K|A|nm

√
exp

(
(1− 2ε)

Hrmax

m

))

= Ω

(√
K|S||A|m exp

((
1

2
− c0

)
Hrmax

m

))
. □

3.3. Algorithm SegBiTS-Tran for Unknown Transition

Now we extend our results to the unknown transition case.

We develop an efficient algorithm SegBiTS-Tran for binary
segment feedback and unknown transition. SegBiTS-Tran
includes a transition bonus ppvk−1 in posterior reward esti-
mate θ̃bk, and replaces visitation indicator ϕπ by its estimate
ϕ̂π
k−1. For any (s, a), ϕ̂π

k−1(s, a) is the expected number
of times (s, a) is visited in an episode under policy π on
empirical MDP p̂k−1, where p̂k−1 is the empirical estimate
of transition distribution p. Then, SegBiTS-Tran computes
the optimal policy via argmaxπ(ϕ̂

π
k−1)

⊤θ̃bk, which can be
efficiently solved by any MDP planning algorithm with tran-
sition distribution p̂k−1 and reward θ̃bk. We defer the details
of SegBiTS-Tran to Appendix C.3, and present its regret
performance as follows.

Theorem 3.3. With probability at least 1−δ, for any K > 0,
the regret of algorithm SegBiTS-Tran is bounded by

Õ

(
exp

(
Hrmax

2m

)
ν(K)

√
|S||A|·

(√
Km|S||A|max

{
H2

mαλ
, 1

}
+H

√
K

αλ

)

+

(
ν(K)

√
|S||A|

λ
+Hrmax

)
|S|2|A| 32H 3

2

√
K

)
.

Similar to algorithm SegBiTS (Theorem 3.1), the re-
gret bound of algorithm SegBiTS-Tran also has a factor
exp(Hrmax

2m ). When the number of segments m increases,

the regret of SegBiTS-Tran significantly decreases. Com-
pared to SegBiTS, the regret of SegBiTS-Tran has an ad-
ditional polynomial term in |S|, |A|, H and

√
K, which is

incurred due to learning the unknown transition distribution.

4. Reinforcement Learning with Sum Segment
Feedback

In this section, we turn to RL with sum segment feed-
back. Different from prior sum trajectory feedback algo-
rithm (Efroni et al., 2021), which directly uses the least
squares estimator and has a suboptimal regret bound, we
develop an algorithm E-LinUCB for the known transition
case, which adopts experimental design to perform an initial
exploration and achieves a near-optimal regret with respect
to H and m. To validate the optimality, we further establish
a regret lower bound. Moreover, we design an algorithm
LinUCB-Tran equipped with a variance-aware transition
bonus to handle the unknown transition case.

4.1. Algorithm E-LinUCB for Known Transition

If we regard visitation indicators ϕπk
i as feature vectors and

θ∗ as the reward parameter, RL with sum segment feedback
and known transition is similar to linear bandits.

Building upon the classic linear bandit algorithm
LinUCB (Abbasi-Yadkori et al., 2011), our algorithm
E-LinUCB performs the E-optimal design (Pukelsheim,
2006) to conduct an initial exploration. This scheme en-
sures sufficient coverage of the covariance matrix and fur-
ther sharpens the norm under the inverse of the covariance
matrix, which enables an improved regret bound over prior
trajectory feedback algorithm (Efroni et al., 2021).

Algorithm 2 shows the procedure of E-LinUCB. Specif-
ically, E-LinUCB first performs the E-optimal design to
compute a distribution on policies w∗, which maximizes
the minimum eigenvalue of the feature covariance matrix∑

π∈Π w(π)(
∑m

i=1 Eτi∼π[ϕ
τi(ϕτi)⊤]) (Line 2). We as-

sume that there exists a policy distribution w under which
this matrix is invertible. Then, E-LinUCB calculates the
number of samples K0 for initial exploration according to
the optimal value of the E-optimal design (Line 3).

Then, in Line 4, E-LinUCB calls a rounding procedure
ROUND (Allen-Zhu et al., 2021) to transform sampling distri-
bution w∗ into discrete sampling sequence (π1, . . . , πK0),
which satisfies (see Appendix B for more details of ROUND)∥∥∥∥∥
(

K0∑
k=1

( m∑
i=1

Eτi∼πk

[
ϕτi(ϕτi)⊤

]))−1∥∥∥∥∥
≤(1+γ)

∥∥∥∥∥
(
K0

∑
π∈Π

w∗(π)

( m∑
i=1

Eτi∼π

[
ϕτi(ϕτi)⊤

]))−1∥∥∥∥∥.
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Algorithm 2 E-LinUCB

1: Input: δ, δ′ := δ
3 , λ := H

r2maxm
, rounding procedure ROUND, rounding approximation parameter γ := 1

10 . β(k) :=√
H|S||A|

m log(1 + kH2

λ|S||A|m ) + 2 log( 1
δ′ ) + rmax

√
λ|S||A|,∀k > 0.

2: Let w∗ ∈ △Π and z∗ be the optimal solution and optimal value of the optimization:

min
w∈△Π

∥∥∥∥∥
(∑

π∈Π

w(π)

( m∑
i=1

Eτi∼π

[
ϕτi(ϕτi)⊤

]))−1∥∥∥∥∥ (4)

3: K0 ← ⌈max{26(1 + γ)2(z∗)2H4 log( 2|S||A|
δ′ ), |S||A|

γ2 }⌉
4: (π1, . . . , πK0)← ROUND({

∑m
i=1 Eτi∼π

[
ϕτi(ϕτi)⊤

]
}π∈Π, w

∗, γ,K0)

5: Play K0 episodes with policies π1, . . . , πK0 . Observe trajectories τ1, . . . , τK0 and rewards {R1
i }mi=1, . . . , {R

K0
i }mi=1

6: for k = K0 + 1, . . . ,K do
7: θ̂k−1 ← (λI +

∑k−1
k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤)−1
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i Rk′

i

8: Σk−1 ← λI +
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤

9: πk ← argmaxπ∈Π((ϕ
π)⊤θ̂k−1 + β(k − 1) · ∥ϕπ∥(Σk−1)−1)

10: Play episode k with policy πk. Observe trajectory τk and sum segment feedback {Rk
i }mi=1

11: end for

After that, E-LinUCB plays K0 episodes with (π1, . . . , πK0)
to perform initial exploration (Line 5). Owing to the
E-optimal design, the covariance matrix of initial explo-
ration ΣK0

has an optimized minimum eigenvalue, and then
∥ϕπ∥(Σk−1)−1 has a sharp upper bound for any k > K0.
This is the key to the optimality of E-LinUCB.

In each episode k > K0, E-LinUCB first calculates the least
squares reward estimate θ̂k−1 using past reward observa-
tions and covariance matrix Σk−1 (Lines 7-8). Then, it
computes the optimal policy with reward estimate θ̂k−1 and
reward confidence bonus ∥ϕπ∥(Σk−1)−1 (Line 9). E-LinUCB
plays episode k with the computed optimal policy πk, and
collects trajectory τk and reward observations on each seg-
ment {Rk

i }mi=1 (Line 10). Below we present a regret upper
bound for algorithm E-LinUCB.

Theorem 4.1. With probability at least 1−δ, for any K > 0,
the regret of algorithm E-LinUCB is bounded by

O

(
|S||A|

√
HK log

((
1 +

KHrmax

|S||A|m

)
1

δ

)

+ (z∗)2H5 log

(
|S||A|

δ

)
+ |S||A|H

)
.

Surprisingly, under sum feedback, when the number of
segments m increases, the regret bound does not decrease
significantly, e.g., at a rate of 1√

m
or 1

m . While this looks sur-
prising at the first glance, we discover an intuition through
analysis: The performance in RL is measured by the ex-
pected reward sum of an episode, namely, we only need to
accurately estimate the expected reward sum of an episode.

When the number of segments m increases, while we obtain
more observations, the segment features ϕτk′

i contributed
to covariance matrix Σk shrink, which makes the reward
estimation uncertainty ∥ϕπ∥(Σk)−1 inflate. When we focus
on the estimation performance of the expected reward sum
of an episode, these two effects cancel out with each other,
and the regret result is not influenced by m distinctly.

When m = 1, our problem reduces to RL with sum trajec-
tory feedback (Efroni et al., 2021), and our result improves
theirs by a factor of

√
H and achieves the optimality with

respect to H . This improvement comes from the fact that
we conduct the E-optimal design and perform an initial ex-
ploration to guarantee that ∥ϕπ∥(Σk−1)−1 ≤ 1, instead of
∥ϕπ∥(Σk−1)−1 ≤ H√

λ
as used in (Efroni et al., 2021).

Next, we study the lower bound to see if the number of
segments m really does not influence the regret bound much.

4.2. Regret Lower Bound for Known Transition

We establish a lower bound for RL with sum segment feed-
back and known transition as follows.

Theorem 4.2. Consider RL with sum segment feedback and
known transition. There exists a distribution of instances
where the regret of any algorithm must be

Ω
(√
|S||A|HK

)
.

Theorem 4.2 demonstrates that our regret upper bound for
algorithm E-LinUCB (Theorem 4.1) is optimal with respect
to H and m when ignoring logarithmic factors. In addition,
this lower bound corroborates that the number of segments
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Figure 2. Experimental results for RL with binary or sum segment feedback.

m does not impact the regret result in essence.

4.3. Algorithm LinUCB-Tran for Unknown Transition

Now we investigate RL with sum segment feedback in the
unknown transition case.

For unknown transition, we design an algorithm
LinUCB-Tran, which establishes a variance-aware uncer-
tainty bound for the estimated visitation indicator ϕ̂π

k , and
incorporates this uncertainty bound into exploration bonuses.
In analysis, we handle the estimation error of visitation in-
dicators ∥ϕ̂π

k − ϕπ∥1 by this variance-aware uncertainty
bound, which enables us to achieve a near-optimal regret
in terms of H . The details of LinUCB-Tran are deferred
to Appendix D.3, and we state the regret performance of
algorithm LinUCB-Tran below.

Theorem 4.3. With probability at least 1−δ, for any K > 0,
the regret of algorithm LinUCB-Tran is bounded by

Õ
(
(1 + rmax)|S|

5
2 |A|2H

√
K
)
.

Theorem 4.3 shows that similar to algorithm E-LinUCB, the
regret of LinUCB-Tran does not depend on the number of
segments m when ignoring logarithmic factors. The heavier
dependency on |S|, |A| and H is due to the estimation of the
unknown transition distribution. We also provide a lower
bound for the unknown transition case, which demonstrates
that the optimal regret indeed does not depend on m and
our upper bound is near-optimal with respect to H (see
Appendix D.5).

5. Experiments
Below we present experiments for RL with segment feed-
back to validate our theoretical results.

For the binary feedback setting, we evaluate our algorithms

SegBiTS and SegBiTS-Tran in known and unknown tran-
sition cases, respectively, and we set |S| = 9, |A| = 5
and K = 30000. For the sum feedback setting, simi-
larly, we run our algorithms E-LinUCB and LinUCB-Tran
in known and unknown transition cases, respectively. Since
E-LinUCB and LinUCB-Tran are computationally inefficient
(mainly designed to reveal the optimal dependency on m),
we use a small MDP with |S| = 3 and |A| = 5, and
set K = 1000. The details of the instances used in our
experiments are described in Appendix A. In both set-
tings, we set rmax = 0.5, δ = 0.005, H = 100 and
m ∈ {1, 2, 4, 5, 10, 20, 25, 50, 100}. For each algorithm,
we perform 20 independent runs, and plot the average cu-
mulative regret up to episode K across runs with a 95%
confidence interval.

Figure 2(a) reports the regrets of algorithms SegBiTS and
SegBiTS-Tran under binary feedback. One sees that as
the number of segments m increases, the regret decreases
rapidly. Specifically, when m decreases from 20 to 1, i.e.,
H
2m increases from exp(2.5) to exp(50), the regret grows
explosively. This matches our theoretical results, i.e., Theo-
rems 3.1 and 3.3, which show a dependency on exp(Hrmax

2m ).

Figure 2(b) plots the regrets of algorithms E-LinUCB and
LinUCB-Tran under sum feedback. To see the impact of
segments on regrets clearly, here we show the regrets with
respect to the number of segments m and the length of each
segment H

m in the left and right subfigures, respectively. In
the left subfigure, when m increases, the regrets almost keep
the same for small m and slightly decrease for large m. To
see the dependency on m more clearly, we turn to the right
subfigure: When the length of each segment H

m increases,
the regrets slightly increase in a logarithmic trend. This also
matches our theoretical bounds in Theorems 4.1 and 4.3,
which do not depend on m except for the log(Hm ) factor.
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6. Conclusion
In this work, we formulate a model named RL with seg-
ment feedback, which offers a general paradigm for feed-
back, bridging the gap between per-state-action feedback
in classic RL and trajectory feedback. In the binary feed-
back setting, we deign efficient algorithms SegBiTS and
SegBiTS-Tran, and provide regret upper and lower bounds
which show a dependency on exp(Hrmax

2m ). These results
reveal that under binary feedback, increasing the number of
segments m greatly helps expedite learning. In the sum feed-
back setting, we develop near-optimal algorithms E-LinUCB
and LinUCB-Tran in terms of H and m, where the regret re-
sults do not depend on m when ignoring logarithmic factors.
These results exhibit that under sum feedback, increasing
m does not help accelerate learning much.

There are several interesting directions worth further inves-
tigation. One direction is to consider segments of unequal
lengths and study how to divide segments to optimize learn-
ing. The variable segment length will affect the noise
variance of reward feedback, and the sum analysis of seg-
ment visitation indicators. More advanced techniques are
needed to handle these challenges. Another direction is to
generalize the results to the function approximation setting.
Since our analysis is based on the fact that segment reward
feedback is generated linearly with respect to visitation in-
dicators ϕ(s, a), we believe that generalizing ϕ(s, a) from a
visitation indicator in the tabular setting to a feature vector
in the linear function approximation setting is viable.
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metric bandits: The generalized linear case. In Advances
in Neural Information Processing Systems, volume 23,
2010.

Gao, D., Lai, H.-Y., Klasnja, P., and Murphy, S. Harnessing
causality in reinforcement learning with bagged decision
times. In International Conference on Artificial Intelli-
gence and Statistics, 2025.

Gheshlaghi Azar, M., Munos, R., and Kappen, H. J. Mini-
max pac bounds on the sample complexity of reinforce-
ment learning with a generative model. Machine Learn-
ing, 91:325–349, 2013.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563–1600, 2010.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? In Advances in Neural
Information Processing Systems, volume 31, 2018.

Lattimore, T. and Hutter, M. Pac bounds for discounted
mdps. In International Conference on Algorithmic Learn-
ing Theory, pp. 320–334. Springer, 2012.

9



Reinforcement Learning with Segment Feedback

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. Annals of Statis-
tics, pp. 1302–1338, 2000.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann,
E., Leurent, E., and Valko, M. Fast active learning for
pure exploration in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 7599–7608.
PMLR, 2021.

Munos, R. and Moore, A. Influence and variance of a
markov chain: Application to adaptive discretization in
optimal control. In Proceedings of the IEEE Confer-
ence on Decision and Control, volume 2, pp. 1464–1469.
IEEE, 1999.

Pukelsheim, F. Optimal design of experiments. SIAM, 2006.

Russac, Y., Faury, L., Cappé, O., and Garivier, A. Self-
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Appendix

A. Details of the Experimental Setup
In this section, we detail the instances used in our experiments.

For the binary segment feedback setting, we consider an MDP as in Figure 2(a): There are 9 states and 5 actions. For any
a ∈ A, we have r(s0, a) = 0, r(si, a) = rmax for any i ∈ {1, 3, 5, 7} (called good states), and r(si, a) = −rmax for any
i ∈ {2, 4, 6, 8} (called bad states). There is an optimal action a∗ and four suboptimal actions asub for all states. The agent
starts from an initial state s0. For any 0 ≤ i ≤ 6, in state si, under the optimal action a∗, the agent transitions to the good
state and bad state at the next horizon with probabilities 0.9 and 0.1, respectively; Under the suboptimal action asub, the
agent transitions to the good state and bad state at the next horizon with probabilities 0.1 and 0.9, respectively. In s7 or
s8, under the optimal action a∗, the agent transitions to s1 and s2 with probabilities 0.9 and 0.1, respectively; Under the
suboptimal action asub, the agent transitions to s1 and s2 with probabilities 0.1 and 0.9, respectively.

𝑠

𝑠ଵ

𝑠ଶ

𝑠ଷ

𝑠ସ

𝑠ହ

𝑠

𝑠

𝑠଼

𝑟(𝑠,⋅) = 0

Optimal action 𝑎∗:𝑤. 𝑝. 0.9
Suboptimal action: 𝑎௦௨:𝑤. 𝑝. 0.1

Optimal action 𝑎∗:𝑤. 𝑝. 0.1
Suboptimal action 𝑎௦௨: 𝑤. 𝑝. 0.9

𝑟 𝑠,⋅ = 𝑟௫, ∀𝑖 ∈ {1,3,5,7}

𝑟 𝑠,⋅ = −𝑟௫, ∀𝑖 ∈ {2,4,6,8}

𝑠ଵ

𝑠ଶ

Figure 3. Instance used in the experiment for RL with binary segment feedback.

For the sum segment feedback setting, since algorithms E-LinUCB and LinUCB-Tran are computationally inefficient (which
are mainly designed for revealing the optimal dependency on H and m), we consider a smaller MDP as in Figure 2(b):
There are 3 states and 5 actions. For any a ∈ A, we have r(s0, a) = 0, r(s1, a) = rmax (called a good state), and
r(s2, a) = −rmax (called a bad state). There is an optimal action a∗ and four suboptimal actions asub for all states. The
agent starts from an initial state s0. In any state s ∈ S, under the optimal action a∗, the agent transitions to s1 and s2 with
probabilities 0.9 and 0.1, respectively; Under the suboptimal action asub, the agent transitions to s1 and s2 with probabilities
0.1 and 0.9, respectively.

𝑠
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𝑠ଶ
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𝑟 𝑠ଶ,⋅ = −𝑟௫

Figure 4. Instance used in the experiment for RL with sum segment feedback.

11



Reinforcement Learning with Segment Feedback

B. Rounding Procedure ROUND
Algorithm E-LinUCB calls a rounding procedure ROUND (Allen-Zhu et al., 2021) in the experimental design literature. Taking
X1, . . . , Xn ∈ Sd+, distribution w ∈ △{X1,...,Xn}, rounding approximation error γ > 0 and the number of samples T ≥ d

γ2

as inputs, ROUND rounds sampling distribution w into a discrete sampling sequence (Y1, . . . , YT ) ∈ {X1, . . . , Xn}T that
satisfies ∥∥∥∥∥

(
T∑

t=1

Yt

)−1∥∥∥∥∥ ≤ (1 + γ)

∥∥∥∥∥
(
T
∑
i∈[n]

w(Xi)Xi

)−1∥∥∥∥∥.
In implementation, we can regard xx⊤ in (Allen-Zhu et al., 2021) as

∑m
i=1 Eτi∼π[ϕ

τi(ϕτi)⊤], and regard sampling weight
on x as the sampling weight on π in our work.

C. Proofs for RL with Binary Segment Feedback
In this section, we present the proofs for RL with binary segment feedback.

C.1. Proof for the Regret Upper Bound with Known Transition

First, we prove the regret upper bound (Theorem 3.1) of algorithm SegBiTS for known transition.

For any k > 0 and θ ∈ Θ, define

Zk :=

k∑
k′=1

m∑
i=1

εk′,i · ϕτk′
i ,

gk(θ) :=

k∑
k′=1

m∑
i=1

µ((ϕτk′
i )⊤θ) · ϕτk′

i + λθ, (5)

Λk(θ) :=

k∑
k′=1

m∑
i=1

µ′((ϕτk′
i )⊤θ) · ϕτk′

i (ϕτk′
i )⊤ + λI. (6)

Lemma C.1. For any k > 0 and θ ∈ Θ, we have

det(Λk(θ)) ≤
(
H2µ′

maxk

|S||A|m
+ λ

)|S||A|

.

Proof. For any k > 0, we have

det(Λk(θ)) ≤
(

tr(Λk(θ))

|S||A|

)|S||A|

≤

(
1

|S||A|
·

(
km · µ′

max ·
(
H

m

)2

+ λ|S||A|

))|S||A|

=

(
H2µ′

maxk

|S||A|m
+ λ

)|S||A|

.

For any k > 0, let Fk denote the filtration that includes all events up to the end of episode k, and F̃k denote the filtration
that includes all events before playing πk in episode k. Then, πk is F̃k-measurable.

For any k > 0 and i ∈ [m], let εk,i := yki − (ϕτk
i )⊤θ∗ denote the noise of binary feedback, and v2k,i := E[ε2k,i|F̃k] =

(ϕτk
i )⊤θ∗ · (1− (ϕτk

i )⊤θ∗) = µ′((ϕτk
i )⊤θ∗) denote the variance of εk,i conditioning on F̃k.

12
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Then, we have

Λk(θ
∗) :=

k∑
k′=1

m∑
i=1

µ′((ϕτk′
i )⊤θ∗) · ϕτk′

i (ϕτk′
i )⊤ + λI

=

k∑
k′=1

m∑
i=1

v2k′,i · ϕτk′
i (ϕτk′

i )⊤ + λI.

Lemma C.2 (Concentration of Noises under Binary Feedback). With probability at least 1− δ′, for any k > 0,∥∥∥∥∥
k∑

k′=1

m∑
i=1

εk′,i · ϕτk′
i

∥∥∥∥∥
Λ−1

k (θ∗)

≤
√
λ

2
+
|S||A|√

λ
log

(
4

δ′
·
(
1 +

H2µ′
maxk

|S||A|mλ

))
.

Proof. According to Theorem 1 in (Faury et al., 2020), we have that with probability at least 1− δ′, for any k > 0,∥∥∥∥∥
k∑

k′=1

m∑
i=1

εk′,i · ϕτk′
i

∥∥∥∥∥
Λ−1

k (θ∗)

≤
√
λ

2
+

2√
λ
log

(
det(Λk(θ

∗))
1
2 · λ− |S||A|

2

δ′

)
+

2√
λ
|S||A| log(2)

(a)
≤
√
λ

2
+

2√
λ
log

 1

δ′

(
1 +

H2µ′
maxk

|S||A|mλ

) |S||A|
2

+
2√
λ
|S||A| log(2)

≤
√
λ

2
+
|S||A|√

λ
log

(
1

δ′

(
1 +

H2µ′
maxk

|S||A|mλ

))
+

2√
λ
|S||A| log(2)

≤
√
λ

2
+
|S||A|√

λ
log

(
4

δ′

(
1 +

H2µ′
maxk

|S||A|mλ

))
,

where (a) uses Lemma C.1.

Define event

E :=

{∥∥∥gk(θ̂k)− gk(θ
∗)
∥∥∥
Λ−1

k (θ∗)
≤ ω(k), ∀k > 0

}
.

Lemma C.3. It holds that

Pr [E ] ≥ 1− δ′.

Proof. This proof is similar to that for Lemma 8 in (Faury et al., 2020).

Define

Lk(θ) :=−

(
k∑

k′=1

m∑
i=1

(
yk

′

i · log
(
µ((ϕτk′

i )⊤θ)
)
+(1−yk

′

i ) · log
(
1−µ((ϕτk′

i )⊤θ)
))
− 1

2
λ∥θ∥22

)
.

Recall that θ̂k = argminθ Lk(θ). Using the facts that∇Lk(θ̂k) = 0 and µ′(x) = µ(x)(1− µ(x)), we have

k∑
k′=1

m∑
i=1

µ((ϕτk′
i )⊤θ̂k) · ϕτk′

i + λθ̂k︸ ︷︷ ︸
gk(θ̂k)

=

k∑
k′=1

m∑
i=1

yk
′

i · ϕτk′
i .

Hence, we have

gk(θ̂k)− gk(θ
∗) =

k∑
k′=1

m∑
i=1

yk
′

i · ϕτk′
i −

(
k∑

k′=1

m∑
i=1

µ((ϕτk′
i )⊤θ∗) · ϕτk′

i + λθ∗

)

13
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=

k∑
k′=1

m∑
i=1

εk′,i · ϕτk′
i − λθ∗. (7)

Then, using Lemma C.2, we have that with probability at least 1− δ′, for any k > 0,∥∥∥gk(θ̂k)− gk(θ
∗)
∥∥∥
Λ−1

k (θ∗)
≤

∥∥∥∥∥
k∑

k′=1

m∑
i=1

εk′,i · ϕτk′
i

∥∥∥∥∥
Λ−1

k (θ∗)

+ rmax

√
λ|S||A|

≤
√
λ

2
+
|S||A|√

λ
log

(
4

δ′
·
(
1 +

H2µ′
maxk

|S||A|mλ

))
+ rmax

√
λ|S||A|

= ω(k).

For any ϕ ∈ R|S||A| and θ1, θ2 ∈ Θ, define

b(ϕ, θ1, θ2) :=

∫ 1

z=0

µ′((1− z) · ϕ⊤θ1 + z · ϕ⊤θ2)dz.

For any k > 0 and θ1, θ2 ∈ Θ, define

Γk(θ1, θ2) :=

k∑
k′=1

m∑
i=1

b(ϕ, θ1, θ2) · ϕτk′
i (ϕτk′

i )⊤ + λI.

In the definitions of b(ϕ, θ1, θ2) and Γk(θ1, θ2), θ1 and θ2 have the same roles and can be interchanged.

Recall that

α := exp(
Hrmax

m
) + exp(−Hrmax

m
) + 2.

Then, we have

sup
τ seg,θ

1

µ′((ϕτ seg)⊤θ)
≤ α,

where τ seg denotes the visitation indicator of any possible trajectory segment.
Lemma C.4. For any k ≥ 1 and θ ∈ Θ, we have

Σk ⪯ αΛk(θ).

Proof. We have

1

α
= inf

τ seg,θ
µ′((ϕτ seg

)⊤θ).

Then, it holds that

Σk =

k∑
k′=1

m∑
i=1

ϕτk′
i (ϕτk′

i )⊤ + αλI

= α

(
k∑

k′=1

m∑
i=1

1

α
· ϕτk′

i (ϕτk′
i )⊤ + λI

)

⪯ α

(
k∑

k′=1

m∑
i=1

µ′((ϕτk′
i )⊤θ) · ϕτk′

i (ϕτk′
i )⊤ + λI

)
= αΛk(θ).

14
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Lemma C.5. For any ϕ ∈ R|S||A| and θ1, θ2 ∈ Θ, we have

µ(ϕ⊤θ1)− µ(ϕ⊤θ2) = b(ϕ, θ2, θ1) · ϕ⊤(θ1 − θ2).

In addition, for any k > 0 and θ1, θ2 ∈ Θ, we have

∥θ1 − θ2∥Γk(θ2,θ1)
= ∥gk(θ1)− gk(θ2)∥Γ−1

k (θ2,θ1)
.

Proof. The first statement follows from the mean-value theorem.

Then, using the first statement, we have that for any k > 0,

gk(θ1)− gk(θ2) =

k∑
k′=1

m∑
i=1

(
µ((ϕτk′

i )⊤θ1)− µ((ϕτk′
i )⊤θ2)

)
· ϕτk′

i + λ (θ1 − θ2)

=

k∑
k′=1

m∑
i=1

b(ϕτk′
i , θ2, θ1) · ϕτk′

i (ϕτk′
i )⊤(θ1 − θ2) + λ (θ1 − θ2)

= Γk(θ2, θ1) · (θ1 − θ2),

and thus

∥θ1 − θ2∥Γk(θ2,θ1)
=

√
(θ1 − θ2)

⊤ · Γk(θ2, θ1) · (θ1 − θ2)

=

√
(θ1 − θ2)

⊤ · Γk(θ2, θ1) · Γ−1
k (θ2, θ1) · Γk(θ2, θ1) · (θ1 − θ2)

= ∥gk(θ1)− gk(θ2)∥Γ−1
k (θ2,θ1)

,

which gives the second statement.

Recall that for any k > 0, Zk :=
∑k

k′=1

∑m
i=1 εk′,i · ϕτk′

i .

Lemma C.6. For any k > 0, we have

Γk(θ
∗, θ̂k) ⪰

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

Λk(θ
∗),

∥Zk∥Γ−1
k (θ∗,θ̂k)

≤

√
1 +

Hrmax

√
|S||A|

m
∥Zk∥Λ−1

k (θ∗) +
H

m
√
λ
∥Zk∥2Λ−1

k (θ∗) .

Furthermore, assuming that event E holds, we have

∥Zk∥Γ−1
k (θ∗,θ̂k)

≤

√
1 +

Hrmax

√
|S||A|

m
· ω(k) + H

m
√
λ
· ω(k)2.

Proof. This proof follows the analysis of Proposition 6 and Corollary 5 in (Russac et al., 2021).

From Eq. (7), we have that for any k > 0,

gk(θ̂k)− gk(θ
∗) = Zk − λθ∗.

Using Lemma E.1, we have that for any ϕ ∈ R|S||A| such that ∥ϕ∥2 ≤ Lϕ,

b(ϕ, θ∗, θ̂k) ≥
(
1 +

∣∣∣ϕ⊤(θ∗ − θ̂k)
∣∣∣)−1

µ′(ϕ⊤θ∗)

=
(
1 +

∣∣∣ϕ⊤Γ−1
k (θ∗, θ̂k) · (gk(θ∗)− gk(θ̂k))

∣∣∣)−1

µ′(ϕ⊤θ∗)
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≥
(
1 + ∥ϕ∥Γ−1

k (θ∗,θ̂k)

∥∥∥gk(θ∗)− gk(θ̂k)
∥∥∥
Γ−1
k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗)

≥
(
1 +

Lϕ√
λ

∥∥∥gk(θ∗)− gk(θ̂k)
∥∥∥
Γ−1
k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗)

=

(
1 +

Lϕ√
λ
∥Zk − λθ∗∥Γ−1

k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗)

≥
(
1 + Lϕrmax

√
|S||A|+ Lϕ√

λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗).

Using the above equation with ϕ = ϕτk′
i and Lϕ = H

m , we have

Γk(θ
∗, θ̂k) :=

k∑
k′=1

m∑
i=1

b(ϕτk′
i , θ∗, θ̂k) · ϕτk′

i (ϕτk′
i )⊤ + λI

⪰
k∑

k′=1

m∑
i=1

(
1+

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

µ′(ϕ⊤θ∗) · ϕτk′
i (ϕτk′

i )⊤+λI

=

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)−1

Λk(θ
∗).

This implies

∥Zk∥2Γ−1
k (θ∗,θ̂k)

≤

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

)
∥Zk∥2Λ−1

k (θ∗) ,

which is equivalent to

∥Zk∥2Γ−1
k (θ∗,θ̂k)

− H

m
√
λ
∥Zk∥2Λ−1

k (θ∗) ∥Zk∥Γ−1
k (θ∗,θ̂k)

−

(
1 +

Hrmax

√
|S||A|

m

)
∥Zk∥2Λ−1

k (θ∗) ≤ 0.

By analysis of quadratic functions, we have

∥Zk∥Γ−1
k (θ∗,θ̂k)

≤

√
1 +

Hrmax

√
|S||A|

m
∥Zk∥Λ−1

k (θ∗) +
H

m
√
λ
∥Zk∥2Λ−1

k (θ∗)

≤

√
1 +

Hrmax

√
|S||A|

m
· ω(k) + H

m
√
λ
· ω(k)2.

Lemma C.7 (Concentration of ϕ⊤θ̂k under Binary Feedback). Assume that event E holds. Then, for any k > 0 and
ϕ ∈ R|S||A|,

|ϕ⊤θ∗ − ϕ⊤θ̂k| ≤
√
α · ν(k) ∥ϕ∥Σ−1

k
.

Proof. We have

|ϕ⊤θ∗ − ϕ⊤θ̂k|

= ∥ϕ∥Γ−1
k (θ∗,θ̂k)

∥∥∥θ∗ − θ̂k

∥∥∥
Γk(θ∗,θ̂k)
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(a)
≤

√
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗)

∥∥∥gk(θ∗)− gk(θ̂k)
∥∥∥
Γ−1
k (θ∗,θ̂k)

=

√
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗) ∥Zk − λθ∗∥Γ−1
k (θ∗,θ̂k)

≤

√
1+

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗)

(
∥Zk∥Γ−1

k (θ∗,θ̂k)
+rmax

√
λ|S||A|

)
=

m
√
λ

H

√
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
∥ϕ∥Λ−1

k (θ∗) ·(
H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)
+

Hrmax

√
|S||A|

m

)

≤ m
√
λ

H

(
1 +

Hrmax

√
|S||A|

m
+

H

m
√
λ
∥Zk∥Γ−1

k (θ∗,θ̂k)

) 3
2

∥ϕ∥Λ−1
k (θ∗)

(b)
≤m
√
αλ

H

1+
Hrmax

√
|S||A|

m
+

H

m
√
λ

√1+
Hrmax

√
|S||A|

m
ω(k)+

H

m
√
λ
ω(k)2


3
2

∥ϕ∥Σ−1
k

=
√
α · ν(k) ∥ϕ∥Σ−1

k
,

where inequality (a) is due to Lemmas C.5 and C.6, and inequality (b) follows from Lemmas C.4 and C.6.

Lemma C.8 (Gaussian Anti-Concentration). Assume that event E holds. Then, for any k > 0 and Fk−1-measurable random
variable X ∈ R|S||A|, we have

Pr
[
X⊤θ̃k > X⊤θ∗ | Fk−1

]
≥ 1

2
√
2πe

.

Proof. This proof is originated from the analysis of Lemma 11 in (Efroni et al., 2021).

Using Lemma C.7, we have that for any k > 0,

|X⊤θ∗ −X⊤θ̂k−1| ≤
√
α · ν(k − 1) ∥X∥Σ−1

k−1
.

It holds that

Pr
[
X⊤θ̃k > X⊤θ∗ | Fk−1

]
= Pr

[
X⊤θ̃k −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

>
X⊤θ∗ −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

| Fk−1

]
.

Here given Fk−1, X⊤θ̃k − X⊤θ̂k−1 = X⊤ξk is a Gaussian random variable with mean 0 and standard deviation
√
α ·

ν(k − 1)∥X∥Σ−1
k−1

.

Since when event E holds,

X⊤θ∗ −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

≤

√
α · ν(k − 1)∥X∥Σ−1

k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

= 1,

we have

Pr
[
X⊤θ̃k > X⊤θ∗ | Fk−1

]
≥ Pr

[
X⊤θ̃k −X⊤θ̂k−1√
α · ν(k − 1)∥X∥Σ−1

k−1

> 1 | Fk−1

]
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= Pr

[
X⊤ξk√

α · ν(k − 1)∥X∥Σ−1
k−1

> 1 | Fk−1

]
(a)
≥ 1

2
√
2πe

,

where inequality (a) comes from that if Z ∼ FB
UTran(0, 1), Pr[Z > z] ≥ 1√

2π
· z
1+z2 e

− z2

2 (Borjesson & Sundberg, 1979).

Lemma C.9. Let ξk, ξ′k ∈ R|S||A| be i.i.d. random variables given Fk−1. Let p̃ be a Fk−1-measurable transition model,
and xk−1 ∈ R|S||A| be a Fk−1-measurable random variable. For any policy π, denote the visitation indicator under policy
π on MDP p̃ by ϕ̃π . Let π̃k := argmaxπ(ϕ̃

π)⊤(xk−1 + ξk). Then, we have

E
[(

(ϕ̃π̃k

)⊤ (xk−1 + ξk)− E
[
(ϕ̃π̃k

)⊤ (xk−1 + ξk) | Fk−1

])+ ∣∣∣ Fk−1

]
≤ E

[
|(ϕ̃π̃k

)⊤ξk|+ |(ϕ̃π̃k

)⊤ξ′k|
∣∣∣ Fk−1

]
.

Proof. This proof is originated from Lemma 12 in (Efroni et al., 2021).

First, using the definition of π̃k and the fact that ξk and ξ′k follow the same distribution, we have

E
[
(ϕ̃π̃k

)⊤ (xk−1 + ξk) | Fk−1

]
= E

[
max
π

(ϕ̃π)⊤ (xk−1 + ξ′k) | Fk−1

]
. (8)

Then, since given Fk−1, ξk and ξ′k are independent, we have

E
[
max
π

(ϕ̃π)⊤ (xk−1 + ξ′k) | Fk−1

]
= E

[
max
π

(ϕ̃π)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

]
≥ E

[
(ϕπ̃k)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

]
. (9)

Hence, combining Eqs. (8) and (9), we have

E
[(
(ϕπ̃k)⊤ (xk−1 + ξk)− E

[
(ϕπ̃k)⊤ (xk−1 + ξk) | Fk−1

])+ ∣∣∣ Fk−1

]
≤ E

[(
(ϕπ̃k)⊤ (xk−1 + ξk)− E

[
(ϕπ̃k)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

])+ ∣∣∣ Fk−1

]
= E

[(
E
[
(ϕπ̃k)⊤ (xk−1 + ξk)− (ϕπ̃k)⊤ (xk−1 + ξ′k) | Fk−1, ξk, π̃k

])+ ∣∣∣ Fk−1

]
= E

[(
E
[
(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k | Fk−1, ξk, π̃k

])+ ∣∣∣ Fk−1

]
≤ E

[∣∣E [(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k | Fk−1, ξk, π̃k

]∣∣ ∣∣∣ Fk−1

]
≤ E

[
E
[
|(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k| | Fk−1, ξk, π̃k

] ∣∣∣ Fk−1

]
= E

[
|(ϕπ̃k)⊤ξk − (ϕπ̃k)⊤ξ′k|

∣∣∣ Fk−1

]
≤ E

[
|(ϕπ̃k)⊤ξk|

∣∣∣ Fk−1

]
+ E

[
|(ϕπ̃k)⊤ξ′k|

∣∣∣ Fk−1

]
.

For any k > 0 and δk ∈ (0, 1), define event

Mk(δk) :=

{
∀ϕ ∈ R|S||A| : |ϕ⊤ξk| ≤

√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
∥ϕ∥Σ−1

k−1

}
.
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Lemma C.10. For any k > 0 and δk ∈ (0, 1), we have

Pr [Mk(δk) | Fk−1] ≥ 1− δk.

In addition, for a random variable X ∈ R|S||A| such that ∥X∥Σ−1
k−1
≤ LX , we have

E
[
|X⊤ξk| |Fk−1

]
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]
+
√
α · ν(k − 1) · LX

√
|S||A|δk.

Proof. This proof is similar to the analysis of Lemma 13 in (Efroni et al., 2021).

First, we prove the first statement.

For any ϕ ∈ R|S||A|, we have

|ϕ⊤ξk| = |ϕ⊤Σ
− 1

2

k−1Σ
1
2

k−1ξk|

≤
∥∥∥Σ− 1

2

k−1ϕ
∥∥∥
2

∥∥∥Σ 1
2

k−1ξk

∥∥∥
2

=
√
α · ν(k − 1) ∥ϕ∥Σ−1

k−1

∥∥∥∥ 1√
α · ν(k − 1)

Σ
1
2

k−1ξk

∥∥∥∥
2

. (10)

Since given Fk−1, 1√
α·ν(k−1)

Σ
1
2

k−1ξk ∈ R|S||A| is a vector with each entry being a standard Gaussian random variable, we

have that ∥ 1√
α·ν(k−1)

Σ
1
2

k−1ξk∥2 is chi-distributed with parameter |S||A|.

Then, using Lemma 1 in (Laurent & Massart, 2000), we have that with probability at least 1− δk,

∥∥∥∥ 1√
α · ν(k − 1)

Σ
1
2

k−1ξk

∥∥∥∥
2

≤

√√√√|S||A|+ 2

√
|S||A| log

(
1

δk

)
+ 2 log

(
1

δk

)

=

√√√√(√|S||A|+√log

(
1

δk

))2

+ log

(
1

δk

)

≤
√
|S||A|+ 2

√
log

(
1

δk

)
.

Next, we prove the second statement.

For a random variable X ∈ R|S||A|, we have

E
[
|X⊤ξk| |Fk−1

]
= Pr [Mk(δk)] · E

[
|X⊤ξk| |Fk−1,Mk(δk)

]
+ Pr

[
M̄k(δk)

]
· E
[
|X⊤ξk| |Fk−1,M̄k(δk)

]
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]
+
√
Pr
[
M̄k(δk)

]
· E
[
|X⊤ξk|2 |Fk−1,M̄k(δk)

]
(a)
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]

+
√
α · ν(k − 1)

√√√√δkE

[
∥X∥2Σ−1

k−1
·
∥∥∥∥ 1√

α · ν(k − 1)
Σ

1
2

k−1ξk

∥∥∥∥2
2

|Fk−1

]
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≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]

+
√
α · ν(k − 1)

√√√√δkL2
XE

[∥∥∥∥ 1√
α · ν(k − 1)

Σ
1
2

k−1ξk

∥∥∥∥2
2

|Fk−1

]
(b)
≤
√
α · ν(k − 1)

(√
|S||A|+ 2

√
log

(
1

δk

))
E
[
∥X∥Σ−1

k−1
|Fk−1

]
+
√
α · ν(k − 1) · LX

√
|S||A|δk.

Here inequality (a) follows from the Cauchy-Schwarz inequality. Inequality (b) is due to the fact that given Fk−1,

∥ 1√
α·ν(k−1)

Σ
1
2

k−1ξk∥2 is chi-distributed with parameter |S||A|, and then E[∥ 1√
α·ν(k−1)

Σ
1
2

k−1ξk∥22 |Fk−1] = |S||A|.

Define event

FB
KTran :=

{∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤ 4H

√
k

αλ
log

(
4k

δ′

)
,∣∣∣∣∣

k∑
k′=1

(
E
[
(ϕπk′

)⊤θ∗|Fk′−1

]
− (ϕπk′

)⊤θ∗
)∣∣∣∣∣ ≤ 4Hrmax

√
k log

(
4k

δ′

)
, ∀k > 0

}
. (11)

Lemma C.11. It holds that

Pr
[
FB

KTran

]
≥ 1− 2δ′.

Proof. We prove the first inequality as follows.

For any k′ ≥ 1, we have that ∥ϕτ∥(Σk′−1)
−1 ≤ H√

αλ
, and then |Eτ∼πk′ [∥ϕτ∥(Σk′−1)

−1 |Fk′−1]− ∥ϕτ∥(Σk′−1)
−1 | ≤ 2H√

αλ
.

Using the Azuma-Hoeffding inequality, we have that for any fixed k > 0, with probability at least 1− δ′

2k2 ,∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

αλ
· k log

(
4k2

δ′

)
.

Since
∑∞

k=1
δ′

2k2 ≤ δ′, by a union bound over k, we have that with probability at least δ′, for any k ≥ 1,∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

αλ
· k log

(
4k2

δ′

)

≤ 4H

√
k

αλ
log

(
4k

δ′

)
.

The second inequality can be obtained by a similar argument and the fact that |(ϕπk

)⊤θ∗| ≤ Hrmax for any k > 0.

Lemma C.12. For any K ≥ 1, we have

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)
.

Proof. We have

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√√√√Km

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1
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(a)
≤

√√√√2Km ·max

{
H2

mαλ
, 1

}
·

K∑
k=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)

=

√
2Km ·max

{
H2

mαλ
, 1

}
· log

(
det(ΣK)

det(αλI)

)

≤

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)
, (12)

where inequality (a) is due to that for any x ∈ [0, c] with constant c ≥ 0, it holds that x ≤ 2max{c, 1} · log(1 + x).

Proof of Theorem 3.1. Letting δ′ = δ
3 , we have Pr[E ∩ FB

KTran] ≤ 1− δ. Then, to prove this theorem, it suffices to prove
the regret bound when event E ∩ FB

KTran holds.

Assume that event E ∩ FB
KTran holds. Then, we have

R(K) =

K∑
k=1

(
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗
)

=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
+ E

[
(ϕπk

)⊤θ∗|Fk−1

]
− (ϕπk

)⊤θ∗
)

≤
K∑

k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

])
+ 4Hrmax

√
K log

(
4K

δ′

)
. (13)

For the first term, we have

K∑
k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

]
+ E

[
(ϕπk

)⊤θ̃k − (ϕπk

)⊤θ∗|Fk−1

])
. (14)

In the following, we prove

E
[
(ϕπ∗

)⊤θ∗−(ϕπk

)⊤θ̃k|Fk−1

]
≤2
√
2πe · E

[(
(ϕπk

)⊤θ̃k−E
[
(ϕπk

)⊤θ̃k|Fk−1

])+
|Fk−1

]
. (15)

If E[(ϕπ∗
)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1] < 0, then Eq. (15) trivially holds.

Otherwise, letting z := E[(ϕπ∗
)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1], we have

E
[(

(ϕπk

)⊤θ̃k − E
[
(ϕπk

)⊤θ̃k|Fk−1

])+
|Fk−1

]
≥ z Pr

[
(ϕπk

)⊤θ̃k − E
[
(ϕπk

)⊤θ̃k|Fk−1

]
≥ z|Fk−1

]
≥
(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

])
· Pr

[
(ϕπk

)⊤θ̃k ≥ (ϕπ∗
)⊤θ∗|Fk−1

]
(a)
≥
(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

])
· Pr

[
(ϕπ∗

)⊤θ̃k ≥ (ϕπ∗
)⊤θ∗|Fk−1

]
(b)
≥
(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

])
· 1

2
√
2πe

,

where inequality (a) uses the definition of πk, and inequality (b) follows from Lemma C.8. Thus, we complete the proof of
Eq. (15).
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Let ξ′k ∈ R|S||A| be a random variable that is i.i.d. with ξ given Fk−1. Then, using Lemma C.9 with p′ = p, xk−1 = θ̂k−1

and π̃k = πk, we have

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ̃k|Fk−1

]
≤ 2
√
2πe · E

[(
(ϕπk

)⊤θ̃k − E
[
(ϕπk

)⊤θ̃k|Fk−1

])+
|Fk−1

]
≤ 2
√
2πe · E

[
|ϕ(πk)⊤ξk|+ |ϕ(πk)⊤ξ′k| |Fk−1

]
.

Plugging the above inequality into Eq. (14) and using Lemma C.10 with δk = 1
k4 and LX = H√

αλ
, we have

K∑
k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
=

K∑
k=1

(
2
√
2πe E

[
|(ϕπk

)⊤ξk|+|(ϕπk

)⊤ξ′k| |Fk−1

]
+E

[
(ϕπk

)⊤
(
θ̂k−1+ξk

)
−(ϕπk

)⊤θ∗|Fk−1

])

=

K∑
k=1

((
2
√
2πe+ 1

)
· E
[
|(ϕπk

)⊤ξk| |Fk−1

]
+ 2
√
2πe · E

[
|(ϕπk

)⊤ξ′k| |Fk−1

]
+ E

[
(ϕπk

)⊤θ̂k−1 − (ϕπk

)⊤θ∗|Fk−1

])
(a)
≤

K∑
k=1

((
4
√
2πe+ 2

)√
α · ν(k − 1)

(√
|S||A|+ 4

√
log (k)

)
· E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]

+
(
4
√
2πe+ 1

)√
α · ν(k − 1)

√
|S||A|
k2

· H√
αλ

)
, (16)

where inequality (a) uses Lemmas C.7 and C.10.

Here according to the definition of event FB
KTran and Lemma C.12, we have

K∑
k=1

E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
=

K∑
k=1

(
E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
−
∥∥∥ϕπk

∥∥∥
Σ−1

k−1

)
+

K∑
k=1

∥∥∥ϕπk
∥∥∥
Σ−1

k−1

≤ 4H

√
K

αλ
log

(
4K

δ′

)

+

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)
. (17)

Therefore, plugging the above two equations into Eq. (13), we have

R(K) ≤
(
4
√
2πe+ 2

)√
α · ν(K)

(√
|S||A|+ 4

√
log (K)

)
·(

4H

√
K

αλ
log

(
4K

δ′

)
+

√
2Km|S||A|max

{
H2

mαλ
, 1

}
log

(
1 +

KH2

αλ|S||A|m

))

+ 2
(
4
√
2πe+ 1

)
H · ν(K)

√
|S||A|

λ
+ 4Hrmax

√
K log

(
4K

δ′

)
(a)
= Õ

(
exp(

Hrmax

2m
) · ν(K)

√
|S||A|

(√
Km|S||A| ·max

{
H2

mαλ
, 1

}
+H

√
K

αλ

))
,

where in equality (a), the last two terms are absorbed into Õ(·).
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𝑠1

𝑠2

𝑠𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

…

𝑎𝑖
∗: transition to 𝑠𝑛+1

𝑎𝑖
𝑠𝑢𝑏: transition to 𝑠𝑛+2

𝑠𝑛+1

𝑠𝑛+2

𝑟 𝑠𝑛+1,⋅ = 𝑟𝑚𝑎𝑥 

𝑟 𝑠𝑛+2,⋅ = 1 − 𝜀 𝑟𝑚𝑎𝑥

Optimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
∗) = 𝑟𝑚𝑎𝑥

Suboptimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
𝑠𝑢𝑏) = (1 − 𝜀)𝑟𝑚𝑎𝑥

Figure 5. Instance for the lower bound under binary segment feedback and known transition.

C.2. Proof for the Regret Lower Bound with Known Transition

In the following, we prove the regret lower bound (Theorem 3.2) for RL with binary segment feedback and known transition.

Proof of Theorem 3.2. We construct a random instance I as follows. As shown in Figure 5, there are n bandit states
s1, . . . , sn (i.e., there is an optimal action and multiple suboptimal actions), a good absorbing state sn+1 and a bad absorbing
state sn+2. The agent starts from s1, . . . , sn with equal probability 1

n . For any i ∈ [n], in state si, one action aJ is uniformly
chosen from A as the optimal action. In state si, under the optimal action aJ , the agent transitions to sn+1 deterministically,
and r(si, aJ) = rmax; Under any suboptimal action a ∈ A \ {sJ}, the agent transitions to sn+2 deterministically, and
r(si, a) = (1 − ε)rmax, where ε ∈ (0, 1

2 ) is a parameter specified later. For all actions a ∈ A, r(sn+1, a) = rmax and
r(sn+2, a) = (1− ε)rmax.

In this proof, we will also use an alternative uniform instance Iunif. The only difference between Iunif and I is that for any
i ∈ [n], in state si, under all actions a ∈ A, the agent transitions to sn+2 deterministically, and r(si, a) = (1− ε)rmax.

Fix an algorithm A. Let Eunif[·] denote the expectation with respect to Iunif. Let E∗[·] denote the expectation with respect to I .
For any i ∈ [n] and j ∈ [|A|], let Ei,j [·] denote the expectation with respect to the case where aj is the optimal action in state
si, and Ni,j denote the number of episodes where algorithm A chooses aj in state si, i.e., Ni,j =

∑K
k=1 1{πk

1 (si) = aj}.

The KL divergence of binary observations if taking aJ in si in each episode between Iunif and I is

m∑
i=1

KL
(
B
(
µ

(
(1− ε)rmax ·

H

m

))∥∥∥B(µ(rmax ·
H

m

)))
(a)
≤ m ·

(
µ
(
(1− ε)rmax · Hm

)
− µ

(
rmax · Hm

))2
µ′
(
rmax · Hm

)
(b)
≤ m ·

µ′ ((1− ε)Hrmax

m

)2 (
ε · Hrmax

m

)2
µ′
(
Hrmax

m

) ,

where inequality (a) uses the fact that KL(B(p)∥B(q)) ≤ (p−q)2

q(1−q) , and inequality (b) is due to that µ′(x) is monotonically
decreasing when x > 0.

In addition, the agent has probability only 1
n to arrive at (observe) state si.

Thus, using Lemma A.1 in (Auer et al., 2002), we have that for any i ∈ [n], in state si,

Ei,j [Ni,j ] ≤ Eunif[Ni,j ] +
K

2

√√√√ 1

n
· Eunif[Ni,j ] ·m ·

µ′
(
(1− ε)Hrmax

m

)2 (
ε · Hrmax

m

)2
µ′
(
Hrmax

m

)
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= Eunif[Ni,j ] +
K

2
· ε · Hrmax

m

√√√√m

n
· Eunif[Ni,j ] ·

µ′
(
(1− ε)Hrmax

m

)2
µ′
(
Hrmax

m

) .

Summing over j ∈ [|A|], using the Cauchy-Schwarz inequality and the fact that
∑|A|

j=1 Eunif[Ni,j ] = K, we have

|A|∑
j=1

Ei,j [Ni,j ] ≤ K +
KHrmaxε

2

√√√√ |A|K
mn

·
µ′
(
(1− ε)Hrmax

m

)2
µ′
(
Hrmax

m

)
≤ K +

KHrmaxε

2

√√√√ |A|K
mn

·
µ′
(
(1− c0)

Hrmax

m

)2
µ′
(
Hrmax

m

) ,

where c0 ∈ (0, 1
2 ) is a constant which satisfies c0 ≥ ε. We will specify how to make c0 ≥ ε to satisfy this condition later.

Then, we have

R(K) =

K∑
k=1

E∗

[
V ∗ − V πk

]

= rmaxHK − 1

n

n∑
i=1

(1− ε)rmaxHK + εrmaxH ·
1

|A|

|A|∑
j=1

Ei,j [Ni,j ]


≥ εrmaxH

K − K

|A|
− KHrmaxε

2

√√√√ K

|A|mn
·
µ′
(
(1− c0)

Hrmax

m

)2
µ′
(
Hrmax

m

)
 .

Let

ε =
1

2Hrmax

√√√√ |A|mn

K
·

µ′
(
Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 .
Then, the constant c0 should satisfy

ε =
1

2Hrmax

√√√√ |A|mn

K
·

µ′
(
Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 ≤ c0.

Since

µ′ (Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 =

(
exp

(
(1− c0)

Hrmax

m

)
+ exp

(
−(1− c0)

Hrmax

m

)
+ 2
)2

exp
(
Hrmax

m

)
+ exp

(
−Hrmax

m

)
+ 2

≤
(
4 exp

(
(1− c0)

Hrmax

m

))2
exp

(
Hrmax

m

)
= 16 exp

((
1− 2c0

)Hrmax

m

)
,

it suffices to let c0 satisfy

1

2Hrmax

√
|A|mn

K
· 16 exp

(
(1− 2c0)

Hrmax

m

)
≤ c0,
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Algorithm 3 SegBiTS-Tran

1: Input: δ, δ′ := δ
8 , λ.

2: for k = 1, . . . ,K do
3: θ̂k−1 ← argminθ −(

∑k−1
k′=1

∑m
i=1(y

k′

i · log(µ((ϕτk′
i )⊤θ)) + (1− yk

′

i ) · log(1− µ((ϕτk′
i )⊤θ)))− 1

2λ∥θ∥
2
2)

4: Σk−1 ←
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤ + αλI
5: Draw a noise ξk ∼ N (0, α · ν(k − 1)2 · Σ−1

k−1), where ν(k − 1) is defined in Eq. (1)

6: bpvk−1(s, a)← min{2Hrmax

√
log(KH|S||A|

δ′ )
nk−1(s,a)

, Hrmax} for any (s, a) ∈ S ×A

7: θ̃bk ← θ̂k−1 + ξk + bpvk−1

8: πk ← argmaxπ(ϕ̂
π
k−1)

⊤θ̃bk, where ϕ̂π
k−1 is defined in Eq. (18)

9: Play episode k with policy πk. Observe τk and binary segment feedback {yki }mi=1

10: end for

which is equivalent to K ≥ 4|A|mn
H2r2maxc

2
0
exp((1− 2c0)

Hrmax

m ).

It suffices to let

K ≥ 4|A|mn

H2r2maxc
2
0

exp

(
Hrmax

m

)
,

and then c0 can be any constant in (0, 1
2 ).

Let |S| ≥ 3, |A| ≥ 2, c0 ∈ (0, 1
2 ) and K ≥ 4|A|mn

H2r2maxc
2
0
exp(Hrmax

m ). Since

µ′ (Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 =

(
exp

(
(1− c0)

Hrmax

m

)
+ exp

(
−(1− c0)

Hrmax

m

)
+ 2
)2

exp
(
Hrmax

m

)
+ exp

(
−Hrmax

m

)
+ 2

≥
(
exp

(
(1− c0)

Hrmax

m

))2
4 exp

(
Hrmax

m

)
=

1

4
exp

((
1− 2c0

)Hrmax

m

)
,

we have

R(K) ≥ 1

2Hrmax

√√√√ |A|mn

K
·

µ′
(
Hrmax

m

)
µ′
(
(1− c0)

Hrmax

m

)2 · rmaxH

(
K − K

|A|
− K

4

)

= Ω

(√
exp

(
(1− 2c0)

Hrmax

m

)
|S||A|mK

)

= Ω

(
exp

((1
2
− c0

)Hrmax

m

)√
|S||A|mK

)
.

C.3. Pseudo-code and Detailed Description of Algorithm SegBiTS-Tran

Algorithm 3 illustrates the procedure of SegBiTS-Tran. In episode k, similar to SegBiTS, SegBiTS-Tran first uses MLE
with past binary segment observations to obtain a reward estimate θ̂k−1, and calculates the covariance matrix of past
observations Σk−1 (Lines 3-4). After that, SegBiTS-Tran samples a Gaussian noise ξk using Σk−1 (Line 4).

For any k > 0 and (s, a) ∈ S ×A, let p̂k(·|s, a) denote the empirical estimate of p(·|s, a), and nk(s, a) denote the number
of times (s, a) was visited at the end of episode k. Then, SegBiTS-Tran constructs a transition bonus bpvk−1(s, a), which
represents the uncertainty on transition estimation. Incorporating the MLE estimate θ̂k−1, noise ξk and transition bonus
bpvk−1(s, a), SegBiTS-Tran constitutes a posterior estimate of the reward parameter θ̃k (Line 7).
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For any policy π, k > 0 and (s, a) ∈ S ×A, we define

ϕ̂π
k (s, a) := Ep̂k

[
H∑

h=1

1{sh = s, ah = a}|π

]
, (18)

which denotes the expected number of times (s, a) is visited in an episode under policy π on the empirical MDP p̂k. In
addition, let ϕ̂π

k := [ϕ̂π
k (s, a)](s,a)∈S×A ∈ R|S||A|.

Then, SegBiTS-Tran finds the optimal policy via argmaxπ(ϕ̂
π
k−1)

⊤θ̃bk, which can be efficiently solved by any MDP
planning algorithm with transition p̂k−1 and reward θ̃bk (Line 8). With the computed optimal policy πk, SegBiTS-Tran
plays episode k, and observes a trajectory and binary feedback on each segment (Line 9).

C.4. Proof for the Regret Upper Bound with Unknown Transition

In the following, we prove the regret upper bound (Theorem 3.3) of algorithm SegBiTS-Tran for unknown transition.

Define event

GHoeff :=

{∣∣p̂k−1(·|s, a)⊤V ∗
h+1 − p(·|s, a)⊤V ∗

h+1

∣∣ ≤ (2Hrmax

√√√√ log
(

KH|S||A|
δ′

)
nk−1(s, a)

∧Hrmax

)
,

∀(s, a) ∈ S ×A, ∀k > 0

}
.

Lemma C.13. It holds that

Pr [GHoeff] ≥ 1− 2δ′.

Proof. This lemma follows from the Hoeffding inequality and a union bound over nk−1(s, a) ∈ [KH] and (s, a) ∈
S ×A.

Lemma C.14 (Optimism of Thompson Sampling with Unknown Transition). Assume that event E and GHoeff holds. Then,
for any k > 0, we have

Pr
[
ϕ̂k−1(π

k)⊤θ̃bk > (ϕπ∗
)⊤θ∗ | Fk−1

]
≥ 1

2
√
2πe

.

Proof. This proof follows the analysis of Lemma 17 in (Efroni et al., 2021).

Using the value difference lemma (see Lemma E.2), we have

ϕ̂k−1(π
∗)⊤θ̃bk − (ϕπ∗

)⊤θ∗

= Ep̂k−1,π∗

[
H∑

h=1

(
θ̃bk(sh, ah)− θ∗(sh, ah) + (p̂k−1(·|sh, ah)− p(·|sh, ah))⊤ V ∗

h+1

)]

= Ep̂k−1,π∗

[
H∑

h=1

(
θ̃k(sh, ah)−θ∗(sh, ah)+bpvk−1(sh, ah)+(p̂k−1(·|sh, ah)−p(·|sh, ah))⊤V ∗

h+1

)]
(a)
≥ Ep̂k−1,π∗

[
H∑

h=1

(
θ̃k(sh, ah)− θ∗(sh, ah) + bpvk−1(sh, ah)− bpvk−1(sh, ah)

)]

= Ep̂k−1,π∗

[
H∑

h=1

(
θ̃k(sh, ah)− θ∗(sh, ah)

)]
= ϕ̂k−1(π

∗)⊤θ̃k − ϕ̂k−1(π
∗)⊤θ∗,
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where inequality (a) uses the definition of event GHoeff.

Thus, by the definition of πk, we have

Pr
[
ϕ̂k−1(π

k)⊤θ̃bk > (ϕπ∗
)⊤θ∗ | Fk−1

] (a)
≥ Pr

[
ϕ̂k−1(π

∗)⊤θ̃bk > (ϕπ∗
)⊤θ∗ | Fk−1

]
= Pr

[
ϕ̂k−1(π

∗)⊤θ̃bk − (ϕπ∗
)⊤θ∗ > 0 | Fk−1

]
≥ Pr

[
ϕ̂k−1(π

∗)⊤θ̃k − ϕ̂k−1(π
∗)⊤θ∗ > 0 | Fk−1

]
(b)
≥ 1

2
√
2πe

,

where inequality (a) is due to the definition of πk, and inequality (b) follows from Lemma C.8.

Define event

GKL :=

{
KL(p̂k−1(·|s, a), p(·|s, a)) ≤

L

nk−1(s, a)
, ∀k > 0,∀(s, a) ∈ S ×A

}
. (19)

Lemma C.15 (Concentration of Transition). It holds that

Pr[GKL] ≥ 1− δ′.

Proof. This lemma can be obtained by Theorem 3 and Lemma 3 in (Ménard et al., 2021).

Recall that for any k > 0 and (s, a) ∈ S ×A, nk(s, a) denotes the cumulative number of times that (s, a) is visited at the
end of episode k. For any k > 0, h ∈ [H] and (s, a) ∈ S ×A, let wk,h(s, a) denote the probability that (s, a) is visited at
step h in episode k, and let wk(s, a) :=

∑H
h=1 wk,h(s, a).

Define event

H :=

{
nk(s, a) ≥

1

2

k∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)
, ∀k > 0,∀(s, a) ∈ S ×A

}
. (20)

Lemma C.16 (Concentration of the Number of Visitations). It holds that

Pr[H] ≥ 1− δ′.

Proof. This lemma can be obtained from Lemma F.4 in (Dann et al., 2017) and summing over h ∈ [H].

Define event

FB
UTran :=

{∣∣∣∣∣
k∑

k′=1

(
E
[
(ϕπk′

)⊤bpvk′−1|Fk′−1

]
− (ϕπk′

)⊤bpvk′−1

)∣∣∣∣∣ ≤ 4H2rmax

√
k log

(
4k

δ′

)
,∣∣∣∣∣

k∑
k′=1

(
E
[∥∥∥ϕ̂k′−1(π

k′
)− ϕ(πk′

)
∥∥∥
1
|Fk′−1

]
−
∥∥∥ϕ̂k′−1(π

k′
)− ϕ(πk′

)
∥∥∥
1

)∣∣∣∣∣
≤ 8H

√
k log

(
4k

δ′

)
, ∀k > 0

}
.

Lemma C.17. It holds that

Pr
[
FB

UTran

]
≥ 1− 2δ′.
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Proof. This lemma can be obtained by a similar analysis as Lemma C.11, and the facts that |(ϕπk

)⊤bpvk−1| ≤ H2rmax and
∥ϕ̂k−1(π

k)− ϕπk∥1 ≤ 2H for any k ≥ 1.

Lemma C.18. Assume that event FB
UTran ∩ GKL ∩H holds. Then, we have

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
≤ 24e12|S| 32 |A| 32H 3

2

√
KL log(2KH)

+ 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
.

Proof. First, from Lemmas D.10 and D.11, we have
K∑

k=1

∥∥∥ϕ̂k−1(π)− ϕ(π)
∥∥∥
1

≤ e12|S||A|
K∑

k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

(
8H

√
L

nk−1(s, a)
+

46H2L

nk−1(s, a)

)

+ e12|S||A|H
K∑

k=1

H∑
h=1

∑
(s,a)/∈Dk

wπk

h (s, a)

≤ 8e12|S||A|H
√
L

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

nk−1(s, a)

+ 46e12|S||A|H2L

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

nk−1(s, a)
+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
≤ 16e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 184e12|S|2|A|2H2L log(2KH)

+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
≤ 16e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
.

Next, we have
K∑

k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
≤

K∑
k=1

∥∥∥ϕ̂k−1(π
k)− ϕπk

∥∥∥
1
+

K∑
k=1

(
E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
−
∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1

)
≤ 16e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
+ 8H

√
K log

(
4K

δ′

)
≤ 24e12|S| 32 |A| 32H 3

2

√
KL log(2KH) + 192e12|S|2|A|2H2L log

(
2KH|S||A|

δ′

)
.

Lemma C.19. Assume that event FB
UTran holds. Then, we have

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
≤ 20|S||A|H2rmax

√
K log

(
4KH|S||A|

δ′

)
.
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Proof. It holds that

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
=

K∑
k=1

(ϕπk

)⊤bpvk−1 +

K∑
k=1

(
E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
− (ϕπk

)⊤bpvk−1

)

≤
K∑

k=1

H∑
h=1

∑
s,a

wπk

h (s, a)

2Hrmax

√√√√ log
(

KH|S||A|
δ′

)
nk−1(s, a)

∧Hrmax

+ 4H2rmax

√
K log

(
4K

δ′

)

≤ 2Hrmax

√
log

(
KH|S||A|

δ′

) K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)√
nk−1(s, a)

+Hrmax

K∑
k=1

H∑
h=1

∑
(s,a)/∈Dk

wπk

h (s, a) + 4H2rmax

√
K log

(
4K

δ′

)

≤ 2Hrmax

√
log

(
KH|S||A|

δ′

)
·
√
KH ·

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wπk

h (s, a)

nk−1(s, a)

+ 8|S||A|H2rmax log

(
|S||A|H

δ′

)
+ 4H2rmax

√
K log

(
4K

δ′

)

≤ 2Hrmax

√
log

(
KH|S||A|

δ′

)
·
√
KH ·

√
4|S||A| log(2KH)

+ 8|S||A|H2rmax log

(
|S||A|H

δ′

)
+ 4H2rmax

√
K log

(
4K

δ′

)
≤ 16|S||A|H2rmax

√
K log

(
4KH|S||A|

δ′

)
.

Proof of Theorem 3.3. Letting δ′ = δ
8 , we have Pr[E ∩ FB

KTran ∩ GHoeff ∩ GKL ∩H ∩ FB
UTran] ≤ 1− δ. Then, to prove this

theorem, it suffices to prove the regret bound when event E ∩ FB
KTran ∩ GHoeff ∩ GKL ∩H ∩ FB

UTran holds.

Assume that event E ∩ FB
KTran ∩ GHoeff ∩ GKL ∩H ∩ FB

UTran holds. Then, we have

R(K) =

K∑
k=1

(
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗
)

=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
+ E

[
(ϕπk

)⊤θ∗|Fk−1

]
− (ϕπk

)⊤θ∗
)

=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

])
+ 4Hrmax

√
K log

(
4K

δ′

)
. (21)

For the first term, we have

K∑
k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
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=

K∑
k=1

(
E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤θ̃bk − (ϕπk

)⊤θ∗|Fk−1

])
. (22)

In the following, we prove

E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

]
≤ 2
√
2πe · E

[(
ϕ̂k−1(π

k)⊤θ̃bk − E
[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

])+
|Fk−1

]
. (23)

If E[(ϕπ∗
)⊤θ∗ − ϕ̂k−1(π

k)⊤θ̃bk|Fk−1] < 0, then Eq. (23) trivially holds.

Otherwise, letting z := E[(ϕπ∗
)⊤θ∗ − ϕ̂k−1(π

k)⊤θ̃bk|Fk−1], we have

E
[(

ϕ̂k−1(π
k)⊤θ̃bk − E

[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

])+
|Fk−1

]
≥ z Pr

[
ϕ̂k−1(π

k)⊤θ̃bk − E
[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

]
≥ z|Fk−1

]
≥
(
E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

])
· Pr

[
ϕ̂k−1(π

k)⊤θ̃bk ≥ (ϕπ∗
)⊤θ∗|Fk−1

]
(a)
≥
(
E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

])
· 1

2
√
2πe

,

where inequality (a) uses Lemma C.14. Thus, we complete the proof of Eq. (23).

Let ξ′k ∈ R|S||A| be an i.i.d. random variable with ξ given Fk−1. Then, using Lemma C.9 with p′ = p̂k−1, xk−1 =

θ̂k−1 + bpvk−1 and π̃k = πk, we have

E
[
(ϕπ∗

)⊤θ∗ − ϕ̂k−1(π
k)⊤θ̃bk|Fk−1

]
≤ 2
√
2πe · E

[(
ϕ̂k−1(π

k)⊤θ̃bk − E
[
ϕ̂k−1(π

k)⊤θ̃bk|Fk−1

])+
|Fk−1

]
≤ 2
√
2πe · E

[
|ϕ̂k−1(π

k)⊤ξk|+ |ϕ̂k−1(π
k)⊤ξ′k| |Fk−1

]
.

Plugging the above inequality into Eq. (22) and using Lemma C.10 with δk = 1
k4 and LX = H√

αλ
, we have

K∑
k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
=

K∑
k=1

(
2
√
2πe · E

[
|ϕ̂k−1(π

k)⊤ξk|+ |ϕ̂k−1(π
k)⊤ξ′k| |Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1 + ξk

)
− (ϕπk

)⊤θ∗|Fk−1

])
=

K∑
k=1

((
2
√
2πe+ 1

)
· E
[
|ϕ̂k−1(π

k)⊤ξk| |Fk−1

]
+ 2
√
2πe · E

[
|ϕ̂k−1(π

k)⊤ξ′k| |Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1

)
− (ϕπk

)⊤θ∗|Fk−1

])
≤

K∑
k=1

((
4
√
2πe+ 1

)√
α · ν(k − 1)

(√
|S||A|+ 4

√
log (k)

)
E
[∥∥∥ϕ̂k−1(π

k)
∥∥∥
Σ−1

k−1

|Fk−1

]

+
(
4
√
2πe+ 1

)√
α · ν(k − 1)

√
|S||A|
k2

· H√
αλ
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+ E
[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1

)
− (ϕπk

)⊤θ∗|Fk−1

])
. (24)

We have

E
[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 + bpvk−1

)
− (ϕπk

)⊤θ∗|Fk−1

]
= E

[
ϕ̂k−1(π

k)⊤
(
θ̂k−1 − θ∗

)
|Fk−1

]
+ E

[(
ϕ̂k−1(π

k)− ϕπk
)⊤

θ∗|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

]
≤
√
α · ν(k − 1)E

[∥∥∥ϕ̂k−1(π
k)
∥∥∥
Σ−1

k−1

|Fk−1

]
+ rmaxE

[∥∥∥ϕ̂k−1(π
k)− ϕπk

∥∥∥
1
|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

]
.

Hence, plugging the above inequality into Eq. (24), we have

K∑
k=1

E
[
(ϕπ∗

)⊤θ∗ − (ϕπk

)⊤θ∗|Fk−1

]
≤

K∑
k=1

((
4
√
2πe+ 2

)√
α · ν(k − 1)

(√
|S||A|+ 4

√
log (k)

)
· E
[∥∥∥ϕ̂k−1(π

k)
∥∥∥
Σ−1

k−1

|Fk−1

]

+
(
4
√
2πe+ 1

)
· ν(k − 1)

H

k2

√
|S||A|

λ
+ rmaxE

[∥∥∥ϕ̂k−1(π
k)− ϕπk

∥∥∥
1
|Fk−1

]
+ E

[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

])
.

Here we have
K∑

k=1

E
[∥∥∥ϕ̂k−1(π

k)
∥∥∥
Σ−1

k−1

|Fk−1

]

≤
K∑

k=1

E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
+

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
Σ−1

k−1

|Fk−1

]

≤
K∑

k=1

E
[∥∥∥ϕπk

∥∥∥
Σ−1

k−1

|Fk−1

]
+

1√
αλ

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
(a)
≤ 4H

√
K

αλ
log

(
4K

δ′

)
+

√
2Km|S||A| ·max

{
H2

mαλ
, 1

}
· log

(
1 +

KH2

αλ|S||A|m

)

+
1√
αλ

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
,

where inequality (a) uses Eq. (17).

In addition, we have

K∑
k=1

E
[
ϕ̂k−1(π

k)⊤bpvk−1|Fk−1

]
≤

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
+

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1

∥∥bpvk−1

∥∥
∞ |Fk−1

]
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≤
K∑

k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
+Hrmax

K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]
.

Therefore, plugging the above three equations into Eq. (21), we have

R(K) ≤
(
4
√
2πe+ 2

)√
α · ν(K)

(√
|S||A|+ 4

√
log (K)

)
·(

4H

√
K

αλ
log

(
4K

δ′

)
+

√
2Km|S||A|max

{
H2

mαλ
, 1

}
log

(
1 +

KH2

αλ|S||A|m

))

+

((
4
√
2πe+2

)ν(K)√
λ

(√
|S||A|+4

√
log(K)

)
+2Hrmax

) K∑
k=1

E
[∥∥∥ϕ̂k−1(π

k)− ϕπk
∥∥∥
1
|Fk−1

]

+

K∑
k=1

E
[
(ϕπk

)⊤bpvk−1|Fk−1

]
+2
(
4
√
2πe+ 1

)
H · ν(K)

√
|S||A|

λ
+4Hrmax

√
K log

(
4K

δ′

)
(a)
= Õ

(
exp

(
Hrmax

m

)
ν(K)

√
|S||A|

(√
Km|S||A|max

{
H2

mαλ
, 1

}
+H

√
K

αλ

)

+

(
ν(K)

√
|S||A|

λ
+Hrmax

)
|S|2|A| 32H 3

2

√
K

)
,

where in equality (a), we use Lemmas C.18 and C.19, and the last three terms are absorbed into Õ(·).

D. Proofs for RL with Sum Segment Feedback
In this section, we provide the proofs for RL with sum segment feedback.

D.1. Proof for the Regret Upper Bound with Known Transition

We first prove the regret upper bound (Theorem 4.1) of algorithm E-LinUCB for known transition.

Define event

J :=

{∥∥∥∥∥
K0∑
k=1

(
m∑
i=1

ϕτk
i (ϕτk

i )⊤ − Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])∥∥∥∥∥
≤ 4H2

m

√
K0 log

(
2|S||A|

δ′

)
+

4H2

m
log

(
2|S||A|

δ′

)}
. (25)

Lemma D.1 (Concentration of Initial Sampling). It holds that

Pr [J ] ≥ 1− δ′.

Proof. Note that π1, . . . , πK0 and K0 are fixed before sampling, E[
∑m

i=1 ϕ
τk
i (ϕτk

i )⊤] = Eτi∼πk

[∑m
i=1 ϕ(τi)ϕ(τi)

⊤], and
∥
∑m

i=1 ϕ
τk
i (ϕτk

i )⊤∥ ≤ H2

m . Then, using the matrix Bernstein inequality (Theorem 6.1.1 in (Tropp et al., 2015)), we can
obtain this lemma.

Lemma D.2 (E-optimal Design). Assume that event J holds. Then, we have∥∥∥∥∥∥
(

K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤

)−1
∥∥∥∥∥∥ ≤ 1

H2
.
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Proof. Using the guarantee of the rounding procedure ROUND (Theorem 1.1 in (Allen-Zhu et al., 2021)) and the fact that
K0 ≥ |S||A|

γ2 , we have ∥∥∥∥∥∥
(

K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])−1
∥∥∥∥∥∥

≤ (1 + γ)

∥∥∥∥∥∥
(
K0

∑
π∈Π

w∗(π) · Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])−1
∥∥∥∥∥∥

≤ (1 + γ)z∗

K0
.

Let σmin(·) denote the minimum eigenvalue. Then, we have

σmin

(
K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤

)

= σmin

(
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

]
+

K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤−
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])

≥σmin

(
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

])
−

∥∥∥∥∥
K0∑
k=1

m∑
i=1

ϕτk
i (ϕτk

i )⊤−
K0∑
k=1

Eτi∼πk

[
m∑
i=1

ϕ(τi)ϕ(τi)
⊤

]∥∥∥∥∥
≥ K0

(1 + γ)z∗
− 4H2

m

√
log

(
2|S||A|

δ′

)
·
√

K0 −
4H2

m
log

(
2|S||A|

δ′

)
. (26)

Let x =
√
K0 and

f(x) =
1

(1 + γ)z∗
· x2 − 4H2

m

√
log

(
2|S||A|

δ′

)
· x− 4H2

m
log

(
2|S||A|

δ′

)
−H2.

According to the property of quadratic functions, when

x ≥

4H2

m

√
log
(

2|S||A|
δ′

)
+

√(
4H2

m

√
log
(

2|S||A|
δ′

))2

+ 4 · 1
(1+γ)z∗

(
4H2

m log
(

2|S||A|
δ′

)
+H2

)
2 · 1

(1+γ)z∗

, (27)

we have f(x) ≥ 0.

To make Eq. (27) hold, it suffices to set

K0 ≥
(1 + γ)2(z∗)2

4
·

(
2 ·

(
4H2

m

√
log

(
2|S||A|

δ′

))2

+ 2 ·

(
4H2

m

√
log

(
2|S||A|

δ′

))2

+
8

(1 + γ)z∗
· 5H2 log

(
2|S||A|

δ′

))

=

(
16H4(1 + γ)2(z∗)2

m2
+ 10H2(1 + γ)z∗

)
log

(
2|S||A|

δ′

)
.

Furthermore, since ∥
∑

π∈Π w∗(π)Eτi∼πk

[∑m
i=1 ϕ(τi)ϕ(τi)

⊤] ∥ ≤ H2 and then z∗ ≥ 1
H2 , to make the right-hand-side in

Eq. (26) no smaller than H2, it suffices to set

K0 ≥ 26H4(1 + γ)2(z∗)2 log

(
2|S||A|

δ′

)
.
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Therefore, combining the definition of K0 and Eq. (26), we have

σmin

(
K0∑
k=1

ϕ(τk)ϕ(τk)⊤

)
≥ H2,

which completes the proof.

Lemma D.3. For any k > 0,

k∑
k′=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
= log

(
det(Σk)

det(λI)

)
≤ |S||A| log

(
1 +

kH2

λ|S||A|m

)
.

Proof. For any k > 0, it holds that

det(Σk) = det

(
Σk−1 +

m∑
i=1

ϕτk
i (ϕτk

i )⊤

)

= det(Σk−1) det

(
I +

m∑
i=1

(Σk−1)
− 1

2ϕτk
i (ϕτk

i )⊤(Σk−1)
− 1

2

)

= det(Σk−1)

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)

= det(λI)

k∏
k′=1

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
.

Taking the logarithm on both sides, we have

log det(Σk) = log det(λI) +

k∑
k′=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
.

Then,

k∑
k′=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk′
i

∥∥∥2
(Σk′−1)

−1

)
= log

(
det(Σk)

det(λI)

)

(a)
≤ log


(

tr(Σk)
|S||A|

)|S||A|

λ|S||A|


= |S||A| log

(
tr(Σk)

λ|S||A|

)
≤ |S||A| log

(
λ|S||A|+ km · H

2

m2

λ|S||A|

)

= |S||A| log
(
1 +

kH2

λ|S||A|m

)
,

where (a) uses the arithmetic mean-geometric mean inequality.

Lemma D.4 (Elliptical Potential with Optimized Initialization). Assume that event J holds. Then, for any k ≥ K0 + 1,

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

≤ 1.
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Furthermore, for any K ≥ K0 + 1,

K∑
k=K0+1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√
2Km|S||A| log

(
1 +

KH2

λ|S||A|m

)
.

Proof. Using Lemma D.2, for any k ≥ K0 + 1, we have

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

=

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2(
λI+

∑K0
k′=1

ϕτk′
(ϕτk′

)⊤+
∑k−1

k′=K0+1
ϕτk′

(ϕτk′
)⊤

)−1

≤
m∑
i=1

∥∥∥ϕτ i
i

∥∥∥2(∑K0
k′=1

ϕτk′
(ϕτk′

)⊤
)−1

≤ m · H
2

m2
· 1

H2

≤ 1.

Then, we have

K∑
k=K0+1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√√√√Km

K∑
k=K0+1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

(a)
≤

√√√√Km · 2
K∑

k=K0+1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)

≤

√√√√Km · 2
K∑

k=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)
(b)
≤

√
2Km|S||A| log

(
1 +

KH2

λ|S||A|m

)
,

where (a) uses the fact that x ≤ 2 log(1 + x) for any x ∈ [0, 1], and (b) follows from Lemma D.3.

Define event

K :=

{∥∥∥θ̂k−θ∗∥∥∥
Σk

≤

√
H|S||A|

m
log

(
1+

kH2

λ|S||A|m

)
+2 log

(
1

δ′

)
+rmax

√
λ|S||A|, ∀k > 0

}
. (28)

Lemma D.5 (Concentration of θ̂k under Sum Feedback). It holds that

Pr [K] ≥ 1− δ′.

Proof. Since the sum feedback on each segment is H
m -sub-Gaussian given the observation of transition and ∥θ∗∥ ≤

rmax

√
|S||A|, using Lemma 2 in (Abbasi-Yadkori et al., 2011), we can obtain this lemma.

Define event

FS
opt :=

{∣∣∣∣∣
k∑

k′=K0+1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣
≤ 4

√
k log

(
4k

δ′

)
, ∀k ≥ K0 + 1

}
. (29)
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Lemma D.6 (Concentration of Visitation Indicators). It holds that

Pr
[
FS

opt

]
≥ 1− δ′.

Proof. According to Lemma D.4, we have that for any k′ ≥ K0 + 1, ∥ϕτ∥(Σk′−1)
−1 ≤ 1, and then

|Eτ∼πk′ [∥ϕτ∥(Σk′−1)
−1 |Fk′−1]− ∥ϕτ∥(Σk′−1)

−1 | ≤ 2.

Using the Azuma-Hoeffding inequality, we have that for any fixed k ≥ K0 + 1, with probability at least 1− δ′

2k2 ,∣∣∣∣∣
k∑

k′=K0+1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
−∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4(k −K0 − 1) log

(
4k2

δ′

)
.

Since
∑∞

k=K0+1
δ′

2k2 ≤ δ′, by a union bound over k, we have that with probability at least δ′, for any k ≥ K0 + 1,∣∣∣∣∣
k∑

k′=K0+1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√

2 · 4(k −K0 − 1) log

(
4k2

δ′

)

≤ 4

√
k log

(
4k

δ′

)
.

Proof of Theorem 4.1. Let δ′ = δ
3 . We have Pr[J ∩K∩FS

opt] ≥ 1− δ. To prove this theorem, it suffices to prove the regret
bound when event J ∩ K ∩ FS

opt holds.

Assume that event J ∩ K ∩ FS
opt holds. Then, we have

R(K) =

K∑
k=1

(
(ϕπ∗

)⊤θ − (ϕπk

)⊤θ
)

(a)
≤

K∑
k=K0+1

(
(ϕπ∗

)⊤θ̂k−1 + β(k − 1) · ∥ϕπ∗
∥(Σk−1)−1 − (ϕπk

)⊤θ
)
+K0H

(b)
≤

K∑
k=K0+1

(
(ϕπk

)⊤θ̂k−1 + β(k − 1) · ∥ϕπk

∥(Σk−1)−1 − (ϕπk

)⊤θ
)
+K0H

≤
K∑

k=K0+1

2β(k − 1) · ∥ϕπk

∥(Σk−1)−1 +K0H

= 2β(K)

K∑
k=K0+1

∥Eτ∼πk [ϕτ |Fk−1]∥(Σk−1)−1 +K0H

(c)
≤ 2β(K)

K∑
k=K0+1

Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
+K0H

= 2β(K)

K∑
k=K0+1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−∥ϕτ∥(Σk−1)−1+∥ϕτ∥(Σk−1)−1

)
+K0H

≤ 2β(K)

K∑
k=K0+1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−∥ϕτ∥(Σk−1)−1+

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

)
+K0H, (30)
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𝑠1

𝑠2

𝑠𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

…

𝑎𝑖
∗: transition to 𝑠𝑛+1

𝑎𝑖
𝑠𝑢𝑏: transition to 𝑠𝑛+2

𝑠𝑛+1

𝑠𝑛+2

𝑟 𝑠𝑛+1,⋅ =
1

2
+ 𝜀 𝑟𝑚𝑎𝑥 

𝑟 𝑠𝑛+2,⋅ =
1

2
𝑟𝑚𝑎𝑥 

Optimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
∗) =

1

2
+ 𝜀 𝑟𝑚𝑎𝑥

Suboptimal action: 𝑟(𝑠𝑖 , 𝑎𝑖
𝑠𝑢𝑏) =

1

2
𝑟𝑚𝑎𝑥

Figure 6. Instance for the lower bound under sum segment feedback and known transition.

where inequality (a) follows from Eq. (28), inequality (b) is due to the definition of πk, and inequality (c) uses the Jensen
inequality.

Plugging Eq. (29) and Lemma D.4 into Eq. (30) and using the fact that λ := H
r2maxm

, we have

R(K) ≤ 2

(√
H|S||A|

m
log

(
1 +

KH2

λ|S||A|m

)
+ 2 log

(
1

δ′

)
+ rmax

√
λ|S||A|

)
·(

4

√
K log

(
4K

δ

)
+

√
2Km|S||A| log

(
1 +

KH2

λ|S||A|m

))

+H

⌈
max

{
26H4(1 + γ)2(z∗)2 log

(
2|S||A|

δ′

)
,
|S||A|
γ2

}⌉
= O

(
|S||A|

√
HK log

((
1 +

KHr2max

|S||A|m

)
1

δ

)
+(z∗)2H5 log

(
|S||A|

δ

)
+|S||A|H

)
.

D.2. Proof for the Regret Lower Bound with Known Transition

Now we prove the regret lower bound (Theorem 4.2) for RL with sum segment feedback and known transition.

Proof of Theorem 4.2. We construct a random instance I as follows. As shown in Figure 6, there are n bandit states
s1, . . . , sn (i.e., there is an optimal action and multiple suboptimal actions), a good absorbing state sn+1 and a bad absorbing
state sn+2. The agent starts from s1, . . . , sn with equal probability 1

n . For any i ∈ [n], in state si, one action aJ is uniformly
chosen from A as the optimal action. In state si, under the optimal action aJ , the agent transitions to sn+1 deterministically,
and r(si, aJ) = ( 12 + ε)rmax, where ε ∈ (0, 1

2 ] is a parameter specified later; Under any suboptimal action a ∈ A \ {sJ},
the agent transitions to sn+2 deterministically, and r(si, a) =

1
2rmax. For all actions a ∈ A, r(sn+1, a) = (12 + ε)rmax and

r(sn+2, a) =
1
2rmax. For any (s, a) ∈ S ×A, the reward distribution of (s, a) is Gaussian distribution N (r(s, a), 1).

In this proof, we will also use an alternative uniform instance Iunif. The only difference between Iunif and I is that for any
i ∈ [n], in state si, under all actions a ∈ A, the agent transitions to sn+2 deterministically, and r(si, a) =

1
2rmax.

Fix an algorithm A. Let Eunif[·] denote the expectation with respect to Iunif. Let E∗[·] denote the expectation with respect to I .
For any i ∈ [n] and j ∈ [|A|], let Ei,j [·] denote the expectation with respect to the case where aj is the optimal action in state
si, and Ni,j denote the number of episodes where algorithm A chooses aj in state si, i.e., Ni,j =

∑K
k=1 1{πk

1 (si) = aj}.

The KL divergence of the reward observations if taking aJ in si (i ∈ [n]) between Iunif and I is
m∑
i=1

KL
(
N
(
1

2
rmax ·

H

m
,
H

m

)∥∥∥N ((1

2
+ ε

)
rmax ·

H

m
,
H

m

))
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Algorithm 4 LinUCB-Tran

1: Input: δ, δ′ := δ
4 , λ := H

m , L := log( 3|S||A|H
δ′ ) + S log(8e(1 + KH)). For any k ≥ 1, β(k) :=√

H|S||A|
m log(1 + kH2

λ|S||A|m ) + 2 log( 1
δ′ ) + rmax

√
λ|S||A|.

2: for k = 1, . . . ,K do
3: θ̂k−1 ← (λI +

∑k−1
k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤)−1
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i Rk′

i

4: Σk−1 ← λI +
∑k−1

k′=1

∑m
i=1 ϕ

τk′
i (ϕτk′

i )⊤

5: πk←argmaxπ∈Π((ϕ̂
π
k−1)

⊤θ̂k−1+β(k−1) · ∥ϕ̂π
k−1∥(Σk−1)−1 +

∑
s′,a′Es1∼ρ[B

π;s′,a′;k
1 (s1)]), where Bπ;s′,a′;k

1 (s1)
is defined in Eq. (32)

6: Play episode k with policy πk. Observe τk and sum segment feedback {Rk
i }mi=1

7: end for

= m ·
(
H
m · rmaxε

)2
H
m

= Hr2maxε
2.

In addition, the agent has probability only 1
n to arrive at (observe) state si.

Hence, using Lemma A.1 in (Auer et al., 2002), we have that for any i ∈ [n], in state si,

Ei,j [Ni,j ] ≤ Eunif[Ni,j ] +
K

2

√
1

n
· Eunif[Ni,j ] ·Hr2maxε

2.

Summing over j ∈ [|A|], using the Cauchy-Schwarz inequality and the fact that
∑|A|

j=1 Eunif[Ni,j ] = K, we have

|A|∑
j=1

Ei,j [Ni,j ] ≤ K +
K

2

√
|A|
n
·K ·Hr2maxε

2

= K +
Krmaxε

2

√
|A|HK

n
.

Then, we have

R(K) =

K∑
k=1

E∗

[
V ∗ − V πk

]

=

(
1

2
+ ε

)
rmaxHK − 1

n

n∑
i=1

1

2
rmaxHK + εrmaxH ·

1

|A|

|A|∑
j=1

Ei,j [Ni,j ]


= εrmaxH

(
K − K

|A|
− Krmaxε

2

√
HK

n|A|

)
.

Recall that n = |S| − 2. Let |S| ≥ 3, |A| ≥ 2, K ≥ n|A|
r2maxH

and ε = 1
2rmax

√
n|A|
HK . Then, we have

R(K) = Ω
(√
|S||A|HK

)
.

D.3. Pseudo-code and Detailed Description of Algorithm LinUCB-Tran

Algorithm 4 presents the pseudo-code of LinUCB-Tran. In each episode k, similar to algorithm E-LinUCB, LinUCB-Tran
first computes the least squares estimate of the reward parameter θ̂k−1 and covariance matrix Σk−1 with past observations
(Lines 3-4).
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Then, we introduce the transition estimation in LinUCB-Tran. We first define some notation which also appears in algorithm
SegBiTS-Tran. For any k > 0 and (s, a) ∈ S × A, let p̂k(·|s, a) denote the empirical estimate of p(·|s, a), and nk(s, a)

denote the number of times (s, a) was visited up to the end of episode k. In addition, for any policy π, let ϕ̂π
k (s, a) denote

the expected number of times (s, a) is visited in an episode under policy π on empirical MDP p̂k−1 (see Eq. (18) for the
formal definition).

Below we establish a bound for the deviation between ϕ̂π
k−1 and ϕπ. For ease of analysis, we first connect ϕπ with a

newly-defined visitation value function Gπ;s′,a′

h (s; p). For any transition model p′, policy π and (s′, a′) ∈ S × A, if
regarding hitting (s′, a′) as an instantaneous reward one, then we can define a visitation value function:{

Gπ;s′,a′

h (s; p′) = 1{s = s′, πh(s) = a′}+ p(·|s, πh(s))
⊤Gπ;s′,a′

h+1 (·), ∀s ∈ S, ∀h ∈ [H],

Gπ;s′,a′

H+1 (s; p′) = 0, ∀s ∈ S.
(31)

Gπ;s′,a′

h (s; p′) denotes the expected cumulative number of times (s′, a′) was hit starting from s at step h under pol-
icy π on MDP p′, till the end of this episode. It holds that ϕπ(s′, a′) = Es1∼ρ[G

π;s′,a′

1 (s1|p)] and ϕ̂π
k−1(s

′, a′) =

Es1∼ρ[G
π;s′,a′

1 (s1|p̂k−1)] for any (s′, a′) ∈ S ×A.

With the definition of Gπ;s′,a′

h , bounding the deviation between ϕ̂π
k−1 and ϕπ is similar to bounding the gap between the

estimated and true value functions. Then, we can build a Bernstern-type uncertainty bound between ϕ̂π
k−1 and ϕπ using the

variance of Gπ;s′,a′

h . For any policy π, (s′, a′) ∈ S ×A and k > 0, define
Bπ;s′,a′;k

h (s) = min

{(
4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′
h+1 (·|p̂k−1))·L

nk−1(s,πh(s))
+ 13H2L

nk−1(s,πh(s))

+
(
1 + 2

H

)
p̂k−1(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

)
, H

}
, ∀s ∈ S, ∀h ∈ [H],

Bπ;s′,a′;k
H+1 (s) = 0, ∀s ∈ S.

(32)

The construction of Bπ;s′,a′;k
h (s) satisfies (see Lemma D.10 for more details)

|ϕ̂π
k−1(s

′, a′)− ϕπ(s′, a′)| ≤ Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
, ∀(s′, a′) ∈ S ×A,

∥ϕ̂π
k−1 − ϕπ∥1 ≤

∑
(s′,a′)

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Incorporating this transition uncertainty Es1∼ρ[B
π;s′,a′;k
1 (s1)] and reward uncertainty ∥ϕ̂π

k−1∥(Σk−1)−1 into exploration
bonuses, LinUCB-Tran computes the optimal policy πk under optimistic estimation (Line 5). After that, LinUCB-Tran
plays episode k with πk, and collects trajectory τk and reward observation on each segment {Rk

i }mi=1 (Line 6).

D.4. Proof for the Regret Upper Bound with Unknown Transition

In the following, we prove the regret upper bound (Theorem 4.3) of algorithm LinUCB-Tran for unknown transition.

Recall the definition of events GKL andH in Eqs. (19) and (20), respectively.

For any k > 0, define the set of state-action pairs

Dk :=

{
(s, a) ∈ S ×A :

1

4

k∑
k′=1

wk′(s, a) ≥ H log

(
|S||A|H

δ′

)
+H

}
. (33)

Dk stands for the set of state-action pairs which have sufficient visitations in expectation.

Lemma D.7. Assume that eventH holds. Then, if (s, a) ∈ Dk,

nk−1(s, a) ≥
1

4

k∑
k′=1

wk′(s, a).
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Proof. We have

nk−1(s, a) ≥
1

2

k−1∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)

=
1

4

k−1∑
k′=1

wk′(s, a) +
1

4

k−1∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)

=
1

4

k∑
k′=1

wk′(s, a) +
1

4

k∑
k′=1

wk′(s, a)−H log

(
|S||A|H

δ′

)
− 1

2
wk(s, a)

(a)
≥ 1

4

k∑
k′=1

wk′(s, a) +H − 1

2
wk(s, a)

≥ 1

4

k∑
k′=1

wk′(s, a),

where (a) is due to the definition of Dk (Eq. (33)).

Lemma D.8. It holds that

K∑
k=1

H∑
h=1

∑
(s,a)/∈Dk

wk,h(s, a) ≤ 8|S||A|H log

(
|S||A|H

δ′

)
.

Proof. If (s, a) /∈ Dk, then

1

4

k∑
k′=1

wk′(s, a) < H log

(
|S||A|H

δ′

)
+H.

Thus, we have

K∑
k=1

H∑
h=1

∑
(s,a)/∈Dk

wk,h(s, a) =
∑
(s,a)

K∑
k=1

H∑
h=1

1{(s, a) /∈ Dk} · wk,h(s, a)

=
∑
(s,a)

K∑
k=1

1{(s, a) /∈ Dk} · wk(s, a)

≤ 4|S||A|H log

(
|S||A|H

δ′

)
+ 4|S||A|H

≤ 8|S||A|H log

(
|S||A|H

δ′

)
.

Lemma D.9. Assume that eventH holds. Then, we have

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)
≤ 4|S||A| log(2KH).

Proof. It holds that

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)
=

K∑
k=1

∑
(s,a)∈Dk

wk(s, a)

nk−1(s, a)
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=

K∑
k=1

∑
(s,a)

wk(s, a)

nk−1(s, a)
· 1{(s, a) ∈ Dk}

(a)
≤ 4

K∑
k=1

∑
(s,a)

wk(s, a)∑k
k′=1 wk(s, a)

· 1{(s, a) ∈ Dk}

= 4
∑
(s,a)

K∑
k=1

wk(s, a)∑k
k′=1 wk(s, a)

· 1{(s, a) ∈ Dk}

(b)
≤ 4|S||A| log(2KH),

where (a) uses Lemma D.7, and (b) follows from the analysis of Lemma 13 in (Zanette & Brunskill, 2019).

Lemma D.10 (Error in Visitation Vectors). Assume that event GKL holds. Then, for any k > 0 and policy π,

∥ϕ̂k−1(π)− ϕ(π)∥1 ≤
∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Proof. Since ϕπ(s′, a′) = Es1∼ρ[G
π;s′,a′

1 (s1|p)] and ϕ̂π
k−1(s

′, a′) = Es1∼ρ[G
π;s′,a′

1 (s1|p̂k−1)], in this proof, we investigate

the error in Gπ;s′,a′

h due to the estimation of the transition model.

In the following, we prove by induction that for any h ∈ [H] and s ∈ S , |Gπ;s′,a′

h (s|p̂k−1)−Gπ;s′,a′

h (s|p)| ≤ Bπ;s′,a′;k
h (s).

When h = H + 1, by definition, we have Gπ;s′,a′

H+1 (s|p̂k−1) = Gπ;s′,a′

H+1 (s|p) = Bπ;s′,a′;k
H+1 (s) = 0 for any s ∈ S , and then the

above statement trivially holds.

When 1 ≤ h ≤ H , if |Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)| ≤ Bπ;s′,a′;k
h+1 (·) element-wise, then for any s ∈ S, we have

|Gπ;s′,a′

h (s|p̂k−1)−Gπ;s′,a′

h (s|p)|

=
∣∣∣p̂k−1(·|s, πh(s))

⊤Gπ;s′,a′

h+1 (·|p̂k−1)− p(·|s, πh(s))
⊤Gπ;s′,a′

h+1 (·|p)
∣∣∣

= p̂k−1(·|s, πh(s))
⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣

+
∣∣∣(p̂k−1(·|s, πh(s))− p(·|s, πh(s)))

⊤
Gπ;s′,a′

h+1 (·|p)
∣∣∣

(a)
≤ p̂k−1(·|s, πh(s))

⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣+ 2

√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+
HL

nk−1(s, πh(s))
, (34)

where (a) is due to Lemma E.4.

Here, we have

Varp(·|s,πh(s))(G
π;s′,a′

h+1 (·|p))
(a)
≤ 2Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) + 4H2L

nk−1(s, πh(s))
(b)
≤ 4Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) + 4Hp̂k−1(·|s, πh(s))
⊤|Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)|

+
4H2L

nk−1(s, πh(s))
,

where (a) uses Lemma E.5 and (b) comes from Lemma E.6.
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Then, √
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

(35)

≤

√
4Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+

√
1

H
p̂k−1(·|s, πh(s))⊤|Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)| · 4H2L

nk−1(s, πh(s))
+

2HL

nk−1(s, πh(s))

(a)
≤ 2

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
1

H
p̂k−1(·|s, πh(s))

⊤|Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)|+ 6H2L

nk−1(s, πh(s))
, (36)

where (a) is due to the fact that
√
xy ≤ x+ y.

Hence, plugging Eq. (36) into Eq. (34) and using the fact that |Gπ;s′,a′

h (s)| ∈ [0, H], we have

|Gπ;s′,a′

h (s|p̂k−1)−Gπ;s′,a′

h (s|p)|

≤

(
4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p̂k−1(·|s, πh(s))

⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣) ∧H.

≤

(
4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p̂k−1(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

)
∧H

= Bπ;s′,a′;k
h (s),

which completes the induction proof.

Therefore, ∣∣∣ϕ̂π
k−1(s

′, a′)− ϕπ(s′, a′)
∣∣∣ = ∣∣∣Es1∼ρ

[
Gπ;s′,a′

1 (s1|p̂k−1)
]
− Es1∼ρ

[
Gπ;s′,a′

1 (s1|p)
]∣∣∣

≤ Es1∼ρ

[∣∣∣Gπ;s′,a′

1 (s1|p̂k−1)−Gπ;s′,a′

1 (s1|p)
∣∣∣]

≤ Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Summing over (s′, a′) ∈ S ×A, we obtain this lemma.

Lemma D.11. Assume that event GKL ∩H holds. Then, for any k > 0 and policy π,

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]

≤ e12
H∑

h=1

∑
s,a

wπ
h(s, a)

8

√
Varp(·|s,a)(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)

 ∧H,

and ∑
s′,a′

K∑
k=1

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]
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≤ 16e12|S| 32 |A| 32H
√

KL log(2KH) + 192e12|S|2|A|2H2L log(2KH).

Proof. First, we prove the first statement.

For any policy π, k > 0, (s′, a′) ∈ S ×A, h ∈ [H] and s ∈ S, we have

Bπ;s′,a′;k
h (s) ≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p̂k−1(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

= 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

+

(
1 +

2

H

)
(p̂k−1(·|s, πh(s))− p(·|s, πh(s)))

⊤
Bπ;s′,a′;k

h+1 (·)

(a)
≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

+

(
1 +

2

H

)
·

2

√
Varp(·|s,πh(s))(B

π;s′,a′;k
h+1 (·)) · L

nk−1(s, πh(s))
+

HL

nk−1(s, πh(s))


≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
13H2L

nk−1(s, πh(s))

+

(
1 +

2

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

+

(
1+

2

H

)(
2

√
1

H
p(·|s, πh(s))⊤B

π;s′,a′;k
h+1 (·) H2L

nk−1(s, πh(s))
+

HL

nk−1(s, πh(s))

)
(b)
≤ 4

√
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

+
22H2L

nk−1(s, πh(s))

+

(
1 +

8

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·), (37)

where (a) uses Lemma E.4, and (b) follows from the fact that
√
xy ≤ x+ y.

In addition, we have

Varp̂k−1(·|s,πh(s))(G
π;s′,a′

h+1 (·|p̂k−1))

(a)
= 2Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) +
4H2L

nk−1(s, a)
(b)
≤ 4Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) + 4Hp(·|s, πh(s))
⊤
∣∣∣Gπ;s′,a′

h+1 (·|p̂k−1)−Gπ;s′,a′

h+1 (·|p)
∣∣∣

+
4H2L

nk−1(s, a)

≤ 4Varp(·|s,πh(s))(G
π;s′,a′

h+1 (·|p)) + 4Hp(·|s, πh(s))
⊤Bπ;s′,a′

h+1 (·|p̂k−1) +
4H2L

nk−1(s, a)
,
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where (a) uses Lemma E.5, and (b) comes from Lemma E.6.

Then, √
Varp̂k−1(·|s,πh(s))(G

π;s′,a′

h+1 (·|p̂k−1)) · L
nk−1(s, πh(s))

≤

√
4Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+

√
1

H
p(·|s, πh(s))⊤B

π;s′,a′

h+1 (·|p̂k−1) ·
4H2L

nk−1(s, πh(s))

+
2HL

nk−1(s, a)

≤ 2

√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+
1

H
p(·|s, πh(s))

⊤Bπ;s′,a′

h+1 (·|p̂k−1)

+
6H2L

nk−1(s, πh(s))
(38)

Plugging Eq. (38) into Eq. (37) and using the clipping definition of Bπ;s′,a′;k
h (s), we have

Bπ;s′,a′;k
h (s) ≤

8

√
Varp(·|s,πh(s))(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, πh(s))

+
46H2L

nk−1(s, πh(s))

 ∧H

+

(
1 +

12

H

)
p(·|s, πh(s))

⊤Bπ;s′,a′;k
h+1 (·)

Using the above inequality, taking s1 ∼ ρ, and unfolding Bπ;s′,a′;k
1 (s1) over h, we have

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]

≤ e12
H∑

h=1

∑
s,a

wπ
h(s, a)

8

√
Varp(·|s,a)(G

π;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)

 ∧H. (39)

Next, we prove the second statement.

It holds that ∑
s′,a′

K∑
k=1

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

≤ e12
∑
s′,a′

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

8

√
Varp(·|s,a)(G

πk;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)


+ e12H|S||A|

K∑
k=1

H∑
h=1

∑
(s,a)/∈Dk

wk,h(s, a)

(a)
≤ 8e12

√
L
∑
s′,a′

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)Varp(·|s,a)(G
πk;s′,a′

h+1 (·|p))·

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)
+ e12|S||A| · 46H2L

K∑
k=1

H∑
h=1

∑
(s,a)∈Dk

wk,h(s, a)

nk−1(s, a)

+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
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(b)
≤ 8e12|S||A|

√
L
√
KH2 ·

√
4|S||A| log(2KH) + 184e12|S|2|A|2H2L log(2KH)

+ 8e12|S|2|A|2H2 log

(
|S||A|H

δ′

)
≤ 16e12|S| 32 |A| 32H

√
KL log(2KH) + 192e12|S|2|A|2H2L log(2KH),

where (a) is due to Lemma D.8, and (b) follows from Lemmas E.3 and D.9.

Lemma D.12 (Optimism under Sum Feedback and Unknown Transition). Assume that event GKL holds. Then, for any
k > 0 and fixed policy π,

V π
1 (s1) ≤ ϕ̂k−1(π)

⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
.

Proof. It holds that

V π
1 (s1) = ϕ(π)⊤θ

= ϕ̂k−1(π)
⊤θ̂k−1 + ϕ(π)⊤θ − ϕ̂k−1(π)

⊤θ + ϕ̂k−1(π)
⊤θ − ϕ̂k−1(π)

⊤θ̂k−1

≤ ϕ̂k−1(π)
⊤θ̂k−1 + ∥ϕ(π)− ϕ̂k−1(π)∥1 · ∥θ∥∞ + β(k − 1) · ∥ϕ̂k−1(π)∥(Σk−1)−1

(a)
≤ ϕ̂k−1(π)

⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
,

where (a) uses Lemma D.10.

Lemma D.13. For any K ≥ 1, we have

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤ H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

)
.

Proof. We have

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

≤

√√√√Km

K∑
k=1

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

=

√√√√Km

K∑
k=1

min

{
m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

,
H2

mλ

}

=

√√√√H2K

λ

K∑
k=1

min

{
mλ

H2

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

, 1

}

(a)
≤

√√√√2H2K

λ

K∑
k=1

log

(
1 + min

{
mλ

H2

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

, 1

})

(b)
≤

√√√√2H2K

λ

K∑
k=1

log

(
1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥2
(Σk−1)−1

)
(c)
≤

√
2KH2|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

)
,

where inequality (a) uses the fact that x ≤ 2 log(1 + x) for any 0 ≤ x ≤ 1, inequality (b) is due to the fact that λ ≤ H2

m ,
and inequality (c) follows from Lemma D.3.
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Define event

FS
reg :=

{∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤ 4H

√
k

λ
log

(
4k

δ′

)
,

∀k > 0

}
. (40)

Event FS
reg is similar to FS

opt, except that here the universal upper bound of ∥ϕτ∥(Σk′−1)
−1 is H√

λ
rather than 1.

Lemma D.14. It holds that

Pr
[
FS

reg

]
≥ 1− δ′.

Proof. For any k′ ≥ 1, we have that ∥ϕτ∥(Σk′−1)
−1 ≤ H√

λ
, and then |Eτ∼πk′ [∥ϕτ∥(Σk′−1)

−1 |Fk′−1]− ∥ϕτ∥(Σk′−1)
−1 | ≤

2H√
λ

.

Using the Azuma-Hoeffding inequality, we have that for any fixed k > 0, with probability at least 1− δ′

2k2 ,∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

λ
· k log

(
4k2

δ′

)
.

Since
∑∞

k=1
δ′

2k2 ≤ δ′, by a union bound over k, we have that with probability at least δ′, for any k ≥ 1,∣∣∣∣∣
k∑

k′=1

(
Eτ∼πk′

[
∥ϕτ∥(Σk′−1)

−1 |Fk′−1

]
− ∥ϕτ∥(Σk′−1)

−1

)∣∣∣∣∣ ≤
√
2 · 4H

2

λ
· k log

(
4k2

δ′

)

≤ 4H

√
k

λ
log

(
4k

δ′

)
.

Proof of Theorem 4.3. Let δ′ = δ
4 . Then, we have Pr[K ∩ FS

reg ∩ GKL ∩ H] ≥ 1− δ. Thus, it suffices to prove the regret
upper bound when event K ∩ FS

reg ∩ GKL ∩H holds.

Assume that event K ∩ FS
reg ∩ GKL ∩H holds. For any k > 0, we have

K∑
k=1

(
V ∗(s1)− V πk

(s1)
)

(a)
≤

K∑
k=1

(
ϕ̂k−1(π

∗)⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π
∗)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπ∗;s′,a′;k

1 (s1)
]

− V πk

)
(b)
≤

K∑
k=1

(
ϕ̂k−1(π

k)⊤θ̂k−1 + β(k − 1) · ∥ϕ̂k−1(π
k)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

− V πk

)

≤
K∑

k=1

(
ϕ̂k−1(π

k)⊤θ̂k−1 − ϕ̂k−1(π
k)⊤θ + ϕ̂k−1(π

k)⊤θ − (ϕπk

)⊤θ
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+ β(k − 1) · ∥ϕ̂k−1(π
k)∥(Σk−1)−1 + rmax

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
])

(c)
≤

K∑
k=1

2β(k − 1) · ∥ϕ̂k−1(π
k)∥(Σk−1)−1 + 2rmax

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

≤ 2β(K)

K∑
k=1

∥ϕ̂k−1(π
k)∥(Σk−1)−1 + 2rmax

K∑
k=1

∑
s′,a′

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]
, (41)

where (a) uses Lemma D.12, (b) is due to the definition of πk, and (c) follows from Lemma D.10 and the definition of event
K.

Next, we first bound
∑K

k=1 ∥ϕ̂k−1(π
k)∥(Σk−1)−1 .

We have

K∑
k=1

∥ϕ̂k−1(π
k)∥(Σk−1)−1 ≤

K∑
k=1

(
∥ϕπk

∥(Σk−1)−1 + ∥ϕ̂k−1(π
k)− ϕπk

∥(Σk−1)−1

)
≤

K∑
k=1

(
∥ϕπk

∥(Σk−1)−1 +
1√
λ
· ∥ϕ̂k−1(π

k)− ϕπk

∥2
)

≤
K∑

k=1

(
∥ϕπk

∥(Σk−1)−1 +
1√
λ
· ∥ϕ̂k−1(π

k)− ϕπk

∥1
)
. (42)

Here we have

K∑
k=1

∥ϕπk

∥(Σk−1)−1

=

K∑
k=1

∥Eτ∼πk [ϕτ |Fk−1]∥(Σk−1)−1

(a)
≤

K∑
k=1

Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
=

K∑
k=1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−
∥∥ϕ(τk)∥∥

(Σk−1)−1 +
∥∥ϕ(τk)∥∥

(Σk−1)−1

)
≤

K∑
k=1

(
Eτ∼πk

[
∥ϕτ∥(Σk−1)−1 |Fk−1

]
−
∥∥ϕ(τk)∥∥

(Σk−1)−1 +

m∑
i=1

∥∥∥ϕτk
i

∥∥∥
(Σk−1)−1

)
(b)
≤ 4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

)
, (43)

where (a) uses the Jensen inequality, and (b) comes from the definition of FS
reg and Lemma D.13.

Hence, plugging Eq. (43) into Eq. (42) and using Lemma D.10, we have

K∑
k=1

∥ϕ̂k−1(π
k)∥(Σk−1)−1 ≤ 4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|

)

+
1√
λ

K∑
k=1

∑
s′,a′

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
. (44)
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On the other hand, according to Eq. (39), we have

Es1∼ρ

[
Bπ;s′,a′;k

1 (s1)
]
≤e12

H∑
h=1

∑
s,a

wπ
h(s, a)

8
√

Varp(·|s,a)(G
π;s′,a′

h+1 (·|p)) · L
nk−1(s, a)

+
46H2L

nk−1(s, a)

∧H.

Therefore, plugging Eqs. (44) and (39) into Eq. (41), we have

K∑
k=1

(
V ∗ − V πk

)

≤ 2β(K)

(
4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

))

+ 2

(
β(K)√

λ
+ rmax

)∑
s′,a′

K∑
k=1

Es1∼ρ

[
Bπk;s′,a′;k

1 (s1)
]

(a)
≤ 2β(K)

(
4H

√
K

λ
log

(
4K

δ′

)
+H

√
2K|S||A|

λ
log

(
1 +

KH2

λ|S||A|m

))

+
4β(K)√

λ

(
16e12|S| 32 |A| 32H

√
KL log(2KH) + 192e12|S|2|A|2H2L log(2KH)

)
= O

((√
H|S||A|

m
log

((
1 +

KH2

λ|S||A|m

)
1

δ

)
+ rmax

√
λ|S||A|

)
·

(
H

√
K|S||A|

λ
log

((
1 +

KH2

λ|S||A|m

)
1

δ

)
+ |S| 32 |A| 32H

√
KL

λ
log(KH) +

|S|2|A|2H2L√
λ

log(KH)

))
(b)
= O

(
(1 + rmax)|S|2|A|2H

√
K

(
log

((
1 +

KH

|S||A|

)
1

δ

)
+
√

L log(KH)

√
log

((
1 +

KH

|S||A|

)
1

δ

))

+ (1 + rmax)|S|
5
2 |A| 52H2L log(KH)

√
log

((
1 +

KH

|S||A|

)
1

δ

))
= Õ

(
(1 + rmax)|S|

5
2 |A|2H

√
K + (1 + rmax)|S|

7
2 |A| 52H2

)
,

where inequality (a) comes from Lemma D.11, and equality (b) uses the fact that λ := H
m .

D.5. A Lower Bound for Unknown Transition and its Proof

Below we provide a lower bound for RL with sum segment feedback and unknown transition with the proof.

Theorem D.15. Consider the problem of RL with sum segment feedback and unknown transition. There exists a distribution
of instances where the regret of any algorithm must be

Ω
(
rmaxH

√
|S||A|K

)
.

Proof of Theorem D.15. We construct a random instance I as follows. As shown in Figure 7, there are n bandit states
s1, . . . , sn (i.e., there are an optimal action and multiple suboptimal actions), a good absorbing state sn+1 and a bad
absorbing state sn+2. The agent starts from s1, . . . , sn with equal probability 1

n . For any i ∈ [n], in state si, one action aJ
is uniformly chosen from A as the optimal action. In state si, under the optimal action aJ , the agent transitions to sn+1 and
sn+2 with probabilities 1

2 + ε and 1
2 − ε, respectively, where ε ∈ (0, 1

4 ) is a parameter specified later; Under any suboptimal
action a ∈ A \ {sJ}, the agent transitions to sn+1 and sn+2 with equal probability 1

2 .

The rewards are deterministic for all state-action pairs. For any a ∈ A, r(sn+1, a) = rmax. For any i ∈ {1, ..., n, n+ 2}
and a ∈ A, r(si, a) = 0.
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𝑠1

𝑠2

𝑠𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

w.p. 
1

𝑛

…

Suboptimal action: transition to 𝑠𝑛+1 w.p.
1

2

𝑠𝑛+2 w.p.
1

2

𝑠𝑛+1

𝑠𝑛+2 𝑟 𝑠𝑛+2,⋅ = 0

𝑟 𝑠𝑛+1,⋅ = 𝑟𝑚𝑎𝑥

Optimal action: transition to 𝑠𝑛+1 w.p.
1

2
+ 𝜀

𝑠𝑛+2 w.p.
1

2
− 𝜀

𝑟 𝑠𝑖 ,⋅ = 0

Figure 7. Instance for the lower bound under sum segment feedback and unknown transition.

In this proof, we will also use an alternative uniform instance Iunif. The only difference between Iunif and I is that for any
i ∈ [n], in state si, under all actions a ∈ A, the agent transitions to sn+1 and sn+2 with equal probability 1

2 .

Fix an algorithm A. Let Eunif[·] denote the expectation with respect to Iunif. Let E∗[·] denote the expectation with respect to I .
For any i ∈ [n] and j ∈ [|A|], let Ei,j [·] denote the expectation with respect to the case where aj is the optimal action in state
si, and Ni,j denote the number of episodes where algorithm A chooses aj in state si, i.e., Ni,j =

∑K
k=1 1{πk

1 (si) = aj}.

The KL divergence of transition distribution on (si, aJ) (i ∈ [n]) between Iunif and I is

KL
(
B
(
1

2

)
∥B
(
1

2
+ ε

))
=

1

2
ln

( 1
2

1
2 − ε

)
+

1

2
ln

( 1
2

1
2 + ε

)
=

1

2
ln

( 1
4

1
4 − ε2

)
= −1

2
ln
(
1− 4ε2

)
(a)
≤ 4ε2,

where (a) uses the fact that − ln(1− x) ≤ 2x when x ∈ (0, 1
4 ).

In addition, the agent has probability only 1
n to arrive at (observe) state si.

Thus, using Lemma A.1 in (Auer et al., 2002), we have that for any i ∈ [n], in state si,

Ei,j [Ni,j ] ≤ Eunif[Ni,j ] +
K

2

√
1

n
· Eunif[Ni,j ] · KL

(
B
(
1

2

)
∥B
(
1

2
+ ε

))
≤ Eunif[Ni,j ] +

K

2

√
1

n
· Eunif[Ni,j ] · 4ε2

= Eunif[Ni,j ] +Kε

√
1

n
· Eunif[Ni,j ].

Summing over j ∈ [|A|], using the Cauchy-Schwarz inequality and the fact that
∑|A|

j=1 Eunif[Ni,j ] = K, we have

|A|∑
j=1

Ei,j [Ni,j ] ≤ K +Kε

√
|A|
n
·K.

Then, we have

R(K) =

K∑
k=1

E∗

[
V ∗ − V πk

]
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=

(
1

2
+ ε

)
(H − 1)rmaxK

− 1

n

n∑
i=1

1

2
(H − 1)rmaxK + ε(H − 1)rmax ·

1

|A|

|A|∑
j=1

Ei,j [Ni,j ]


≥ ε(H − 1)rmax

(
K − K

|A|
−Kε

√
K

|A|n

)
.

Recall that n = |S| − 2. Let |S| ≥ 3, |A| ≥ 2, H ≥ 2, K > |A|n and ε = 1
4

√
|A|n
K . Then, we have

R(K) = Ω
(
rmaxH

√
|S||A|K

)
.

E. Technical Tools
In this section, we introduce several technical tools.
Lemma E.1 (Self-concordance, Lemma 9 in (Faury et al., 2020)). For any x1, x2 ∈ R, we have

µ′(x1)
1− exp(−|x1 − x2|)

|x1 − x2|
≤
∫ 1

z=0

µ′((1− z)x1 + zx2)dz ≤ µ′(x1)
exp(|x1 − x2|)− 1

|x1 − x2|
.

Furthermore, we have ∫ 1

z=0

µ′((1− z)x1 + zx2)dz ≥
µ′(x1)

1 + |x1 − x2|
.

Lemma E.2 (Value Difference Lemma, Lemma E.15 in (Dann et al., 2017)). For any two MDPs M ′ and M ′′ with rewards
r′ and r′′ and transition distributions p′ and p′′, we have that for any h ∈ [H] and s ∈ S,

V ′
h(s)−V ′′

h (s)=Ep′′

[
H∑
t=h

(
r′(st, at)−r′′(st, at)+(p′(·|st, at)−p′′(·|st, at))

⊤
V ′
h+1(·)

)
|st = s

]
.

Lemma E.3 (Law of Total Variance, Lemma 15 in (Zanette & Brunskill, 2019)). For an MDP p and a fixed policy π, we
have

Eπ,p

[(
H∑

h=1

r(sh, πh(s))−V π
1 (s1)

)∣∣∣∣s1
]
=Eπ,p

[
H∑

h=1

Varsh+1∼p(·|sh,πh(sh))

(
V π
h+1(sh+1)

) ∣∣∣∣s1
]
.

The idea of Lemma E.3 was also used in earlier works, e.g., (Munos & Moore, 1999; Lattimore & Hutter, 2012; Ghesh-
laghi Azar et al., 2013).
Lemma E.4 (Lemma 10 in (Ménard et al., 2021)). For distributions p, q ∈ △S and function f : S → [0, b], if KL(p, q) ≤ α,
then

|(p(·)− q(·))⊤f(·)| ≤
√

2Varq(f)α+
2

3
bα.

Lemma E.5 (Lemma 11 in (Ménard et al., 2021)). For distributions p, q ∈ △S and function f : S → [0, b], if KL(p, q) ≤ α,
then

Varq(f) ≤ 2Varp(f) + 4b2α.

Lemma E.6 (Lemma 12 in (Ménard et al., 2021)). For distribution p ∈ △S and functions f, g : S → [0, b], we have

Varp(f) ≤ 2Varp(g) + 2bp(·)⊤|f(·)− g(·)|.
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