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ABSTRACT

Existing works in federated learning (FL) often assumes an ideal system with
either full client or uniformly distributed client participation. However, in practice,
it has been observed that some clients may never participate in FL training (aka
incomplete client participation) due to a myriad of system heterogeneity factors. To
mitigate impacts of incomplete client participation, a popular approach is the server-
assisted federated learning (SA-FL) framework, where the server is equipped with
an auxiliary dataset. However, despite the fact that SA-FL has been empirically
shown to be effective in addressing the incomplete client participation problem,
there remains a lack of theoretical understanding for SA-FL. Meanwhile, the
ramifications of incomplete client participation in conventional FL is also poorly
understood. These theoretical gaps motivate us to rigorously investigate SA-FL.
Toward this end, to fully understand the impact of incomplete client participation
on conventional FL, we first show that conventional FL is not PAC-learnable under
incomplete client participation in the worst case. Then, we show that the PAC-
learnability of FL with incomplete client participation can indeed be revived by
SA-FL, which theoretically justifies the use of SA-FL for the first time. Lastly, to
provide practical guidance for SA-FL training under incomplete client participation,
we propose the SAFARI (server-assisted federated averaging) algorithm that enjoys
the same linear convergence speedup guarantees as classic FL with ideal client
participation assumptions, offering the first SA-FL algorithm with convergence
guarantee. Extensive experiments on different datasets show SAFARI significantly
improve the performance under incomplete client participation.

1 INTRODUCTION

Since the seminal work by McMahan et al. (2017), federated learning (FL) has emerged as a
powerful distributed learning paradigm that enables a large number of clients (e.g., edge devices) to
collaboratively train a model under a central server’s coordination. However, as FL gaining popularity,
it has also become apparent that FL faces a key challenge unseen in traditional distributed learning in
data-center settings – system heterogeneity. Generally speaking, system heterogeneity in FL is caused
by the massively different computation and communication capabilities at each client (computational
power, communication capacity, drop-out rate, etc.). Studies have shown that system heterogeneity
can significantly impact client participation in a highly non-trivial fashion and render incomplete
client participation, which severely degrades the learning performance (Bonawitz et al., 2019; Yang
et al., 2021a). For example, it is shown in (Yang et al., 2021a) that more than 30% clients never
participate in FL, while only 30% of the clients contribute to 81% of the total computation even if the
server uniformly samples the clients. Exacerbating the problem is the fact that clients’ status could
be unstable and time-varying due to the aforementioned computation/communication constraints.

To mitigate the impact of incomplete client participation, one approach called server-assisted fed-
erated learning (SA-FL) has been widely adopted in real-world FL systems in recent years (see,
e.g., (Zhao et al., 2018; Wang et al., 2021b)). The basic idea of SA-FL is to equip the server with a
small auxiliary dataset that approximately mimics the population distribution, so that the distribution
deviation induced by incomplete client participation can be corrected. Nonetheless, while SA-FL
has empirically demonstrated its considerable efficacy in addressing incomplete client participation
problem in practice, there remains a lack of theoretical understanding for SA-FL. This motivates us
to investigate the efficacy of SA-FL against incomplete client participation for FL in this paper.
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Somewhat counterintuitively, to understand SA-FL, one must first fully understand the impact of
incomplete client participation on conventional FL. In other words, we need to first answer the
following fundamental questions: “1) What are the impacts of incomplete client participation
on conventional FL learning performance?” Upon answering this question, the next important
follow-up question regarding SA-FL is: “2) What benefits could SA-FL bring and how could we
theoretically characterize them? Also, just knowing the benefits of SA-FL is still not enough to
provide guidelines on how to appropriately use server-side data to design training algorithms with
convergence guarantees. Therefore, our third fundamental question for SA-FL is: “3) Is it possible to
develop SA-FL training algorithms with provable convergence rates that can match the state-of-the-
art rates in conventional FL?” Indeed, answering these three questions constitutes the rest of this
paper, where we address the first two questions through the lens of PAC (probably approximately
correct) learning, while resolving the third question by proposing a provably convergent SA-FL
algorithm. Our major contributions in this work are summarized as follows:
• By establishing a worst-case generalization error lower bound, we show that classic FL is not

PAC-learnable under incomplete client participation. In other words, no learning algorithm can
approach zero generalization error with incomplete client participation for classic FL even in the
limit of infinitely many data samples and training iterations. This insight, though being negative,
warrants the necessity of developing new algorithmic techniques and system architectures (e.g.,
SA-FL) to modify the classic FL framework to mitigate incomplete client participation.

• We prove a new generalization error bound to show that SA-FL can indeed revive the PAC
learnability of FL with incomplete client participation. We note that this bound could reach zero
asymptotically as the number data samples increases. This is much stronger than previous results
in domain adaptation with non-vanishing small error (see Section 2 for details).

• To ensure that SA-FL is provably convergent in training, we propose a new training algorithm for
SA-FL called SAFARI (server-assisted federated averaging). By carefully designing the server-
client update coordination, we show that SAFARI achieves an O(1/

√
mkR) convergence rate

to a stationary point, matching the convergence rates of state-of-the-art classic FL algorithms.
This shows SAFARI can enjoy the same benefits of parallelism in SA-FL under incomplete client
participation, representing a significant practical improvement over existing approaches. We also
conduct extensive experiments to demonstrate the efficacy and efficiency of our SAFARI algorithm.

The rest of this paper is organized as follows. In Section 2, we review the literature to put our work
in comparative perspectives. Section 3 presents the PAC learning analysis of standard FL under
incomplete participation and our proposed SA-FL framework. We then propose the SAFARI algorithm
with convergence guarantees in Section 4, followed by extensive experiments in Section 5.

2 RELATED WORK

1) Client Participation in Federated Learning: The seminal FedAvg algorithm was first proposed
in McMahan et al. (2017) as a heuristic to improve communication efficiency and data privacy for FL.
Since then, there have been many follow-ups (e.g., (Li et al., 2020a; Wang et al., 2020; Zhang et al.,
2020; Acar et al., 2021; Karimireddy et al., 2020; Luo et al., 2021; Mitra et al., 2021; Karimireddy
et al., 2021; Khanduri et al., 2021; Murata & Suzuki, 2021; Avdiukhin & Kasiviswanathan, 2021) and
so on) on addressing the data heterogeneity challenge in FL. However, most of these works (e.g., (Li
et al., 2020a; Wang et al., 2020; Zhang et al., 2020; Acar et al., 2021; Karimireddy et al., 2020; Yang
et al., 2021b)) are based on the full or uniform (i.e., sampling clients uniformly at random) client
participation assumption. The full or uniform participation assumptions are essential since they are
required to ensure that the stochastic gradient estimator is unbiased in each round of update. Thus,
even if “model drift” or “objective inconsistency” emerge due to local updates (Karimireddy et al.,
2020; Wang et al., 2020), the full/uniform client participation in each communication round averages
them out in the long run, thus guaranteeing convergence. A related line of works in FL different
from full/uniform client participation focuses on proactively creating flexible client participation
(see, e.g., (Xie et al., 2019; Ruan et al., 2021; Gu et al., 2021; Avdiukhin & Kasiviswanathan, 2021;
Yang et al., 2022; Wang & Ji, 2022)). The main idea here is to allow asynchronous communication
or fixed participation pattern (e.g., given probability) for clients to flexibly participate in training.
Existing works in this area often require extra assumptions, such as bounded delay (Ruan et al., 2021;
Gu et al., 2021; Yang et al., 2022; Avdiukhin & Kasiviswanathan, 2021) and identical computation
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rate (Avdiukhin & Kasiviswanathan, 2021). Under these assumptions, although stochastic gradients
are no longer unbiased estimators of full gradients, the deviation in each communication round
remains bounded. For sufficiently many rounds, the impact of such deviation from full gradients
vanishes asymptotically, since each client can still participate in FL in the long run. In contrast, this
paper considers a more practical worst-case scenario in FL – incomplete client participation even in
the long run, which can be caused by many heterogeneous factors as mentioned in Section 1.

2) Domain Adaptation: Since incomplete client participation induces a gap between the dataset
distribution used for FL training and the true data population distribution across all clients, our
work is also related to the field of domain adaptation in learning. Domain adaptation focuses on
the learnability of a model trained in one source domain but applied to a different and related
target domain. The basic approach is to quantify the error in terms of the source domain plus the
distance between source and target domains. Specifically, let P and Q be the target and source
distributions, respectively. Then, the generalization error is expressed as O(A(nQ)) + dist(P,Q),
where A(nQ) is an upper bound of the error dependent on the total number of samples in Q. Widely-
used distance measures include dA-divergence (Ben-David et al., 2010; David et al., 2010) and
Y-discrepancy (Mansour et al., 2009; Mohri & Medina, 2012). We note, however, that results in
domain adaptation is not directly applicable in FL with incomplete client participation, since doing
so yields an overly pessimistic bound. Specifically, the error based on domain adaptation remains
non-zero for asymptotically small distance dist(P,Q) between P and Q even with infinite many
samples in nQ (i.e., A(nQ) → 0). In this paper, rather than directly using results from domain
adaptation, we establish a much sharper upper bound (see Section 3). Another line of work in domain
adaptation uses importance weights defined by the density ratios between P and Q to correct the
bias and reduce the discrepancy (Sugiyama et al., 2007a;b; Cortes et al., 2008). However, due to FL
privacy constraints, such density ratios are difficult to estimate, rendering importance-weights-based
methods infeasible in FL. A closely related work is (Hanneke & Kpotufe, 2019), which proposed a
new notion of discrepancy between source and target distributions called transfer exponents. However,
this work considers non-overlapping support between P and Q, while we focus on overlapping
support naturally implied by FL systems (see Fig. 3.2 in Section 3.2).

3 PAC-LEARNABILITY OF FL WITH INCOMPLETE CLIENT PARTICIPATION

In this section, we first focus on understanding the impacts of incomplete client participation on
conventional FL in terms of PAC-learning in Section 3.1. This will also pave the way for studying
SA-FL later in Section 3.2. In what follows, we start with the conventional FL formulation and some
definitions in statistical learning that are necessary to formulate and prove our main results.

The goal of an M -client FL system is to minimize the following loss function F (x) = Ei∼P [Fi(x)],
where Fi(x) ≜ Eξ ∼Pi

[fi(x, ξ)]. Here, P represents the distribution of the entire client population,
x ∈ Rd is the model parameter, Fi(x) represents the local loss function at client i, and Pi is the
underlying distribution of the local dataset at client i. In general, due to data heterogeneity, Pi ̸= Pj

if i ̸= j. However, the loss function F (x) or full gradient ∇F (x) can not be directly computed
since the exact distribution of data is unknown in general. Instead, one often considers the following
empirical risk minimization (ERM) problem in the finite-sum form based on empirical risk F̂ (x):

min
x∈Rd

F̂ (x) =
∑
i∈[M ]

αiF̂i(x) ≜ (1/|Si|)
∑
ξ∈Si

fi(x, ξ),

where Si is a local dataset at client i with cardinality |Si|, whose samples are independently and
identically sampled from local distribution Pi, and αi = |Si|/(

∑
j∈[M ] |Sj |) (hence

∑
i∈[M ] αi = 1).

For simplicity, we consider the balanced dataset case: αi = 1/M,∀i ∈ [M ], but we note our results
can be straightforwardly generalized to unbalanced dataset settings at the expense of more complex
notations. Next, we state several definitions from statistical learning theory (Mohri et al., 2018).

Definition 1 (Generalization Error and Empirical Error). Given a hypothesis h ∈ H, a target concept
f , an underlying distribution D and a dataset S i.i.d. sampled from D (S ∼ D), the generalization
error and empirical error of h are defined as follows: RD(h, f) = E(x,y)∼Dl(h(x), f(x)) and
R̂D(h, f) = (1/|S|)

∑
i∈S l(h(xi), f(xi)), where l(·) is some valid loss function.
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For notational simplicity, we use RD(h) and R̂D(h) for generalization and empirical errors and omit
target concept f whenever it is clear from the context.

Definition 2 (Optimal Hypothesis). For a distribution D and a dataset S ∼ D, we define h∗
D =

argmin
h∈H

RD(h) and ĥ∗
D = argmin

h∈H
R̂D(h).

Definition 3 (Excess Error). For hypothesis h and distribution D, the excess error and excess
empirical error are defined as e respectively.

3.1 CONVENTIONAL FEDERATED LEARNING WITH INCOMPLETE CLIENT PARTICIPATION

With the above notations, we now study conventional FL with incomplete client participation.
Consider an FL system with M clients in total. We let P denote the underlying joint distribution of
the entire system, which can be decomposed into the summation of the local distributions at each
client, i.e., P =

∑
i∈[M ] λiPi, where λi > 0 and

∑
i∈[M ] λi = 1. We assume that each client i has n

training samples i.i.d. drawn from Pi, i.e., |Si| = n, ∀i ∈ [M ]. Then, S = {(xi, yi), i ∈ [M × n]}
can be viewed as the dataset i.i.d. sampled from the joint distribution P . We consider an incomplete
client participation setting, where m ∈ [0,M) clients participate in the FL training as a result of
some client sampling/participation process F . We let F(S) represent the data ensemble actually used
in training and D denote the underlying distribution corresponding to F(S). For convenience, we
define the notion ω = m

M as the FL system capacity (i.e., only m clients participate in the training).
For FL with incomplete client participation, we establish the following fundamental performance
limit of any FL learner in general. For simplicity, we use binary classification with zero-one loss here,
but it is already sufficient to establish the PAC learnability lower limit.

Theorem 1 (Impossibility Theorem). Let H be a non-trivial hypothesis space and L :
(X ,Y)(m×n) → H be the learner for an FL system. There exists a client participation process F with
FL system capacity ω, a distribution P , and a target concept f ∈ H with minh∈H RP (h, f) = 0,
such that PS∼P

[
RP (L(F(S), f)) > 1−ω

8

]
> 1

20 .

Proof Sketch. The proof is based on the method of induced distributions in (Bshouty et al., 2002;
Mohri et al., 2018; Konstantinov et al., 2020). We first show that the learnability of an FL system
is equivalent to that of a system that arbitrarily selects mn out of Mn samples in the centralized
learning. Then, for any learning algorithm, there exists a distribution P such that dataset F(S)
resulting from incomplete participation and seen by the algorithm is always distributed identically for
any target functions. Thus, no algorithm can learn a better predictor than random guessing. Due to
space limitation, we relegate the full proof to supplementary material.

Given the system capacity ω ∈ (0, 1), the above theorem characterizes the worst-case scenario for
FL with incomplete client participation. It says that for any learner (i.e., algorithm) L, there exist
a bad client participation process F and distributions Pi, i ∈ [M ] over target function f , for which
the error of the hypotheses returned by L is constant with non-zero probability. In other words, FL
with incomplete client participation is not PAC-learnable. One interesting observation here is that
the lower bound is independent of the number of samples per client n. This indicates that even if
each client has infinitely many samples (n → ∞), it is impossible to have a zero-generation-error
learner under the incomplete client participation (i.e., ω ∈ (0, 1)). Note that this fundamental result
relies on two conditions: heterogeneous dataset and arbitrary client participation. Under these two
conditions, there exists a worst-case scenario where the underlying distribution D of the participating
data SD = F(S) deviates from the ground truth P , thus yielding a non-vanishing error.

This result sheds light on system and algorithm design for FL. That is, how to motivate client
participation in FL effectively and efficiently: the participating client’s data should be comprehensive
enough to model the complexity of the joint distribution P to close the gap between D and P .
Note that this result is not contradictory to previous works where the convergence of FedAvg is
guaranteed, since this theorem is not applicable for homogeneous (i.i.d.) datasets or uniformly
random client participation. As mentioned earlier, most of the existing works rely on at least one
of these two assumptions. However, none of these two assumptions hold for conventional FL with
incomplete client participation in practice. In addition to system heterogeneity, other factors such
as Byzantine attackers could also render incomplete client participation. For example, even for full
client participation in FL, if part of the clients are Byzantine attackers, the impossibility theorem also
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applies. Thus, our impossibility theorem also justifies the empirical use of server-assisted federated
learning (i.e., FL with server-side auxiliary data) to build trust (Cao et al., 2021).

3.2 THE PAC-LEARNABILITY OF SERVER-ASSISTED FEDERATED LEARNING (SA-FL)

The intuition of SA-FL is to utilize a dataset T i.i.d. sampled from distribution P with cardinality
|T | = nT as a vehicle to correct potential distribution deviations due to incomplete client participation.
By doing so, the server steers the learning by a small number of representative data, while the
clients assist the learning by federation to leverage the huge amount of privately decentralized data
(nS ≫ nT ). Note that the assumption of having a server-side dataset is not restrictive since such
datasets are already available in many FL systems: although not always necessary for training, an
auxiliary dataset is often needed for defining FL tasks (e.g., simulation prototyping) before training
and model checking after training (e.g., quality evaluation and sanity checking) (McMahan et al.,
2021; Wang et al., 2021a). Also, obtaining an auxiliary dataset is affordable since the number of data
points required is relatively small, and hence the cost is low. Then, SA-FL can be easily achieved or
even with manually labelled data thanks to its small size. It is also worth noting that many works use
such auxiliary datasets in FL for security (Cao et al., 2021), incentive design (Wang et al., 2019), and
knowledge distillation (Cho et al., 2021).

For SA-FL, we consider the same incomplete client participation setting that induces a dataset
SD ∼ D with cardinality nS and D ≠ P . As a result, the learning process is to minimize RP (h)
by utilizing (X ,Y)nT+nS to learn a hypothesis h ∈ H. For notional clarity, we assume the joint
dataset SQ = (SD ∪ T ) ∼ Q with cardinality nT + nS for some distribution Q. Before deriving the
generalization error bound for SA-FL, we state the following assumption and definition.
Assumption 1 (Noise Condition). Suppose h∗

P and h∗
Q exist. There exist βP , βQ ∈ [0, 1] and

αP , αQ > 0 s.t., Px∼P (h(x) ̸= h∗
P (x)) ≤ αP [εP (h)]

βP , Px∼Q(h(x) ̸= h∗
Q(x)) ≤ αq[εQ(h)]

βQ .

This assumption is a traditional noise model known as the Bernstein class condition, which has been
widely used in the literature (Massart & Nédélec, 2006; Koltchinskii, 2006; Hanneke, 2016).
Assumption 2 ((α, β)-Positively-Related). Distributions P and Q are said to be (α, β)-positively-
related if there exist constants α ≥ 0 and β ≥ 0 such that |εP (h)− εQ(h)| ≤ α[εQ(h)]

β ,∀h ∈ H.

Assumption 2 specifies a stronger constraint between distributions P and Q. It implies that the
difference of excess error for one hypothesis h ∈ H between P and Q is bounded by the excess
error of Q in some exponential form. Assumption 2 is one of the major novelty in our paper and
unseen in the literature. We note that this (α, β)-positively-related condition is a mild condition.
To see this, consider the following “one-dimensional” example for simplicity. Let H be the class
of hypotheses defined on the real line: {ht = t, t ∈ R}, and let two uniform distributions be
P := U [a, b] and Q := U [a′, b′]. Due to the incomplete client sampling in FL, the support of Q is a
subset of that of P , i.e., a ≤ a′ ≤ b′ ≤ b. Denote the target hypothesis t∗ ∈ [a′, b′]. Then, for any
hypothesis ht with threshold t, we have ϵP (ht) =

|t−t∗|
b−a and ϵQ(ht) =

|t−t∗|
b′−a′ . That is, our "(α, β)-

Positively-Related" holds for α = 1 − b′−a′

b−a and β = 1. The above “one-dimensional” example
can be further extended to general high-dimensional cases as follows. Intuitively, the difference of
excess errors of P and Q (i.e., |ϵP (h)− ϵQ(h)|) is a function in the form of

∫
S
|QX − PX |dS for

a common support domain S ⊂ supp(Q). Thus, the “(α, β)-Positively-Related” condition can be
written as |

∫
S
QXdS −

∫
S
PXdS| ≤ α(

∫
S
QX)β . If distribution Q has more probability mass over

S than distribution P , choosing β = 1 and α to be a sufficiently large constant clearly satisfies the
(α, β)-positively-related condition. Otherwise, letting β → 0 and choosing α to be a sufficiently
large constant satisfies the (α, β)-positively-related condition with probability one.

With the above assumption and definition, we have the following generation error bound for SA-FL,
which shows that SA-FL is PAC-learnable:
Theorem 2 (Generalization Error Bound for SA-FL). For an SA-FL system with arbitrary system and
data heterogeneity, if distributions P and Q satisfy Assumption 1 and are (α, β)-positively-related,
then with probability at least 1− δ for any δ ∈ (0, 1), it holds that

εP (ĥ
∗
Q) = Õ

((
dH

nT + nS

) 1
2−βQ

+

(
dH

nT + nS

) β
2−βQ

)
, (1)
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where dH denotes the finite VC dimension for hypotheses class H.

Note the generalization error bound of centralized learning is Õ((dH
n )

1
2−βQ ) (hiding logarithmic

factors) with n samples in total and noise parameter βQ (Hanneke, 2016). Note that when β ≥ 1, the
first term in Eq. (1) dominates. Hence, Theorem 2 implies that the generalization error bound in this
case for SA-FL matches that of centralized learning (with dataset size nT + nS). Meanwhile, for
0 < β < 1, compared with solely training on server’s dataset T , SA-FL exhibits an improvement

from Õ(( 1
nT

)
1

2−βQ ) to Õ(( 1
nT+nS

)
β

2−βQ ).

Note that SA-FL shares some similarity with the domain adaptation problem, where the learning is
on Q but the results will be adapted to P . In what follows, we offer some deeper insights between the
two by answering two key questions: 1) What is the difference between SA-FL and domain adaptation
(a.k.a. transfer learning)? and 2) Why is SA-FL from Q to P PAC-learnable, but FL from D to P
with incomplete client participation not PAC-learnable (as indicated in Theorem 1)?

To answer these questions, we illustrate the distribution relationships for domain adaptation and
federated learning, in Fig.1, respectively. In domain adaptation, the target P and source Q distributions
often have overlapping support but there also exists distinguishable difference. In contrast, the two
distributions P and Q in SA-FL happen to share exactly the same support with different density, since
Q is a mixture of D and P . As a result, the known bounds in domain adaptation (or transfer learning)
are pessimistic for SA-FL. For example, the dist(P,Q) in dA-divergence and Y-divergence both
have non-negligible gaps when applied to SA-FL. Here in Theorem 2, we provide a generalization
error bound in terms of the total sample size nT + nS , thus showing the benefit of SA-FL.

Figure 1: Diagram of distribution supports for
domain adaptation and federated learning.

Moreover, for SA-FL, only the auxiliary dataset
T

i.i.d.∼ P is directly available to the server. The
clients’ datasets could be used in SA-FL training,
but they are not directly accessible due to privacy
constraints. Thus, previous methods in domain adap-
tation (e.g., importance weights-based methods in
covariate shift adaptation (Sugiyama et al., 2007a;b))
are not applicable since they require the knowledge
of density ratio between training and test datasets.

The key difference between FL and SA-FL lies in
relations among D,P and Q. For FL, the distance between D and P with incomplete participation
could be large due to system and data heterogeneity in the worst-case. More specifically, the support
of D could be narrow enough to miss some part of P , resulting in non-vanishing error as indicated in
Theorem 1. For SA-FL, distribution Q is a mixture of P and D (Q = λ1D + λ2P , with λ1, λ2 ≥ 0,
λ1+λ2 = 1), thus having the same support with P . Hence, under Assumption 2, the PAC-learnability
is guaranteed. Although we provide a promising bound to show the PAC-learnability of SA-FL in
Theorem 2, the superiority of SA-FL over training solely with dataset T in server (i.e., Õ(( 1

nT
)

1
2−βP ))

is not always guaranteed as β → 0 (i.e., Q becomes increasingly different from P ). In what follows,
we reveal under what conditions could SA-FL perform no worse than centralized learning.

Theorem 3 (Conditions of SA-FL Being No Worse Than Centralized Learning). Consider an SA-
FL system with arbitrary system and data heterogeneity. If Assumption 1 holds and additionally
R̂P (ĥ

∗
Q) ≤ R̂P (h

∗
Q) and εP (h

∗
Q) = O(A(nT , δ)), where A(nT , δ) = dH

nT
log(nT

dH
+ 1

nT
log( 1δ )),

then with probability at least 1− δ for any δ ∈ (0, 1), it holds that εP (ĥ∗
Q) = Õ

(
(dH/nT )

1
2−βP

)
.

Here, we remark that εP (h∗
Q) = O(A(nT , δ)) is a weaker condition than the εP (h

∗
Q) = 0 condition

and the covariate shift assumption (PY |X = QY |X ) used in the transfer learning literatures (Hanneke
& Kpotufe, 2019; 2020). Together with the condition R̂P (ĥ

∗
Q) ≤ R̂P (h

∗
Q), the following intermedi-

ate result holds: R̂P (ĥ
∗
Q)− R̂P (h

∗
P ) = O(A(nT , δ)) (see Lemma 2 in the supplementary material).

Intuitively, this states that “if P and Q share enough similarity, then the difference of excess empirical
error between ĥ∗

Q and h∗
P on P can be bounded.” Thus, the excess error of ĥ∗

Q shares the same upper
bound as that of ĥ∗

P in centralized learning. Therefore, Theorem 3 implies that, under mild conditions,

6



Under review as a conference paper at ICLR 2024

Algorithm 1 The SAFARI Algorithm for SA-FL.
1: Initialize model x0, iteration index t = 0.
2: for r = 0, · · · , R− 1 do
3: With probability q: ⋆ client update round r ∈ Tc
4: The server samples clients Sr and send current model xr.
5: Each client i ∈ Sr computes in parallel:
6: Local update: xi

r,k+1 = xi
r,k − ηc∇Fi(x

i
r,k, ξ

i
r,k), k ∈ [K] starting from xi

r,0 = xt.
7: Send xi

r = xi
r,K+1 to server.

8: Server aggregation: xr+1 = 1
|Sr|

∑
i∈Sr

xi
r.

9: Otherwise ⋆ server update round r ∈ Ts
10: Server update: xr+1 = xr − ηs∇F (xr, ξr).
11: end for

SA-FL guarantees the same generalization error upper bound as that of centralized learning, hence
being “no worse than” centralized learning with dataset T .

Last but not least, it is worth pointing out that, for ease of illustration, Theorem 2–3 are based on the
assumption that the auxiliary dataset T i.i.d.∼ P . Nonetheless, it is of practical importance to consider
the scenario where T is sampled from a related but slightly different distribution P ′ rather than the
target distribution P itself. In fact, the above assumption could be relaxed to T

i.i.d.∼ P
′

for any P ′ as
long as the mixture distribution Q = λ1D + λ2P

′ is (α, β)-positively-related with P . Under such
condition, we can show that the main results in Theorem 2–3 continue to hold.

4 THE SAFARI ALGORITHM FOR TRAINING UNDER SA-FL

In Section 3, we have shown that SA-FL is PAC-learnable with incomplete client participation. In this
section, we turn our attention to the training of the SA-FL regime with incomplete client participation,
which is also under-explored in the literature. First, we note that the standard FedAvg algorithm may
fail to converge to a stationary point with incomplete client participation as indicated by previous
works (Yang et al., 2022). Now with SA-FL, we aim to answer the following questions:

1) Under SA-FL, how should we appropriately use the server-side dataset to develop training
algorithms in the SA-FL regime to achieve provable stationary point convergence guarantee?

2) If Question 1) can be resolved, could we further achieve the same convergence rate in SA-FL train-
ing with incomplete client participation as that in traditional FL with ideal client participation?

In this section, we resolve the above questions affirmatively by proposing a new algorithm called
SAFARI (server-assisted federated averaging) for SA-FL with theoretically provable convergence
guarantees. As shown in Algorithm 1, SAFARI contains two options in each round, client update
option or global server update option. For a communication round r ∈ {0, · · · , R− 1}, with proba-
bility q ∈ [0, 1], the client update option is chosen (i.e., r ∈ Tc), where local updates are executed by
clients in the current participating client set Sr in a similar fashion as the FedAvg (McMahan et al.,
2017). Specifically, the client update option performs the following three steps: 1) Server samples
a subset of clients Sr as in conventional FL and synchronizes the latest global model xr with each
participating clients in Sr (Line 4); 2) All participating clients initialize their local models as xr and
then perform K local steps following the stochastic gradient descent (SGD) method. Then, each
participating client sends its locally updated model xi

r = xi
r,K+1 back to the server (Lines 5-7); 3)

Upon receiving the local update xi
r, the server aggregates and updates the global model (Line 8). On

the other hand, with probability 1− q, the server update option is chosen (i.e,. r ∈ Ts), where the
server updates the global model with its auxiliary data following the SGD (Line 10).

We note that SAFARI can be viewed as a mixture of the FedAvg algorithm with client-side datasets
(cf. the client update option) and a centralized SGD algorithm using the server-side dataset only (cf.
the server update option), which are governed by a probability parameter q. The basic idea of this
two-option approach is to leverage client-side parallel computing to accelerate the training process,
while using the server-side dataset to mitigate the bias caused by incomplete client participation. We
will show later that, by appropriately choosing the q-value, SAFARI simultaneously achieves the
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stationary point convergence and linear convergence speedup. Before presenting the convergence
performance results, we first state three commonly used assumptions in FL.
Assumption 3. (L-Lipschitz Continuous Gradient) There exists a constant L > 0, such that
∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd.
Assumption 4. The stochastic gradient calculated by the client or server is unbiased with bounded
variance: E[∇f(x, ξ)] = ∇f(x), and E[∥∇f(x, ξ)−∇f(x)∥2] ≤ σ2.
Assumption 5. (Bounded Gradient Dissimilarity) ∥∇Fi(x)−∇F (x)∥2 ≤ σ2

G,∀i ∈ [M ].

With the assumptions above, we state the main convergence result of SAFARI as follows:
Theorem 4 (Convergence Rate for SAFARI ). Under Assumptions 3 - 5, if ηc ≤ 1

4
√
30LK

, ηc = 2ηs

K ,

and q ≤ 1/

(
4σ2

G−4G2(
1

2K2 − 2Lη2
s

K2 )

(1−Lηs)G1
+ 1

)
, then, the sequence {xr} generated by SAFARI satisfies:

1

R

R∑
r=1

E∥∇F (xr)∥2 ≤ 2(F (x0)− F (x∗))

Rηs
+Lηs(1− q)σ2+

80qL2η2s
K

(σ2 + 6Kσ2
G)+

8Lqηs
mK

σ2,

where G1 = minr∈Ts
∥∇F (xr)∥2 and G2 = minr∈Tc

∥∥∥ 1
m

∑
i∈[m]

∑
k∈[K] ∇Fi(x

i
r,k)
∥∥∥2.

Theorem 4 says that, by using the server-side update with an appropriately chosen q-value, SAFARI ef-
fectively mitigates the bias that arises from incomplete client participation. With proper probability q,
SAFARI guarantees the stationary point convergence.

Also, it is insightful to point out that SAFARI is a unifying framework that includes two classic
algorithms as special cases under two extreme settings: i) the i.i.d. client-side data case and the ii)
the heterogeneous client-side data case with unbounded gradient dissimilarity. In the i.i.d. case, the
client-side data are homogeneous, i.e., Fi(x) = F and σG = 0. In this ideal setting, we can simply
choose q = 1 and SAFARI degenerates to the classic FedAvg algorithm. In the heterogeneous case
with unbounded gradient dissimilarity (i.e., σG = ∞), we can set q = 0 (i.e., |Tc| = 0) such that
SAFARI degenerates to centralized SGD algorithm. In this heterogeneous setting, Theorem 4 also
recover the classic SGD bound by cancelling the σG-dependent terms in the bound.

Further, Theorem 4 immediately implies that, by choosing parameters q and the learning rate η
appropriately, we achieve linear convergence speedup to a stationary point:

Corollary 1. If ηs =
√
mK√
R

and q = Ω(1− 1
mK ), SAFARI achieves an O( 1√

mKR
) convergence rate

to a stationary point, implying a linear convergence speedup.

Corollary 1 suggests that, thanks to the two “control knobs” ηs and q in SAFARI , under mild
conditions (see further discussions in Appendix, we can avoid FedAvg’s limitation that it can only
converge to an error ball dependent on the data heterogeneity parameter σG (Yang et al., 2022).
Furthermore, SAFARI with incomplete client participation still achieves the same convergence rate
as that of classic FL algorithms with ideal client participation.

5 NUMERICAL RESULTS

In this section, we conduct numerical experiments to verify our theoretical results using 1) logistic
regression (LR) on MNIST dataset (LeCun et al., 1998) and 2) convolutional neural network (CNN)
on CIFAR-10 dataset (Krizhevsky et al., 2009). To simulate data heterogeneity, we distribute the
data into each client evenly in a label-based partition, following the same process as in previous
works (McMahan et al., 2017; Yang et al., 2021b; Li et al., 2020b). As a result, we can use a
parameter p to represent the classes of labels in each client’s dataset, which serves as an index of data
heterogeneity level (non-i.i.d. index). The smaller p-value, the more heterogeneous the data among
clients. To mimic incomplete client participation, we force s clients to be excluded. We can use s
as an index to represent the degree of incomplete client participation. In our experiments, there are
M = 10 clients in total, and m = 5 clients participate in the training in each communication round,
who are uniformly sampled from the M − s clients. We use FedAvg without any server-side dataset
as the baseline to compare with SAFARI. Due to space limitation, we highlight four key observations
in this section, and relegate all other experimental details and results to the supplementary material.
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Figure 2: Test accuracy of FedAvg on MNIST.

1) Performance Degradation of Incomplete
Client Participation: We first show the test ac-
curacy of FedAvg on MNIST for different values
of non-i.i.d. index p and incomplete client index
s in Fig. 2. For nearly homogeneous data (e.g.,
p = 10, 5), incomplete client participation has
negligible impacts on test accuracy. However,
for highly non-i.i.d. cases, incomplete client
participation results in dramatic performance
degradation. Specifically, for p = 1, the test
accuracy for s = 4 is only 57%, yielding a large
degradation (35%) compared to that of s = 0.
This is consistent with the worst-case analysis
in Theorem 1 and also the main motivation of SA-FL.

Table 1: Test accuracy improvement (%) for
SAFARI compared with FedAvg on MNIST with
incomplete client participation s = 4. ‘-’ means
“no statistical difference within 2% error bar”.

SERVER NON-IID INDEX (P)
DATASIZE 10 5 2 1

50 - - 4.15 12.75
100 - - 6.55 22.19
500 - - 10.29 29.12

1000 - - 10.88 31.42

2) Improvement of the SAFARI Algorithm un-
der Incomplete Client Participation: In Ta-
ble 1, we show the test accuracy improvement
of our SAFARI algorithm compared with that of
FedAvg in standard FL. The key observation is
that, with a small amount of auxiliary data at the
server, there is a significant increase of test ac-
curacy for our SAFARI algorithm. For example,
with only 50 data samples at the server (0.1%
of the total training data), there is a 12.75% test
accuracy increase. With 1000 data samples, the
improvement reaches 31.42%. This verifies the effectiveness of our SA-FL framework and our
SAFARI algorithm. Another observation is that for nearly homogeneous case (e.g., from p = 10 to
p = 5), there is no statistical difference with or without auxiliary data at the server (denoted by ‘-’
in Table 1. This is consistent with the previous observations of negligible degradation in cases with
homogeneous data across clients.
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Figure 3: Comparison of test accuracy on CIFAR-
10 (s = 2, p = 1).

3) saConvergence Speedup of SAFARI with
Larger Server Dataset: In this experiment, we
illustrate the speedup effect of SAFARI numer-
ically as the size of server dataset increases. In
Fig. 3, we show the convergence processes of
SAFARI on CIFAR-10 for incomplete client par-
ticipation (s = 2) and non-i.i.d. data (p = 1).
We can see clearly that the convergence of
SAFARI is accelerating and the test accuracy in-
creases as more data are employed at the server.
In this experiment setting, we also plot the con-
vergence of FedAvg in Fig. 3. It can be seen that
all three cases of SAFARI converge faster than
FedAvg in this experiment.

6 CONCLUSION

In this paper, we rigorously investigated the server-assisted federated learning (SA-FL) framework
(i.e., to deploy an auxiliary dataset at the server), which has been increasingly adopted in practice
to mitigate the impacts of incomplete client participation in conventional FL. To characterize the
benefits of SA-FL, we first showed that conventional FL is not PAC-learnable under incomplete
client participation by establishing a fundamental generalization error lower bound. Then, we
showed that SA-FL is able to revive the PAC-learnability of conventional FL under incomplete client
participation. Upon resolving the PAC-learnability challenge, we proposed a new SAFARI (server-
assisted federated averaging) algorithm that enjoys convergence guarantee and the same level of
communication efficiency as that of conventional FL. Extensive numerical results also validated our
theoretical findings.
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