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Abstract

Responsible use of authorship verification sys-
tems not only requires high accuracies but
also interpretable solutions. Neural methods
achieve high accuracies but their representa-
tions lack direct interpretability, whereas meth-
ods using interpretable linguistic features gen-
erally perform worse than neural methods. In
this paper, we introduce residualized similar-
ity prediction (RSP), a novel method of sup-
plementing systems using interpretable features
with a neural network to improve their perfor-
mance while maintaining interpretability. The
key idea is to use the neural network to pre-
dict a residual similarity, i.e. the error in the
similarity predicted by the interpretable system.
Our evaluation on three datasets shows that
using RSP improves authorship verification
predictions over a fully interpretable system,
multiple neural models, as well as weighted
ensembles of these two (RSP yields gains in
17 of the 24 combinations), all while maintain-
ing interpretability as measured using a new
interpretability confidence metric.

1 Introduction

Authorship verification is a task with many critical
applications such as plagiarism detection, forensic
linguistics, and literary analysis. Responsible and
ethical development of these applications demands,
among others, interpretable solutions, ones where
the representations used for verification are sim-
ple aggregates of relevant indicators that are used
by practitioners and readily understood by stake-
holders. For example, forensic linguists may rely
on linguistic indicators to justify authorship verifi-
cation. As with many NLP tasks, representations
derived from neural language models often achieve
better verification performance than interpretable
representations do. However, these neural repre-
sentations are not directly interpretable, seriously
limiting applicability in many critical domains.

In this paper, we ask how one can combine the
relative strengths of the two methods: the inter-
pretability of representations and the high perfor-
mance of neural models. One way of doing so
is direct ensembling, which involves determining
fixed weights that combine scores from both an
interpretable system (i.e., a system which uses only
interpretable representations) and a neural system.
However, when this ensembling method is opti-
mized for performance, the weight of the inter-
pretable system is small, and when the the method
is optimized for interpretability, the performance
decreases. What we want, instead, is a more dy-
namic approach, one where we can rely on the
interpretable system more when it is likely to be
accurate, and rely on the neural model otherwise.

To realize this, we introduce residualized sim-
ilarity prediction (RSP), which uses the idea of
estimating the residual of a predictor i.e., the error
in a model’s prediction. Suppose we first train an
interpretable system as the main similarity predic-
tor. We can then train a neural model as a residual
predictor, which predicts the error or correction to
the interpretable model’s predicted similarity. The
final prediction is a simple sum of the prediction
from the interpretable model and the residual, i.e.,
the correction, predicted by the neural model. This
combined system achieves the trade-off we desire:
(1) when the interpretable model is likely to be cor-
rect, the residual should be near zero, providing
full interpretability and remaining accurate, and
(i1) when the interpretable model is likely to be
incorrect, the residual should provide the neces-
sary correction, improving accuracy but reducing
interpretability to a degree proportional to the error.
This approach is inspired by prior work by Za-
mani et al. (2018), who trained residual models
for a regression problem, combining linguistic and
health-relevant attributes for predicting community
health indicators.

We use Gram2vec (Sclafani, 2023) as our inter-



pretable feature system, which records normalized
frequencies of morphological and syntactic features
for input texts. We evaluate our RSP approach by
combining Gram2vec with various neural models
trained to predict the residuals. We show that RSP
improves under most conditions, and establishes a
new SOTA on one of three genres. Our system re-
tains interpretability, measured by an interpretabil-
ity confidence metric, which indicates the extent to
which the interpretable system is used for a given
input.

2 Related Work

Authorship verification, authorship attribution, and
authorship profiling are part of authorship analy-
sis which has been explored through a wide range
of approaches (see surveys El and Kassou (2014);
Misini et al. (2022)). Here we discuss interpretable
methods that make use of stylometric features and
recent neural models. (i) Interpretable Meth-
ods: Previous stylometric approaches (Stamatatos,
2016) often make use of readily interpretable fea-
tures to train classifiers. Some examples include
lexical features such as vocabulary, lexical patterns
(Mendenhall, 1887; van Halteren, 2004), syntactic
rules (Varela et al., 2016), and others. (ii) Neu-
ral Models: Authorship verification has benefited
from models built upon RNNs Gupta et al. (2019),
CNNs (Hossain et al., 2021), BERT-like architec-
tures (Manolache et al., 2021), and Longformer
(Ordofiez et al., 2020; Nguyen et al., 2023). More
recently, sentence-transformer based models (Weg-
mann et al., 2022; Rivera-Soto et al., 2021) obtain
state-of-the-art performance for AV tasks.

Our work uses residual error analysis to com-
bine interpretability and neural models’ high perfor-
mance for authorship verification. Similar residual
approaches have been used previously for improv-
ing performance of health outcome prediction com-
bining lexical and health-relevant attributes (Za-
mani et al., 2018), and in a recent work that com-
bines statistical and neural methods for machine
translation (Benko et al., 2024). Other works have
focused on generating explanations, often layering
other mechanisms on top of interpretable input fea-
tures (Boenninghoff et al., 2019; Setzu et al., 2024,
Theophilo et al., 2022). However, in this work,
our focus is only on combining interpretable and
neural models and not on generating explanations.
Some recent work also explores prompting large
language models to derive interpretable stylomet-
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Figure 1: Residualized Similarity Architecture. Note,
the left side of the diagram is not updated during train-
ing, and merely provides labels for the model to learn.
We add a sequential layer, alternating linear and ReLU
layers onto the encoder model to output the regression
value, which we then pass through a tanh activation
function. This is done to introduce non-linearity and
capture more rich information in our fine-tuning.

ric features for authorship analysis (Hung et al.,
2023; Patel et al., 2023). We can also treat these as
interpretable systems (if they are faithful) and com-
bine with other neural models to further improve
performance.

3 Residualized Similarity Prediction

The key idea in residualized similarity prediction
is to train a neural model to predict the residual,
i.e., the difference between the cosine similarity ob-
tained from our interpretable system and the ground
truth. We generate interpretable feature vectors for
each document using Gram2vec and calculate their
cosine similarity. Since these feature vectors store
normalized counts of grammatical features, the co-
sine value is always non-negative. The ground truth
label is 1 for a pair of documents written by the
same author and O otherwise. We train the neural
residual model to predict y — sim(f(d1), f(d2))
where y is the gold label, d; and dy are the two
documents, and f is the Gram2vec vector function.

Figure 1 illustrates the specifics of training the
RSP model. Note that the left half of the figure
does not involve any trainable parameters. During
training, this part produces the residuals needed for
training the right side of the figure. The trained
part includes the neural model and a simple linear
layer with a tanh non-linearity to produce residuals
in the range (—1, 1). We train a variety of neural
models for our experiments, and plan on releasing



our code publicly.

4 Experimental Setup

Our evaluation is aimed at testing how the residual-
ized similarity prediction method fares against the
two methods it combines: an interpretable system,
neural models fine-tuned on the target datasets, as
well as a weighted ensemble of the two.

4.1 Methods

Gram2vec System: We use Gram2vec to derive
interpretable feature vectors from texts. These vec-
tors comprise normalized relative frequencies of
various grammatical features of documents, such as
part-of-speech tag unigrams and bigrams, morphol-
ogy tags, dependency labels, and more. We then
compute cosine similarity between the two vectors.
If the cosine similarity exceeds a specific threshold
(tuned on the training data), we label the input pair
as being from the “same author”; otherwise, we
label them as being "from different authors”.
Neural Models: We train four neural mod-
els: RoBERTa (Liu et al., 2019), both base and
large versions, Longformer (Beltagy et al., 2020)
which has been designed for long contexts such
as the document pairs needed in AV, and the
SOTA LUAR (Rivera-Soto et al., 2021) model, an
SBERT (Reimers and Gurevych, 2019) embedding
model trained specifically for authorship tasks. We
use these neural models in two modes: (i) Clas-
sification System, where we train them as binary
classifiers to predict same or different author labels.
This setup is aimed to show the best performance
one can achieve with the neural model alone when
it is trained on the target set. (ii) Cosine System,
where we train them to produce document embed-
ding (vectors), whose cosine similarity is thresh-
olded to produce same or different author labels.
Ensemble: We use a weighted average of the co-
sine similarities from the Gram2vec and neural
systems. The tuned parameter A indicates the con-
tribution of Gram2vec.

Residualized Similarity Prediction: We train
each neural model on residuals obtained from the
training set using Gram2vec similarities. During
inference, the sum of Gram2vec’s cosine similar-
ity and the predicted residual is thresholded for
producing the class labels.

Training Details: All neural models and RSP are
trained using LoRA (Hu et al., 2021), which not
only reduces the number of trainable parameters

and memory requirements, but also yields better
performance overall for all models. Thresholds
are selected from (-1,1) and the ensemble’s A is
selected from (0,1) both in increments of 0.1. All
tuning for the threshold and ) are performed (sep-
arately for each system) on the training set. Addi-
tional training details can be found in Appendix C.

4.2 Data

We train and evaluate our model on three datasets
covering diverse genres: (i) Reddit comments:
We use a version preprocessed by (Wegmann et al.,
2022) with invalid comments removed from the
original Reddit comments from 100 active sub-
reddits created by ConvoKit (Chang et al., 2020).
We filter pairs that contain short comments (less
than 20 words). (ii) Amazon reviews: We cre-
ate document pairs from three categories in the
original dataset (Ni et al., 2019): Office Products;
Patio, Lawn and Garden; and Video games. We
only use authors who have at least two reviews of
twenty or more words. (iii) Fanfiction Stories:
We use a paragraph version of the original stories
dataset (Bischoff et al., 2020). Since the stories can
be long, we split them into paragraphs following
the setup described in Rivera-Soto et al. (2021).
For all three datasets, we use 50K, 10K, and
10K pairs for the training, validation, and test sets
respectively. The ratio of same to different author
pairs is 1:1. Appendix B has additional details.

5 Results

We evaluate RSP against the neural classification
system on same-author F1 score, as we consider
same author verification the primary goal of these
models. We evaluate RSP against the neural cosine
systems (all systems that use a threshold) on AUC.
Our results are detailed in Table 1.

(i) RSP improves F1 or AUC in most (dataset,
neural model, system type) conditions: RSP im-
proves same author F1 and AUC greatly compared
to using the interpretable Gram2vec system alone.
Furthermore, when compared to the neural mod-
els, RSP generally improves over the non-LUAR
neural models: of the 24 individual results, RSP
performs best in 17 (shown in bold in Table 1).
(ii) RSP is better than ensembling: In 8 of 12
cases, the weighted averaged ensembling, a stan-
dard way to combine two models, fares worse than
RSP on AUC despite exhaustive grid search of
both A and the similarity threshold. The low A val-
ues further show that ensembling heavily favors the



Classification System, F1 Cosine Systems, AUC
Dataset Neural Model G2V | Neural RSP G2V | Neural ‘ Ensemble (\) ‘ RSP
RoBERTa-base 0.66 0.69 0.69 0.69 (0.13) | 0.73
. RoBERTa-large 0.69 0.71 0.73 0.73 (0.10) | 0.77
Reddit Longformer 0.67 0.68 0.70 0.57 0.71 0.72 (0.14) | 0.75
LUAR 0.74 0.70 0.80 0.84 (0.04) | 0.73
RoBERTa-base 0.77 0.81 0.86 0.86 (0.08) | 0.88
RoBERTa-large 0.84 0.83 0.89 0.89 (0.06) | 0.90
Amazon - Former 067 578 081 ] %' 087 087009 | 086
LUAR 0.78 0.78 0.92 0.92 (0.0) | 0.84
RoBERTa-base 0.73 0.81 | 0.83 0.84 (0.11) | 0.87
. RoBERTa-large 0.83 0.86 0.88 0.88 (0.06) | 0.91
Fanfiction = Former 0-67 —572 0.83 || "% 085 085008 | 0.8
LUAR 0.74 0.70 0.88 0.88 (0.0) | 0.74

Table 1: Comparison of a neural finetuned classifier against our residualized similarity prediction (RSP) system
using same author F1, and a neural cosine embedding and ensemble of that with Gram2vec, also against RSP, using
same author AUC. G2V = Gram2vec. The best performing system for each combination of dataset, neural model,
and system type (classification or cosine) is bold; the best performing system for each combination of dataset and
system type, i.e., across neural models, is shaded. If A = 0, the ensemble system is the same as the neural system.
Residualized similarity shows the highest consistency for top results for a majority of neural models as well across
domains, while best performing models overall were split between fully neural, ensemble, and RSP approaches.

uninterpretable neural model; the RSP model can
softly retain interpretability as much as possible.
(iii) Comparison to SOTA: LUAR currently repre-
sents the state-of-the-art in authorship verification.
When we only consider (dataset, system type) con-
ditions, RSP creates new SOTA results in two of
the six cases (shown shaded in Table 1), both Fan-
fiction. RSP system is close to LUAR’s AUC in
the other datasets (-0.03 in Reddit, and -0.02 in
Amazon), while also maintaining interpretability.

5.1 Interpretability Analysis

Even when RSP performs worse than a neural sys-
tem (usually LUAR), the performance drop is small
and RSP retains a measure of interpretability. In
order to quantify how much interpretability a spe-
cific result retains, we introduce a notion of “inter-
pretability confidence” (INTCONF), which is a way
to measure how interpretable a particular prediction
from RSP is. We define INTCONF to have 2 parts,
a score, defined as 1 — |predicted residual|, and an
indicator of whether or not the label was flipped by
the predicted residual (1 if flipped, O if not). We
note that we can calculate the INTCONTF for a spe-
cific pair of documents after running the residual
system. We further analyze the distribution of the
INTCONF values and the predicted residuals when
using RobERTa-base on the Reddit dataset. We
find the mean of the INTCONF to be 0.83, show-

ing that on average, the final prediction remains
highly interpretable. The mean of the predicted
residuals is -0.06, while the standard deviation is
0.195. This shows that RSP is indeed learning
when to correct the initial prediction, and applies
non-trivial amounts of correction some times. See
Appendix D for these distributions and an example
calculation of INTCONF.

6 Conclusion

We introduce residualized similarity prediction,
a method of improving the performance of an inter-
pretable feature set by training a language model to
predict the residual, or difference, between the co-
sine similarity from an interpretable system and the
ground truth. Our experiments on authorship verifi-
cation across 3 datasets improve results compared
to the interpretable system alone, and overall per-
form well against neural systems and ensembling
methods, while maintaining interpretability.

To measure interpretability, we introduce the
interpretability confidence, a measure of how in-
terpretable a prediction from our system is. We be-
lieve this approach to be a promising direction for
developing more interpretable and effective NLP
systems, bridging the gap between neural methods
and interpretable linguistic features.



Limitations

We present preliminary results on residualized sim-
ilarity prediction (RSP), a novel method of sup-
plementing systems using interpretable linguistic
features with a neural network to improve their
performance while maintaining interpretability. In
order to get these results, we use a relatively small
subset of data from the original datasets we chose.
While we choose a variety of datasets, our experi-
ments are by no means conclusive.

The goal of this work is to improve performance
while maintaining interpretability. With this in
mind, we developed the interpretability confi-
dence, a way to quantify how interpretable pre-
dictions from RSP are. Thus, if we find that the
majority of residual predictions in fact flip the orig-
inal prediction or have high magnitudes, then RSP
will have less interpretability than desired.

Ethics Statement

The datasets we use are publicly available and are
anonymized. Our work improves the interpretabil-
ity of authorship verification models, allowing for
more transparency and easier detection of potential
biases and errors in the model.
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A Model Details

We train several transformer models for regression
to predict the residual between the true label and the
cosine similarity from Gram?2Vec vectors, binary
classification of AV, and to produce embeddings
to calculate cosine similarity with. We perform
fine-tuning on ROBERTa-base and RoBERTa-large,
Longformer, and LUAR — The first two are strong
sequence classification models, Longformer (Belt-
agy et al., 2020) is a RoBERTa-based model that
utilizes a sliding window of attention, allowing for
much longer contexts (we choose a maximum con-
text length that is twice that of the other selected
models), and finally, LUAR is a state-of-the-art at-
tention based authorship verification model built
from SBERT.

In this paper, there are two types of AV pre-
diction systems. The first type predicts the same
author label if the cosine similarity between the em-
beddings of the input documents exceeds a (fixed)
threshold. The threshold is chosen based on train-
ing data. Our residual system falls into this cate-
gory. The second type of system includes models
fine-tuned for binary classification, labeling doc-
ument pairs as written by the same or different
authors. To get a robust baseline of methods to
compare our system to, we decide to obtain a wide
range of baselines as follows and mark them with
their respective system type(s):

* Cosine similarity between feature vectors
from Gram2vec alone (1)

* Cosine similarity between embeddings from
the neural models alone, fine-tuned to produce
embeddings for authorship verification (1)

* Ensemble method of the first two methods by
weighting them and adding the scores. (1)

* Fine-tuning the neural models to perform bi-
nary classification (2)

B Dataset Details

Reddit Comments We use a dataset of Reddit
comments from 100 active subreddits created by
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ConvoKit (Chang et al., 2020). We use a version
preprocessed by (Wegmann et al., 2022), as it has
invalid comments removed and is split into train,
development, and test sets with non-overlapping
authors. We create pairs of comments, label them
for author verification, and use the same split of
comments as they do. Reddit comments can be
naturally very short, so we further filter the com-
ment pairs and keep only comments longer than
20 words. There are comments from about 36K
authors in train set, and 7K authors in development
and test sets each.

Amazon Reviews From the Amazon review dataset
(Ni et al., 2019), we take reviews from three cate-
gories: Office Products; Patio, Lawn and Garden;
and Video games. We use a reduced dataset where
all items and users have at least 5 reviews, and
we keep authors with at least two reviews of 20
or more words. The validation set is split from
the training set by taking stories from 1/6 of the
authors. Then, we sample same author pairs by ran-
domly choosing an author and two texts written by
them. For different author pairs, two authors and
one text from each author are randomly chosen.
Fanfiction Stories The fanfiction dataset contains
75,806 stories from 52,601 authors in the training
set and 20,695 stories from 14,311 authors in the
evaluation set. We use the preprocessing script
from LUAR (Rivera-Soto et al., 2021) to split each
story into paragraphs since fanfictions can be very
long. The process of sampling pairs of reviews is
the same as in the Amazon dataset.

C Training Details

We experiment with a variety of strategies to de-
crease training times and GPU memory require-
ments. All our experiments take place on a server
with four 48GB A6000 GPUs. Using the following
strategies, our largest model, with approximately
360 million parameters, takes about 5 hours to train.
The fastest training time we observed was around
1 hour for our smaller models, which have approx-
imately 150 million parameters. With respect to
hyperparameters, we manually tune them during
the training of RSP. We use these hyperparameters
in the rest of our experiments.

We experiment with the use of LoRA (Hu et al.,
2021), reducing the number of trainable parameters
and lowering memory requirements. Somewhat
surprisingly, in our initial experiments fine-tuning
RoBERTa for binary classification and for our resid-

ual prediction model, performance without LoRA
was far lower than performance using LoRA. We
hypothesize that LoRA could be acting as a reg-
ularizer in this case. We use this to inform our
decision of using LoRA in all other experiments in
this paper.

While we choose Longformer for its ability to
capture patterns in longer documents, we found that
fine-tuning Longformer takes far longer than the
other models. To mitigate this, we set the maximum
context length of Longformer to 1024, twice as
long as the maximum context lengths of the other
models.

Neural Model Binary Classification Baseline To
get a sense of how neural models perform when
fine-tuned directly for the task of AV, we fine-tune
them for binary classification. We add a classifi-
cation head with 2 classes and use cross entropy
loss as our training objective. This model shares
training strategies that RSP used including LoRA
and early stopping.

Neural Model Cosine Baseline We fine-tune the
previously chosen neural models in a Siamese net-
work using a contrastive loss function as our train-
ing objective. The architecture for this was heavily
inspired by SBERT (Reimers and Gurevych, 2019).
Of course, we replace BERT with various different
neural models, and use the pooler output to obtain
the embedding for the documents.

Residualized Similarity Prediction Details As
RSP is a regression model, we use mean-squared
error loss as our training object, and train over 10
epochs. We utilize early stopping to avoid over-
fitting. We add a regression head with multiple
dense layers using ReLLU activations and dropout
for regularization. We then ensure the output is
between -1 and 1 by using a tanh activation.

D Residual Prediction and INTCONF
Distributions
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Figure 2: Distribution of interpretability confidences for
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RSP using RoBERTa on the Reddit dataset.
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Figure 3: Distribution of predicted residuals for RSP
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using ROBERTa on the Reddit dataset.

G2V | Resid. | Corr. | IC (F)

0.730 | 0.062 | 0.792 | 0.938 (0)
0.437 | -0.265 | 0.172 | 0.735 (0)
0.650 | -0.216 | 0.434 | 0.794 (1)

Table 2: Examples of interpretability confidence calcu-
lation for a threshold of 0.5. G2V = Gram2vec; Resid.
= predicted residual; Corr = corrected prediction, i.e.,
G2V + Resid.; IC = Interpretability Coefficient; F =

Flipped Indicator
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