
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COVARIATE-GUIDED CLUSTERWISE LINEAR REGRES-
SION FOR GENERALIZATION TO UNSEEN DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

In many tabular regression tasks, the relationships between covariates and response
can often be approximated as linear only within localized regions of the input space;
a single global linear model therefore fails to capture these local relationships.
Conventional Clusterwise Linear Regression (CLR) mitigates this issue by learning
K local regressors. However, existing algorithms either optimize latent binary
indicators, (i) providing no explicit rule for assigning an unseen covariate vector to
a cluster at test time, or rely on heuristic mixture of experts approaches, (ii) lacking
convergence guarantees. To address these limitations, we propose covariate-guided
CLR, an end-to-end framework that jointly learns an assignment function and K
linear regressors within a single gradient-based optimization loop. During training,
a proxy network iteratively predicts coefficient vectors for inputs, and hard vector
quantization assigns samples to their nearest codebook regressors. This alternating
minimization procedure yields monotone descent of the empirical risk, converges
under mild assumptions, and enjoys a PAC-style excess-risk bound. By treating
the covariate data from all clusters as a single concatenated design matrix, we
derive an F -test statistic from a nested linear model, quantitatively characterizing
the effective model complexity. As K varies, our method spans the spectrum
from a single global linear model to instance-wise fits. Experimental results show
that our method exactly reconstructs synthetic piecewise-linear surfaces, achieves
accuracy comparable to strong black-box models on standard tabular benchmarks,
and consistently outperforms existing CLR and mixture-of-experts approaches.

1 INTRODUCTION

Empirical studies suggest that, in many tabular data regression problems, the relationship between
covariates xi∈Rp and the response yi∈R can often be approximately linear only within localized
regions of the input space; outside these regions, pronounced heterogeneity motivates modeling with
several local linear components (Zhong et al., 2016; Devijver, 2017; Yu et al., 2017; Li & Liang,
2018; Klusowski et al., 2019; Diamandis et al., 2021; Kong et al., 2020). A single global linear model
lacks the flexibility to represent local structures, whereas fully nonlinear black-box methods impose
complexity that diminishes the applicability of conventional statistical diagnostics (Lipton, 2018;
Petch et al., 2022; Chen & Zhang, 2023). Clusterwise Linear Regression (CLR) offers a middle
ground: given N samples {(xi, yi)}Ni=1, it learns K linear regressors {w̃j ∈ Rp+1}Kj=1 and NK
binary indicators [αi,1, αi,2, . . . , αi,K]Ni=1 with [αi,1, αi,2, . . . , αi,K]⊂{0, 1}K and

∑K
j=1 αi,j = 1.

With the augmented covariate vector xi := [x⊤i , 1]
⊤∈Rp+1, CLR minimizes

1

N

N∑
i=1

(
yi − x⊤i (

K∑
j=1

αi,jw̃j)
)2
.

thereby retaining the simplicity of local linear models while accommodating heterogeneity through
clustering. CLR has been applied successfully in market segmentation (Preda & Saporta, 2005),
welding-process control (Ganjigatti et al., 2007), pavement management Khadka & Paz (2017), and
rainfall forecasting (Bagirov et al., 2017). However, its classical form assumes a generative mixture of
linear functions or relies on post-hoc clustering of covariates–response pair—assumptions misaligned
with predictive tasks, where one must assign a new covariate vector to the appropriate local model
without access to an underlying mixture distribution (Manwani & Sastry, 2015; Gitman et al., 2018).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Existing CLR-based and related methods face two fundamental limitations in the standard “single-
point” prediction task, particularly under a non-realizable setting—where the data are not assumed to
be probabilistically generated by exactly one of K linear models. First, most algorithms decouple
clustering and regression—via mixed programming based approach (Bertsimas & Shioda, 2007;
Carbonneau et al., 2011), column generation based approach (Carbonneau et al., 2014), or algorithm
based approach (Pal et al., 2022; Ghosh & Mazumdar, 2024)—yielding no explicit assignment rule
for unseen covariates, which leads to overfitting on training dataset and degraded out-of-sample
performance (Long et al., 2023). Second, Sparse Mixture-of-Experts (MoE) schemes, which integrate
gating and regression (e.g., MoE-based (Ismail et al., 2023) or tree-based splits (Ahmed et al., 2018;
Raymaekers et al., 2024)), suffer from unstable convergence, rely heavily on heuristics, and—when
using axis-aligned partitions—cannot capture true assignment boundaries. As a result, the problem of
learning and generalizing multiple local linear regressors for new covariates in the non-realizable
setting remains largely unresolved.

To address these challenges, we introduce CG-CLR (Covariate-Guided Clusterwise Linear Regres-
sion), an end-to-end approach that unifies clustering and regression under a dual loss. CG-CLR
maintains a codebook of K linear regressors W̃ := [w̃j]

K
j=1 and an M -hidden-layer proxy network

Wϕ, parameterized by ϕ∈Rd, which predicts for each input xi the regressor that best fits it. Con-
cretely, the proxy network outputs a proxy vector ŵi :=Wϕ(xi), and each input xi is assigned to
the regressor whose prediction x⊤i w̃j is closest to x⊤i ŵi. Training proceeds by alternating between
(i) assigning each sample according to an explicit assignment rule and (ii) updating both W̃ and ϕ to
minimize the overall dual loss. This simple vector-quantized formulation yields a fully differentiable
pipeline, admits a convergence proof for the empirical risk, and—by treating the concatenated design
matrix of all K regressors as a single linear model—allows us to compute the classical F-statistic to
quantitatively characterize the effective model complexity.

Our main contributions are:

• End-to-end assignment and regression: CG-CLR is the first CLR framework that trains
both the data-driven assignment rule and the K local regressors jointly in a single gradient
loop, thereby providing a principled way to assign unseen covariates at test time.

• Convergence of alternating minimization: By reformulating CLR as a dual loss Vλ, we
show that our alternating updates yield a monotone descent of Vλ and that CG-CLR exhibits
linear convergence towards optimal parameters (W̃⋆, ϕ⋆).

• PAC-style generalization bounds: In the sense of PAC learning for functional mixtures, we
derive excess-risk bounds for single-point prediction under non-realizable settings, scaling
as O(maxj∥w̃j∥

√
dM log d log 2N/N).

• Model complexity quantification via F-test: The joint design-matrix viewpoint enables
embedding the classical F-statistic as a transparent indicator of the effective degrees of
freedom when varying K.

• Fine-grained control over model complexity: Adjusting the cluster count K lets CG-
CLR range from a single global linear model (K=1) to nearly one regressor per instance(
K ≈N/(p+1)

)
, giving users a smoothly adjustable dial between model simplicity and

predictive flexibility.

2 RELATED WORKS

Methods that learn local linear models for tabular regression can be broadly grouped into three
families: clusterwise linear regression, which assigns each sample to one of several linear models;
piecewise linear regression, which constructs explicit partitions of the input space and fits a linear
model in each partition; and hypernetwork-driven local experts, which employ a learned hypernetwork
to either select a small set of linear experts or generate an input-specific linear model. We review key
ideas and representative works in each family and then summarize their common limitations.

Clusterwise linear regression Conventional CLR fits the NK binary assignment indicators
[αi,1, . . . , αi,K]Ni=1 and the associated linear models [w̃j]

K
j=1 by solving a mixed–integer program

(Bertsimas & Shioda, 2007; Carbonneau et al., 2011; 2014; D’Urso et al., 2010; Joki et al., 2020;
Klusowski et al., 2019). Most of these studies carry out their analysis in the realizable setting, where
each sample is assumed to be generated by one of exactly K linear models. Although this assumption

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of representative approaches against the four desiderata: availability of single-point
prediction rule, a rigorous convergence analysis, applicability to the agnostic setting, and ability to model flexible
(assigned) regions (✓ = satisfied, ✗ = not satisfied).

Method Class Single-Point Convergence Analysis Agnostic Flexible Regions
Conventional CLR ✗ ✓ ✗ High
MLR ✗ ✓ ✓ High
LDT / PILOT ✓ ✗ ✓ Low
DC ✓ ✓ ✓ Moderate
S-IMEd ✓ ✗ ✓ High

CG-CLR ✓ ✓ ✓ High

facilitates coefficient-recovery analysis, it fails to account for more general non-realizable cases and
convergence guarantees cannot be established if the generative-mixture assumption is even slightly
violated. More recent works, such as MLR, adopts an agnostic (non-realizable) setting, optimizing a
hard-assignment min-loss via alternating minimization or a soft-assignment min-loss via expectation
maximization (Pal et al., 2022; Ghosh & Mazumdar, 2024). Such “min-loss” guarantees hold for list
decoding: given a test pair (xi′ , yi′) with the response yi′ in hand, one can retrospectively select the
linear model that attains the smallest error |yi′ − x⊤i′w̃j |2 among the learned list.

Piecewise linear regression One strategy is to build decision trees or rule lists that partition the
covariate space and then fit a separate linear model in each leaf (e.g., LDT (Ahmed et al., 2018),
PILOT (Raymaekers et al., 2024)). Another branch of research realizes piecewise linear functions
with shallow neural networks whose activations are absolute or maxima (Kahlert & Chua, 1990;
Wang & Sun, 2005), and deeper nested architectures extend this idea to cover all piecewise linear
functions (Lin et al., 1994). More recently, difference-of-convex (DC) formulations describe the
response as the gap between two max-linear envelopes and estimate the underlying hyperplanes
through a single optimization step (Siahkamari et al., 2020).

Hypernetwork-driven local experts Sparse Mixture-of-Experts models pair a fixed set of linear
experts with a learned gating network that assigns each input a vector of weights over those experts,
thereby producing an input-specific convex combination or hard selection (e.g., S-IMEd (Ismail
et al., 2023)). A complementary direction dispenses with the expert pool entirely and employs a
hypernetwork that maps the covariate vector directly to an instance-wise coefficient vector: attention-
style TabNet (Arik & Pfister, 2021) variants focus on feature selection (Yang et al., 2022), while
contextual lasso and other linear hypernetworks generate full local regressors (Thompson et al., 2023;
Kadra et al., 2024).

Limitations Despite their diverse mechanics, the three families face limitations (Table 1). Conven-
tional and agnostic CLR variants optimize only the fitting of K linear models and require a post-hoc
assignment rule to map unseen xi′ to a linear model (Manwani & Sastry, 2015; Gitman et al., 2018;
Long et al., 2023; Vicari & Vichi, 2013), creating an assignment bias that can degrade generalization
(Tao et al., 2022). Tree-based and DC piecewise linear methods hinge on axis-aligned or locally
continuous partitions, which can restrict the geometric flexibility of the resulting regions. MoE
frameworks train with soft gating but predict with hard selections, while instance-wise hypernetworks
often exhibit highly varying coefficients and impose excessive complexity, rendering them nearly
non-transparent as black-box models. Among the existing cluster-oriented methods, no single ap-
proach simultaneously achieves (i) a built-in single-point predictor, (ii) provable convergence in the
agnostic regime, and (iii) assignment flexibility that is not restricted to locally continuous partitions.

3 METHOD

We formalize the task of learning multiple local linear regressors together with an assignment rule as
a single optimization problem. This section presents the global problem formulation (Section 3.1),
implementation details (Section 3.2), and theoretical guarantees (Section 3.3).

3.1 PROBLEM FORMULATION

Setting We are given N i.i.d. samples {(xi, yi)}Ni=1⊂Rp×R drawn from an unknown distribution D.
No generative mixture is assumed—a fully agnostic setting (Pal et al., 2022; Ghosh & Mazumdar,
2024). Our goal is to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(i) learn a response-free routing rule that maps any unseen covariate vector xi′ to an index zi′
of the linear regressors; and

(ii) jointly fit the corresponding K linear regressors [w̃j]
K
j=1 so that the test-time prediction

ỹi′ = x
⊤
i′w̃zi′ is accurate without ever observing the true response yi′

This single-point test scenario precludes any response-dependent objective–such as the empirical min-
loss in equation 1, which chooses a regressor after seeing the response yi′ . We therefore introduce
and optimize the surrogate described below.

Response-aware risk (infeasible) If the response yi were available before choosing one of the K
linear models, the oracle risk L⋆ would be

L⋆(W̃) := E(xi,yi)∼D

[
min

j∈{1,...,K}

(
yi − x⊤i w̃j

)2]
, (1)

and minimizing its empirical analogue L̂⋆ is NP-hard even for moderate K (Yi et al., 2014). More
importantly, the inner minimization over j is response-dependent: it selects the best regressor after
observing yi. This makes the objective fundamentally infeasible for CLR, whose test-time scenario
requires selecting a regressor for a new covariate xi′ without access to yi′ . For this reason, a
response-free surrogate is required.

Proxy-based assignment CG-CLR eliminates these obstacles by first generating, for each covariate
vector, a proxy ŵi′ :=Wϕ(xi′)∈Rp+1 through the proxy network. The sample is then hard-routed
to the linear regressor (codebook regressor) whose predicted value is closest to the proxy prediction:

zi′ := argmin
j∈[1,...,K]

(
x
⊤
i′ŵi′ − x⊤i′w̃j

)2
. (2)

Let Sj := { i | zi = j} denote the set of indices of samples assigned to the jth regressor. This
decision depends only on the covariate vector xi′ and therefore remains valid at test time when
the response yi′ is unavailable. Equation 2 can be viewed as a vector-quantization step that tightly
couples the proxy space and the codebook, allowing the gradients of the downstream objective to
jointly update both the proxy network parameters ϕ and the linear regressors W̃.

Prediction-fit loss When the proxy network is updated, we want to evaluate the current codebook in
a fixed state, yet still let the gradient flow only to the proxy parameters ϕ. Let ŵstop

i , W̃stop, and
w̃

stop
zi denote the stop-gradient copies of ŵi, W̃, and w̃zi , respectively. We define

Rfit(ϕ,W̃stop) :=
1

N

N∑
i=1

(
yi − x⊤i

(
ŵi − ŵstop

i + w̃stop
zi︸ ︷︷ ︸

no gradient

))2

. (3)

Because the term ŵi − ŵstop
i vanishes in the forward pass, equation 3 simply measures the squared

error of the frozen prediction x⊤i w̃
stop
zi . In the backward pass, however,∇

W̃
Rfit = 0 while∇ϕR

fit ̸=
0; thus, the proxy network receives the usual regression gradient without ever increasing the current
clusterwise loss.

Alignment loss To encourage the proxy output vectors and their assigned codebook vectors to
coincide, we add a symmetric alignment term

Ralign(ϕ,W̃) :=
1

N

N∑
i=1

(
x
⊤
i (ŵi − w̃zi)

)2
, (4)

whose gradient propagates to both the proxy network parameters ϕ and the codebook W̃, pro-
gressively shrinking the prediction gap between x⊤i ŵi and x⊤i w̃zi induced by the routing rule
in equation 2.

Composite objective The two losses play complementary roles: Rfit keeps each regressor faithful to
its currently assigned samples, whereas Ralign pushes the proxy predictions toward their codebook
counterparts so that future assignments are improved. We blend them with a non-negative weight λ ≥
0:

Vλ(ϕ,W̃) := Rfit(ϕ,W̃stop) + (1 + λ)Ralign(ϕ,W̃). (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The overall learning problem is

min
ϕ,W̃

Vλ(ϕ,W̃) (6)

A larger λ places more emphasis on closing the proxy–codebook gap, whereas λ = 0 assigns equal
weight to fitting and alignment. In practice, we treat λ as a hyperparameter that trades immediate
prediction accuracy for faster long-term convergence of the joint model.
Rationale for surrogate objective When the alignment term vanishes (Ralign→0), every proxy
prediction converges to its assigned codebook vector prediction (x⊤i ŵi→x⊤i w̃zi). In that limit, the
prediction–fit loss reduces to the response-aware min–loss in equation 1 evaluated on the current
assignments, yet the routing rule itself remains response–free. Hence, minimizing equation 6 steers
the system toward the oracle target while respecting the single–point test constraint. Because Vλ is
fully differentiable, we can optimize it using standard gradient methods. The stop-gradient copies
in Rfit ensure a clean role separation: this loss measures each regressor’s current error, whereas the
alignment term updates both the proxy network and the codebook. Together, they yield a monotone
descent of Vλ (proved in Section 3.3) under the alternating updates described in Section 3.2.

3.2 IMPLEMENTATION DETAILS

MLP

Figure 1: CG-CLR architecture. The proxy network Wϕ maps a covariate xi to a proxy output vector
ŵi ∈ Rp+1. The vector–quantizer compares the proxy prediction ŷi = x⊤i ŵi with the K codebook vector
predictions {x⊤i w̃j}Kj=1 and outputs the index zi. The selected codebook vector w̃zi produces the final prediction
ỹi = x

⊤
i w̃zi . Two losses are computed: the prediction–fit term Rfit equation 3 and the alignment term Ralign

equation 4. During back-propagation, the stop-gradient copies (dashed arrows) prevent the proxy path from
negatively affecting the current clusterwise fit.

Figure 1 illustrates the forward and backward passes; the paragraphs below describe the two learnable
components and detail the alternating minimization schedule used during training.

Proxy network (Wϕ) Unless stated otherwise, we instantiate Wϕ as a depth-M ReLU multilayer
perceptron

Rp FC(p,h1),ReLU−−−−−−−−−−→ Rh1
+ −→ · · · FC(hM−1,hM),ReLU−−−−−−−−−−−−−−→ RhM

+

FC(hM ,p+1)−−−−−−−−→ Rp+1,

where h1, . . . , hM denote the hidden dimensions. The final layer is left linear so that each coordinate
of the proxy vector ŵi =Wϕ(xi) can take any real value.

Codebook of linear regressors (W̃) The K regressors are stored as a matrix W̃ = [w̃1, . . . , w̃K] ∈
R(p+1)×K , with the last row representing the bias terms. We initialize W̃(0) entry-wise, where each
element is sampled independently from Unif(−1/K, 1/K), and standardize each raw feature so that
the slope and bias coefficients operate on comparable scales throughout training.

Training algorithm Although the updates for ϕ and W̃ are written separately for clarity, both are
optimized jointly through the single composite loss Vλ; the stop-gradient mechanism only controls
which part of the model receives gradient flow at each step, analogous to VQ-VAE (van den Oord
et al., 2017) training. Optimization proceeds iteratively for epochs t = 0, 1, . . . , T − 1. Each epoch
consists of the following two-step block–coordinate update (also refer to Figure 1):

• Assignment step: For every sample in the current mini-batch, we compute the proxy ŵi =
Wϕ(t)(xi), and assign

zi ← argmin
j∈[K]

(
x
⊤
i (ŵi − w̃j)

)2
as in equation 2. The resulting mini-batch partitions {Sj}Kj=1 are cached for the two parameter
updates below.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Proxy network update: With assignments fixed, we back-propagate the composite loss
Vλ(ϕ,W̃

(t)) in equation 5. Stop-gradient copies ensure that the gradient flows only to ϕ;
the codebook remains frozen. We take one gradient descent step with learning rate η:

ϕ(t+1) = ϕ(t) − η∇ϕ Vλ
(
ϕ(t),W̃(t)

)
.

• Codebook update: Holding the updated proxy network fixed, we minimize the composite
loss Vλ with respect to W̃. Since Rfit carries a stop-gradient on W̃, the update reduces to an
alignment step:

W̃
(t+1) = W̃

(t) − η∇
W̃
Ralign

(
ϕ(t),W̃(t)

)
.

Algorithm 1 is presented in full-batch form for clarity, although in practice we recommend performing
mini-batch updates.

Algorithm 1 CG-CLR: Alternating Minimization Algorithm

Require: Dataset {(xi, yi)}Ni=1, cluster number K, learning rate η > 0, weight λ ≥ 0, number of epochs T .
1: Initialize: ϕ(0),W̃(0).
2: for t = 0, 1, . . . , T − 1 do
3: Assignment step: Compute z

(t)
i and construct partitions S(t)

j , j ∈ [K], according to equation 2.
4: Gradient updates:

ϕ(t+1) ← ϕ(t) +
2η(1 + λ)

N

N∑
i=1

(yi + λx⊤i w̃
(t)
zi

1 + λ
− x⊤i ŵ

(t)
i

)
(∇ϕŵ

(t)
i)⊤xi,

w̃
(t+1)
j ← w̃(t)

j +
2η(1 + λ)

N

∑
i∈S

(t)
j

xix
⊤
i

(
ŵ

(t)
i − w̃

(t)
j

)
, ∀j ∈ [K].

5: end for
6: return ϕ(T),W̃(T).

Test-time prediction. Given a new covariate vector xi′ , the proxy network produces an instance-
specific coefficient estimate Wϕ(xi′). We assign the input to the closest codebook regressor via equa-
tion 2 and make the final prediction using the selected codebook coefficient, ỹ(xi′) = x

⊤
i′w̃zi′ . As an

alternative inference mode, one may also use the proxy coefficients directly, ŷ(xi′) = x
⊤
i′Wϕ(xi′).

3.3 THEORETICAL ANALYSIS

We now establish rigorous theoretical guarantees on the convergence and generalization of CG-
CLR. We clearly state our assumptions, explicitly define necessary notation, and formally link these
theoretical insights to the proposed optimization algorithm.

Definitions and notation To clearly state the theoretical guarantees, we define the following notation.
The empirical risk on the training set is denoted by Rtrain, while the expected risk on an unseen
test sample is Rtest. The empirical quantity actually minimized during optimization is represented
by R̂. The family of predictors realized by CG-CLR forms the hypothesis class H = {(ϕ,W̃)},
parameterized by the proxy network weights ϕ and the codebook W̃. Finally, we assume bounded
support: there exist constants Ymax,Xmin,Xmax > 0 such that |y| ≤ Ymax and Xmin ≤ ∥x∥ ≤ Xmax

almost surely for (x, y) ∼ D. More explicit definitions of the expected risk, empirical risk, and the
empirical quantity appear in Appendix C.1.

Key assumptions We collect here the regularity conditions used in our analysis. They play a
technical role in guaranteeing that the Lyapunov argument applies and that the clusterwise regressions
are well-posed: the first assumption concerns the smoothness of the proxy network, the second the
curvature of the alignment loss in the codebook parameters, the third the separability of distinct linear
rules, and the fourth a minimal expressivity requirement on the proxy network.
Assumption 1 (Lipschitz continuity and Jacobian lower bound of proxy network). For each fixed
x, the mapping ϕ 7→Wϕ(x) is Lx-Lipschitz continuous and its Jacobian satisfies ∥∇ϕWϕ(x) v∥ ≥
mx∥v∥ > 0 for all v ∈ Rd.
Intuitively, Assumption 1 rules out flat or infinitely steep directions in the proxy parameter space, so
that gradient-based updates of ϕ change Wϕ(x) in a controlled way.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Assumption 2 (Strong convexity and smoothness). For a fixed cluster assignment z, the align-
ment loss Ralign(ϕ,W̃) is strongly convex and smooth with respect to W̃, satisfying µI ⪯
∇2
W̃
Ralign(ϕ,W̃) ⪯ LI, for constants µ,L > 0.

Assumption 2 ensures that, once cluster assignments are fixed, the codebook update corresponds
to a strongly convex quadratic problem, as in standard well-posed least-squares regression for each
cluster.
Assumption 3 (Cluster separation (Ghosh & Mazumdar (2024, 1.1 Setup))). There exists a mini-
mum gap ∆ between predictions from distinct optimal regressors. Formally, for the optimal W̃∗,
minj ̸=k mini |x⊤i (w̃⋆

j − w̃⋆
k)| ≥ ∆ > 0.

This separation condition guarantees that distinct optimal regressors remain distinguishable in terms
of their predictions, so that the hard-assignment rule does not oscillate between clusters in regions
where the underlying linear rules genuinely differ.
Assumption 4 (Expressivity of the proxy network). Let Fproxy := {x 7→ Wϕ(x) : ϕ ∈ Φ }
denote the function class realized by the proxy network, and let Fcodebook := {x 7→ w̃z(x)} be the
class of all mappings induced by K fixed linear regressors, where z(x) is the hard-assignment rule
in equation 2. We require that the pseudo-dimension ofFproxy satisfies Pdim(Fproxy) ≥ C K(p+1)
for some absolute constant C > 0.
Hence the proxy network is at least as expressive, in a complexity sense, as the class of clusterwise
linear mappings represented by the codebook, so it does not become a bottleneck in approximating
those K linear rules.
Lyapunov function and descent guarantee To rigorously establish the convergence properties of
CG-CLR, we explicitly introduce the following Lyapunov function:

Vλ(ϕ,W̃) := Rfit(ϕ,W̃stop) + (1 + λ)Ralign(ϕ,W̃).

A Lyapunov function is a scalar-valued function typically used in optimization and control theory to
demonstrate convergence. Such a function must satisfy two crucial properties:

(i) It is nonnegative and attains its minimum at the equilibrium (or optimal) point.
(ii) It strictly decreases along the trajectories (or iterates) of the algorithm.

In our case, Vλ clearly meets these criteria:
(i) Both Rfit and Ralign are nonnegative by definition, ensuring that Vλ is nonnegative.

(ii) Under appropriate step-size conditions, Vλ strictly decreases at each iteration (explicitly
shown in Proposition 3.1), thereby acting as a Lyapunov function guiding the convergence
of CG-CLR.

Proposition 3.1 (One-epoch descent). Under Assumptions 1 and 2, suppose the cluster assignment
z(t) remains fixed during epoch t. Define

LV := max
{
(1 + λ)L, (4 + 2λ)L2

xX2
max

}
.

For any step-size 0 < η ≤ 1/LV , the simultaneous gradient updates guarantee a strict decrease of
the Lyapunov function:

Vλ
(
ϕ(t+1),W̃(t+1)

)
≤ Vλ

(
ϕ(t),W̃(t)

)
− η

2

(
∥ϕ(t+1) − ϕ(t)∥2 + ∥W̃(t+1) − W̃(t)∥2

)
.

This explicitly verifies that Vλ serves as a valid Lyapunov function, rigorously ensuring the conver-
gence of the CG-CLR algorithm.

Linear convergence Under Assumptions 3 and 4, the cluster assignments eventually stabilize
due to the minimum prediction-gap condition, resulting in fixed cluster indices (see Appendix A).
Consequently, CG-CLR exhibits linear convergence toward the optimal parameters.

Theorem 3.2 (Linear convergence). Let Assumptions 1–4 hold. Define

µV := min
{
2m2

xX2
min, (1+λ)µ

}
, LV := max

{
(1+λ)L, (4+2λ)L2

xX2
max

}
, q :=

LV − µV

LV + µV
.

Gradient descent with the optimal step-size η⋆ = 2/(µV + LV) ensures that the stacked parameter
vector θ = (ϕ,W̃) converges linearly at the rate q, while the Lyapunov gap contracts at the rate q2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Theorem 3.3 (Generalization bound). For any δ ∈ (0, 1), with probability at least 1− δ,

Rtest ≤ Rtrain + 16c0c1 max
j≤K
∥w̃j∥

√
dM log d log 2N

N
+

8c1 maxj≤K ∥w̃j∥√
N

+ Y 2
max

√
log(1/δ)

2N
,

where c0 is an absolute constant for standard ReLU MLPs and c1 := YmaxXmax.
Detailed proofs for Theorems 3.2 and 3.3 are provided in Appendices B and C, respectively.

Model complexity selection via F-test Finally, we propose a theoretically grounded criterion for
selecting model complexity based on nested-model F-tests.

Proposition 3.4 (Sequential F-test). The necessity of adding another cluster is tested sequentially
using nested-model F-statistics:

FK→K+1 =
(SSEK − SSEK+1)/(p+ 1)

SSEK+1/(N − (K + 1)(p+ 1))
∼ Fp+1,N−(K+1)(p+1),

and the number of clusters K is selected based on statistical significance at a given significance level
α.
A detailed derivation and proof of this criterion appear in Appendix D. The proposed test offers a
statistically principled mechanism for precise control of model complexity.

4 EVALUATION

In this section, we empirically validate CG-CLR. We first consider a synthetic dataset whose
underlying piecewise-linear function is exactly known. We also evaluate our method on real-world
datasets, with detailed descriptions provided in Appendix F.1.

4.1 SYNTHETIC DATASET

(a) True Function (b) CG-CLR (PROXY) (c) CG-CLR (CODEBOOK)

Figure 2: (2a) Ground-truth piecewise-linear function. (2b, 2c) Heat maps of coefficient recovery error norm on
the evaluation grid, for (2b) proxy network and (2c) codebook regressors. Colors indicate error magnitude, from
dark purple (zero error) to bright yellow (maximum error).

Experimental setup We sample four tilted wedges inside the rectangle [−1, 1]×[−2, 2] and generate
responses from exactly one of three linear rules (also see Figure 2a.):

f⋆(x1, x2) =


x1 + x2 − 10, x2 > |x1| or x2 < −|x1|,
−x1 − x2 − 3, x1 < −|x2|,
x1 + 2x2 + 2, x1 > |x2|.

Thus, every sample (xi, yi) is realizable: the label is generated by a true piecewise-linear surface,
with added i.i.d. Gaussian noise εi ∼ N (0, 0.12). We draw 50 points per region (N = 200 in total)
and standardize both the covariates and responses before training. As illustrated in Figure 2a, the
true underlying model is composed of three clearly distinct linear regions, creating a challenging
fitting scenario, especially since one region is completely separated by the other two. For evaluation,
we create a 1000 × 1000 grid and predict the noise-free f⋆; therefore, all reported errors reflect
model bias alone. In addition to prediction errors, we compute the distance between the recovered
and ground-truth coefficient vectors on the same grid to assess how well each method reconstructs
the underlying linear rules. We compare four models trained with K = 3, except LDT, whose
tree must grow to depth 2 (effectively K = 4) to avoid early pruning: (i) LDT (Ahmed et al.,
2018), (ii) S–IMEd (Ismail et al., 2023), (iii) CG-CLR (PROXY), and (iv) CG-CLR (CODEBOOK).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

LDT (K=4) S–IMEd CG-CLR (PROXY) CG-CLR (CODEBOOK)

Figure 3: Absolute-error heat maps evaluated on a grid. Colors range from dark purple (zero error) to bright
yellow (highest error).

Here, CG-CLR (PROXY) denotes the inference mode that predicts ŷ(xi) = x
⊤
i Wϕ(xi) using the

instance-wise coefficients output by the proxy network, whereas CG-CLR (CODEBOOK) uses the
cluster-specific coefficients w̃zi selected by the hard-assignment rule in equation 2, producing the
codebook prediction ỹ(xi) = x

⊤
i w̃zi . The heat maps in Figure 3 visualize the resulting prediction

errors, while Figures 2b–2c compare the underlying regression coefficients themselves.

Qualitative results Figure 3 visualizes the prediction errors on the evaluation grid, while the full
prediction surfaces are shown in Figure 4 in the appendix. Only CG-CLR achieves (near-)zero error
everywhere: the codebook predictions are exact, except for a thin artifact along the data-free cluster
boundaries, and even the proxy predictions deviate only slightly due to fine-grained noise induced
by the noisy responses. By contrast, LDT—constrained to axis-aligned splits—misses the oblique
boundaries and produces large biased regions, while S-IMEd incorrectly merges the northeast wedges,
creating a broad region of high error.

Coefficient recovery analysis Although the proxy and the codebook yield nearly identical prediction
errors, their coefficient recovery differ significantly. The codebook, consisting of only three shared
linear regressors, almost perfectly recovers the ground-truth coefficients; consequently, the error norm
heat map is nearly blank (Figure 2c). In contrast, the proxy network generates distinct coefficient
vectors at each point. While these proxy estimates are unbiased on average, they exhibit visible
fluctuations, resulting in a speckled error norm map (Figure 2b). Therefore, the shared codebook
provides a stable and accurate reconstruction of the underlying linear rules, whereas the instance-wise
coefficients remain noisy—even when predictive accuracy is high.

Selection of K using the F -test Figure 5 in the appendix shows that models with K = 1, 2 underfit
the data, whereas models with K ≥ 4 over-segment the surface. A nested-model F -test on the
training set quantitatively confirms this visual intuition: the step from K = 2 to 3 is significant at the
α = 0.01 level (p-value < 0.001), but the increase from K = 3 to 4 is not (p-value = 0.038 > 0.01).
Thus, K = 3 is the smallest model that passes the test, aligning quantitatively with the ground truth.

4.2 REAL-WORLD DATASETS

Experimental setup Table 4 in the appendix lists the seven tabular benchmarks for regression.
Categorical columns are one-hot encoded, and all numeric features—including the response—are
standardized. We perform nested 5-fold cross-validation: each outer fold is held out for testing, and
the remaining data are split 3:1 into training and validation sets, resulting in 20 independent test
estimates per dataset. All baselines are tuned via grid-search on the validation fold. For CG-CLR,
we fix all hyperparameters across datasets—proxy network architecture, optimizer settings, and
regularization parameter λ = 1 (Appendix F.3)—such that the only dataset-dependent parameter is
the coverage budget K = ⌊Ntr/(10p+10)⌋, used for the “large-coverage” group, where Ntr is the
size of the training set.

Model groups We group baseline models by their coverage, defined as the average fraction of
training samples explained by a single local regressor. Small-coverage: Methods that have either no
explicit partition (RF (Breiman, 2001), XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova
et al., 2018), vanilla DNN) or an instance-level partition with K > ⌈Ntr/(p+1)⌉, represented by
DC (Siahkamari et al., 2020) and the proxy prediction of CG-CLR (CG-CLR (PROXY), which uses
x
⊤
i ŵi). Large-coverage: Methods that maintain a small expert count K ≤ ⌊Ntr/(10p+10)⌋: MLR

with post-hoc nearest-neighbor cluster assignment (MLR∗) (Pal et al., 2022), its EM-based counterpart
(EM-MLR∗) (Ghosh & Mazumdar, 2024), CART (Breiman et al., 2017), PILOT (Raymaekers et al.,
2024), LDT (Ahmed et al., 2018), S-IMEd (Ismail et al., 2023), and our CG-CLR (CODEBOOK).
This grouping illustrates how distinguishes between methods that can regulate model complexity
through clustering and those that cannot.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Test RMSE (95% confidence intervals) across the seven datasets (lower is better). Within each model
group, results are shown in bold if they are statistically indistinguishable from the group best. The overall best
per dataset is underlined, with the same rule applied.

Model CONDUCT HOUSING BIKE ELECTRICAL PLANT WINE CONCRETE

RF [9.74,9.89] [0.507, 0.515] [55.89, 57.01] [0.012, 0.012] [3.420, 3.512] [0.615,0.639] [5.185, 5.577]

XGBoost [9.73,9.85] [0.453, 0.461] [45.51, 46.27] [0.008, 0.008] [3.156,3.244] [0.622,0.646] [4.348,4.666]

CatBoost [9.62,9.76] [0.440,0.446] [44.69, 45.29] [0.007, 0.007] [3.108,3.216] [0.621,0.643] [4.057,4.393]

DNN [10.35, 10.53] [0.502, 0.508] [41.76, 42.70] [0.007, 0.007] [3.738, 3.832] [0.659, 0.681] [4.760, 5.108]
DC [11.38, 11.94] [0.586, 0.608] [55.02, 55.70] [0.012, 0.012] [3.696, 3.796] [0.638,0.664] [5.454, 5.854]

CG-CLR (PROXY) [10.36, 10.50] [0.487, 0.498] [39.96,40.86] [0.006,0.006] [3.583, 3.680] [0.654, 0.679] [4.663, 5.096]

MLR∗ [33.77, 33.95] [1.159, 1.169] [177.57, 178.91] [0.035, 0.035] [13.717, 13.877] [0.827, 0.843] [15.037, 15.449]
EM-MLR∗ [18.75, 19.11] [0.748, 0.768] [102.28, 103.62] [0.022, 0.022] [5.208, 5.406] [0.726, 0.747] [10.404, 10.938]
CART [16.56, 16.86] [0.645, 0.659] [120.34, 122.30] [0.021, 0.021] [4.217, 4.305] [0.734, 0.756] [9.316, 9.822]
PILOT [15.31, 15.74] [0.816, 0.826] [165.26, 166.48] [0.033, 0.033] [4.711, 4.837] [0.746, 0.766] [14.236, 14.824]
LDT [13.36, 15.62] [0.603, 0.743] [59.44, 60.02] [0.015, 0.015] [4.076, 4.162] [0.698, 0.718] [6.110, 6.418]
S-IMEd [12.68, 13.04] [0.560, 0.570] [56.13, 58.01] [0.010, 0.010] [4.183, 4.259] [0.693, 0.715] [8.853, 9.511]
CG-CLR (CODEBOOK) [10.50,10.62] [0.485,0.497] [40.77,41.71] [0.006,0.006] [3.573,3.675] [0.652,0.676] [5.193,5.537]

Results Given the same coverage budget K = ⌊Ntr/(10p+10)⌋, CG-CLR achieves the best
RMSE among all large-coverage methods and even attains the overall best performance on BIKE
and ELECTRICAL. On the remaining five datasets, its RMSE is only marginally higher than the
best gradient-boosted ensemble, despite using just K shared regressors instead of thousands of trees.
MLR∗ illustrates the danger of post-hoc assignment: while its local experts adequately fit the training
data, the absence of a learned assignment rule severely hurts generalization, resulting in the worst
scores within its group. CART, LDT, and PILOT are constrained by axis-aligned or single-split
partitions, and S-IMEd exhibits optimization instability. In contrast, the vector-quantized alignment
of CG-CLR provides both a stable global objective and a built-in single-point predictor, matching
or surpassing black-box accuracy while maintaining a compact codebook that enables principled
control over model complexity. Additional evaluations—including sensitivity analyses for λ and K,
computational cost comparisons, an empirical check of Assumption 1-3, and a small-K case study
illustrating interpretability via local linear models—are provided in Appendix F.

5 CONCLUSION

We introduced CG-CLR, an end-to-end framework that jointly learns cluster assignment and local
linear regressors via a vector-quantized dual loss. The resulting algorithm (i) provides a single-point
prediction rule for unseen covariates through a covariate-guided pipeline, (ii) enjoys monotone
empirical-risk descent with formal convergence guarantees, (iii) admits PAC-style excess-risk bounds,
and (iv) includes an F -test criterion to quantify effective model complexity. Empirically, CG-
CLR accurately reconstructs piecewise-linear functions on challenging synthetic data and achieves
performance comparable to strong black-box methods on real-world tabular benchmarks, while
maintaining a compact codebook that enables principled control over model complexity and, for
small K, interpretability through local linear models. It also outperforms existing approaches
designed for the same purpose.

6 REPRODUCTIBILITY STATEMENT

The proofs of the main results are given in Appendix A–D. Details on figure generation are provided
in Section 4 and Appendix E. Appendix F describes the benchmarks used in our experiments, the
corresponding experimental settings, and the implementation details of the baseline methods for
comparison. In addition, the supplementary material includes the benchmark dataset and fully
reproducible code.

REFERENCES

Ahmed Mohamed Ahmed, Ahmet Rizaner, and Ali Hakan Ulusoy. A decision tree algorithm
combined with linear regression for data classification. In 2018 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), pp. 1–5, 2018. doi:
10.1109/ICCCEEE.2018.8515759.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vadim Arzamasov. Electrical Grid Stability Simulated Data . UCI Machine Learning Repository,
2018. DOI: https://doi.org/10.24432/C5PG66.

Adil M Bagirov, Arshad Mahmood, and Andrew Barton. Prediction of monthly rainfall in victoria,
australia: Clusterwise linear regression approach. Atmospheric research, 188:20–29, 2017.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019.

Dimitris Bertsimas and Romy Shioda. Classification and regression via integer optimization. Opera-
tions research, 55(2):252–271, 2007.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Leo Breiman, Jerome Friedman, Richard A Olshen, and Charles J Stone. Classification and regression
trees. Routledge, 2017.

Réal A Carbonneau, Gilles Caporossi, and Pierre Hansen. Globally optimal clusterwise regression
by mixed logical-quadratic programming. European Journal of Operational Research, 212(1):
213–222, 2011.

Réal A Carbonneau, Gilles Caporossi, and Pierre Hansen. Globally optimal clusterwise regression by
column generation enhanced with heuristics, sequencing and ending subset optimization. Journal
of classification, 31:219–241, 2014.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. NODE-GAM: Neural generalized additive
model for interpretable deep learning. In International Conference on Learning Representations,
2022.

Dangxing Chen and Luyao Zhang. Monotonicity for ai ethics and society: An empirical study of the
monotonic neural additive model in criminology, education, health care, and finance, 2023.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939785.

Cerdeira A. Almeida F. Matos T. Cortez, Paulo and J. Reis. Wine Quality. UCI Machine Learning
Repository, 2009. DOI: https://doi.org/10.24432/C56S3T.

Wayne S DeSarbo and William L Cron. A maximum likelihood methodology for clusterwise linear
regression. Journal of classification, 5(2):249–282, 1988.

Emilie Devijver. Model-based regression clustering for high-dimensional data: application to
functional data. Advances in Data Analysis and Classification, 11:243–279, 2017.

Theo Diamandis, Yonina Eldar, Alireza Fallah, Farzan Farnia, and Asuman Ozdaglar. A wasserstein
minimax framework for mixed linear regression. In International Conference on Machine Learning,
pp. 2697–2706. PMLR, 2021.

Pierpaolo D’Urso, Riccardo Massari, and Adriana Santoro. A class of fuzzy clusterwise regression
models. Information Sciences, 180(24):4737–4762, 2010. ISSN 0020-0255. doi: https://doi.org/
10.1016/j.ins.2010.08.018.

Hadi Fanaee-T. Bike Sharing. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5W894.

Jagadeesh P Ganjigatti, Dilip Kumar Pratihar, and A Roy Choudhury. Global versus cluster-wise
regression analyses for prediction of bead geometry in mig welding process. Journal of materials
processing technology, 189(1-3):352–366, 2007.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Avishek Ghosh and Arya Mazumdar. Agnostic learning of mixed linear regressions with EM and
AM algorithms. In Forty-first International Conference on Machine Learning, 2024.

Igor Gitman, Jieshi Chen, Eric Lei, and Artur Dubrawski. Novel prediction techniques based on
clusterwise linear regression. arXiv preprint arXiv:1804.10742, 2018.

Kam Hamidieh. Superconductivty Data. UCI Machine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C53P47.

Aya Abdelsalam Ismail, Sercan O Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, and Tomas Pfister.
Interpretable mixture of experts. Transactions on Machine Learning Research, 2023. ISSN
2835-8856.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Kaisa Joki, Adil M Bagirov, Napsu Karmitsa, Marko M Mäkelä, and Sona Taheri. Clusterwise
support vector linear regression. European Journal of Operational Research, 287(1):19–35, 2020.

Arlind Kadra, Sebastian Pineda Arango, and Josif Grabocka. Interpretable mesomorphic networks
for tabular data. Advances in Neural Information Processing Systems, 37:31759–31787, 2024.

Claus Kahlert and Leon O Chua. A generalized canonical piecewise-linear representation. IEEE
Transactions on Circuits and Systems, 37(3):373–383, 1990.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997. ISSN 0167-7152. doi: https://doi.org/10.1016/S0167-7152(96)00140-X.

Mukesh Khadka and Alexander Paz. Comprehensive clusterwise linear regression for pavement man-
agement systems. Journal of Transportation Engineering, Part B: Pavements, 143(4):04017014,
2017.

Jason M Klusowski, Dana Yang, and WD Brinda. Estimating the coefficients of a mixture of two
linear regressions by expectation maximization. IEEE Transactions on Information Theory, 65(6):
3515–3524, 2019.

Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh. Meta-learning for
mixed linear regression. In International Conference on Machine Learning, pp. 5394–5404. PMLR,
2020.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media, 2013.

Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with nearly optimal complexity.
In Conference On Learning Theory, pp. 1125–1144. PMLR, 2018.

Ji-Nan Lin, Hong-Qing Xu, and Rolf Unbehauen. A generalization of canonical piecewise-linear
functions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
41(4):345–347, 1994.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

Qiang Long, Adil Bagirov, Sona Taheri, Nargiz Sultanova, and Xue Wu. Methods and applications
of clusterwise linear regression: A survey and comparison. ACM Transactions on Knowledge
Discovery from Data, 17(3):1–54, 2023.

Naresh Manwani and PS Sastry. K-plane regression. Information Sciences, 292:39–56, 2015.

M Mohri. Foundations of machine learning, -mehryar mohri, afshin rostamizadeh, ameet talwalkar,
2018.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Soumyabrata Pal, Arya Mazumdar, Rajat Sen, and Avishek Ghosh. On learning mixture of linear
regressions in the non-realizable setting. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
17202–17220. PMLR, 17–23 Jul 2022.

Jeremy Petch, Shuang Di, and Walter Nelson. Opening the black box: the promise and limitations
of explainable machine learning in cardiology. Canadian Journal of Cardiology, 38(2):204–213,
2022.

Cristian Preda and Gilbert Saporta. Clusterwise pls regression on a stochastic process. Computational
Statistics & Data Analysis, 49(1):99–108, 2005.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and An-
drey Gulin. Catboost: unbiased boosting with categorical features. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems, volume 31. Curran Associates, Inc., 2018.

Jakob Raymaekers, Peter J Rousseeuw, Tim Verdonck, and Ruicong Yao. Fast linear model trees by
pilot. Machine Learning, 113(9):6561–6610, 2024.

Ali Siahkamari, Aditya Gangrade, Brian Kulis, and Venkatesh Saligrama. Piecewise linear regression
via a difference of convex functions. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8895–8904. PMLR, 13–18 Jul 2020.

Qinghua Tao, Li Li, Xiaolin Huang, Xiangming Xi, Shuning Wang, and Johan AK Suykens. Piecewise
linear neural networks and deep learning. Nature Reviews Methods Primers, 2(1):42, 2022.

Pnar Tfekci and Heysem Kaya. Combined Cycle Power Plant. UCI Machine Learning Repository,
2014. DOI: https://doi.org/10.24432/C5002N.

Ryan Thompson, Amir Dezfouli, and Robert Kohn. The contextual lasso: Sparse linear models via
deep neural networks. Advances in Neural Information Processing Systems, 36:19940–19961,
2023.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learning.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Donatella Vicari and Maurizio Vichi. Multivariate linear regression for heterogeneous data. Journal
of Applied Statistics, 40(6):1209–1230, 2013.

Shuning Wang and Xusheng Sun. Generalization of hinging hyperplanes. IEEE Transactions on
Information Theory, 51(12):4425–4431, 2005.

Junchen Yang, Ofir Lindenbaum, and Yuval Kluger. Locally sparse neural networks for tabular
biomedical data. In International Conference on Machine Learning, pp. 25123–25153. PMLR,
2022.

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C5PK67.

Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Alternating minimization for mixed
linear regression. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp.
613–621, Bejing, China, 22–24 Jun 2014. PMLR.

Chun Yu, Weixin Yao, and Kun Chen. A new method for robust mixture regression. Canadian
Journal of Statistics, 45(1):77–94, 2017.

Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Mixed linear regression with multiple components. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CLUSTER ASSIGNMENT STABILIZATION

A.1 ABSTRACT ERROR CONTRACTION UNDER IDEALIZED ALTERNATING MINIMIZATION

This section presents a high-level analysis of how the alternating minimization procedure drives
the stabilization of cluster assignments. Here, we abstract away from the details of gradient-based
optimization, and instead assume that each update within a high-level epoch brings the proxy
predictions ŷ and codebook predictions ỹ to the minimizers of their respective loss functions, given
the current assignments. This idealized analysis serves to illustrate the mechanism by which the
alternating minimization scheme contracts prediction errors and ultimately leads to stable assignments.
We emphasize that this argument is schematic: it isolates the error contraction and stabilization logic
of the alternating minimization framework, while rigorous convergence proofs under gradient-based
optimization are provided separately in Appendix B.

For a given sample i ∈ [1, . . . , N] and high-level epoch t′ ∈ {t0, t1, . . . }, we let zt
′

i denote the
cluster assignment and define the corresponding codebook and proxy predictions as

ỹ
(t′)
i := x⊤i w̃

(t′)

zt′
i

, ŷ
(t′)
i := x⊤i ŵ

(t′)
i .

The dual loss minimized by the alternating updates takes the following two-term form:

Vλ(ϕ,W̃) =
1

N

N∑
i=1

(
yi − ŷi + ystopi − ỹstopi

)2
+ (1 + λ)

1

N

N∑
i=1

(ỹi − ŷi)2.

Each iteration consists of the following updates:

ỹ
(tn+1)
i = xiw̃

(tn+1)
zi = x

⊤
i

(
argmin
w̃zi

∑
i∈S

(tn)
zi

(ỹi−ŷ(tn)i)2
)
, ŷ

(tn+1)
i = argmin

ŷ

(yi + λỹ
(tn)
i

1 + λ
−ŷ

)2

.

This yields the explicit updates:

ỹ
(tn+1)
i = x⊤i

(
X

(tn)⊤
ztn
i

X
(tn)

ztn
i

)−1

X
(tn)⊤
ztn
i

ŷ
(tn)

ztn
i

, ŷ
(tn+1)
i =

yi + λỹ
(tn)
i

1 + λ
,

where X(t′)
j := [xi]

⊤
i∈S

(t′)
j

∈ R|S(t′)
j |×(p+1) denotes the design matrix for cluster j at epoch t′ and

ŷ
(t′)
j := [ŷi]

⊤
i∈S

(t′)
j

is the vector of proxy predictions assigned to cluster j.

Each high-level epoch in this analysis refers to a single alternating cycle in which the proxy and
codebook regressors are assumed to be fully optimized with respect to their losses for the current
assignments. This abstraction removes the effect of partial or stochastic optimization, allowing us to
focus on the error contraction logic of the idealized alternating minimization scheme.

To characterize the contraction per iteration, we establish the following bound:
Lemma A.1 (Projector gain κ). Under Assumption 2 (strong convexity µ and smoothness L ofRalign)
holds, for every epoch t′, cluster j, and sample i ∈ S(t′)

j ,

κ
(t′)
i,j :=

∥∥x⊤i (X(t′)⊤
j X

(t′)
j)−1X

(t′)⊤
j

∥∥
2

satisfies κ(t)i,j ≤
√
L/µ.

Proof.
Applying the Rayleigh quotient to x⊤i (X

⊤
j Xj)

−1
xi and the eigenvalue bounds µNI ⪯ X⊤

j Xj ⪯
LNI from Assumption 2 gives result.

From Lemma A.1, the error for the codebook prediction at each step is bounded by

|ỹ(tn+1)
i − yi| ≤ κ max

i′∈S
(tn)
j

|ŷ(tn)i′ − yi′ | ≤ κ max
i′
|ŷ(tn)i′ − yi′ |,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

while for the proxy prediction, we have

|ŷ(tn+1)
i − yi| =

λ

1 + λ
|ỹ(tn)i − yi|,

where κ :=
√
L/µ.

Combining these yields the overall contraction factor:

ρ := κ
λ

1 + λ
, with the assumption ρ < 1 (⇔ λ < 1/(κ− 1)).

Consequently, the maximum error contracts geometrically as follows:

max
i′
|ŷ(tn)i′ − yi′ | ≤ ρn max

i′
|ŷ(0)i′ − yi′ |.

Proposition A.2 (Geometric contraction). Given the contraction rate ρ above, for every i and n ≥ 0,

|ŷ(tn)i − yi| ≤ ρn max
i′
|ŷ(0)i′ − yi′ |, |ỹ(tn)i − yi| ≤ κρn−1 max

i′
|ŷ(0)i′ − yi′ |.

A.2 FROM PREDICTION CONVERGENCE TO STABLE ASSIGNMENT

Next, we relate the convergence of predictions to the stabilization of cluster assignments. Let ∆
denote the minimum prediction gap defined in Assumption 3:

∀i : min
j ̸=z∗

i

|x⊤i (w̃∗
z∗
i
− w̃∗

j)| ≥ ∆ > 0.

If we define M := maxi |ŷ(0)i − yi|, then by Proposition A.2,

|ỹ(tn)i − yi|, |ŷ(tn)i − yi| ≤ κρn−1M.

Thus, the maximum possible deviation in any score difference is at most κρn−1M . By selecting

n0 :=

⌈
log(2κM/∆)

log(1/ρ)

⌉
+ 1,

we guarantee that for all t′ ≥ tn0
, the gap between the predicted value and each cluster’s optimal

regressor is at least ∆/2, ensuring correct and stable assignments to z∗i . Formally:

Proposition A.3 (Assignment stabilization). Suppose Assumptions 2–4 hold and ρ < 1. Then all
cluster assignments stabilize after tn0

high-level epochs:

∀t′ ≥ tn0 : z
(t′)
i = z∗i , ∀i.

To summarize, this section provides a high-level view of the error contraction and assignment
stabilization mechanism, assuming each alternating update fully minimizes the relevant loss. The
formal proof of convergence under practical gradient-based optimization can be found in Appendix B.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B LYAPUNOV ANALYSIS

This appendix provides the theoretical proofs for the Lyapunov analysis outlined in Section 3.3. The
main results—coercivity, one-epoch descent, and linear convergence—are restated here as in the
main text, followed by detailed proofs.

B.1 COERCIVITY OF OBJECTIVE FUNCTION

We first show that the Lyapunov function Vλ(ϕ,W̃) is coercive, meaning that it grows without bound
as (ϕ,W̃) moves away from any bounded set. Owing to the structure of our objective, this result
follows directly:

Lemma B.1 (Coercivity). Let Assumptions 1–2 hold and recall the Lyapunov function Vλ(ϕ,W̃) =

Rfit(ϕ,W̃stop) + (1 + λ)Ralign(ϕ,W̃). Then there exist positive constants µϕ > 0 and µ
W̃

:=
(1 + λ)µ/N such that

Vλ(ϕ,W̃) ≥ µϕ

2 ∥ϕ∥
2 +

µ
W̃

2 ∥W̃∥
2.

Consequently Vλ(ϕ,W̃)→∞ whenever ∥(ϕ,W̃)∥ → ∞.

Proof.
Write Jϕ(x) =

∂Wϕ(x)
∂ϕ . By Assumption 1, mx ≤ ||Jϕ(x)∥ ≤ Lx. Using the Gauss-Newton

approximation, we have ∇2
ϕR

fit ⪰ 2m2
xX

2
min I . Set µϕ := 2m2

xX
2
min; then Rfit ≥ µϕ

2 ∥ϕ∥
2.

The term Ralign is quadratic in W̃, and its Hessian equals 1
N

∑
i∈Sj

xix
⊤
i ⪰ µI (by Assumption 2);

hence Ralign ≥ µ
2 ∥W̃∥

2.

Adding the two bounds and multiplying the Ralign term by 1 + λ yields:

Vλ(ϕ,W̃) = Rfit(ϕ,W̃stop) + (1 + λ)Ralign(ϕ,W̃) ≥ µϕ

2
∥ϕ∥2 + (1 + λ)µ

2
∥W̃∥2

B.2 SMOOTHNESS OF OBJECTIVE FUNCTION

Lemma B.2 (Gradient Lipschitz continuity of Vλ(ϕ,W̃)). Under Assumptions 1–2, the gradient of
Vλ(ϕ,W̃) is LV –Lipschitz, where

LV = max
{
(1 + λ)L,

(
4 + 2λ

)
L2
xX

2
max

}
.

Proof.
Define Xj := [xi]

⊤
i∈Sj

. The alignment part splits cluster–wise:

Ralign(ϕ,W̃) =
1

N

K∑
j=1

∥∥Xjw̃j − rj(ϕ)
∥∥2.

where rj(ϕ) := [x⊤i ŵi]
⊤
i∈Sj

Hence
∇2
W̃
Ralign(ϕ,W̃) = diag

(
1
NX

⊤
j Xj

)K
j=1

.

By Assumption 2, 1
NX

⊤
j Xj ⪯ LI for every j. Therefore, ∥∇2

W̃
Vλ(ϕ,W̃)∥ ≤ (1 + λ)L.

For each sample i,
∥∥∇ϕx

⊤
i ŵi

∥∥ ≤ LxXmax (by Assumption 1). Therefore,

∥∇2Rfit(ϕ,W̃)∥ ≤ 2L2
xX

2
max, ∥∇2

ϕR
align(ϕ,W̃)∥ ≤ (1 + λ) 2L2

xX
2
max.

Add the two contributions gives ∥∇2
ϕVλ(ϕ,W̃)∥ ≤ (4 + 2λ)L2

xX
2
max.

The full Hessian of Vλ(ϕ,W̃) is block-diagonal, so its operator norm is the maximum of the two
block norms computed above. Hence,

LV = max
{
(1 + λ)L, (4 + 2λ)L2

xX
2
max

}
,

which proves the claim.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proposition 3.1 (One-epoch descent). Under Assumptions 1 and 2, suppose the cluster assignment
z(t) remains fixed during epoch t. Define

LV := max
{
(1 + λ)L, (4 + 2λ)L2

xX2
max

}
.

For any step-size 0 < η ≤ 1/LV , the simultaneous gradient updates guarantee a strict decrease of
the Lyapunov function:

Vλ
(
ϕ(t+1),W̃(t+1)

)
≤ Vλ

(
ϕ(t),W̃(t)

)
− η

2

(
∥ϕ(t+1) − ϕ(t)∥2 + ∥W̃(t+1) − W̃(t)∥2

)
.

Proof.
Because Vλ(ϕ,W̃) is LV -smooth (by Lemma B.2), for any update vector θ∆ := (ϕ(t+1) −
ϕ(t),W̃(t+1) − W̃(t)) and current vector θ(t) := (ϕ(t),W̃(t)), the descent theorem (Nesterov
et al. (2018, Theorem 2.1.5)) gives

Vλ(θ
(t) + θ∆) ≤ Vλ(θ

(t)) + ⟨∇Vλ(θ(t)), θ∆⟩+
LV

2
∥θ∆∥2.

Choose θ∆ = −η∇Vλ(ϕ(t),W̃(t)) with 0 < η ≤ 1/LV .

Then,

Vλ(ϕ
(t+1),W̃(t+1)) ≤ Vλ(ϕ(t),W̃(t))− η∥∇Vλ(ϕ(t),W̃(t))∥2 + η2LV

2
∥∇Vλ(ϕ(t),W̃(t))∥2

= Vλ(ϕ
(t),W̃(t))− η

(
1− ηLV

2

)
∥∇Vλ(ϕ(t),W̃(t))∥2.

Since ηLV ≤ 1, the parenthesis is at least 1
2 , yielding the stated decrease: Vλ(ϕ(t+1),W̃(t+1)) ≤

Vλ(ϕ
(t),W̃(t))− η

2∥∇Vλ(ϕ
(t),W̃(t))∥2.

Theorem 3.2 (Linear convergence). Let Assumptions 1–4 hold. Define

µV := min
{
2m2

xX2
min, (1+λ)µ

}
, LV := max

{
(1+λ)L, (4+2λ)L2

xX2
max

}
, q :=

LV − µV

LV + µV
.

Gradient descent with the optimal step-size η⋆ = 2/(µV + LV) ensures that the stacked parameter
vector θ = (ϕ,W̃) converges linearly at the rate q, while the Lyapunov gap contracts at the rate q2.

Proof.
Lemma B.1 shows that, under Assumptions 1–2, the Hessian satisfies

∇2Vλ ⪰ µV I, µV := min
{
2m2

xX
2
min, (1 + λ)µ

}
,

Lemma B.2 gives a global Lipschitz bound ∥∇2Vλ∥ ≤ LV with LV = max
{
(1 + λ)L, (4 +

2λ)L2
xX

2
max

}
.

For epoch t, the update θ(t+1) = θ(t) − η∇Vλ(θ(t)), θ(t) := (ϕ(t),W̃(t)) is standard gradient
descent on an LV -smooth, µV -strongly convex function.

Choosing any stepsize 0 < η ≤ 2/(µV + LV) gives the classical contraction (Nesterov et al. (2018,
Theorem 2.1.15)):

Vλ
(
θ(t)

)
− V ⋆

λ ≤
LV

2

(LV /µV − 1

LV /µV + 1

)2t∥θ(0) − θ⋆∥2,
where θ⋆ is the optimal point of Vλ

(
θ
)

and V ⋆
λ := Vλ(θ

⋆).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The same theorem gives the one-step contraction, yielding the geometric bound:

∥θ(t) − θ⋆∥2 ≤
(LV /µV − 1

LV /µV + 1

)t∥θ(0) − θ⋆∥2.
In other words, the stacked parameter vector θ = (ϕ,W̃) converges linearly with ratio LV /µV −1

LV /µV +1 ,

while the objective gap contracts with ratio (LV /µV −1
LV /µV +1)

2.

These results together provide a rigorous foundation for the Lyapunov-based convergence guarantees
stated in the main text.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C PAC-STYLE GENERALIZATION BOUND

This appendix provides the full proof of the PAC-style generalization bound stated in Theorem 3.3 of
the main text. We begin with a general Rademacher-complexity-based risk bound for squared loss,
then specialize it to the structure of CG-CLR, resulting in a bound that is uniform over all model
parameters.

C.1 FORMAL DEFINITION OF EMPIRICAL AND EXPECTED RISKS

We formally define the empirical quantities used in the theoretical analysis in Section 3.3. Throughout,
let ℓ(ŷ, y) := (ŷ − y)2 denote the squared loss.

Predictor induced by CG-CLR. Given parameters (ϕ,W̃), the prediction of CG-CLR on an input
x is

hϕ,W̃(x) := x
⊤
w̃zϕ(x),

where zϕ(x) is the hard-assignment rule defined in equation 2.

Expected risk. For a predictor hϕ,W̃, the expected risk under the data distribution D is

Rtest := E(x,y)∼D

[
ℓ(hϕ,W̃(x), y)

]
.

Empirical risk on the training sample. Given i.i.d. training data {(xi, yi)}Ni=1, the empirical risk is

Rtrain :=
1

N

N∑
i=1

ℓ
(
hϕ,W̃(xi), yi

)
.

Objective minimized during training. CG-CLR minimizes the composite empirical objective

R̂ := Rfit(ϕ,W̃stop) + (1 + λ)Ralign(ϕ,W̃),

where Rfit measures the prediction error between the codebook predictions and the responses, and
Ralign encourages agreement between the proxy predictions and the quantized codebook predictions.

C.2 GENERALIZATION VIA RADEMACHER COMPLEXITY

For any measurable function f , we denote the true and empirical risks as

L(f) = E(x,y)∼D
[
ℓ
(
f(x), y

)]
, L̂(f) =

1

N

N∑
i=1

ℓ
(
f(xi), yi

)
where the loss function ℓ : R× R→ [0, Y 2

max] is 4Ymax-Lipschitz in its first argument:

|ℓ(u, y)− ℓ(v, y)| = |(u− y)2 − (v − y)2| = |u− v||u+ v − 2y| ≤ 4Ymax|u− v|.

Lemma C.1 (Rademacher-based Risk Bound). Let F be a class of real-valued functions such that
supx |f(x)| ≤ Ymax for all f ∈ F . Then for any δ ∈ (0, 1), with probability at least 1− δ over an
i.i.d. sample of size N , every f ∈ F satisfies

L(f) ≤ L̂(f) + 8Ymax R̂N (F) + Y 2
max

√
ln(1/δ)

2N
,

where

R̂N (F) = Eσ

[
sup
f∈F

1

N

N∑
i=1

σi f(xi)
]
,

and σi ∈ {±1} are independent Rademacher random variables.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof.
Let S = (d1, . . . , dN) with di = (xi, yi), and define

ϵ(S) = sup
f∈F

(
L(f)− L̂(f)

)
= sup

f∈F

(
E[ℓ(f(x), y)]− 1

N

N∑
i=1

ℓ(f(xi), yi)
)
.

By the symmetrization argument (Bartlett & Mendelson (2002, Appendix B)),

E[ϵ(S)] ≤ Eσ

[
sup
f∈F

2

N

N∑
i=1

σi ℓ
(
f(xi), yi

)]
.

For each fixed y, define the centered loss
ψy(u) = ℓ(u, y) − ℓ(0, y).

Then ψy is 4Ymax-Lipschitz and satisfies ψy(0) = 0.

By Talagrand’s Lemma (Mohri (2018, Lemma 5.7)),

Eσ

[
sup
f∈F

1

N

N∑
i=1

σi ψyi

(
f(xi)

)]
≤ 4Ymax Eσ

[
sup
f∈F

1

N

N∑
i=1

σi f(xi)
]

= 4YmaxRN (F).

Subtracting the constant ℓ(0, yi) does not affect the supremum, so

Eσ

[
sup
f∈F

1

N

N∑
i=1

σi ℓ
(
f(xi), yi

)]
= Eσ

[
sup
f∈F

1

N

N∑
i=1

σi ψyi

(
f(xi)

)]
.

Combining the above yields
E[ϵ(S)] ≤ 8YmaxRN (F).

Now, suppose S′ differs from S only in the i-th sample, di → d′i. For any fixed f ,∣∣∣ 1
N ℓ

(
f(xi), yi

)
− 1

N
ℓ
(
f(x′

i), y
′
i

)∣∣∣ ≤ Y 2
max

N
.

Thus, taking the supremum over f , ∣∣ϵ(S)− ϵ(S′)
∣∣ ≤ Y 2

max

N
.

Therefore, ϵ(S) satisfies the bounded difference property with constants ci = Y 2
max/N .

By McDiarmid’s inequality (Mohri (2018, Theorem D.8)), for any ϵ0 > 0,

Pr
(
ϵ(S)− E[ϵ(S)] > ϵ0

)
≤ exp

(
− 2ϵ20∑N

i=1 c
2
i

)
= exp

(
−2N ϵ20
Y 4
max

)
.

Setting the right-hand side equal to δ gives

ϵ0 = Y 2
max

√
ln(1/δ)

2N
,

so with probability at least 1− δ,

ϵ(S) ≤ E[ϵ(S)] + Y 2
max

√
ln(1/δ)

2N
.

Combining the above bounds, for every f ∈ F ,

L(f) ≤ L̂(f) + 8YmaxR̂N (F) + Y 2
max

√
ln(1/δ)

2N
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 CG-CLR-SPECIFIC DECOMPOSITION

We now apply the general bound to our clusterwise model class.

Theorem 3.3 (Generalization bound). For any δ ∈ (0, 1), with probability at least 1− δ,

Rtest ≤ Rtrain + 16c0c1 max
j≤K
∥w̃j∥

√
dM log d log 2N

N
+

8c1 maxj≤K ∥w̃j∥√
N

+ Y 2
max

√
log(1/δ)

2N
,

where c0 is an absolute constant for standard ReLU MLPs and c1 := YmaxXmax.

Proof.
We bound the empirical Rademacher complexity

R̂N (H) = Eσ

[
sup

(ϕ,W̃)

1

N

N∑
i=1

σi hϕ,W̃(xi)
]
,

where
hϕ,W̃(x) = x⊤ w̃ zϕ(x), zϕ(x) = argmin

j≤K

(
x
⊤(ŵi − w̃j)

)2
.

Define

G =
{
x 7→ zϕ(x)

}
⊂ {X → {j}Kj=1}, C =

{
(x, j) 7→ x

⊤
w̃ j

}
⊂ {X × {j}Kj=1 → R}.

ThenH = C ◦ G.

Lemma C.2 (Codebook Lipschitz). Assume ∀j ∥w̃j∥ ≤Wmax. Define

ψx(j) = x
⊤
w̃j .

With the discrete metric d(j, j′) = 1{j ̸= j′}, we have

|ψx(j)− ψx(j′)| ≤ 2XmaxWmax d(j, j
′).

Thus, each ψx is (2XmaxWmax)-Lipschitz.

For any fixed code vectors {w̃∗
j}, consider

R̂N (C ◦ G) = Eσ

[
sup
g∈G

1

N

∑
i

σi x
⊤
i w̃

∗
g(xi)

]
.

Since the map j 7→ x
⊤
i w̃

∗
j is (2XmaxWmax)-Lipschitz on the discrete set, the Ledoux–Talagrand

contraction lemma (Ledoux & Talagrand, 2013, Theorem 4.4) gives

R̂N (C ◦ G) ≤ 2XmaxWmax R̂N (G).

Allowing the codebook to vary introduces an additional term. By sup-subadditivity, for any fixed
(ϕ∗,W̃∗),

sup
ϕ,W̃

∑
i

σi x
⊤
i w̃ zϕ(xi) ≤ sup

ϕ

∑
i

σi x
⊤
i w̃

∗
zϕ(xi)︸ ︷︷ ︸

A

+ sup
W̃

∑
i

σi x
⊤
i w̃ zϕ∗ (xi)︸ ︷︷ ︸

B

.

Term A is bounded as above, and term B is the Rademacher sum over the linear class C:

A ≤ 2NXmaxWmaxR̂N (G), B = NR̂N (C).

Dividing by N and taking expectation in σ yields

R̂N (H) ≤ R̂N (C) + 2XmaxWmax R̂N (G).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Now, for
C =

{
(x, j) 7→ x

⊤
w̃j : ∥w̃j∥ ≤Wmax

}
,

we have

R̂N (C) = Eσ

[
sup

j,∥w̃j∥≤Wmax

1

N

N∑
i=1

σi x
⊤
i w̃j

]
=Wmax Eσ

∥∥∥ 1

N

N∑
i=1

σi xi

∥∥∥ (by the Cauchy–Schwarz duality)

≤ WmaxXmax√
N

,

where the last inequality is the standard Rademacher complexity bound for a Euclidean ball in Rp

(Mohri (2018, Theorem 11.11)).

Next,
G =

{
x 7→Wϕ(x)

}
is the hypothesis class implemented by a depth-M ReLU MLP with d trainable parameters.

By the nearly-tight VC and pseudo-dimension bounds of Bartlett et al. (2019, Theorem 3 and 7), its
pseudo-dimension satisfies

Pdim(G) = O
(
dM log d

)
.

By the standard conversion from pseudo-dimension to Rademacher complexity (Mohri (2018, Theo-
rem 11.6)),

R̂N (G) ≤
√

2 Pdim(G) ln(2N)

N
= O

(√dM ln d ln(2N)

N

)
.

Combining Lemma C.2 with the decomposition

R̂N (H) ≤ R̂N (C) + 2XmaxWmax R̂N (G),

and using

R̂N (C) ≤ WmaxXmax√
N

, R̂N (G) ≤ c0

√
dM ln d ln(2N)

N
,

where c0 is an absolute constant for standard ReLU MLPs, we conclude that, for any δ ∈ (0, 1), with
probability at least 1− δ,

L
(
hϕ,W̃

)
≤ L̂

(
hϕ,W̃

)
+ 8Ymax

(
WmaxXmax√

N
+ 2XmaxWmax c0

√
dM ln d ln(2N)

N

)
+ Y 2

max

√
ln(1/δ)
2N .

In particular,

Rtest ≤ Rtrain + 16c0c1 max
j≤K
∥w̃j∥

√
dM log d log 2N

N
+

8c1 maxj≤K ∥w̃j∥√
N

+ Y 2
max

√
log(1/δ)

2N
,

where c1 := YmaxXmax, which recovers Theorem 3.3.

Connection to the training objective. Note that our training objective upper-bounds the empirical
prediction risk:

Rtrain(ϕ,W̃) = Rfit(ϕ,W̃stop) ≤ R̂(ϕ,W̃).

Therefore, Theorem 3.3 also yields a bound in terms of the optimization objective:

Rtest ≤ R̂ + 16c0c1 max
j≤K
∥w̃j∥

√
dM log d log(2N)

N
+

8c1 maxj≤K ∥w̃j∥√
N

+ Y 2
max

√
log(1/δ)

2N
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D F –TEST DERIVATION

This appendix derives the sequential F -test procedure used to determine the appropriate number of
clusters in our model. The test evaluates, at each step, whether introducing an additional cluster leads
to a statistically significant reduction in the residual sum of squares.

Proposition 3.4 (Sequential F -test). The necessity of adding another cluster is tested sequentially
using nested-model F-statistics:

FK→K+1 =
(SSEK − SSEK+1)/(p+ 1)

SSEK+1/(N − (K + 1)(p+ 1))
∼ Fp+1,N−(K+1)(p+1),

and the number of clusters K is selected according to statistical significance at a given level α.

Proof.
We consider a fixed assignment vector z = (z1, . . . , zN) ∈ [1, . . . ,K]N . For each cluster j ∈
[1, . . . ,K], let

Xj := diag
(
1Sj

)
[x1 : · · · : xN]⊤ ∈ RN×(p+1),

where Sj := {i|zi = j} is the index set for cluster j.

The restricted (null) model with K clusters is then given by
y = X(K)β(K) + ε, X(K) := [X1 : · · · : XK] ∈ RN×K(p+1), β(K) := [w̃⊤

1 , . . . , w̃
⊤
K]⊤,

where ε ∼ N(0, σ2).

To test whether adding a (K+1)th cluster is necessary, we consider a new partition of the data in
which one or more samples are reassigned from their current clusters to form the candidate new
cluster. This induces a new set of cluster assignments

z′ = (z′1, . . . , z
′
N) ∈ [1, . . . ,K+1]N ,

where there exists at least one i such that z′i = K+1 and z′i ̸=zi.

The new partition gives rise to a modified block structure for the design matrix, where
X ′

(K+1) := [X′
1, . . . ,X

′
K+1] ∈ RN×(K+1)(p+1),

with
X′

j := diag(1S′
j
)[x1 : · · · : xN]⊤, for j = 1, . . . ,K+1,

and the updated index set for cluster j is defined as S ′j := {i|z′i = j}.

The extended (alternative) model is now
y = X ′

(K+1)β
′
(K+1) + ε,

where β′
(K+1) := [(w̃′

1)
⊤, . . . , (w̃′

K+1)
⊤]⊤.

This model introduces exactly p + 1 additional parameters relative to the restricted model, due to
the addition of the new cluster regressor w̃′

K+1, while allowing the other cluster assignments to be
updated accordingly.

Let
β̂(K) := (X⊤

(K)X(K))
−1X⊤

(K)y, β̂′
(K+1) := (X ′⊤

(K+1)X
′
(K+1))

−1X ′⊤
(K+1)y,

be the least-squares solutions for each model, and define

SSEK :=
∥∥∥y −X(K)β̂(K)

∥∥∥2
2
, SSEK+1 :=

∥∥∥y −X ′
(K+1)β̂

′
(K+1)

∥∥∥2
2
.

Since the restricted model is nested within the full model, the standard lack-of-fit statistic is given by

FK→K+1 :=
(SSEK − SSEK+1)/(p+ 1)

SSEK+1/(N − (K + 1)(p+ 1))
∼ Fp+1, N−(K+1)(p+1) under H0,

where H0 denotes the null hypothesis that the additional cluster does not provide a significant
improvement in fit.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Sequential decision rule. The sequential testing procedure proceeds as follows: Starting with K = 1
(the global linear fit), we increment K as long as the statistic

FK→K+1 > F
(α/2)
p+1, N−(K+1)(p+1)

(where the superscript denotes the upper α/2-quantile of the F -distribution). The process stops at the
smallest K where the null hypothesis cannot be rejected at level α.

The final selected number of clusters,

K̂ ∈
{
1, . . . ,

⌈
N

p+ 1

⌉
− 1

}
,

thus provides a data-driven estimate of the number of linear components supported by the observed
data. This sequential rule controls the risk of overfitting by requiring each added cluster to achieve a
statistically significant reduction in residual variance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E SIMULATION STUDY

E.1 LOW-DIMENSIONAL PIECEWISE-LINEAR FUNCTION

(a) Linear Decision Tree (LDT) (b) MoME (S-IMEd)

(c) CG-CLR (PROXY) (d) CG-CLR (CODEBOOK)

Figure 4: Function approximation and Clustering results: (a) LDT, (b) S-IMEd, (c) proxy network, (d) codebook
regressors

Table 3: F-test Results under H0 : K ≤ k0 and H1 : K > k0 where p = 2, N = 200, and true K = 3.

H0 SSEH0 SSEH1 F p-value
K ≤ 1 5398.91 139.56 2436.9 0.000
K ≤ 2 139.56 1.94 4507.2 0.000
K ≤ 3 1.94 1.84 3.3 0.038
K ≤ 4 1.84 1.80 1.2 0.586

E.2 HIGH-DIMENSIONAL GAUSSIAN MIXTURE COVARIATES

The main simulation in Section E.1 focuses on a two-dimensional, piecewise-linear function with
clearly separated clusters. While this setting is useful for visualizing the behavior of CG-CLR, it is
deliberately benign: the covariate clusters are well separated and the underlying linear experts differ
substantially. To assess whether CG-CLR also behaves well in more realistic, noisy settings with
overlapping clusters and high-dimensional covariates, we conduct an additional experiment based on
a Gaussian mixture model in p = 10 dimensions.
Conceptually, this experiment is designed to mimic a regime in which (i) the covariates arise from
several correlated Gaussian components that partially overlap in R10, (ii) each component is governed
by its own linear regression model, and (iii) some regions of the covariate space are intrinsically
ambiguous, in the sense that both the covariate distribution and the underlying linear functions are very
similar across components. In such regions, any purely covariate-based assignment rule (including

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) CG-CLR with K = 1 (b) CG-CLR with K = 2

(c) CG-CLR with K = 3 (d) CG-CLR with K = 4

Figure 5: Function approximation and Clustering results (Ablation): (a) K = 1, (b) K = 2, (c) K = 3, (d)
K = 4.

CG-CLR) necessarily faces ambiguity in cluster labels, but prediction can still remain accurate if the
corresponding linear experts are close. The goal of this simulation is to test whether CG-CLR can
(a) recover the cluster structure where it is identifiable from covariates, and (b) accurately reconstruct
the component-wise linear mechanisms even under covariate overlap and observation noise.

Data generating process. We consider K = 3 latent regression components with mixture weights
π1 = 1

6 , π2 = 1
3 , and π3 = 1

2 , corresponding to unequal cluster sizes. First, a latent cluster index
z ∈ {1, 2, 3} is drawn according to {πj}3j=1. Conditioned on z = j, the covariate vector x ∈ R10 is
drawn from a full-covariance Gaussian component

x | (z = j) ∼ N (µj ,Σj), j = 1, 2, 3,

where the means µj ∈ R10 and covariance matrices Σj ∈ R10×10 are sampled once at random and
then fixed. Each Σj is a dense, positive-definite covariance with moderate correlations between
coordinates, obtained by drawing a random correlation matrix and rescaling it by random marginal
variances.

Gaussian mixture parameters. The randomly generated mixture component parameters used in
this experiment are

µ1 = [−0.729, 0.776, 0.865, −0.109, −0.224, −0.485, 0.315, −0.015, 0.928, 0.602],

µ2 = [−0.090, 0.602, −0.917, 0.539, −0.994, −0.414, 0.222, 0.826, −0.400, −0.503],

µ3 = [0.333, 0.975, −0.063, −0.753, 0.832, 0.892, −0.445, 0.039, −0.691, −0.971].

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The covariance matrices are:

Σ1 =



0.438 0.045 0.067 0.066 −0.036 0.034 −0.013 −0.105 −0.086 −0.069
0.045 0.991 0.008 0.020 −0.100 0.044 −0.057 −0.124 0.146 0.041
0.067 0.008 0.572 0.023 0.014 0.053 −0.065 −0.099 0.003 −0.051
0.066 0.020 0.023 0.880 −0.067 0.009 0.056 0.032 −0.070 0.023
−0.036 −0.100 0.014 −0.067 0.285 0.027 −0.024 0.007 −0.037 −0.021
0.034 0.044 0.053 0.009 0.027 0.412 −0.077 −0.093 0.024 −0.004
−0.013 −0.057 −0.065 0.056 −0.024 −0.077 0.539 0.116 −0.063 −0.018
−0.105 −0.124 −0.099 0.032 0.007 −0.093 0.116 0.776 −0.024 0.038
−0.086 0.146 0.003 −0.070 −0.037 0.024 −0.063 −0.024 0.924 0.122
−0.069 0.041 −0.051 0.023 −0.021 −0.004 −0.018 0.038 0.122 0.485


.

Σ2 =



0.754 0.020 −0.174 0.007 0.064 −0.129 0.009 −0.059 −0.067 0.081
0.020 0.311 −0.004 −0.023 0.049 0.078 −0.003 0.006 0.028 −0.026
−0.174 −0.004 0.652 −0.028 −0.082 0.066 −0.023 0.052 0.044 −0.080
0.007 −0.023 −0.028 0.430 −0.083 −0.011 0.051 0.005 −0.018 0.006
0.064 0.049 −0.082 −0.083 0.911 0.112 0.086 −0.032 −0.056 0.003
−0.129 0.078 0.066 −0.011 0.112 0.994 0.084 0.059 0.075 −0.138
0.009 −0.003 −0.023 0.051 0.086 0.084 0.962 −0.021 −0.093 0.020
−0.059 0.006 0.052 0.005 −0.032 0.059 −0.021 0.382 0.024 −0.133
−0.067 0.028 0.044 −0.018 −0.056 0.075 −0.093 0.024 0.418 −0.082
0.081 −0.026 −0.080 0.006 0.003 −0.138 0.020 −0.133 −0.082 0.806


.

Σ3 =



0.402 −0.051 −0.053 −0.085 −0.048 0.011 0.035 −0.032 −0.035 −0.053
−0.051 0.659 0.017 0.126 −0.054 −0.019 −0.084 −0.094 0.065 −0.037
−0.053 0.017 0.995 0.050 0.014 0.142 0.009 0.122 −0.008 0.037
−0.085 0.126 0.050 0.497 0.035 −0.048 −0.052 −0.080 0.014 0.041
−0.048 −0.054 0.014 0.035 0.949 −0.090 0.035 0.030 −0.026 0.039
0.011 −0.019 0.142 −0.048 −0.090 0.542 0.019 0.104 0.080 −0.008
0.035 −0.084 0.009 −0.052 0.035 0.019 0.532 0.081 −0.038 0.016
−0.032 −0.094 0.122 −0.080 0.030 0.104 0.081 0.906 −0.008 −0.008
−0.035 0.065 −0.008 0.014 −0.026 0.080 −0.038 −0.008 0.860 −0.029
−0.053 −0.037 0.037 0.041 0.039 −0.008 0.016 −0.008 −0.029 0.301


.

Given the covariates and cluster index, the response is generated by a cluster-specific linear model
with additive Gaussian noise:

y | (x, z = j) = x⊤wj + bj + ε, ε ∼ N (0, 0.12).

The true regression coefficients wj ∈ R10 and intercepts bj are sampled at random and fixed to

w1 = [−0.306, 0.809, −0.350, −0.283, 0.457, 0.893, −0.526, 0.887, −0.808, 0.163],
b1 = −0.755,

w2 = [−0.322, 0.657, −0.311, −0.080, −0.861, −0.307, −0.623, −0.658, −0.633, −0.718],
b2 = −0.129,

w3 = [−0.847, −0.747, 0.576, −0.134, 0.460, −0.537, −0.037, 0.322, −0.287, 0.299],
b3 = 0.109.

From this Gaussian mixture model, we draw 600 training samples and 600 test samples, with cluster
sizes proportional to the mixture weights (π1, π2, π3) = (1/6, 1/3, 1/2). Using these data, we train
CG-CLR with K = 3 under the same proxy architecture and optimization settings as in the main
simulation, and evaluate both the learned cluster assignments and the recovered codebook regressors.

Cluster assignments in a noisy, overlapping regime. Since p = 10, we visualize the learned
structure via PCA. Figure 6 plots the first two principal components of the test covariates: colored

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 6: High-dimensional Gaussian mixture experiment (p = 10, K = 3). PCA projection of the test
covariates, colored by the true Gaussian component (circles) and annotated with the predicted CG-CLR cluster
(crosses). In regions where the components are well separated, the predicted clusters align closely with the
ground truth; in heavily overlapping regions, assignments follow the local covariate geometry, as expected for a
covariate routing rule.

circles indicate the true Gaussian component labels, while crosses indicate the predicted cluster
assignments from CG-CLR.
Even though the Gaussian components substantially overlap in the PCA plane, CG-CLR correctly
recovers many of the cluster assignments, especially in the better-separated regions. In areas where
multiple components are nearly indistinguishable in terms of x, the model naturally follows the local
covariate trend and may assign some points to a nearby cluster, reflecting the intrinsic ambiguity of a
purely covariate-based assignment.

Prediction accuracy and function values. To examine the effect of such ambiguous assignments on
prediction quality, we compare the true denoised function values f⋆(xi) = x⊤

i wz∗ + bz∗ with the
codebook predictions ỹi = x⊤i w̃zi . Figure 7 shows both quantities over the same PCA projection;
color encodes the function value.

Figure 7: True denoised function values f⋆(xi) (circles) and CG-CLR codebook predictions ỹi (crosses) on
the PCA projection of the test set. Despite some mismatches in cluster assignments in overlapping regions, the
predicted function values closely track the ground truth, indicating that many of these assignment errors occur
where the underlying linear functions are themselves very similar.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The two fields are visually indistinguishable in most regions, confirming that the codebook regressors
provide accurate predictions even under covariate overlap. This supports the intuition that when
both the covariates and the underlying linear functions are nearly indistinguishable across clusters,
misassignments are unavoidable but also largely harmless for prediction.

Recovery of linear coefficients. Finally, we compare the true regression weights wj with the learned
codebook weights w̃j for each cluster. The recovered coefficients are

w̃1 = [−0.303, 0.787, −0.346, −0.283, 0.421, 0.854, −0.520, 0.868, −0.819, 0.149],

w̃2 = [−0.318, 0.645, −0.315, −0.084, −0.864, −0.310, −0.618, −0.638, −0.666, −0.720],

w̃3 = [−0.854, −0.748, 0.577, −0.152, 0.461, −0.531, −0.045, 0.319, −0.288, 0.278].

In all three clusters, the codebook closely matches the ground-truth coefficients: the relative ℓ2-errors
∥wj − w̃j∥2/∥wj∥2 are approximately 3.3% (cluster 1), 2.3% (cluster 2), and 2.0% (cluster 3),
respectively. Thus, even in a high-dimensional Gaussian mixture with observation noise, CG-CLR is
able to recover the underlying linear mechanisms to a high degree of accuracy.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F REAL DATASET EXPERIMENT

F.1 DATASET DESCRIPTION

We evaluate our proposed CG-CLR framework on seven diverse real-world regression datasets,
as detailed in Table 4. These datasets vary significantly in size and feature composition, allowing
comprehensive evaluation across different predictive scenarios. The selected datasets span several
domains, including materials science (CONDUCT), real estate (HOUSING), transportation (BIKE),
energy (ELECTRICAL, PLANT), agriculture (WINE), and civil engineering (CONCRETE).

Table 4: Overview of the seven real-world regression datasets used in our experiments. Columns give the
total number of Samples and the counts of Categorical and Numerical input features. Dataset abbreviations
are: CONDUCT (superconductivity; Hamidieh, 2018), HOUSING (California housing; Kelley Pace & Barry,
1997), BIKE (bike-sharing; Fanaee-T, 2013), ELECTRICAL (electrical-grid stability; Arzamasov, 2018),
PLANT (combined-cycle power plant; Tfekci & Kaya, 2014), WINE (wine quality; Cortez & Reis, 2009), and
CONCRETE (concrete strength; Yeh, 1998).

Dataset Samples Categorical Numerical

CONDUCT 21,263 0 81
HOUSING 20,640 0 8
BIKE 17,379 7 6
ELECTRICAL 10,000 0 12
PLANT 9,568 0 4
WINE 4,898 0 11
CONCRETE 1,030 0 8

F.2 HYPERPARAMETER TUNING

Each method underwent rigorous tuning via grid search to optimize performance on validation folds
within a nested cross-validation scheme. Tables 6 summarize the extensive hyperparameter search
grids employed for the competing methods XGBoost (XGB), CatBoost (CAT), DC, CART, and
S-IMEd. For LDT and PILOT, the maximum tree depth was set to ⌈log2

(
Ntr/(10p+ 10)

)
⌉.

(a) XGB

Hyper-parameter Range

n_estimators [1, 1000]
learning_rate {0.001, 0.01, 0.1}
max_depth {3, 4, 5, 6, 7}
subsample {0.5, 0.75, 1.0}

(b) CAT

Hyper-parameter Range

n_estimators [1, 1000]
learning_rate {0.001, 0.01, 0.1}
max_depth {3, 4, 5, 6, 7}
subsample {0.5, 0.75, 1.0}
early_stopping_rounds 100

(c) DNN

Hyper-parameter Range

hidden_nodes {32, 64, 128, 256}
hidden_layers {2, 3, 4}
dropout {0.1, 0.2, 0.3}
iterations [1, 10000]
early stopping patiences 1000

(d) DC

Hyper-parameter Range

λ {0.01, 0.1, 1, 10, 100}
ρ {0.001, 0.01, 0.1}
iterations [1, 10000]
early stopping patiences 1000

(e) S-IMEd

Hyper-parameter Range

β {0.1, 1, 10}
γ {0.1, 1, 10}
λ {0.1, 1, 10}
iterations [1, 10000]
early stopping patiences 1000

(f) CART

Hyper-parameter Range

max_depth [1, ⌈log2
(
Ntr/(10p+ 10)

)
⌉]

Table 5: Hyper-parameter tuning grids for all methods.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F.3 CG-CLR HYPERPARAMETER SETTING

For CG-CLR, several hyperparameters were uniformly set across all datasets, as shown in Table 6.
We selected a relatively simple proxy network architecture with three hidden layers (64 neurons
each), dropout regularization (rate 0.2), and used Adam optimizer with a learning rate of 0.001. The
alignment weight (λ) was consistently set to 1, reflecting balanced importance between fitting and
alignment. Training employed early stopping with patience of 1000 epochs to avoid overfitting.

Table 6: CG-CLR hyper-parameters kept fixed across all datasets.

Hyper-parameter Value

batch size 256
proxy network hidden layers (64, 64, 64)
proxy network dropout 0.2
alignment weight λ 1
learning rate 0.001
optimizer Adam
iterations 10000
early stopping patiences 1000

F.4 PERFORMANCE RESULTS

Performance results presented in Table 7 systematically compare CG-CLR against both powerful
black-box methods and various cluster-based linear regression alternatives. Results are organized
into three coverage-based clusters (small, medium, and large) defined by the number of clusters (K).
Notably, CG-CLR consistently achieves the lowest RMSE among all cluster-based models, and
frequently performs comparably to or better than leading black-box models, emphasizing its robust
generalization and interpretability across diverse real-world datasets.

Table 7: Test RMSE mean± std. on seven regression datasets (CONDUCT, HOUSING, BIKE, ELECTRICAL,
PLANT, WINE, CONCRETE; Hamidieh, 2018; Kelley Pace & Barry, 1997; Fanaee-T, 2013; Arzamasov, 2018;
Tfekci & Kaya, 2014; Cortez & Reis, 2009; Yeh, 1998). Model blocks. (i) Black-box baselines: RF (Random
Forest), XGB (XGBoost; Chen & Guestrin, 2016), CAT (CatBoost; Prokhorenkova et al., 2018), and DNN. (ii–iv)
Cluster-wise models with three predetermined cluster budgets K: (s) “small” coverage K≥⌈Ntr/(p+1)⌉, (m)
“medium” coverage K=⌊Ntr/(5p+ 5)⌋, and (l) “large” coverage K=⌊Ntr/(10p+ 10)⌋. Symbols follow
the literature: DC (Siahkamari et al., 2020), MLR* (mixed-linear regression (Pal et al., 2022) with post-hoc
neighborhood assignment), CART, PILOT (Raymaekers et al., 2024), LDT (Ahmed et al., 2018), S-IMEd (Ismail
et al., 2023), and our proposed CG-CLR variants (CG-CLRs, CG-CLRm, CG-CLRl, and CG-CLRxl where
CG-CLRxl sets K=⌊Ntr/(20p+ 20)⌋). Lower RMSE is better; the best score for each block is highlighted
in bold.

Model CONDUCT HOUSING BIKE ELECTRICAL PLANT WINE CONCRETE

RF 9.81 ± 0.16 0.511 ± 0.008 56.45 ± 1.19 0.0121 ± 0.0002 3.466 ± 0.099 0.627 ± 0.025 5.381 ± 0.418

XGB 9.79 ± 0.13 0.457 ± 0.008 45.89 ± 0.81 0.0080 ± 0.0001 3.200 ± 0.093 0.634 ± 0.025 4.507 ± 0.340

CAT 9.69 ± 0.14 0.443 ± 0.007 44.99 ± 0.64 0.0068 ± 0.0001 3.162 ± 0.116 0.632 ± 0.024 4.225 ± 0.360

DNN 10.44 ± 0.20 0.505 ± 0.007 42.23 ± 1.01 0.0070 ± 0.0002 3.785 ± 0.100 0.670 ± 0.024 4.934 ± 0.372

DC 11.66 ± 0.59 0.597 ± 0.024 55.36 ± 0.73 0.0119 ± 0.0005 3.746 ± 0.106 0.651 ± 0.028 5.654 ± 0.427

MLR∗
s 34.08 ± 0.19 1.184 ± 0.010 178.26 ± 1.44 0.0348 ± 0.0005 13.800 ± 0.170 0.835 ± 0.018 15.263 ± 0.445

S-IMEd,s 12.44 ± 0.26 0.591 ± 0.034 54.27 ± 1.68 0.0094 ± 0.0007 4.276 ± 0.091 0.705 ± 0.023 7.021 ± 0.436

CG-CLRs 10.49 ± 0.11 0.494 ± 0.009 40.66 ± 1.04 0.0061 ± 0.0002 3.631 ± 0.111 0.669 ± 0.028 4.919 ± 0.382

MLR∗
m 34.06 ± 0.20 1.171 ± 0.009 180.46 ± 1.47 0.0363 ± 0.0005 16.393 ± 0.200 0.868 ± 0.016 15.248 ± 0.450

S-IMEd,m 12.65 ± 0.26 0.578 ± 0.068 55.82 ± 2.33 0.0095 ± 0.0005 4.172 ± 0.069 0.703 ± 0.023 8.553 ± 0.378)
CG-CLRm 10.50 ± 0.15 0.494 ± 0.011 40.85 ± 1.04 0.0062 ± 0.0002 3.627 ± 0.113 0.669 ± 0.032 5.066 ± 0.435

MLR∗
l 33.86 ± 0.19 1.164 ± 0.011 178.24 ± 1.43 0.0348 ± 0.0005 13.797 ± 0.170 0.835 ± 0.018 15.243 ± 0.441

CART 16.71 ± 0.33 0.652 ± 0.014 121.32 ± 2.09 0.0212 ± 0.0002 4.261 ± 0.093 0.745 ± 0.024 9.569 ± 0.541

PILOTl 15.52 ± 0.46 0.821 ± 0.011 165.87 ± 1.30 0.0332 ± 0.0005 4.774 ± 0.134 0.756 ± 0.022 14.530 ± 0.629

LDTl 14.49 ± 2.41 0.673 ± 0.149 59.73 ± 0.62 0.0151 ± 0.0004 4.119 ± 0.091 0.708 ± 0.021 6.264 ± 0.329

S-IMEd,l 12.86 ± 0.38 0.565 ± 0.011 57.07 ± 2.00 0.0095 ± 0.0006 4.221 ± 0.082 0.704 ± 0.023 9.182 ± 0.704

CG-CLRl 10.56 ± 0.13 0.491 ± 0.012 41.24 ± 1.00 0.0063 ± 0.0002 3.624 ± 0.109 0.664 ± 0.025 5.365 ± 0.367

CG-CLRxl 10.71 ± 0.13 0.495 ± 0.009 42.75 ± 1.04 0.0066 ± 0.0002 3.632 ± 0.114 0.671 ± 0.028 6.311 ± 0.443

F.5 COMPARISON WITH GAM BASELINES

Generalized Additive Models (GAMs) represent an orthogonal approach to balancing accuracy and
simplicity: instead of clustering covariates into local linear experts, they rely on additive modeling
to achieve strong predictive performance. Among them, Node-GA2M (Chang et al., 2022) is a

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

state-of-the-art GAM variant that combines tree-based node splitting with additive terms, and thus
serves as a competitive baseline distinct from cluster-oriented methods.
To ensure a fair comparison, we evaluate CG-CLR against Node-GA2M across all seven datasets.
For each dataset, we report: (i) the minimum number of clustersK at which CG-CLR ties with Node-
GA2M (their 95% CIs overlap), and (ii) the minimum K at which CG-CLR strictly outperforms
Node-GA2M (its 95% CI lies entirely below Node-GA2M’s). If CG-CLR neither ties nor wins at
any tested K, we denote this by “-”.

Table 8: Comparison against Node-GA2M: RMSE (95% CI) and the minimum K required for CG-CLR to tie
or outperform.

Dataset Node-GA2M: RMSE Tie: K, RMSE Win: K, RMSE
CONDUCT [12.558, 12.782] - 3, [11.738, 11.911]
HOUSING [0.495, 0.503] 8, [0.502, 0.512] -
BIKE [53.70, 55.16] - 5, [51.05, 52.97]
ELECTRICAL [0.009, 0.009] 4, [0.009, 0.010] 5, [0.008, 0.008]
PLANT [3.989, 4.073] 2, [3.982, 4.059] 3, [3.808, 3.908]
WINE [0.677, 0.695] 24, [0.688, 0.709] 24, [0.652, 0.676]
CONCRETE [4.634, 5.014] 15, [5.010, 5.449] -

The results reveal two distinct regimes. On HOUSING and CONCRETE, CG-CLR already
matches Node-GA2M at modest cluster counts, demonstrating comparable accuracy to a strong
additive model. On the remaining five datasets (CONDUCT, BIKE, ELECTRICAL, PLANT,
and WINE), CG-CLR surpasses Node-GA2M with relatively small K, highlighting its ability to
reach or exceed state-of-the-art additive modeling performance while controlling complexity through
clustering.

F.6 CASE STUDIES UNDER COMPETITIVE K

To better illustrate the interpretability benefits of CG-CLR when it achieves accuracy on par with
strong additive models, we provide case studies for the two datasets where CG-CLR matches
Node-GA2M at relatively small K: HOUSING (K=8) and CONDUCT (K=3). These examples
highlight how competitive accuracy can be attained while still surfacing domain-specific, interpretable
cluster patterns.

HOUSING (K = 8). Tables 9 and 10 report the clusterwise regression coefficients and feature means,
respectively. Cluster 1 corresponds to a high-occupancy rental market, with property values driven
by the number of bedrooms. Cluster 4 represents affluent suburban districts, where high income
and room counts dominate, while additional bedrooms are penalized. Cluster 6 captures peripheral
agricultural towns with low income but upward sensitivity to income and population changes. These
patterns demonstrate that at K = 8, CG-CLR not only ties the performance of Node-GA2M but also
yields region-specific linear models that are naturally interpretable.

Table 9: Clusterwise Linear Coefficients Table (HOUSING).

Cluster idx MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude

0 -0.05 0.017 -0.06 -0.05 -22e-6 0.02 -0.11 0.01
1 -0.06 -0.008 0.08 0.24 -149e-6 -0.00 -0.01 -0.03
2 -0.03 0.016 -0.06 -0.49 -150e-6 -0.04 -0.01 0.10
3 0.14 -0.011 0.11 -0.32 -49e-6 0.04 0.02 -0.10
4 0.18 0.010 0.12 -0.68 -75e-6 -0.03 -0.19 0.13
5 -0.04 0.008 -0.05 -0.34 -50e-6 -0.03 0.08 -0.10
6 0.18 0.001 0.04 -0.07 158e-6 0.00 -0.12 -0.14
7 0.15 0.022 0.07 0.00 -166e-6 -0.02 0.15 -0.13

CONDUCT (K = 3). Table 11 presents the estimated coefficients as K increases from 1 to 4.
Distinct patterns emerge at small K. At K = 2, an age-based split appears, separating young and
old specimens, with the “Coarse Aggregate” effect flipping sign across groups. At K = 3, a clear
“Superplasticizer effect” arises, isolating a cluster with exceptionally high superplasticizer weight and
confirming its strong interaction with water and cement. At K = 4, long-term curing benefits are
exposed, as aged specimens form a distinct group with delayed strength gains. These observations
show that small K values already uncover meaningful material science insights while achieving
accuracy competitive with Node-GA2M.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 10: Clusterwise Feature Mean Value Table (HOUSING).

Cluster idx MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude

0 4.17 29.18 6.08 1.21 1351.26 2.65 35.74 -119.845
1 3.80 27.70 5.11 1.05 1571.03 3.69 35.62 -119.833
2 3.23 26.50 4.96 1.08 1485.59 2.86 35.91 -119.829
3 4.39 28.28 5.34 1.05 1582.74 2.95 34.87 -119.181
4 4.97 29.46 5.81 1.09 1325.35 2.67 35.59 -119.399
5 4.17 30.01 5.53 1.10 1461.98 2.90 35.77 -120.057
6 2.64 28.06 5.23 1.11 1357.68 3.22 36.14 -119.529
7 4.45 29.92 5.40 1.07 1369.02 3.05 35.32 -119.487

Table 11: Qualitative interpretability changes as K increases (CONDUCT).

Cluster idx (K) Cement Blast Furnace Slag Fly Ash Water Superplasticizer Coarse Aggregate Fine Aggregate Age

1 (1) 0.100 0.093 0.069 -0.230 0.253 0.003 -0.005 0.118
1 (2) 0.105 0.068 0.008 -0.175 0.884 -0.035 -0.029 0.093
2 (2) 0.054 0.073 0.024 -0.148 0.616 0.098 0.009 0.108
1 (3) 0.033 0.026 -0.094 -0.221 -0.234 -0.048 -0.086 0.035
2 (3) 0.029 -0.005 0.058 -0.155 0.743 -0.068 -0.054 0.046
3 (3) 0.031 0.060 0.016 -0.241 1.685 -0.000 -0.067 0.096
1 (4) 0.033 -0.018 -0.064 0.047 0.875 -0.074 0.034 0.075
2 (4) 0.047 -0.024 0.047 -0.252 0.476 0.033 -0.066 0.021
3 (4) 0.073 0.079 -0.049 -0.237 0.304 -0.034 -0.036 0.133
4 (4) 0.031 0.040 0.051 0.070 0.790 -0.460 -0.072 0.041

These case studies show that under competitive cluster counts, CG-CLR not only achieves parity
with advanced additive models but also yields interpretable, domain-relevant partitions that provide
insights into housing markets and materials science.

F.7 COMPUTATIONAL COST ANALYSIS

To complement the accuracy comparisons, we analyze computational efficiency in terms of wall-clock
time and peak memory. We compare our CG-CLR framework against two classical cluster-oriented
baselines: (i) Dense MoE—a soft-gated Mixture-of-Experts with linear experts (Jacobs et al., 1991),
and (ii) EM-CLR*—an EM-based clusterwise linear regression (DeSarbo & Cron, 1988) with
nearest-centroid routing at test time. All methods use the same expert budget K = N/(10p+10) and
identical tuning protocols (20 independent runs per dataset).

Baseline Performance. Table 12 reports test RMSE with 95% confidence intervals across seven
datasets. CG-CLR consistently achieves the lowest RMSE on every dataset, while maintaining clear
cluster-level coefficients (like EM-CLR*) and markedly lighter computational cost than Dense MoE.

Table 12: Test RMSE with 95% confidence intervals across seven datasets.

Model CONDUCT HOUSING BIKE ELECTRICAL PLANT WINE CONCRETE

Dense MoE [12.56, 13.00] [0.548, 0.561] [58.91, 67.03] [0.010, 0.010] [4.388, 4.535] [0.694, 0.717] [7.454, 8.313]
EM-CLR* [33.85, 34.04] [1.074, 1.082] [178.32, 179.69] [0.035, 0.035] [13.848, 14.002] [0.844, 0.861] [15.356, 15.860]
CG-CLR [10.50, 10.62] [0.485, 0.497] [40.77, 41.71] [0.006, 0.006] [3.573, 3.675] [0.652, 0.676] [5.193, 5.537]

Computational Analysis. We further benchmark CG-CLR against Dense MoE and EM-CLR* on
three representative datasets (CONDUCT, ELECTRICAL, CONCRETE) covering a 20× span in sam-
ple size. Wall-clock time (sec/100 epochs) and peak memory (MiB) were measured over 20 indepen-
dent runs and reported as 95% confidence intervals. Regressor budgets K ∈ {1, 4, 16, 64, 256, 1024}
probe scaling with respect to the number of regressors.
Overall, the results demonstrate three main trends. First, CG-CLR maintains a tight efficiency bound:
across all expert budgets, its wall-clock time and memory usage remain within about 1.7× those of
EM-CLR*, while consistently achieving superior accuracy. Second, CG-CLR scales much more
gracefully with the number of experts compared to Dense MoE. Because the forward pass uses O(K)
argmax routing while the backward pass is O(1) in K, the training time increases by only about
15% from K = 1 to K = 256. By contrast, Dense MoE incurs more than a twofold increase due
to its O(K) gradient cost, and this is also reflected in its peak memory consumption. Finally, with
respect to dataset size, wall-clock time for CG-CLR grows proportionally to the input scale: moving
from 1,030 samples (CONCRETE) to 21,263 samples (CONDUCT) increases runtime by about 10×,
which matches the growth in per-sample compute. Memory usage, however, grows only modestly
with the number of samples and features, and remains essentially flat with respect to K.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 13: Scaling w.r.t K — Wall-clock time (sec / 100 epochs) with 95% confidence intervals.

Dataset / Model K=1 K=4 K=16 K=64 K=256 K=1024

CONDUCT
Dense MoE [11.0, 11.1] [11.2, 11.3] [11.4, 12.0] [15.1, 16.4] [27.6, 28.9] [75.1, 77.2]
EM-CLR* [11.1, 11.3] [10.8, 11.2] [11.1, 11.3] [10.6, 11.3] [11.0, 11.4] [11.2, 11.5]
CG-CLR [11.5, 11.8] [11.0, 11.3] [11.3, 11.6] [11.5, 11.7] [11.9, 12.1] [12.5, 12.9]

ELECTRICAL
Dense MoE [5.4, 5.6] [5.4, 5.5] [5.9, 6.3] [9.7, 10.0] [19.7, 23.3] [53.7, 71.4]
EM-CLR* [5.1, 5.3] [5.0, 5.2] [5.2, 5.3] [5.2, 5.3] [5.2, 5.3] [5.4, 5.6]
CG-CLR [5.5, 5.6] [5.5, 5.6] [5.4, 5.6] [5.3, 5.5] [5.4, 5.5] [6.2, 6.4]

CONCRETE
Dense MoE [1.0, 1.1] [0.7, 1.0] [2.0, 2.0] [4.4, 4.8] [13.4, 17.2] [49.7, 68.2]
EM-CLR* [0.7, 0.7] [0.7, 0.7] [0.7, 0.7] [0.6, 0.7] [0.7, 0.7] [0.7, 0.7]
CG-CLR [0.7, 0.8] [0.7, 0.8] [0.7, 0.9] [0.8, 0.9] [0.8, 1.0] [0.8, 0.9]

Table 14: Scaling w.r.t K — Peak memory (MiB) with 95% confidence intervals.

Dataset / Model K=1 K=4 K=16 K=64 K=256 K=1024

CONDUCT
Dense MoE [50.0, 50.0] [50.0, 50.0] [50.0, 50.0] [50.3, 50.4] [52.8, 52.8] [71.0, 71.1]
EM-CLR* [48.2, 48.2] [48.2, 48.2] [48.2, 48.2] [48.2, 48.2] [48.2, 48.2] [48.2, 48.2]
CG-CLR [50.0, 50.0] [50.0, 50.0] [50.0, 50.0] [50.0, 50.0] [50.0, 50.0] [50.0, 50.0]

ELECTRICAL
Dense MoE [2.4, 2.4] [2.4, 2.4] [2.5, 2.6] [3.0, 3.1] [6.8, 7.0] [25.8, 26.0]
EM-CLR* [0.5, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]
CG-CLR [2.3, 2.3] [2.3, 2.3] [2.3, 2.3] [2.3, 2.3] [2.3, 2.3] [2.3, 2.3]

CONCRETE
Dense MoE [0.6, 0.6] [0.6, 0.6] [0.8, 0.8] [1.9, 2.0] [6.8, 6.9] [25.9, 26.0]
EM-CLR* [0.3, 0.3] [0.3, 0.3] [0.3, 0.3] [0.3, 0.3] [0.3, 0.3] [0.3, 0.3]
CG-CLR [0.4, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]

F.8 HYPERPARAMETER SENSITIVITY

We conducted a sensitivity analysis on the alignment hyperparameter λ using CG-CLR with large
cluster coverage (K = ⌊Ntr/(10p+10)⌋). Results reported in Table 15 illustrate stable performance
across varying values of λ, with optimal or near-optimal performance consistently observed at λ = 1.
This robustness confirms the practicality of the default choice of λ = 1 and highlights the stability
of CG-CLR’s predictive accuracy and simplicity balance. Moreover, the observed stability under
moderate deviations of λ is consistent with our theoretical analysis, which requires sufficiently small
λ < 1/(κ−1) to ensure valid expert assignment.

Table 15: Test RMSE with 95% confidence intervals across seven datasets (CONDUCT, HOUSING, BIKE,
ELECTRICAL, PLANT, WINE, CONCRETE; Hamidieh, 2018; Kelley Pace & Barry, 1997; Fanaee-T, 2013;
Arzamasov, 2018; Tfekci & Kaya, 2014; Cortez & Reis, 2009; Yeh, 1998). Sensitivity analysis w.r.t λ under
K = ⌊Ntr/(10p+ 10)⌋.

Dataset λ = 0 λ = 1 λ = 2 λ = 3

CONDUCT [10.45, 10.60] [10.50, 10.62] [10.50, 10.63] [10.59, 10.73]
HOUSING [0.492, 0.500] [0.485, 0.497] [0.491, 0.501] [0.490, 0.500]

BIKE [41.07, 41.93] [40.77, 41.71] [41.23, 42.27] [41.11, 41.79]
ELECTRICAL [0.006, 0.006] [0.006, 0.006] [0.006, 0.006] [0.006, 0.006]

PLANT [3.583, 3.683] [3.573, 3.675] [3.588, 3.682] [3.568, 3.674]
WINE [0.652, 0.676] [0.652, 0.676] [0.654, 0.678] [0.657, 0.687]

CONCRETE [5.301, 5.731] [5.193, 5.537] [5.501, 5.851] [5.546, 5.908]

To examine how the stability of learned coefficients varies with the number of clusters K, we conduct
an empirical study on the CONCRETE dataset in two complementary settings:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

(i) Random Initializations. For a fixed training split, CG-CLR was trained with T = 10 different
random seeds. We computed the standard deviation of each assigned coefficient across runs and
averaged over all data points, using the following definition:

σj =
1

N

N∑
i=1

√√√√ T∑
t=1

(w̃
j,(t)
zi − w̄j

i)
2

T − 1
, (where w̄j

i =
1

T

T∑
t=1

w̃
j,(t)
zi).

This quantifies the variability of learned coefficients under different random initializations.
(ii) Data Splits (10-fold). We further trained CG-CLR with 10-fold splits, each time fitting on 90%
of the data and evaluating on the full dataset. For the 10-fold splits, the same formula was applied
across models trained on each fold. This procedure simulates the effect of sampling variation and
reflects robustness in practical deployment.
Table 16 reports the average standard deviations (STD) of coefficients across both settings. For
K = 1, the coefficient variance is naturally low, as expected for a global linear model. As K
increases, the variance remains moderate, indicating that CG-CLR yields stable coefficient estimates
both within a fixed dataset and across data splits.

Table 16: Average coefficient variability (STD) across random initializations and 10-fold splits on the CON-
CRETE dataset.

K Cement Blast Slag Fly Ash Water Superplasticizer Coarse Agg. Fine Agg. Age

Random Init. (STD)
1 0.034 0.038 0.050 0.122 0.186 0.029 0.038 0.002
2 0.027 0.030 0.042 0.153 0.357 0.025 0.027 0.048
3 0.019 0.037 0.043 0.094 0.460 0.020 0.014 0.048
4 0.022 0.034 0.051 0.083 0.228 0.035 0.020 0.053
5 0.024 0.032 0.052 0.096 0.366 0.030 0.025 0.057
6 0.017 0.034 0.052 0.094 0.330 0.035 0.026 0.040
7 0.023 0.033 0.059 0.082 0.337 0.037 0.024 0.037
8 0.018 0.035 0.052 0.098 0.411 0.039 0.026 0.034
9 0.023 0.034 0.056 0.115 0.336 0.042 0.030 0.034
10 0.019 0.037 0.060 0.123 0.390 0.040 0.027 0.032

10-fold Splits (STD)
1 0.016 0.019 0.029 0.088 0.350 0.018 0.021 0.010
2 0.036 0.037 0.047 0.117 0.388 0.037 0.034 0.092
3 0.020 0.038 0.053 0.109 0.396 0.031 0.021 0.060
4 0.018 0.027 0.056 0.079 0.343 0.023 0.024 0.068
5 0.018 0.032 0.058 0.109 0.396 0.026 0.024 0.038
6 0.020 0.037 0.056 0.113 0.405 0.038 0.023 0.042
7 0.019 0.032 0.055 0.107 0.405 0.041 0.026 0.037
8 0.020 0.040 0.056 0.109 0.370 0.041 0.028 0.036
9 0.022 0.032 0.058 0.105 0.358 0.039 0.029 0.033
10 0.020 0.037 0.057 0.103 0.366 0.045 0.027 0.035

We also examined the average coefficient magnitudes (absolute values) to contextualize the scale
of learned parameters. Table 17 reports results under both random initialization and 10-fold splits,
alongside input feature statistics for reference. Across both settings, magnitudes remain stable as K
increases, supporting the robustness of CG-CLR against coefficient variability.
Overall, these results demonstrate that CG-CLR maintains stable coefficient magnitudes and mod-
erate variance even as the number of clusters K increases, supporting the method’s robustness and
practical reliability.

F.9 EMPIRICAL STUDY OF ASSUMPTION 1 AND ASSUMPTION 2

To assess whether the regularity conditions in Assumptions 1–2 are reasonable in our experimental
regime, we conduct an empirical diagnostic study on the CONCRETE dataset. We track the
Jacobian of the proxy network (Assumption 1) and the curvature of the alignment loss (Assumption 2)
throughout training.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 17: Average coefficient magnitudes (absolute values) for the CONCRETE dataset.

K Cement Blast Slag Fly Ash Water Superplasticizer Coarse Agg. Fine Agg. Age

Random Init. (Absolute)
1 0.077 0.055 0.053 0.262 0.408 0.039 0.045 0.110
2 0.076 0.059 0.045 0.228 0.517 0.026 0.035 0.160
3 0.067 0.050 0.041 0.274 0.433 0.039 0.040 0.142
4 0.068 0.049 0.047 0.271 0.473 0.041 0.040 0.110
5 0.063 0.048 0.057 0.276 0.540 0.041 0.043 0.096
6 0.060 0.046 0.064 0.250 0.526 0.038 0.041 0.102
7 0.061 0.047 0.065 0.259 0.478 0.044 0.044 0.099
8 0.059 0.045 0.066 0.250 0.589 0.047 0.039 0.090
9 0.052 0.046 0.070 0.237 0.595 0.041 0.042 0.090
10 0.053 0.046 0.065 0.220 0.630 0.049 0.041 0.080

10-fold Splits (Absolute)
1 0.074 0.051 0.042 0.272 0.409 0.028 0.036 0.108
2 0.071 0.053 0.037 0.265 0.418 0.031 0.038 0.157
3 0.071 0.054 0.049 0.266 0.395 0.028 0.035 0.121
4 0.071 0.055 0.062 0.247 0.399 0.036 0.038 0.126
5 0.067 0.053 0.063 0.257 0.467 0.034 0.039 0.104
6 0.060 0.050 0.070 0.257 0.534 0.039 0.047 0.095
7 0.061 0.048 0.063 0.272 0.533 0.043 0.043 0.102
8 0.060 0.047 0.064 0.258 0.523 0.046 0.043 0.103
9 0.056 0.044 0.066 0.239 0.572 0.045 0.042 0.092
10 0.054 0.046 0.066 0.237 0.608 0.050 0.044 0.093

Assumption 1: Jacobian lower bound and Lipschitz constant. Every 10 epochs, we sample the
proxy network Jacobian with respect to its parameters at all training covariates {xi}Ntr

i=1. Specifically,
for each input xi and current parameter vector ϕ(t), we form the Jacobian

Jϕ(t)(xi) =
∂Wϕ(t)(xi)

∂ϕ(t)
∈ R(p+1)×d,

compute its singular values, and record the smallest and largest, σmin

(
Jϕ(t)(xi)

)
and

σmax

(
Jϕ(t)(xi)

)
. We then aggregate these over all training points,

m̂(t)
x = min

1≤i≤Ntr

σmin

(
Jϕ(t)(xi)

)
, L̂(t)

x = max
1≤i≤Ntr

σmax

(
Jϕ(t)(xi)

)
,

which serve as empirical estimates of the Jacobian lower bound and the Lipschitz constant in
Assumption 1. Storing these statistics every 10 epochs yields a trajectory {m̂(t)

x , L̂
(t)
x }t; we summarize

their distribution over training by histograms in Figures 8.

As shown in Figure 8a, the estimated lower bound m̂(t)
x is consistently larger than 1.0, indicating

that the proxy network’s Jacobian is numerically well conditioned and bounded away from zero
throughout training. Figure 8b shows that the largest singular value L̂(t)

x remains below 25.0, so
the Lipschitz constant does not explode and the gradient field stays stable. Taken together, these
observations support the view that the Jacobian of the proxy network satisfies a uniform lower bound
and a finite Lipschitz constant in the regimes considered in our experiments.

Assumption 2: strong convexity and smoothness of the alignment loss. Assumption 2 concerns
the curvature of the alignment loss with respect to the codebook parameters. Recall that for cluster
j, the alignment loss is a least–squares term whose Hessian is proportional to the Gram matrix of
the covariates assigned to that cluster. Concretely, let X(t)

j ∈ Rnj×p denote the design matrix of
covariates assigned to cluster j at epoch t, and let

H
(t)
j = 2X

(t)⊤
j X

(t)
j

be the corresponding Hessian. Every 10 epochs, we compute the smallest and largest eigenvalues of
each H(t)

j , and summarize them as

µ(t) = min
1≤j≤K

λmin

(
H

(t)
j

)
, L(t) = max

1≤j≤K
λmax

(
H

(t)
j

)
,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

(a) Minimum singular value σmin

(
Jϕ(x)

)
(m̂x). (b) Maximum singular value σmax

(
Jϕ(x)

)
(L̂x).

Figure 8: Empirical singular–value spectrum of the proxy-network Jacobian on the CONCRETE dataset,
collected every 10 epochs over the course of training. The distributions indicate a stable Jacobian lower bound
and a non–exploding Lipschitz constant, providing empirical support for Assumption 1.

which provide empirical estimates of the strong–convexity and smoothness constants in Assumption 2.
As before, we record these quantities throughout training and visualize their distributions in Figures 9.
Figure 9a shows that the estimated strong–convexity constant µ(t) is always larger than 6.0, indicating
that each cluster’s alignment objective is uniformly and numerically strongly convex. At the same
time, Figure 9 demonstrates that the smoothness constant L(t) concentrates around values below
approximately 1300.0 and does not diverge, confirming that the curvature of the alignment loss
remains well controlled. These diagnostics suggest that the alignment loss is both strongly convex
and smooth in the empirical regimes where CG-CLR is trained.

(a) Minimum eigenvalue of H(t)
j (µ). (b) Maximum eigenvalue of H(t)

j (L).

Figure 9: Empirical curvature of the alignment loss on the CONCRETE dataset, computed every 10 epochs.
The estimated strong–convexity constant µ remains safely bounded away from zero, while the smoothness
constant L stays finite, supporting Assumption 2.

Overall, the Jacobian and curvature statistics in Figures 8–9 indicate that the regularity conditions
required by our convergence analysis are not merely abstract assumptions: in a representative real
dataset, the proxy network and alignment loss behave in a numerically well–conditioned manner,
with bounded Jacobian spectrum and stable strong convexity and smoothness parameters.

F.10 EMPIRICAL STUDY OF ASSUMPTION 3

Many classical clusterwise linear regression studies—including both traditional and more recent
mixed linear regression methods (Kong et al., 2020; Ghosh & Mazumdar, 2024)—rely on the
assumption that clusters are well separated, so that each local linear regressor can be correctly
recovered. To assess the validity of this assumption in practice, we measure the empirical cluster-

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

separation gap after training, defined as

∆ = min
i

min
j ̸=j′

∣∣x⊤i (w̃j − w̃j′)
∣∣,

which captures the minimum predictive discrepancy between distinct regressors over the training
samples. Table 18 reports the 95% confidence intervals of ∆ across 20 independent runs for all seven
datasets.

Table 18: Empirical cluster-separation gap ∆ with 95% confidence intervals over 20 runs.

Dataset ∆ (95% CI)

CONDUCT [9× 10−5, 3× 10−4]
HOUSING [8× 10−7, 2× 10−6]
BIKE [2× 10−6, 6× 10−4]
ELECTRICAL [2× 10−7, 5× 10−7]
PLANT [1× 10−5, 3× 10−5]
WINE [8× 10−6, 3× 10−5]
CONCRETE [1× 10−2, 4× 10−2]

Across all datasets, the empirical gaps ∆ are extremely small, typically ∆ ≤ 10−1. Despite this
near-zero separation, CG-CLR continues to exhibit monotone descent and achieves strong test
RMSE, demonstrating that its convergence and predictive performance do not rely on strong cluster
separability. These results indicate that the method remains empirically robust even in the regime
where clusters strongly overlap, thereby relaxing one of the key assumptions often imposed in prior
work.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

G LLM USAGE

Large Language Models (LLMs) were used in a limited capacity to aid in the preparation of this
manuscript. Specifically, LLMs were employed solely for writing support tasks such as grammar
checking, polishing sentence structure, and improving readability of author-written drafts. They were
not involved in research ideation, methodological design, data analysis, or result interpretation. The
authors take full responsibility for the content of this paper.

39

	Introduction
	Related Works
	Method
	Problem formulation
	Implementation details
	Theoretical analysis

	Evaluation
	Synthetic dataset
	Real‑world datasets

	Conclusion
	Reproductibility statement
	Cluster Assignment Stabilization
	Abstract error contraction under idealized alternating minimization
	From prediction convergence to stable assignment

	Lyapunov analysis
	Coercivity of Objective Function
	Smoothness of Objective Function

	PAC‐style Generalization Bound
	Formal definition of empirical and expected risks
	Generalization via rademacher complexity
	CG-CLR‐specific decomposition

	F–test Derivation
	Simulation Study
	Low-Dimensional Piecewise-Linear Function
	High-Dimensional Gaussian Mixture Covariates

	Real Dataset Experiment
	Dataset Description
	Hyperparameter Tuning
	CG-CLR Hyperparameter Setting
	Performance Results
	Comparison with GAM Baselines
	Case Studies under Competitive K
	Computational Cost Analysis
	Hyperparameter Sensitivity
	Empirical Study of Assumption 1 and Assumption 2
	Empirical Study of Assumption 3

	LLM Usage

