Two-Oracle Path Planning Consolidated by Heuristic-Rich Information

Anonymous submission

Abstract

Grid-based path planning is a classic problem in Al, widely
applied in robotics, computer games, and scheduling. Two-
oracle path planning (Topping) is a state-of-the-art fast path-
finding method for grid maps. Topping iteratively utilizes
SRC and JPS oracles to determine the first moves and number
of steps, respectively. This enables faster search than SRC,
yet incurs high storage and search costs due to inadequate
compression. In this paper, we aim to leverage heuristic in-
formation as much as possible to enhance the compression
performance of Topping and to further improve the search ef-
ficiency (i.e., the first-move decision cost). Ultimately, this
also improves Topping’s overall search performance. Experi-
ments on five benchmarks (478 maps in total) show that our
methods can reduce the first-move decision cost by an aver-
age of about 60% (maximum 71%) and achieve a maximum
speedup of 48% in runtime. Remarkably, they also have gains
in compression performance and reduce storage costs.

Introduction

Path planning is a classic problem in artificial intelligence,
widely used in real-world scenes such as video games,
robotics, navigation software, drone swarm coordination,
and so on (Antsfeld et al. 2012; Cui and Shi 2011; Delling
et al. 2017; Freund and Hoyer 1986; Honig et al. 2018;
Shen 2023; Sturtevant 2012b). In recent years, grid-based
path planning has received significant attention, driven by
the Grid-based Path Planning Competition (GPPC) (Sturte-
vant et al. 2015), resulting in the emergence of a number
of excellent methods. One notable achievement inspired by
the GPPC 2014 is the Two-Oracle Path Planning (Topping)
(Salvetti et al. 2018).

Topping is a state-of-the-art method in search speed. It
combines two oracles, SRC oracle and JPS oracle, using
Single Row Compression (SRC) (Strasser, Harabor, and
Botea 2014) and Jump Point Search + (JPS+) (Harabor and
Grastien 2014) as the core respectively, to find the optimal
path on grid maps. Both SRC and JPS+ are winners of GPPC
2014. Topping iterates over the following two steps when
searching for the optimal path:

1. The SRC oracle determines the optimal first move from
the current node to the target in compressed first-move
arrays.

2. Then, the JPS oracle calculates the number of steps to the
next jump point based on the first move provided by step

Topping achieves ultra-fast speeds. However, to collab-
orate effectively with the JPS oracle which breaks ties by
diagonal-first, the SRC oracle prioritizes diagonal moves
over compression-friendly moves when deciding the first
move, resulting in limited compression which in turn leads
to larger CPD size and higher storage cost.

In the next section, we provide an overview of related
work. Then, we provide background on Topping and the
key technologies utilized. After that, we provide a de-
tailed description of the ToppingH, ToppingPW, and Top-
pingRPW along with description diagrams and algorithm
pseudo codes. We present our experiment results and analy-
sis, finally concluding with future work.

Related Work

Compressed Path Databases (CPDs) (Botea 2011; Botea and
Harabor 2013) is a state-of-the-art in static grid path finding,
enabling rapid extraction of the optimal path and first move
without state-space search. Their main drawback is the high
construction cost, requiring all-pairs precomputation.

Therefore, Single Row Compression (SRC) (Strasser,
Harabor, and Botea 2014), an advanced CPDs method and
the winner of the GPPC 2014, uses Run-Length Encoding
(RLE) to compress each row of the first-move array, allow-
ing fast retrieval from source s to target ¢.

Jump Point Search (JPS) (Harabor and Grastien 2011) is
an online symmetry-breaking method that prefers the path
with the earliest diagonal move among equivalent paths,
pruning others efficiently. In grid path finding, it speeds
up A* by over an order of magnitude. JPS+ (Harabor and
Grastien 2014) an improved version with offline preprocess-
ing and another GPPC 2014 winner, pre-identifies all jump
points to accelerate search.

Two-Oracle Path Planning (Topping) (Salvetti et al. 2018)
combines SRC and JPS+ through SRC and JPS oracles. It is
faster than SRC and among the quickest methods for grid-
based shortest-path computation, but incurs large storage
and first-move decision costs due to limited compression in
the SRC oracle. Notice that each call to the SRC oracle is
much more costly than a call to the JPS oracle, making it
worthwhile to reduce their frequency.

Hu et al. optimizes the JPS oracle (Hu et al. 2021, 2019)
to reduce storage cost. They increase the number of calls to
the JPS oracle at an additional cost and only store the first-
move data for nodes related to the jump point. Their meth-
ods, TOPS and Topping+ (Topping+ is related to Topping)
greatly reduce storage via selective data retention. However,
this approach sacrifices the completeness of information, in-
creasing search overhead that scales with map size.

Our work reduces first-move decision costs while retain-
ing full CPDs by optimizing the SRC oracle and enhanc-
ing heuristic usage. We mainly work with several methods:
heuristic redundant symbols (Chiari et al. 2019), proxim-
ity wildcards (Chiari et al. 2019), and rectangular proxim-
ity wildcards (RPW) (Chen, Zhang, and Zhang 2024). Ad-
ditionally, inspired by end point search (EPS) (Shen et al.
2020), we choose to use the Euclidean distance to determine
the heuristic move.

Background
Gridmap. A gridmap (Figure 1 (a)) is a two-dimensional
environment consisting of n x m cells or nodes, where each
node is either completely traversable or completely obstacle
(in black). In this work, we follow the common rules. As
shown in Figure 1 (b), W is the only feasible direction.
Compressed Path Databases (CPDs). A CPD is a data

NE

{
|

s —E—

swW S SE
L

(a) Allowed moves

(b) Disallowed moves

Figure 1: Examples of allowed moves on the 8-connected
grid map.

structure that stores the compressed first-move array 7.
CPDs are a group of techniques that use all-pair path data to
find the optimal first move in " without state-space search.
Run Length Encoding (RLE). RLE is a matrix compres-
sion technique that computes an id for each node based on
the input order in the graph and compresses a string of sym-
bols by more compact substrings, called runs. To work with
the JPS oracle, the SRC oracle of Topping adopts C-RLE
(Strasser, Botea, and Harabor 2015), which breaks ties by
prefer diagonal-first moves.

Topping. The Topping is shown in Algorithm 1, where the
SRC oracle decides the first move ¢ in line 3, and the JPS
oracle calculates the steps c in line 4.

Heuristic Redundant Symbol. The heuristic redundant
symbol h marks the nodes (shown in bold on the gridmap)
in the first-move array 7' whose first move is equal to the
heuristic move. In this work, we use the Euclidean distance
and heuristic function F,(s,t) to determine the heuristic
move, where n is a neighbor of s, w(s,n) is the real cost
from s to n, and f.(s,t) is the heuristic distance function
used to estimate the distance from n to ¢. E' is a set of feasi-
ble edges, where (s,n) € E means that the path from s to ¢

Algorithm 1: Topping(s, t)

Input: init start s, target state ¢
Output: optimal path from sto ¢

Lm0

2: while s # ¢ do

3 U< getMoveSRC(s,t)

4: ¢+ getNrSteps(s,t,v)

5: Append c copies of ¥ to path 7
6: s« makeMoves(s,T,c)

7: end while

8: return 7

is feasible.
fels,t) = V/(s.w — t2)? + (s.y — t.y)? (1)

Fe(S, t) = arg min{w(sa n) + fe(n7 t)} (2)
(s,n)EE

Proximity Wildcards. Proximity wildcards define the
largest square proximity area centered on each source node,
including obstacles, blanks, and traversable nodes marked
with h. The traversable nodes in the proximity area of s can
be reached directly by the heuristic move.

Rectangular Proximity Wildcards. Rectangular Proximity
Wildcards defines the largest rectangle proximity area for
each source grid. Furthermore, the traversable nodes within
the rectangular proximity area must be marked with a
heuristic redundant symbol.

Topping consolidated by heuristics

Topping (Algorithm 1) uses the SRC oracle to determine the
first move ¢’ from the current node s to the target ¢ via bi-
nary search on compressed first-move arrays (CPDs), while
the JPS oracle retrieves the number of steps ¢ that ¢’ can ex-
ecute without invoking SRC. Optimal paths are extracted by
repeatedly calling these two oracles. Our contributions are
based on the following observations:

1. Limited compression. In Topping, the SRC oracle uses
C-RLE with a diagonal-first tie-break, which limits com-
pression of first-move arrays and generates larger CPDs
with inefficient compression.

2. Inefficient first-move decision. Larger CPDs make the
SRC oracle perform more binary searches (i.e. first-move
decision cost) per first-move decision, increasing search
costs.

To address these issues, we enhance Topping with
three CPD compression methods—heuristic redundant sym-
bols, proximity wildcards, and rectangular proximity wild-
cards—producing more concise CPDs and improving search
performance. We also extend the proximity area to oracle in-
teractions, calling it the interest area, where applied heuristic
information groups further boost search efficiency (Defini-
tion 1).

Definition 1. A heuristic information group H,4 is a set of
heuristic move data calculated by the heuristic function and
defined by the same interest area S;,. H;4(s) is the heuristic

SE 6

Figure 2: An example of the first move. The bold nodes
are marked with a heuristic redundant symbol, the dashed
square is the interest area for ToppingPW, and the solid rect-
angle is ToppingRPW’s interest area.

information group defined by the S;,(s) centered on source
node s. Each heuristic move in H;,(s) uniquely corresponds
to a traversable node in S;,(s).

In other words, for any traversable node 7 in the interest
area S;,(s), the first move from s to n will be directly re-
turned by the heuristic move corresponding to n in H;4(s).
We also propose the following three methods:

1. ToppingH (Two-Oracle Path Planning with Heuristic Re-
dundant Symbol). Extends Topping with the heuristic re-
dundant symbol /4 to replace qualified nodes (where the
first move equals the heuristic move) in the first-move
array.

2. ToppingPW (Two-Oracle Path Planning with Proxim-
ity Wildcards). Builds on ToppingH by using proximity
wildcards and the largest square interest area to define
heuristic information groups.

3. ToppingRPW (Two-Oracle Path Planning with Rectan-
gular Proximity Wildcards). Uses rectangular proximity
wildcards and the largest rectangle interest area, defin-
ing larger heuristic information groups to further boost
search performance, especially in complex terrains.

Note that the side lengths of the interest areas in Top-
pingPW and ToppingRPW are stored together with the com-
pressed first-move arrays as auxiliary data in CPDs. That is,
for both ToppingPW and ToppingRPW, the size of CPDs is
the sum of the size of first-move array compression results
and auxiliary data.

ToppingH

ToppingH uses the heuristic redundant symbol to mark
nodes where the first move matches the heuristic move (cal-
culated by Euclidean distance). In the offline preprocessing
stage, consecutive first moves marked with A can be com-
pressed into a single h.

Figure 2 provides an example: Topping compresses it to
INW;, 4N; 9F; 11NW; 13N; 14NFE; 18FE; 20W; 23F;
30SW; 315, 325FE; 36 F; 40S; 41SE; 45F; 465; 50SE, a
total of 18 RLE runs. The cells in bold are marked with h
by ToppingH. After compression with ToppingH, the first-
move array becomes 1h; 9F; 11h; 18F; 20h; 36 E; 40h;
45F; 46S; 49h, a total of 10 RLE runs. The compression

result of ToppingH is more concise than the original result,
which indicates greater memory saving and enhanced com-
pression efficiency (a reduction of 8 RLE runs).

ToppingPW

ToppingPW defines the largest square centered on the cur-
rent source node s as the proximity are and interest area. Es-
sentially, ToppingH can be seen as ToppingPW with a side
length of 1, while ToppingPW enlarges the interest area by
several to hundreds of times. During offline preprocessing,
ToppingPW uses proximity wildcards within this area to en-
hance compression.

The interest area also accelerates online search by reduc-
ing calls to the SRC oracle. As shown in Figure 2, the dotted
square represents the proximity area (is the same as interest
area during online search), and all traversable nodes inside
are marked with h. The resulting compression is 1h; 9F;
18F;25h; 36 E; 43h; 45E; 46S; 49h, a total of 9 RLE runs.

Algorithm 2 presents the pseudo-code of ToppingPW.
During online search, before each SRC oracle call, Top-
pingPW checks whether the target node lies within the inter-
est area. If so, the heuristic move is returned directly, elim-
inating the SRC call and speeding up the search. In other
words, the interest area along with the heuristic informa-
tion group can sometimes alternative the call to SRC oracle,
which can accelerate the search.

Algorithm 2: ToppingPW (s, t)
[h] Input: start node s, target node ¢
Output: optimal path 7

Lm0

2: d « pd(s)

3: while s # ¢ do

4: if tin GetInterestArea(s) then
5: U« Fo(s,t)

6: else

7: ¥ < getMoveSRC(s,t)

8: if ¥ = h then

9: U« Feo(s,t)

10: end if

11: endif

12: ¢+ getNrSteps(s,t,v)
13: Append 7 for ¢ steps to 7
14: s« makeMoves(s,U,c)
15: end while

16: return m

ToppingRPW
ToppingRPW uses a rectangular interest area centered on the
current node s to leverage more heuristic information for im-
proved compression and search. In Figure 2, the solid rect-
angle shows the rectangular proximity area. The compres-
sion result is 9F; 18E; 27h; 36 E; 45F; 46S; 49h, totaling
7 RLE runs, the most concise among Topping, ToppingH,
and ToppingPW.

The pseudo-code is similar to Algorithm 2, replacing
line 4 with GetRecInterestArea(). Larger interest areas

ToppingH A ToppingPW # ToppingRPW

BG Il DAO DA Starcraft Maze
#11.40 4 ¥ ® * t 4
1.4 1.25
1.4
1.35 1a . # A
1.30 . 1.20 *
1.3 A w* - s * 1.3
@ 1.25 T .
5 el A 1.15 *
! B f 1.20 al
w12 A 121
z A 1.2
O 1.15 1.10
A
q * &
1 e 11 1.05 ;’ N
1.05 ®
4 5
1.0 1.00 1.0 1.00 1.0

1.0 1.1 1.2 1.3 1.0 1.1 1.2 13 1.4 10 11 1.2 13 14

Ccpps —size Ccpps —size

Ccpps —size

1.00 1.05 1.101.151.20 1.25 09 10 11 1.2 1.3

Ccpps — size Ccpps - size

Figure 3: Distribution of compression factors. Line z=1 is the baseline of CPDs size, and the line y=1 is the baseline of RLE
runs, i.e. the values are the same as Topping. Game benchmark: BGII, DAO, DA, Starcraft. Artificial benchmark: Maze. The

definition of Cy,etric; is shown in Equation 3

and richer heuristic information groups help minimize first-
move decision costs and SRC oracle calls.

Experiments

We conduct experiments on 478 maps from five benchmarks
provided by (Sturtevant 2012a), 4 game benchmarks: Bal-
durs Gate Il (BGII), Dragon Age: Origins (DAO), Dragon
Age II (DA), Starcraft, and an artificial benchmark Maze,
with the number of nodes ranging from 100 to more than
7.5 x 10°. 70% of the maps in BGII have nodes fewer than
1000, 74% of the maps in DAO and 94% of the maps in DA
have nodes between 1,000 and 5 x 10%, all maps in Maze
have nodes between 1 x 10° and 3 x 10°, and nearly 40%
of the maps in Starcraft have more than 3 x 10° nodes. We
use Topping as the experimental baseline, and compare it
with SRC in compression and search.

Our main experimental metrics are: CPD size, RLE runs,
binary search (the first-move decision cost) and runtime.

Since the map sizes can vary by tens to thousands of times
in the same benchmark, resulting in huge difference in met-
ric values. Thus, we normalize the metrics with a factor
Chetric; and define it as Equation 3.

valuemap, (Toppingmetric;)
Cmetrici =)
valuemap, (Xmetric;)

Where metric; represents the i-th metric and X can be as-
signed to ToppingH, ToppingPW, and ToppingRPW. For all
metrics, the larger Cyetric, 18, the better the methods are.
All algorithms are implemented in C++, and the ex-
periments are conducted on Ubuntu 20.04.3 LTS, with
processor AMD@® Ryzen 9 5900%12core processer*24
and 31.4GiB RAM. All benchmarks can be found at
https://movingai.com/benchmarks/grids.html.

Offline Preprocessing

As shown in Figure 3, compared with Topping, our methods
have higher Crpp_ryns on 100% of the maps, and RPW
performs the best among them, reducing RLE runs by 12%
on average and 32% at most (map /t_gamlenshouse_n with

1.9 x 10% nodes or so). Fewer RLE runs lead to more ef-
ficient compression and smaller first-move array sizes. A
more concise first-move array compression result will effec-
tively promote savings of search overhead.

From Figure 3, we can also find that ToppingH and Top-
pingRPW have Ceopps_size > 1 on all maps, and Top-
pingPW has Copps—size > 1 on all game maps and 90%
of Maze. Copps—size > 1 indicates that our methods typi-
cally have smaller storage costs. Among them, ToppingRPW
performs the best, reducing the size of CPDs by up to 31%
(map lt_gamlenshouse_n). We notice that ToppingPW pro-
duces larger sizes (=13%7) on 10% maps of Maze. The rea-
son is that both ToppingPW and ToppingRPW need to store
additional auxiliary data (Iength of the interest area, no more
than 5% of the size of CPDs). Although ToppingPW has bet-
ter compression capability and efficiency than Topping, its
CPDs size would be larger on some Maze maps due to the
auxiliary data. ToppingRPW, with larger interest areas and
richer heuristic information groups, has much better com-
pression performance than ToppingPW.

Online Search

Our methods achieve optimal path extraction with better
search efficiency, which is mainly attributed to the sig-
nificant reduction of the first-move decision cost. Figure
4 shows distribution of search factors for all maps. The
Chinary—search Of our methods are always obviously greater
than 1. In other words, they effectively reduce the first-
move decision costs, particularly on larger maps such as
those in Starcraft (min(Chinary—search) > 2.1), and Maze
(min(Crinary—search) > 2.2). In addition, we list the first-
move decision costs for several maps in Table 1. The three
methods we propose can reduce the first-move decision cost
by 59%-60% on average. Among them, ToppingPW per-
forms better on small maps (with fewer than 1000 nodes),
while ToppingRPW performs the best on large maps, achiev-
ing a reduction of the first-move decision cost by up to 71%.
This is because our methods utilize richer heuristic infor-
mation, leading to more concise first-move arrays, thereby
effectively reducing the number of binary searches required

ToppingH A ToppingPW # ToppingRPW

BG Il DAO DA Starcraft
A * *
*
3.0
ES e
225 fﬁﬁ * 2.0
b 1Y
Ib " 1.8
g 2.0
K 1.6
&)
1.4
15{ & S| 154
¥ A% 1.2
1.0 1.0 1.0
0.75 1.00 1.25 1.50 1.75 1.00 1.25 1.50 1.75 08 1.0 12 14 16 0.8 1.0 1.2 08 10 12 14 1.6
Cruntime Cruntime Cruntime Cruntime Cruntime

Figure 4: Distribution of search factors. Line x=1 is the baseline of runtime, and the line y=1 is the baseline of binary search.
The definition of Cyetric, is shown in Equation 3.

Map Node Metric Topping ToppingH ToppingPW ToppingRPW
AR0203SR 2037 | Binary searches 1683 548 (67.44% |) 513(69.52% 1) 528 (68.63% |)
BGII Runtime (s) 6.0010~* | 4.501074(25.00% |) | 4.5910~4(23.50% |) | 4.41 10~%(26.50% /)
120 maps | AR0330SR 811 | Binary searches 634 302(52.37% 1) 269(57.57% |) 278(56.15% 1)
Runtime (s) 3.46107% | 1.86 107%(46.24% |) | 1.8510°(46.53% |) | 2.06 10~*(40.46%)
0rz800d 59680 | Binary searches | 270180 79206 (70.68% 1) 78992 (70.76% 1) 78650 (70.89% 1)
DAO Runtime (s) 8781072 | 8.4610°23.71% |) | 9.621072(9.52% 1) | 9.29 1072(5.83% 1)
156 maps den207d 874 Binary searches 816 446 (45.34%) 400 (50.98% 1) 427 (47.67%)
Runtime (s) 4.78107* | 2.6010~%(45.61% |) | 2.4910~*(47.91% }) | 5.01 10~*(4.81% 1)
w_blightlands | 14945 | Binary searches | 218448 73567 (66.32% 1) 73300 (66.45% 1) 72887 (66.63% 1)
DA Runtime (s) 4151072 | 4.481072(7.90% 1) | 5.06 1072(21.98% 1) | 4.93 10~2(18.74% 1)
67 maps 1t_house 864 Binary searches 39 28 (28.21%) 17 (56.41% |) 17 (56.41% |)
Runtime (s) 2.4010° | 1.40 107 5(41.67% |) | 1.50 1075(37.50% }) | 2.00 10-°(16.67%)
CatwalkAlley | 225934 | Binary searches 461337 141110 (69.41%) 140858 (69.47%) 140651 (69.51% 1)
Starcraft Runtime (s) 1.13107" | 1.13107'(0.36% |) | 1.4410°1(27.47% 1) | 1.211071(7.34% 1)
75maps | Backwoods | 208734 | Binary searches | 248396 96722 (61.06%) 96969 (60.96%) 96406 (61.19% |)
Runtime (s) 9441072 | 8.311072(11.93% |) | 7.66 10-2(18.86%) | 8.70 10~2(7.89% |)
maze512-8-7 | 232926 | Binary searches | 2850273 | 1116540 (60.83% |) | 1115170 (60.87% |) | 1113940 (60.92% 1)
Maze Runtime (s) 9.02107' | 8.2110°%8.97% |) | 1.01 10-(12.00% 1) | 9.881071(9.57% *1)
60 maps | maze512-16-2 | 246136 | Binary searches | 650348 258537 (60.25% |) 258067 (60.32% |) | 256632 (60.54%)
Runtime (5) 2731071 | 2.741071(0.49% 1) | 2.9110°'(6.57% 1) | 1.69 10~'(38.09% /)

Table 1: The search metrics of several maps.

by the SRC oracle to determine the first move, along with
the improvement of search efficiency. ToppingRPW benefits
from the largest interest areas and the richest heuristic infor-
mation groups, giving it a distinct advantage on large maps
and complex terrains.

The horizontal axis of Figure 4 shows runtime. Combin-
ing it with Table 1, it can be found that ToppingPW searches
faster on small maps such as ARO330SR and den207d.
Among all the methods, ToppingPW exhibits the best run-
time performance on the den207d and reduces the runtime
by approximately 48% on this map. Although ToppingRPW
does not perform well in terms of runtime on small maps,
as the map size increases, it becomes more prominent. For
example, on the maze-512-16-2, ToppingRPW reduces the
runtime by about 38%. The interest area along with heuris-
tic information group can sometimes replace the call to the
SRC oracle, which helps to speed up the search. Therefore,
ToppingPW and ToppingRPW can gain runtime benefits by
effectively cutting the SRC oracle calls with the help of rich
heuristic information. Nevertherless, they may take more
time in the cases where Topping calls the SRC oracle less
often.

Discussion

Topping+ (Hu et al. 2021), another two-oracle method, re-
duces memory usage by storing only a subset of CPDs,
which also shortens preprocessing time. However, it leads
to information loss and causes increased search overhead,
particularly on larger maps (17.5% 1 in Maze and 22% 1
in Starcraft for average path query times). Even with wild-
cards (C-RLE-JPW) to improve CPD compression, addi-
tional runtime costs are incurred, resulting in query times
46% and 73% higher than Topping in Maze and Starcraft,
respectively. In contrast, our method retains the complete
CPD, achieving significantly higher search efficiency than
both Topping and Topping+, using less memory, and requir-
ing slightly more preprocessing time than Topping. Overall,
although reducing offline preprocessing is appealing, im-
provements in search efficiency are far more important for
practical applications.

Conclusion

Our work extends the heuristic redundant symbol, proxim-
ity wildcards and rectangular proximity wildcards to Top-
ping. Additionally, we adopt interest area along with rich
heuristic information groups to replace the SRC oracle calls

in the online search, and propose heuristic Topping meth-
ods: ToppingH, ToppingPW, and ToppingRPW. Experimen-
tal results on five benchmarks demonstrate that our meth-
ods effectively cut down the first-move decision cost and
improve search efficiency, and have gains in compression.
Furthermore, methods with richer heuristic information per-
form better in large maps and complex terrain.

Among the recent work, “bounded suboptimal reverse
CPDs” (Zhao et al. 2020) provides a new type of CPD. We
plan to extend the reverse compression to Topping and our
methods to further accelerate the extraction of the optimal
path. In addition, “LLMs can help planning” (Kambhampati
et al. 2024) is an interesting direction to explore and verify.

References

Antsfeld, L.; Harabor, D.; Kilby, P.; and Walsh, T. 2012.
Transit routing on video game maps. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 8, 2—7.

Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 7, 122—-127.

Botea, A.; and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Proceedings of
the International Conference on Automated Planning and

Scheduling, volume 23, 293-297.

Chen, X.; Zhang, Y.; and Zhang, Y. 2024. More Flexible
Proximity Wildcards Path Planning with Compressed Path
Databases. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 34, 77-85.

Chiari, M.; Zhao, S.; Botea, A.; Gerevini, A. E.; Harabor,
D.; Saetti, A.; Salvetti, M.; and Stuckey, P. J. 2019. Cutting
the size of compressed path databases with wildcards and re-
dundant symbols. In Proceedings of the International Con-

ference on Automated Planning and Scheduling, volume 29,
106-113.

Cui, X.; and Shi, H. 2011. A*-based pathfinding in modern
computer games. International Journal of Computer Sci-
ence and Network Security, 11(1): 125-130.

Delling, D.; Goldberg, A. V.; Pajor, T.; and Werneck, R. F.
2017. Customizable route planning in road networks. Trans-
portation Science, 51(2): 566-591.

Freund, E.; and Hoyer, H. 1986. Pathfinding in multi-robot
systems: Solution and applications. In Proceedings. 1986
IEEE International Conference on Robotics and Automa-
tion, volume 3, 103-111.

Harabor, D.; and Grastien, A. 2011. Online graph pruning
for pathfinding on grid maps. In Proceedings of the AAAI
conference on artificial intelligence, volume 25, 1114-1119.

Harabor, D.; and Grastien, A. 2014. Improving jump point
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 128-135.

Hu, Y.; Harabor, D.; Qin, L.; and Yin, Q. 2021. Regarding
goal bounding and jump point search. Journal of Artificial
Intelligence Research, 70: 631-681.

Hu, Y.; Harabor, D.; Qin, L.; Yin, Q.; and Hu, C. 2019. Im-
proving the combination of JPS and geometric containers. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 209-213.

Honig, W.; Preiss, J. A.; Kumar, T. K. S.; Sukhatme, G. S.;
and Ayanian, N. 2018. Trajectory Planning for Quadrotor
Swarms. IEEE Transactions on Robotics, 34(4): 856-869.

Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P;; and B Murthy, A.
2024. Position: LLMs Can’t Plan, But Can Help Planning in
LLM-Modulo Frameworks. In Proceedings of the 41st Inter-
national Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, 22895-22907.
PMLR.

Salvetti, M.; Botea, A.; Gerevini, A.; Harabor, D.; and Saetti,
A. 2018. Two-oracle optimal path planning on grid maps. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 28, 227-231.

Salvetti, M.; Botea, A.; Saetti, A.; and Gerevini, A. E. 2017.
Compressed path databases with ordered wildcard substitu-
tions. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 27, 250-258.

Shen, B. 2023. Advances in Pathfinding Algorithms for
Games, Route Planning Software, and Automated Ware-
houses. Ph.D. thesis, Monash University.

Shen, B.; Cheema, M. A.; Harabor, D. D.; and Stuckey,
P. J. 2020. Euclidean pathfinding with compressed path
databases. In International Joint Conference on Artificial

Intelligence-Pacific Rim International Conference on Artifi-
cial Intelligence 2020, 4229-4235.

Strasser, B.; Botea, A.; and Harabor, D. 2015. Compressing
optimal paths with run length encoding. Journal of Artificial
Intelligence Research, 54: 593-629.

Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast first-
move queries through run-length encoding. In Proceedings
of the International Symposium on Combinatorial Search,
volume 5, 157-165.

Sturtevant, N. 2012a. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and Al in
Games, 4(2): 144 — 148.

Sturtevant, N.; Traish, J.; Tulip, J.; Uras, T.; Koenig, S.;
Strasser, B.; Botea, A.; Harabor, D.; and Rabin, S. 2015.
The grid-based path planning competition: 2014 entries and
results. In Proceedings of the International Symposium on
Combinatorial Search, volume 6, 241-250.

Sturtevant, N. R. 2012b. Moving Path Planning Forward. In
Kallmann, M.; and Bekris, K., eds., Motion in Games, 1-6.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-642-34710-8.

Zhao, S. 2022. Improving Pruning and Compression Tech-
niques in Path Planning. Ph.D. thesis, Monash University.

Zhao, S.; Chiari, M.; Botea, A.; Gerevini, A. E.; Harabor, D.;
Saetti, A.; and Stuckey, P. J. 2020. Bounded suboptimal path
planning with compressed path databases. In Proceedings

of the International Conference on Automated Planning and
Scheduling, volume 30, 333-341.

