
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNLEASHING REASONING CAPABILITY OF LLMS VIA
SCALABLE QUESTION SYNTHESIS FROM SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The availability of high-quality data is one of the most important factors in im-
proving the reasoning capability of LLMs. Existing works have demonstrated the
effectiveness of creating more instruction data from seed questions or knowledge
bases. Recent research indicates that continually scaling up data synthesis from
strong models (e.g., GPT-4) can further elicit reasoning performance. Though
promising, the open-sourced community still lacks high-quality data at scale and
scalable data synthesis methods with affordable costs. To address this, we intro-
duce ScaleQuest, a scalable and novel data synthesis method that utilizes “small-
size” (e.g., 7B) open-source models to generate questions from scratch without
the need for seed data with complex augmentation constraints. With the efficient
ScaleQuest, we automatically constructed a mathematical reasoning dataset con-
sisting of 1 million problem-solution pairs, which are more effective than existing
open-sourced datasets. It can universally increase the performance of mainstream
open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math)
by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the
Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-
Instruct, a strong and well-aligned model on closed-source data, and proprietary
models such as GPT-4-Turbo and Claude-3.5 Sonnet.1

7B Scale Models

Proprietary Models
 & 70B Scale Models

+ScaleQuest

Figure 1: Left: Results of different models on MATH, where -ScaleQuest denotes ours. Right:
Results of Llama3-8B fine-tuned on publicly available datasets constructed by different methods.

1 INTRODUCTION

How to improve the reasoning capabilities of Large Language Models (LLMs) has attracted sig-
nificant attention. The success of recent advanced models, such as OpenAI o1 and Claude-3.5,
heavily depends on access to extensive, diverse, and high-quality reasoning datasets. However, the

1Code, data, and models will be publicly available.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

proprietary nature of the data presents a significant barrier to the open-source community. Recent
works have highlighted data synthesis as a promising approach (Ntoutsi et al., 2020) to address data
scarcity for instruction tuning (Inan et al., 2023). As recent works have disclosed that crafting the
right questions is crucial for eliciting the reasoning capabilities of LLMs (Yu et al., 2023a; Shah
et al., 2024), the core of reasoning data synthesis lies in creating large-scale and novel questions.

Previous efforts in reasoning data synthesis have demonstrated the effectiveness of leveraging pow-
erful language models to generate instructions. We categorize these approaches into two types:
question-driven approaches and knowledge-driven approaches. Question-driven methods include
question rephrasing (Yu et al., 2023a), evol-instruct (Xu et al., 2023; Luo et al., 2023; Zeng et al.,
2024), question back-translation (Lu et al., 2024), or providing few-shot examples (Mitra et al.,
2024). These methods are limited in data diversity, as the generated problems closely resemble
the seed questions, with only minor modifications such as added conditions or numerical changes.
This lack of diversity hampers their scalability potential. To improve question diversity, recent
knowledge-driven works (Huang et al., 2024b) scale question synthesis by constructing knowledge
bases (Li et al., 2024b) or concept graphs (Tang et al., 2024) and sampling key points (Huang et al.,
2024a) from them to generate new questions. Nevertheless, the above two types of approaches com-
monly rely on strong models, like GPT-4, to synthesize new questions, but the high API costs make
it impractical to generate large-scale data. As a result, despite these advancements, the open-source
community still faces a shortage of high-quality data at scale and cost-effective synthesis methods.

To meet this requirement, we explore a scalable, low-cost method for data synthesis. We observe
that using problem-solving models to directly synthesize reasoning questions, as explored in Yu
et al. (2023b) and Xu et al. (2024), falls short in synthesizing reasoning data, as shown in Figure 1
(see Llama3-8B-Magpie results). Accordingly, we propose a novel, scalable, and cost-effective data
synthesis method, ScaleQuest, which first introduces a two-stage question-tuning process consist-
ing of Question Fine-Tuning (QFT) and Question Preference Optimization (QPO) to unlock the
question generation capability of problem-solving models. Once fine-tuned, these models can then
generate diverse questions by sampling from a broad search space without the need for additional
seed questions or knowledge constraints. The generated questions can be further refined through a
filtering process, focusing on language clarity, solvability, and appropriate difficulty. Moreover, we
introduce an extra reward-based filtering strategy to select high-quality responses.

We generated data based on two lightweight, open-source models: DeepSeekMath-7B-RL (Shao
et al., 2024) and Qwen2-Math-7B-Instruct (Yang et al., 2024a), producing a final dataset of 1 mil-
lion question-answer pairs. As shown in Figure 1, our synthetic dataset boosts performance by
29.2% to 46.4% across four major open-source models: Mistral-7B (Jiang et al., 2023), Llama3-
8B (Dubey et al., 2024), DeepSeekMath-7B (Shao et al., 2024), and Qwen2-Math-7B (Yang et al.,
2024a). Compared with other publicly available datasets such as MetaMath (Yu et al., 2023a),
DART-Math (Tong et al., 2024), and NuminaMath (Li et al., 2024c), our approach demonstrates
great scalability in both in-domain and out-of-domain evaluation. In terms of in-domain evaluation,
our method outperforms existing high-quality open-source datasets, achieving better results with the
same amount of data. For out-of-domain evaluation, compared with other datasets, the performance
of our synthetic dataset continues to show promising trends as the volume of training data increases,
indicating significant potential for further improvements through ongoing data scaling.

2 SCALEQUEST: SCALING QUESTION SYNTHESIS FROM SCRATCH

In this section, we first explain the motivation and process of our question generation method (sec-
tion 2.1). Then, we introduce how to train a question generator via Question Fine-Tuning (sec-
tion 2.2) and Question Preference Optimization (section 2.3). Next, we use the question generator
to generate math questions, followed by a filtering process (section 2.4). Finally, we describe the
response generation process (section 2.5). The overview of our method is illustrated in Figure 2.

2.1 QUESTION GENERATION FROM SCRATCH

The question generation process involves providing only a few prefix tokens from an instruc-
tion template (e.g., “<|begin of sentence|>User:”) to guide the model in question
generation. A fine-tuned causal language model, which has learned to generate responses

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

 Base Problem Writer

 Professional
 Problem Solver

Step 1: Query
 Fine-Tuning (QFT)

 Step 2: Query Preference
 Optimization (QueryPO)

<｜begin▁of▁sentence｜>User:

Prompts used for
Question Generation

 Expert & Advanced
 Problem Designer

Question 1: The product of three
consecutive whole numbers is 900.
What is the sum of these three numbers?

Question 2: How many different 3-digit
positive integers are divisible by 8?

......

Question 1: The product of three
consecutive whole numbers is 990.
What is the sum of these three numbers?

Question 2: How many three-digit
positive integers are divisible by both 5
and 9? (exclude those divisible by 30.)

......

unsolvable!

Diversity

Simple!

Solvability Difficulty

Training Question Generators Question Generation

Diversity Solvability Difficulty

Final Data Construction

 2M Synthetic Questions

 ScaleQuest Datasets (1M)

 Difficulty Sampling

 Solvability Filtering

 Language Filtering

 1M Hight-Quality Questions

 Answer Generation

 Reward Filtering

Figure 2: Overview of our ScaleQuest method.

based on question-answer pairs (e.g., “<|begin of sentence|>User: {Question}.
Assistant: {Response}”), could potentially be leveraged to generate questions directly (Xu
et al., 2024). This is because, during instruction tuning, the model is trained using a causal mask,
where each token only attends to preceding tokens. This ensures that the hidden states evolve based
on past context without future token influence. However, during instruction tuning, the actual loss
is calculated based on the response, i.e.,

L = − logP (yi|X, y<i), (1)

where X = {x1, x2, . . . , xm} denotes question and Y = {y1, y2, . . . , yn} denotes response. Since
P (xi|x<i) is inherently modeled, we need to activate the model’s capability for question generation.

2.2 QUESTION FINE-TUNING (QFT)

0.0 0.2 0.4 0.6 0.8 1.0
0
2
4
6
8

10
12

De
ns

ity

GSM8K
MATH

0.0 0.2 0.4 0.6 0.8 1.0
Difficulty Score

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Qwen2-QFT-GSM8K
Qwen2-QFT-MATH

Figure 3: The difficulty distribution of
two real-world datasets and two synthetic
datasets. The difficulty score is calculated
based solely on the problem part.

To activate the model’s question generation capabil-
ity, we first perform Question Fine-Tuning (QFT),
where we train the problem-solving model using a
small set of problems. To ensure that the genera-
tor stops after producing the questions and does not
continue generating a response, we added an end-of-
sentence token at the end of each question. We used
approximately 15K problems (without solutions) by
mixing the training set of GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) datasets
as training samples. We train DeepSeekMath-
7B-RL Shao et al. (2024) and Qwen2-Math-7B-
Instruct Yang et al. (2024a) with these samples.

The purpose of utilizing these problems is to activate
the model’s question-generation capability rather
than to make the model memorize them. To validate
this hypothesis, we trained the model separately us-
ing the GSM8K and MATH datasets and compared
whether the distribution of the generated questions
matched that of the training data. To evaluate the
question distribution, we used a difficulty classifier, which maps a question into a difficulty score
(details in Section 2.4). We performed QFT based on Qwen2-Math-7B (Yang et al., 2024a), then
used the two QFT models, Qwen2-QFT-GSM8K and Qwen2-QFT-MATH, to synthesize 10K ques-
tions. The difficulty distribution of these four datasets is shown in Figure 3. We found that the gen-
erated questions separately differed from both GSM8K and MATH, yet they both converged toward

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the same distribution. Additionally, the QFT model, trained on English questions, demonstrated
the ability to generate a substantial number of questions in other languages. Both phenomena sug-
gest that the QFT process enhances the model’s question-generation capabilities without leading to
overfitting the training data.

2.3 QUESTION PREFERENCE OPTIMIZATION (QPO)

Qwen2-Math-7B-Ins GPT-4o-mini Llama3.1-70B-Ins
Optimization Model

0

25

50

75

So
lv

ab
ilit

y
Ra

tio
 (%

)

72.2 72.2 72.271.2
83.7 86.7

Raw Optimized

easy medium hard
Difficulty (Optimized by GPT-4o-mini)

0

20

40

Di
ffi

cu
lty

 R
at

io
 (%

)

34.5

54.2

11.3
6.0

55.1

38.9

Figure 4: The solvability and difficulty of the
raw questions generated by the QFT model
and the optimized ones.

The model is able to generate meaningful and di-
verse questions after QFT, but the quality is still not
high enough, as shown in Figure 2. This is reflected
in two aspects: (1) solvability: the math problem
should have appropriate constraints and correct an-
swers, and (2) difficulty: the model needs to learn
from more challenging problems, yet some of the
generated questions are still too simple. To address
these two aspects, we applied Question Preference
Optimization (QPO).

We first used the model after QFT to generate 10K
questions. Then, we optimized these samples using
an external LLM, focusing primarily on solvability
and difficulty. We found that simultaneously opti-
mizing both posed a challenge for the LLMs. There-
fore, for each sample, we randomly selected one of
the two optimization directions, prioritizing either
solvability or difficulty. The optimization prompts
can be found in Figure 10 and 11. The optimized
questions, denoted as yw, are treated as preferred
data, while the original questions before optimization, denoted as yl, are considered dispreferred
data. We modified the loss for Direct Preference Optimization (DPO) (Rafailov et al., 2024) formu-
lation to fit our approach:

LQPO(πθ;πref) = −E(yw,yl)∼D

[
log σ

(
β log

πθ(yw)

πref(yw)
− β log

πθ(yl)

πref(yl)

)]
. (2)

The question optimization process placed significant demands on the model’s ability to follow com-
plex instructions. We experimented with three question optimization models: Qwen2-Math-7B-
Instruct, GPT-4o-mini and Llama3.1-70B-Ins. To evaluate improvements in solvability and diffi-
culty, we used GPT-4o, with the prompts for this evaluation provided in Figure 12 and 13. The
results are shown in Figure 4. In terms of solvability, Qwen2-Math-7B-Instruct proved inadequate
for this task, as the optimized questions resulted in decreased solvability. A possible reason for this
is the model’s insufficient ability to follow instructions accurately, resulting in many answers that
fail to meet the specified optimization constraints. Considering the cheap API calls, we selected
GPT-4o-mini as the question optimization model consequently.

2.4 QUESTION FILTERING

After the QFT and QPO phases, we obtained two question generators: DeepSeekMath-QGen and
Qwen2-Math-QGen. There are still some minor issues in the generated questions, primarily re-
lated to language, solvability, and difficulty. To address these challenges, we applied the following
filtering steps:

Language Filtering The question generator models still produce a substantial number of math
questions in other languages, accounting for approximately 20%. Since our focus is on English
math questions, we removed non-English questions by identifying questions containing non-English
characters and filtering out those samples.

Solvability Filtering Although QPO effectively enhances the solvability of generated questions,
some questions remain nonsensical. This is primarily due to (1) poorly constrained questions, where

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

missing conditions, redundant conditions, or logical inconsistencies occur, and (2) questions that do
not yield meaningful outcomes (e.g., answers involving the number of people should result in a
non-negative integer). To filter out such samples, we used Qwen2-Math-7B-Instruct to evaluate
whether the question is meaningful and whether the conditions are sufficient. The prompts used for
the solvability check are provided in Figure 12.

Difficulty Sampling We measure the difficulty of a question using the fail rate (Tong et al., 2024)
— the proportion of incorrect responses when sampling n responses for a given question. This met-
ric aligns with the intuition that harder questions tend to result in fewer correct responses. Following
Tong et al. (2024), we used DeepseekMath-7B-RL as the sampling model to evaluate the difficulty
of each question in the training sets of GSM8K and MATH, obtaining the fail rate for each question
as its difficulty score. We then used this data to train a difficulty scorer. Specifically, we built upon
DeepseekMath-7B-Base and added a classification head on top of the model’s hidden state. The
difficulty score d is computed and optimized as:

d = Whl + b,L =
1

N

N∑
i=1

(yi − di)
2, (3)

where W and b are the weights and biases of the classification head, hl represents the last hidden
state of the sequence, and di is the predicted difficulty score for the i-th question. The loss func-
tion L is the mean squared error (MSE), where yi represents the true difficulty score for the i-th
question. We then used the scorer to predict the difficulty of each synthetic question and sample
based on the question’s difficulty. Specifically, we filtered out a portion of the questions generated
by DeepSeekMath-QGen that were overly simple. In contrast, the difficulty distribution of Qwen2-
Math-QGen was more balanced, so no sampling was necessary.

2.5 RESPONSE GENERATION WITH REWARD FILTERING

Prior efforts to guarantee the quality of solutions include two aspects: (1) rejection sampling (Yuan
et al., 2023): Large language models (LLMs) are tasked with generating multiple responses, specif-
ically reasoning paths, for each instruction. Only reasoning paths that lead to the correct answer are
preserved as solutions (Tong et al., 2024). (2) If the correct answer is unavailable, a majority voting
method is used (Huang et al., 2024a), selecting the answer that appears most frequently across mul-
tiple reasoning paths and retaining these as the solutions. We use the reward model score as a metric
for evaluating the quality of responses, considering its broader applicability, as there is often no sin-
gle correct answer in other reasoning tasks like code generation and tool planning. Specifically, for
each question, we generate 5 solutions and select the solution with the highest reward model scores
as the preferred solution. In our experiments, we use InternLM2-7B-Reward (Cai et al., 2024) as
our reward model. This choice was primarily guided by the model’s performance on the reasoning
subset of the Reward Bench (Lambert et al., 2024).

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Training Problem Designers Our question synthesis process relies on two problem designer mod-
els: Deepseek-QGen and Qwen2-Math-QGen, which were trained using QFT (section 2.2)
and QPO (section 2.3), based on DeepSeekMath-7B-RL (Shao et al., 2024) and Qwen2-Math-7B-
Instruct (Yang et al., 2024a), respectively. During the QFT stage, both models are trained on a mixed
training subset of GSM8K and MATH problems, containing a total of 15K problems. We trained
for only 1 epoch, considering that training for more epochs might cause the models to overfit the
training problems and negatively impact the diversity of generated questions. We also used sequence
packing (Krell et al., 2021) to accelerate training. In the QPO stage, we use 10K preference data for
training, with a learning rate of 5e-7 and a batch size of 128.

Question Generation The two question generation models were then utilized to generate a total
of 2 million questions, with 1 million from each model. During this process, we set the maximum

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Main results on four mathematical reasoning benchmarks. Bold means the best score within
the respective base model. The baselines use different synthesis models for both question synthesis
and response generation, such as GPT-3.5, GPT-4, and GPT-4o. For our approach, DSMath-7B-
QGen and Qwen2-Math-7B-QGen are utilized for question synthesis, with Qwen2-Math-7B-Ins
used for response generation. If multiple models are used, only the latest released one is marked.
More details concerning these datasets are shown in Figure 6.

Model Synthesis Model GSM8K MATH College
Math

Olympiad
Bench Average

Teacher Models in Data Synthesis

GPT-4-0314 - 94.7 52.6 24.4 - -
GPT-4-Turbo-24-04-09 - 94.5 73.4 - - -
GPT-4o-2024-08-06 - 92.9 81.1 50.2 43.3 66.9
DeepSeekMath-7B-RL - 88.2 52.4 41.4 19.0 49.3
Qwen2-Math-7B-Instruct - 89.5 73.1 50.5 37.8 62.7

General Base Model

Mistral-7B-WizardMath GPT-4 81.9 33.3 21.5 8.6 36.3
Mistral-7B-MetaMath GPT-3.5 77.7 28.2 19.1 5.8 32.7
Mistral-7B-MMIQC GPT-4 75.7 36.3 24.8 10.8 36.9
Mistral-7B-MathScale GPT-3.5 74.8 35.2 21.8 - -
Mistral-7B-KPMath GPT-4 82.1 46.8 - - -
Mistral-7B-DART-Math DSMath-7B-RL 81.1 45.5 29.4 14.7 42.7
Mistral-7B-NuminaMath GPT-4o 82.1 49.4 33.8 19.4 46.2
Mistral-7B-ScaleQuest Qwen2-Math-7B-Ins 88.5 62.9 43.5 26.8 55.4

Llama3-8B-MetaMath GPT-3.5 77.3 32.5 20.6 5.5 34.0
Llama3-8B-MMIQC GPT-4 77.6 39.5 29.5 9.6 39.1
Llama3-8B-DART-Math DSMath-7B-RL 81.1 46.6 28.8 14.5 42.8
Llama3-8B-NuminaMath GPT-4o 77.2 50.7 33.2 17.8 44.7
Llama3-8B-ScaleQuest Qwen2-Math-7B-Ins 87.9 64.4 42.8 25.3 55.1

Math-Specialized Base Model

DeepSeekMath-7B-Instruct - 82.7 46.9 37.1 14.2 45.2
DeepSeekMath-7B-MMIQC GPT-4 79.0 45.3 35.3 13.0 43.2
DeepSeekMath-7B-KPMath-Plus GPT-4 83.9 48.8 - - -
DeepSeekMath-7B-DART-Math DSMath-7B-RL 86.8 53.6 40.7 21.7 50.7
DeepSeekMath-7B-Numina-Math GPT-4o 75.4 55.2 36.9 19.9 46.9
DeepSeekMath-7B-ScaleQuest Qwen2-Math-7B-Ins 89.5 66.6 47.7 29.9 58.4

Qwen2-Math-7B-MetaMath GPT-3.5 83.9 49.5 39.9 17.9 47.8
Qwen2-Math-7B-DART-Math DSMath-7B-RL 88.6 58.8 45.4 23.1 54.0
Qwen2-Math-7B-Numina-Math GPT-4o 84.6 65.6 45.5 33.6 57.3
Qwen2-Math-7B-ScaleQuest Qwen2-Math-7B-Ins 89.7 73.4 50.0 38.5 62.9

generation length to 512, a temperature of 1.0, and a top-p value of 0.99. To ensure quality, we ap-
plied a question filtering pipeline (section 2.4) that involved language filtering, solvability filtering,
and difficulty sampling. This process refined the dataset, leaving approximately 1M questions to
form the final question pool, 400K from Deepseek-QGen and 600K from Qwen2-Math-QGen.

Response Generation Based on the problems, we synthesized responses (section 2.5) using
Qwen2-Math-7B-Instruct (Yang et al., 2024a). In the process, we set the maximum generation
length to 2048, with a temperature of 0.7 and top-p of 0.95. We use chain-of-thought prompt (Wei
et al., 2022) to synthesize solutions. We use vLLM (Kwon et al., 2023) to accelerate the generation
and Ray (Moritz et al., 2018) to deploy distributed inference. For each problem, we sampled 5 so-
lutions and selected the one with the highest reward score as the final response. The final dataset
consists of 1 million problem-solution pairs.

Instruction Tuning We conducted instruction tuning on the synthetic problems and solutions us-
ing two general base models, Mistral-7B (Jiang et al., 2023) and Llama3-8B (Dubey et al., 2024), as
well as two math-specialized base models, DeepSeekMath-7B (Shao et al., 2024) and Qwen2-Math-
7B (Yang et al., 2024a). All models were fine-tuned for 3 epochs in our experiments unless specified
otherwise. We used a linear learning rate schedule with a 3% warm-up ratio, reaching a peak of 5e-5
for Llama3 and DeepSeekMath and 1e-5 for the other models, followed by cosine decay to zero.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Evaluation and Metrics We assessed the fine-tuned models’ performance across four datasets of
increasing difficulty. Along with the widely used GSM8K (elementary level) and MATH (competi-
tion level), we included two more challenging benchmarks: College Math (Yuan et al., 2023) (col-
lege level) and Olympiad Bench (He et al., 2024) (Olympiad level). For evaluation, we employed the
script from Tong et al. (2024) to extract final answers and determine correctness by comparing an-
swer equivalency. The generated outputs were all in the form of natural language Chain-of-Thought
(CoT) reasoning (Wei et al., 2022) through greedy decoding, with no tool integration, and we report
zero-shot pass@1 accuracy.

Compared Baselines The main point of comparison is data synthesis methods, including: (1)
WizardMath (Luo et al., 2023) proposes a reinforced Evol Instruct method; (2) MetaMath (Yu et al.,
2023a) introduces three types of question bootstrapping; (3) MMIQC (Liu & Yao, 2024) proposes an
iterative question composing method; (4) Orca-Math (Mitra et al., 2024) augments existing datasets
using an Agent-Instruct method; (5) KPMath (Huang et al., 2024a) utilizes inherent topics and
key points to synthesize problems; and (6) MathScale (Tang et al., 2024) builds a concept graph
to generate new questions. In addition to this, we also involved other large math corpus like (7)
DART-Math (Tong et al., 2024) enhances the response generation process through difficulty-guided
rejection sampling; (8) Numina-Math (Li et al., 2024c) collects a large corpus by combining existing
synthetic data with real-world datasets. More details of these datasets are shown in Table 6. We
found that different scripts yielded varying evaluation results. To ensure consistency, we evaluated
all released models using the same evaluation scripts. For methods without available results or
released models, we retrained the models using their publicly available data.

3.2 MAIN RESULTS

ScaleQuest significantly outperforms others Table 1 presents the results. ScaleQuest signifi-
cantly outperforms previous synthetic methods, with average performance improvements ranging
from 5.6% to 11.5% over the prior state-of-the-art (SoTA) on both general base models and math-
specialized foundation models. Qwen2-Math-7B-ScaleQuest achieved a zero-shot pass@1 accuracy
of 73.4 on the MATH benchmark, matching the performance of GPT-4-Turbo. For out-of-domain
tasks, Qwen2-Math-7B-ScaleQuest outperformed its teacher model, Qwen2-Math-7B-Instruct, with
scores of 89.7 on the GSM8K benchmark, 73.4 on the MATH benchmark, and 38.5 on the Olympiad
benchmark. It’s important to highlight that Qwen2-Math-7B-Instruct has undergone Group Relative
Policy Optimization (GRPO) (Shao et al., 2024), utilizing the powerful reward model Qwen2-Math-
RM-72B (Yang et al., 2024a), while our model is only an instruction tuning version. To ensure a fair
comparison with other baselines, we have only applied supervised fine-tuning (SFT) in this work,
leaving the preference tuning process for future work. Since some of the baseline datasets are not
publicly available, we could not strictly control for the same training data volume. Experiments
with controlled training data volumes can be found in the scaling trend in Figure 1 and Appendix C.
The use of multiple models in our approach may lead to some confusion. To address this, we also
present a simplified version of our method, where only Qwen2-Math-7B-Ins and InternLM-7B-
Reward are used. Detailed results and more insights into the selection of these models are provided
in Appendix C.

ScaleQuest scales well with increasing data We also explored the scalability of our dataset. We
used our constructed dataset along with publicly available datasets, including MetaMath (Yu et al.,
2023a), DART-Math (Tong et al., 2024), and Numina-Math (Li et al., 2024c). We trained the model
using Llama3-8B and observed how its performance scaled with increasing data size. The results are
presented in Figure 1. For the in-domain evaluation (MATH), our method demonstrates high data
efficiency, achieving superior results with the same amount of data. In out-of-domain evaluations
(Olympiad Bench), it also shows strong scalability, continuing to improve even as other datasets
reach their limits. A limited question set leads to constrained improvements in model performance,
as demonstrated by the results of DART-Math, which relies on a small number of questions and
generates numerous correct answers through rejection sampling. Limited questions face a scalability
ceiling, as the lack of diversity in the question set restricts further performance growth. Our results
further demonstrate that diverse questions support sustained performance growth, emphasizing the
need for broader and more varied question generation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Solvable Ratio0

10

20

30

40

50

60

70

80
Pe

rc
en

ta
ge

 (%
)

37.3

75.4

83.6
Raw
+QFT
+QPO

Difficulty Score0

10

20

30

40

50

Sc
or

e

49.8 50.3
51.7

GSM8K MATH College Math Olympiad Bench0

20

40

60

80 75.9

47.7
38.2

14.6

85.9

61.5

39.1

25.0

86.1

61.6

40.6

25.0

87.9

64.4

42.8

25.3

Base Model: Llama3-8B-Base
Raw
+QFT
+QPO
+Reward Filtering

GSM8K MATH College Math Olympiad Bench0

20

40

60

80

Ac
cu

ra
cy

 (%
)

85.9

69.0

47.5

34.2

88.1

71.1

48.0

36.0

89.2

72.5

49.1

36.2

89.7

73.4

50.0

38.5

Base Model: Qwen2-Math-7B-Base
Raw
+QFT
+QPO
+Reward Filtering

Figure 5: A comparison of the synthetic dataset generated by the raw instruct model, the model after
QFT, the model after QPO, and the final dataset after applying reward filtering. Left: The solvable
ratio and difficulty score of the generated questions. The solvable ratio refers to the proportion of
generated questions that are judged as “solvable”, while the difficulty score represents the average
difficulty rating assigned to each generated question. Right: The instruction tuning effectiveness on
Llama3-8B and Qwen2-Math-7B.

Table 2: We directly compared the question quality of different open-source datasets. To ensure
consistency, all responses were generated using Qwen2-Math-7B-Instruct with the same reward
filtering process.

Questions Source Response Synthesis Model GSM8K MATH College
Math

Olympiad
Bench Average

MetaMath Qwen2-Math-7B-Instruct 84.5 53.8 40.1 22.1 50.1
OrcaMath Qwen2-Math-7B-Instruct 84.2 53.7 40.5 23.7 50.5
NuminaMath Qwen2-Math-7B-Instruct 86.0 65.9 46.1 30.2 57.1
ScaleQuest Qwen2-Math-7B-Instruct 89.5 66.6 47.7 29.9 58.4

3.3 ABLATION STUDY

Ablation on each sub-method To validate the effectiveness of each of our sub-methods, including
QFT, QPO, and reward filtering, we conducted an ablation study. We evaluated the quality of the
questions generated by the models across three dimensions: solvability, difficulty, and performance
in instruction tuning. To assess the model’s solvability and difficulty, we used GPT-4o-mini as the
evaluation model, with the prompts provided in the Figure 12 and 13. For difficulty evaluation, we
calculated the dataset’s average difficulty score based on ratings for each question: “very easy” is
rated as 20 points, “easy” as 40 points, “medium” as 60 points, “hard” as 80 points, and “very hard”
as 100 points.

The results are shown in Figure 5. The “raw model” refers to using the instruct model to directly
generate instructions and responses, as done in Xu et al. (2024). To ensure fairness, we also gener-
ated 1M question-response pairs using their method based on Qwen2-Math-7B-Instruct, which were
used to train Llama3-8B. After applying QFT and QPO, the model’s performance improved across
all three evaluation dimensions, demonstrating the effectiveness of our approach. Furthermore, by
filtering for solvable questions and applying reward filtering to the responses, the quality of our
dataset increased, resulting in significant improvements across all four evaluation benchmarks.

Question matters for data synthesis To directly compare the question quality of our constructed
data with other open-source datasets, we used the same model, Qwen2-Math-7B-Instruct, to gener-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The performance of Mistral-7B-v0.1 fine-tuned on ScaleQuest-DSMath, ScaleQuest-
Qwen2, and a mix of both. In this setup, the instructions for ScaleQuest-DSMath and ScaleQuest-
Qwen2-Math were generated by DSMath-QGen and Qwen2-Math-QGen, respectively. We fixed the
training data size at 400K and found that the mixed data resulted in the greatest improvement.

Synthetic Dataset # Samples GSM8K MATH College
Math

Olympiad
Bench Average

ScaleQuest-DSMath 400K 87.6 52.2 39.8 19.4 49.8
ScaleQuest-Qwen2-Math 400K 86.8 56.1 39.6 18.7 50.3

Mixed 400K 87.8 58.0 40.1 22.2 52.0

Table 4: Cost analysis of the entire data synthesis process. We also estimated the cost of generating
the same number of tokens using proprietary models GPT-4 and GPT-4o for comparison.

Phase Type # Samples GPU hours Cost ($)

QFT Training DSMath-QFT Train 15K 2.0 2.6
Training Qwen2-Math-QFT Train 15K 1.9 2.5

QPO
Generate Questions Infer 10K×2 0.4 0.5
Construct Preference Data API 10K×2 - 6.2
QPO Training Train 10K×2 6.6 8.5

Data Synthesis

Question Generation Infer 2M 38.4 49.5
solvability & difficulty check Infer 2M 110.6 142.7
Response Generation Infer 1M×5 251.0 323.8
Reward Scoring Infer 1M×5 112.0 144.5

Total 1M 522.9 680.8

GPT-4 cost (generating the same number of tokens) - - 24,939.5
GPT-4o cost (generating the same number of tokens) - - 6,115.9

ate responses and fine-tuned DeepSeekMath-7B based on the synthetic datasets. As shown in Ta-
ble 2, using the same response generation method, our model outperformed other synthetic datasets
like MetaMath and OrcaMath, highlighting the high quality of our questions. NuminaMath also
demonstrated competitive performance, largely due to the fact that many of its questions are drawn
from real-world scenarios. This also highlights that question quality is crucial for synthetic data.

Multiple question generators enhance data diversity We use two models as question generators:
DSMath-QGen and Qwen2-Math-QGen, which are based on DeepSeekMath (Shao et al., 2024) and
Qwen2-Math (Yang et al., 2024a), respectively. To explore the impact of using multiple question
generators, we compared the effects of using data synthesized by a single generator versus a mix
of data from both. We fixed the total dataset size at 400K and used it to fine-tune Mistral-7B. As
shown in Table 3, we found that the mixed data outperformed the data generated by either single
generator. A possible explanation for this improvement is the increased data diversity. In fact, we
observed that DSMath-QGen tends to generate simpler, more real-world-oriented questions, while
Qwen2-Math-QGen produces more challenging, theory-driven ones. From this, we recognize the
potential of using multiple question generators, and we plan to incorporate more question generators
as part of our future work.

3.4 COST ANALYSIS

The data synthesis process was conducted on a server with 8 A100-40G-PCIe GPUs. We summarize
our overall costs in Table 4. Generating 1 million data samples required only 522.9 GPU hours (ap-
proximately 2.7 days on an 8-GPU server), with an estimated cost of $680.8 for cloud server rental.2

2https://lambdalabs.com/service/gpu-cloud

9

https://lambdalabs.com/service/gpu-cloud

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

This is only about 10% of the cost of generating the same data using GPT-4o. This demonstrates
that our data generation method is significantly more cost-effective.

4 RELATED WORK

4.1 MATHEMATICAL REASONING

Solving math problems is regarded as a key measure of evaluating the reasoning ability of LLMs.
Recent advancements in mathematical reasoning for LLMs, including models like OpenAI o1,
Claude-3.5, Gemini (Reid et al., 2024), DeepSeekMath (Shao et al., 2024), InternLM2-Math (Cai
et al., 2024), and Qwen2.5-Math (Yang et al., 2024b), have spurred the development of various
approaches to improve reasoning capabilities of LLMs on math-related tasks. To strengthen the
math reasoning capabilities of LLMs, researchers have focused on areas such as prompting tech-
niques (Chia et al., 2023; Chen et al., 2023; Zhang et al., 2023), data construction for pretrain-
ing (Lewkowycz et al., 2022; Azerbayev et al., 2023; Zhou et al., 2024; Shao et al., 2024) and
instruction tuning (Luo et al., 2023; Yue et al., 2023), tool-integrated reasoning(Chen et al., 2022;
Gao et al., 2023; Gou et al., 2023; Wang et al., 2023; Yue et al., 2024; Yin et al., 2024; Zhang et al.,
2024), and preference tuning (Ma et al., 2023; Luong et al., 2024; Shao et al., 2024; Lai et al., 2024).
Our work primarily focuses on math data synthesis for instruction tuning.

4.2 DATA SYNTHESIS FOR MATH INSTRUCTION TUNING

High-quality reasoning data, particularly well-crafted questions, is in short supply. Prior efforts
have mostly started with a small set of human-annotated seed instructions and expanded them
through few-shot prompting. We categorize them into two types: question-driven augmentation and
knowledge-driven augmentation. Previous works focus on enhancing seed questions by introducing
additional constraints or numerical changes to increase the reasoning steps required. For instance,
WizardMath (Luo et al., 2023) uses a series of operations to increase the complexity of questions
and answers with GPT-3.5. MetaMath (Yu et al., 2023a) enhances the questions in GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021) by rewriting them in various ways, such as through
semantic rephrasing, self-verification, and backward reasoning. Xwin-Math (Li et al., 2024a) and
MMIQC (Liu & Yao, 2024) further explore the scalability of the synthetic data. However, these
methods face a diversity challenge, as few-shot prompting often results in new instructions that are
too similar to the original seed questions (Li et al., 2024b). To increase diversity, recent works
have focused on knowledge-driven data synthesis, where they summarize world knowledge from
the seed questions and use it to generate synthetic datasets (Didolkar et al., 2024; Shah et al., 2024).
MathScale (Tang et al., 2024) extracts math concepts from seed questions and then generate math
reasoning data. KPMath (Huang et al., 2024a) begins by extracting topics and key points from seed
problems using a labeling model, and sample multiple topics and key points for instruction synthe-
sis. There are other methods for enhancing dataset quality as well. DART-Math (Tong et al., 2024)
focuses on enhancing the quality of responses by using rejection sampling to generate multiple cor-
rect answers for each query from GSM8K and MATH. In contrast, Numina-Math (Li et al., 2024c)
improves its dataset by collecting more real-world and synthetic data, then reformatting (Fan et al.,
2024) the responses using GPT-4o. This high-quality data can be integrated with our constructed
dataset, resulting in an improved data mix for more effective instruction tuning.

5 CONCLUSION

In this work, we propose ScaleQuest, a novel data synthesis framework that unlocks the ability of
open-source smaller models to independently generate large-scale, high-quality reasoning data from
scratch, at a low cost. By training the problem-solving models on a small subset of questions, we
effectively activate their question-generation capabilities. We also introduce a response enhance-
ment method. With these techniques, we successfully developed a fully synthetic math reasoning
dataset consisting of 1 million question-answer pairs. Using this dataset, we fine-tuned the model
and achieved remarkable improvements, with gains ranging from 29.2% to 46.4% compared to the
base model. The fine-tuned 7B model, Qwen2-Math-7B-ScaleQuest, outperforms all competitors in
the 7B-70B range and even surpasses proprietary models like GPT-4-Turbo and Claude-3.5-Sonnet.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.10631, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297,
2024.

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu
Chen. Skills-in-context prompting: Unlocking compositionality in large language models. arXiv
preprint arXiv:2308.00304, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Yew Ken Chia, Guizhen Chen, Luu Anh Tuan, Soujanya Poria, and Lidong Bing. Contrastive chain-
of-thought prompting. arXiv preprint arXiv:2311.09277, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive capabilities
of llms: An exploration in mathematical problem solving. arXiv preprint arXiv:2405.12205,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Run-Ze Fan, Xuefeng Li, Haoyang Zou, Junlong Li, Shwai He, Ethan Chern, Jiewen Hu, and Pengfei
Liu. Reformatted alignment. arXiv preprint arXiv:2402.12219, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen,
et al. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv preprint
arXiv:2309.17452, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen.
Key-point-driven data synthesis with its enhancement on mathematical reasoning. arXiv preprint
arXiv:2403.02333, 2024a.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof
data. arXiv preprint arXiv:2402.08957, 2024b.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Mario Michael Krell, Matej Kosec, Sergio P Perez, and Andrew Fitzgibbon. Efficient sequence
packing without cross-contamination: Accelerating large language models without impacting per-
formance. arXiv preprint arXiv:2107.02027, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024a.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data
(almost) from scratch: Generalized instruction tuning for language models. arXiv preprint
arXiv:2402.13064, 2024b.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
2024c.

Zhenwen Liang, Dian Yu, Wenhao Yu, Wenlin Yao, Zhihan Zhang, Xiangliang Zhang, and Dong
Yu. Mathchat: Benchmarking mathematical reasoning and instruction following in multi-turn
interactions. arXiv preprint arXiv:2405.19444, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haoxiong Liu and Andrew Chi-Chih Yao. Augmenting math word problems via iterative question
composing. arXiv preprint arXiv:2401.09003, 2024.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhanc-
ing mathematical reasoning of llms. arXiv preprint arXiv:2402.16352, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
soning with reinforced fine-tuning. arXiv preprint arXiv:2401.08967, 2024.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed frame-
work for emerging {AI} applications. In 13th USENIX symposium on operating systems design
and implementation (OSDI 18), pp. 561–577, 2018.

Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang Nejdl, Maria-Esther
Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Emmanouil Krasanakis, et al.
Bias in data-driven artificial intelligence systems—an introductory survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 10(3):e1356, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Nan Rosemary Ke, Michael Mozer, Yoshua
Bengio, Sanjeev Arora, and Anirudh Goyal. Ai-assisted generation of difficult math questions.
arXiv preprint arXiv:2407.21009, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint arXiv:2403.02884, 2024.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. arXiv preprint arXiv:2407.13690, 2024.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. arXiv preprint arXiv:2406.08464, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. Mumath-code: Combin-
ing tool-use large language models with multi-perspective data augmentation for mathematical
reasoning. arXiv preprint arXiv:2405.07551, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023a.

Weichen Yu, Tianyu Pang, Qian Liu, Chao Du, Bingyi Kang, Yan Huang, Min Lin, and Shuicheng
Yan. Bag of tricks for training data extraction from language models. In International Conference
on Machine Learning, pp. 40306–40320. PMLR, 2023b.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang Lou, and Weizhu Chen. Automatic instruction
evolving for large language models. arXiv preprint arXiv:2406.00770, 2024.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Evalu-
ating and improving tool-augmented computation-intensive math reasoning. Advances in Neural
Information Processing Systems, 36, 2024.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
1m chatgpt interaction logs in the wild. arXiv preprint arXiv:2405.01470, 2024.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng Chen, Wayne Xin Zhao, Jing Sha, Zhichao
Sheng, Shijin Wang, and Ji-Rong Wen. Jiuzhang3. 0: Efficiently improving mathematical reason-
ing by training small data synthesis models. arXiv preprint arXiv:2405.14365, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL DATA STATISTICS

Filtering process The entire data generation process is illustrated in Figure 6. After using the two
question generators to produce 2 million questions from scratch, we performed a filtering process,
including language filtering, solvability checks, and difficulty sampling. These steps filtered out
20.1%, 19.4%, and 9.2% of the samples, respectively, resulting in a final question set of 1 million
questions. In the subsequent response generation process, we filtered out responses without answers
by checking for key phrases such as “The answer is” or “\boxed{}”. This step eliminated a negli-
gible portion of the samples, as most of the filtered questions were solvable and did not pose any
confusion for the response generation model.

 Problem Designer Solution Generation

2M
 P

ro
bl

em
s

Language
Filtering

Difficulty
Sampling

1M
 P

ro
bl

em
s

Solvability
Filtering

Sampling
5 solutions

Flatten &
Reward
Filtering

20.1%

1M
 P

ro
bl

em
-s

ol
ut

io
n

pa
ir
s

x 5

19.4%

9.2%

 Reward Scoring

Figure 6: Overview of our filtering process.

Dataset Coverage We analyze the dataset coverage through two aspects: (1) Problem Topic Cov-
erage, such as algebra and geometry. Following Huang et al. (2024a), we use GPT-4o to categorize
the topics of the given questions, with prompt illustrated in Figure 14. Figure 7 presents the results.
We found that the topics covered the major areas of mathematics, such as arithmetic, algebra, geom-
etry, and others. (2) Embedding space analysis. Following Zhao et al. (2024) and Xu et al. (2024),
we first compute the input embeddings of the questions and then project them into a two-dimensional
space using t-SNE (Van der Maaten & Hinton, 2008). We included only real-world datasets, such as
GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), and NuminaMath (Li et al., 2024c)
(which contains a small portion of synthetic questions). As shown in Figure 8, our synthetic data
closely resembles the real-world questions.

Arithmetic
31.1%

Algebra
25.1%

Geometry
15.2%

Others
10.6%

N
um

ber Theory

7.33%

Com
binatorics

4.71%

Probability
3.57%

Trigonometry
2.35%

Loading [MathJax]/extensions/MathMenu.js

Figure 7: Topic distribution of our
generated dataset.

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

GSM8K MATH NuminaMath Ours

Figure 8: t-SNE plot of our dataset, with GSM8K,
MATH, and NuminaMath.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Data Leakage Analysis We conducted an n-gram similarity analysis between the generated ques-
tions and all test sets from both our dataset and other baseline datasets. Based on prior empirical
analysis (Brown, 2020; Wei et al., 2021), we set n=13 to prevent spurious collisions and calcu-
lated how much the test sets overlap with training data to assess data contamination. Table 5 shows
the clean ratio of our dataset and other baseline datasets. The results demonstrate that our dataset
achieves a relatively high level of data cleanliness compared to other datasets, suggesting that our
method generates novel questions instead of memorizing existing ones.

Table 5: Overlap statistics for the datasets used. We report the clean ratio of the test set, representing
the percentage of test samples that have no matching n-grams with samples in the training set.

Dataset GSM8K MATH College Math Olympiad Bench Average

MetaMath 99.8 92.2 100 99.7 97.9
NuminaMath 99.8 89.8 99.9 86.8 94.1
DART-Math 99.8 91.5 100.0 99.6 97.7
MMIQC 99.8 88.0 98.9 97.9 96.2

ScaleQuest (Ours) 99.9 92.8 99.8 97.2 97.4

Safety Analysis We used Llama3-8B-Guard (Inan et al., 2023) as a discriminator model to detect
any unsafe elements in the data. After sampling 10K instances from the 1 million samples, we found
that only 0.1% were flagged as unsafe.

Generated Examples We sampled several generated examples from our datasets, as shown in
Figure 17, 18 and 19. The generated math problems are of high quality, driving effective learning.

Table 6: Comparison between our constructed dataset and previous datasets.

Dataset Size Synthesis Model Public

WizardMath (Luo et al., 2023) 96K GPT-4 ✗
MetaMath (Yu et al., 2023a) 395K GPT-3.5-Turbo ✓
MMIQC (Liu & Yao, 2024) 2294K GPT-4 & GPT-3.5-Turbo & Human ✓
Orca-Math (Mitra et al., 2024) 200K GPT-4-Turbo ✓
Xwin-Math (Li et al., 2024a) 1440K GPT-4-Turbo ✗
KPMath-Plus (Huang et al., 2024a) 1576K GPT-4 ✗
MathsScale (Tang et al., 2024) 2021K GPT-3.5 & Human ✗
DART-Math (Tong et al., 2024) 585K DeepSeekMath-7B-RL ✓
Numina-Math (Li et al., 2024c) 860K GPT-4 & GPT-4o ✓

ScaleQuest 1000K DeepSeekMath-7B-RL
✓Qwen2-Math-7B-Instruct

B DATA SYNTHESIS FOR CODE REASONING TASK

We also extend our ScaleQuest method to the Code Reasoning Task as a simple validation. We made
the following modifications to adapt to the code reasoning task:

Settings We choose DeepSeek-Coder-7B-Instruct (Guo et al., 2024) and Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024) as two problem-solving models to perform question fine-tuning on 20K
questions randomly sampled from CodeFeedBack (Zheng et al., 2024). For Question Preference
Optimization, we also focused on solvability and difficulty, making slight modifications to the
prompts based on the code reasoning task. Our evaluation covered HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), and BigCodeBench (Zhuo et al., 2024), using the same evaluation script
as Qwen2.5-Coder. We report pass@1 results using greedy search.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The results are presented in Table 7. Compared to the widely used refined version of CodeFeedback,
namely CodeFeedback-Filtered, our generated data outperforms it, with an average improvement of
5.9 across the three baselines. Additionally, we enhanced the Response portion of CodeFeedback-
Filtered using Qwen2.5-Coder-7B-Instruct, and the results indicate that our generated questions are
of higher quality. This further demonstrates the effectiveness of the ScaleQuest method.

Table 7: Results of ScaleQuest in Code Reasoning Task. All results are based on Qwen2.5-Coder-
7B-Base. CFB refers to the CodeFeedBack-Filtered Dataset. we augmented the responses for the
problems in CodeFeedback-Filtered using Qwen2.5-Coder-7B-Instruct with reward filtering, creat-
ing a new dataset referred to as CFB-Aug.

Model # Samples (K) HumanEval MBPP BigCodeBench Average

Qwen2.5-Coder-CFB 156 79.3 77.2 35.6 64.0
Qwen2.5-Coder-CFB-Aug 156 84.1 84.7 39.0 69.3
Qwen2.5-Coder-ScaleQuest 156 86.6 83.1 40.0 69.9

C MORE COMPARISON RESULTS

Additional Results on Out-of-Domain (OOD) Benchmarks In addition to College Math and
Olympiad Bench, we included two additional benchmarks: GSM-Hard (Gao et al., 2023) and Math-
Chat (Liang et al., 2024). GSM-Hard is constructed by modifying the questions in GSM8K, replac-
ing the numbers with larger, less common ones. From MathChat, we selected two problem-solving
tasks: follow-up QA and error correction. The results are summarized in Table 8. In more fine-
grained OOD evaluations, our model continues to perform on par with Qwen2-Math-7B-Ins, fur-
ther demonstrating our ScaleQuest Model’s generalization capability and highlighting the generated
data’s robustness.

Table 8: The comparison between Qwen2-Math-7B-Ins and the ScaleQuest Model on GSM-Hard
and MathChat. We choose Follow-up QA and Error Correction from MathChat for evaluation in
problem-solving. R1, R2, and R3 represent different rounds in Follow-up QA.

Model GSM-Hard Follow-up QA Error Correction AverageR1 R2 R3

Qwen2-Math-7B-Instruct 68.3 89.5 62.4 53.5 89.9 72.7
Qwen2-Math-7B-ScaleQuest 66.3 89.7 61.7 53.5 91.1 72.5

Comparison Under Equal Training Data Volume In the right panel of Figure 1, we plotted the
scaling trends of model performance with increasing data volume, showcasing the superiority of
the ScaleQuest method when using the same amount of data. To further ensure a fair comparison,
we randomly sampled the same number of training examples from open-source datasets for train-
ing. Specifically, we sampled 400K examples from MetaMath, DART-Math, NuminaMath, and our
dataset (for MetaMath, which contains 395K examples in total, all samples were used). The re-
sults are presented in Table 9. We observe that with the same amount of training data, our dataset
demonstrates significantly higher instruction tuning effectiveness compared to other datasets.

Insights behind model selection In our works, we use many models, e.g., DSMath-7B-RL,
Qwen2-Math-7B-Ins, GPT-4o-mini, and DSMath-7B-Base, which may cause confusion for model
selection. In response, we also supplemented our approach with a simpler setup. We used Qwen2-
Math-7B-Ins for training question generators, constructing optimization data for QPO, and per-
forming solvability & difficulty filtering, as well as for response generation. For reward filtering,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Results on four mathematical reasoning benchmarks. All results are based on Qwen2-
Math-7B-Base. ScaleQuest-Simple is a simplified version that only utilizes Qwen2-Math-7B-Ins
for QFT, QPO, and question filtering, and InternLM-7B-Reward for reward filtering.

Model # Samples (K) GSM8K MATH College
Math

Olympiad
Bench Average

Qwen2-Math-7B-MetaMath 395 84.3 48.6 40.5 15.6 47.3
Qwen2-Math-7B-DART-Math 400 88.6 58.2 45.2 22.8 53.7
Qwen2-Math-7B-NuminaMath 400 82.0 65.8 44.9 29.2 55.5

Qwen2-Math-7B-ScaleQuest 400 90.6 71.6 50.2 36.2 62.1
Qwen2-Math-7B-ScaleQuest-Simple 400 89.4 69.9 48.8 33.6 60.4

InternLM-7B-Reward remained unchanged. The results, as shown in Figure 9 (ScaleQuest-Simple
result), indicate that our approach continues to demonstrate superior performance compared to exist-
ing datasets. Additionally, we summarize these insights on model selection for domain adaptation:

• Selection of base model for training question generator: The self-synthesis generation
paradigm heavily relies on the inherent knowledge of the problem-solving model itself (Xu
et al., 2024). Therefore, a domain-specific model is essential. For example, Qwen2-Math-
Ins is suitable for mathematical reasoning, while Qwen2.5-Coder-Ins fits well for code
reasoning. Furthermore, using multiple question generators often leads to more diverse
and higher-quality questions (as discussed in section 3.3).

• Selection of model for constructing optimization data: Well-aligned, general-purpose mod-
els, such as Llama3.1-70B and GPT-4o-mini, tend to perform better than domain-specific
models, as illustrated in Figure 4.

• Selection of Response Generation Model & Reward Model: These can be selected based
on their performance on the corresponding mathematical tasks.

We believe that the methodology and the experience in selecting models are always more critical than
the chosen models themselves. With the continuous advancements in the open-source community,
we are confident that stronger models will undoubtedly produce even better datasets when applying
our approach.

More ablation Results of each submethod In Figure 5, we discussed the effectiveness of each
submethod, including Question Fine-Tuning (QFT), Question Preference Optimization (QPO), and
Reward Filtering (RF), in a stepwise manner. To further refine this ablation study, we examined
various combinations of these submethods. We excluded the combination of w/o QFT and w/ QPO,
as QPO is meaningless without QFT, which is essential for question generation. The results are
illustrated in Table 10. From the results, we can more precisely observe the contributions of each
submethod to overall performance improvements. We found that QFT and QPO contribute signif-
icantly to the improvement of SFT performance, while the impact of QPO seems less pronounced.
We would like to clarify that the limited improvements from QPO are due to two main reasons:
(1) QPO primarily optimizes the solvability of questions, and its influence on response quality is
indirect. (2) Though the impact of QPO in SFT may be minimal, it significantly enhances the data
generation efficiency. Specifically, QPO improves the solvability of generated questions from 75.4%
to 83.6%, a meaningful enhancement that boosts the efficiency of data utilization. While the effect
may appear minimal due to subsequent solvability filtering, our detailed analysis shows that 28.8%
of unsolvable questions were filtered out in the baseline setting, whereas after QPO, only 19.4%
were deemed unsolvable. This represents a 9.4% reduction in computational overhead.

Human Evaluation Results We conducted a human evaluation of the generated data, focusing on
three aspects: clarity, reasonableness, and real-world relevance. For reference, we also included two
high-quality, human-curated datasets, GSM8K and MATH. A total of 40 examples were sampled
from each dataset and evaluated based on clarity, coherence, and real-world relevance, with scores

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Results of various combinations of these submethods on MATH. All results are based on
Llama3-8B.

QFT QPO RF GSM8K MATH College Math Olympiad Bench Average

✗ ✗ ✗ 74.2 44.5 36.9 13.0 42.2
✗ ✗ ✓ 75.9 47.7 38.2 14.6 44.1
✓ ✗ ✗ 85.9 61.5 39.1 25.0 52.9
✓ ✓ ✗ 86.1 61.6 40.6 25.0 53.3
✓ ✗ ✓ 88.0 63.4 41.9 25.4 54.7
✓ ✓ ✓ 87.9 64.4 42.8 25.3 55.1

ranging from 1 to 5. The results are presented in Table 11. In terms of clarity and reasonableness,
our synthetic data surpasses NuminaMath but still falls short of the high-quality, real-world datasets
like the training sets of GSM8K and MATH. Regarding real-world relevance, GSM8K leans toward
practical, real-life scenarios, while MATH focuses more on theoretical mathematical derivations.
Our generated data can be seen as a balance between the two.

Table 11: Human Evaluation Results.

Dataset clarity reasonableness real-world relevance

GSM8K 4.4 4.5 3.9
MATH 4.1 4.3 2.4
NuminaMath 3.8 4.0 2.4

ScaleQuest 3.9 4.0 2.8

Effect of Training Data Volume on QPO QPO is designed to enhance the solvability and diffi-
culty of the question generator. We investigate the impact of training data volume by using GPT-4o-
mini as the optimization model. The training data volume was controlled at 5K, 10K, 15K, 20K, and
40K, with Qwen2-Math-7B-QFT serving as the base model. We evaluated the performance of the
trained question generator in terms of solvability and difficulty. The results are shown in Figure 9.
As the amount of training data increases, both the solvable rate and difficulty of the questions gen-
erated by the question generator improve, gradually converging around 20K training examples. We
believe that maintaining the training data at approximately 10K represents a more suitable balance
between training cost and model performance.

0 5 10 15 20 40
76

78

80

82

84

So
lv

ab
le

 R
at

io
 (%

)

0 5 10 15 20 40

50.0

50.5

51.0

Di
ffi

cu
lty

 S
co

re
 (%

)

Figure 9: Performance of QPO in different training data volume. The evaluation covers the solvable
ratio and difficulty score, following the same evaluation procedure as in Figure 5.

Additional Results Based on Different Base Models We have supplemented Table 2 with the
results for the other three base models, as shown in Table 12. Under the same response generation

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Additional results of Table 2 on the other base models. All responses were generated
using Qwen2-Math-7B-Instruct with the same reward filtering process. For baseline datasets, “-
Aug” indicates that the responses have been enhanced.

Model GSM8K MATH College
Math

Olympiad
Bench Average

Mistral-7B-MetaMath-Aug 77.0 34.1 18.6 8.6 34.6
Mistral-7B-OrcaMath-Aug 84.4 31.6 20.9 8.2 36.3
Mistral-7B-NumiMath-Aug 79.5 62.8 40.4 30.4 53.3
Mistral-7B-ScaleQuest 88.5 62.9 43.5 28.8 55.9

Llama3-8B-MetaMath-Aug 77.6 33.1 20.6 9.2 35.1
Llama3-8B-OrcaMath-Aug 83.2 32.6 19.4 8.6 36.0
Llama3-8B-NumiMath-Aug 79.1 62.9 39.3 25.4 51.7
Llama3-8B-ScaleQuest 87.9 64.4 42.8 25.3 55.1

Qwen2-Math-7B-MetaMath-Aug 88.5 68.5 47.1 33.0 59.3
Qwen2-Math-7B-OrcaMath-Aug 89.3 68.3 46.6 31.9 59.0
Qwen2-Math-7B-NumiMath-Aug 89.5 72.6 49.5 36.3 62.0
Qwen2-Math-7B-ScaleQuest 89.7 73.4 50.0 38.5 62.9

process, our approach consistently outperforms existing datasets across all four base models, further
demonstrating the superiority of our method.

D PROMPTS

Prompts for Problem Solvability Optimization

Please act as a professional math teacher.
Your goal is to create high quality math word problems to help students learn math.
You will be given a math question. Please optimize the Given Question and follow the instructions.
To achieve the goal, please follow the steps:
Please check that the given question is a math question and write detailed solution to the Given Question.
Based on the problem-solving process, double check the question is solvable.
If you feel that the given question is not a meaningful math question, rewrite one that makes sense to
you. Otherwise, modify the Given question according to your checking comment to ensure it is solvable
and of high quality.
If the question can be solved with just a few simple thinking processes, you can rewrite it to explicitly
request multiple-step reasoning.

You have five principles to do this:
Ensure the optimized question only asks for one thing, be reasonable and solvable, be based on the Given
Question (if possible), and can be answered with only a number (float or integer). For example, DO NOT
ask, ‘what is the amount of A, B and C?’.
Ensure the optimized question is in line with common sense of life. For example, the amount someone
has or pays must be a positive number, and the number of people must be an integer.
Ensure your student can answer the optimized question without the given question. If you want to
use some numbers, conditions or background in the given question, please restate them to ensure no
information is omitted in your optimized question.
Please DO NOT include solution in your question.

Given Question: problem
Your output should be in the following format:
CREATED QUESTION: [your created question]
VERIFICATION AND MODIFICATION: [solve the question step-by-step and modify it to follow all
principles]
FINAL QUESTION: [your final created question]

Figure 10: The prompts used to optimize the solvability of questions for QPO Training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompts for Problem Difficulty Optimization

You are an Math Problem Rewriter that rewrites the given #Problem# into a more complex version.
Please follow the steps below to rewrite the given ”#Problem#” into a more complex version.

Step 1: Please read the ”#Problem#” carefully and list all the possible methods to make this prob-
lem more complex (to make it a bit harder for well-known AI assistants such as ChatGPT and GPT4 to
handle). Note that the problem itself might be erroneous, and you need to first correct the errors within it.
Step 2: Please create a comprehensive plan based on the #Methods List# generated in Step 1 to make the
#Problem# more complex. The plan should include several methods from the #Methods List#.
Step 3: Please execute the plan step by step and provide the #Rewritten Problem#. #Rewritten Problem#
can only add 10 to 20 words into the ”#Problem#”.
Step 4: Please carefully review the #Rewritten Problem# and identify any unreasonable parts. Ensure that
the #Rewritten Problem# is only a more complex version of the #Problem#. Just provide the #Finally
Rewritten Problem# without any explanation and step-by-step reasoning guidance.

Please reply strictly in the following format:
Step 1 #Methods List#:
Step 2 #Plan#:
Step 3 #Rewritten Problem#:
Step 4 #Finally Rewritten Problem#:

#Problem#: Problem

Figure 11: The prompts used to optimize the difficulty of questions for QPO Training.

Prompts for Problem Solvability Check

Please act as a professional math teacher.
Your goal is to determine if the given problem is a valuable math problem. You need to consider two
aspects:
1. The given problem is a math problem.
2. The given math problem can be solved based on the conditions provided in the problem (You can first
try to solve it and then judge its solvability).

Please reason step by step and conclude with either ‘Yes’ or ‘No’.

Given Problem: Problem

Figure 12: The prompts used to check the solvability of questions.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompts for Difficulty Classification

Instruction

You first need to identify the given user intent and then label the difficulty level of the user query
based on the content of the user query.

User Query
‘‘‘
Input
‘‘‘

Output Format
Given the user query, in your output, you first need to identify the user intent and the knowledge needed to
solve the task in the user query.
Then, rate the difficulty level of the user query as very easy, easy, medium, hard, or very hard.

Now, please output the user intent and difficulty level below in a json format by filling in the
placeholders in []:
‘‘‘
{{
“intent”: “The user wants to [....]”,
“knowledge”: “To solve this problem, the models need to know [....]”,
“difficulty”: “[very easy/easy/medium/hard/very hard]”
}}
‘‘‘

Figure 13: The prompts used to judge the difficulty level of questions.

Prompts for Topic Classification

As a mathematics education specialist, please analyze the topics of the provided question and its answer.
Specific requirements are as follows:
1. You should identify and categorize the main mathematical topics involved in the problem. If knowledge
from non-mathematical fields is used, it is classified into Others - xxx, such as Others - Problem Context.
2. You should put your final answer between <TOPIC> and </TOPIC>.
——
Question: Compute cos 330◦.

Answer: We know that 330◦ = 360◦ − 30◦.
Since cos(360◦ − θ) = cos θ for all angles θ,
we have cos 330◦ = cos 30◦.
Since cos 30◦ =

√
3

2
,

we can conclude that cos 330◦ =

√
3

2
.

Analysis: <TOPIC>Trigonometry - Cosine Function</TOPIC>
——
Question: Question

Answer: Answer

Analysis:

Figure 14: The prompts used for topic classification.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Examples for Solvability Optimization

Problems 1 (Before Optimization):
There are 10 survivors in an emergency room. Each survivor is either a child, a woman, or a man. If there
are 4 men and 3 times as many women as men, how many children are there?
Problems 1 (After Optimization):
There are 10 survivors in an emergency room. Each survivor is either a child, a woman, or a man. If there
are 4 men and an equal number of women as men, how many children are there?

Problems 2 (Before Optimization):
How many sides does a polygon have if it is a regular polygon?
Problems 2 (After Optimization):
How many sides does a regular polygon have if each interior angle is 120 degrees?

Problems 3 (Before Optimization):
Find the sum of the first three terms of this series.
Problems 3 (After Optimization):
Calculate the sum of the first three terms of the arithmetic series where the first term is 5 and the common
difference is 3.

Figure 15: Three examples for solvability optimization by GPT-4o-mini.

Examples for Difficulty Optimization

Problems 1 (Before Optimization):
How many 4-digit positive integers are there?
Problems 1 (After Optimization):
How many 4-digit positive integers can be formed using non-repeating digits where the sum of these digits
must be even, and the integers fall within the range of 1000 to 9999?

Problems 2 (Before Optimization):
The average of 15 numbers is 32. An additional number is then added to the list, and the new average of
the 16 numbers is 34. What number was added to the list?
Problems 2 (After Optimization):
The average of 15 positive integers is 32, but one integer fluctuates to 30 before adding a new number.
After adding this new number, the average of the 16 integers becomes 34. Calculate the added number and
find the standard deviation of all 16 integers, considering their ascending order.

Problems 3 (Before Optimization):
A fair coin is tossed 50 times, what is the probability of getting heads at least 25 times?
Problems 3 (After Optimization):
A fair coin is tossed 50 times; what is the probability of obtaining heads at least 25 times, and can you also
calculate the expected number, variance, and standard deviation of heads while determining the likelihood
that the total number of heads exceeds 30?

Figure 16: Three examples for difficulty optimization by GPT-4o-mini.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

ScaleQuest Example 1

QUESTION:
My orthogonal projection matrix P projects onto the plane with equation

x+ y + z = 0.

Find the matrix P .

SOLUTION:
To find the orthogonal projection matrix P that projects onto the plane with the equation x + y + z = 0,
we can follow these steps:
1. Identify the normal vector to the plane:

The plane x+ y + z = 0 has a normal vector n =

1
1
1

.

2. Express the projection matrix in terms of the normal vector:
The orthogonal projection matrix P onto the plane can be written as:

P = I − nnT

nTn

where I is the 3× 3 identity matrix, n is the normal vector, and nT is the transpose of the normal vector.
3. Calculate nTn:

nTn =
(
1 1 1

)1
1
1

 = 12 + 12 + 12 = 3

4. Calculate nnT :

nnT =

1
1
1

(
1 1 1

)
=

1 1 1
1 1 1
1 1 1

5. Substitute these into the projection matrix formula:

P = I − 1

3

1 1 1
1 1 1
1 1 1

where I is the 3× 3 identity matrix:

I =

1 0 0
0 1 0
0 0 1

6. Perform the matrix subtraction:

P =

1 0 0
0 1 0
0 0 1

− 1

3

1 1 1
1 1 1
1 1 1

P =

 2
3

− 1
3

− 1
3

− 1
3

2
3

− 1
3

− 1
3

− 1
3

2
3

Therefore, the orthogonal projection matrix P is: 2

3
− 1

3
− 1

3

− 1
3

2
3

− 1
3

− 1
3

− 1
3

2
3

Figure 17: An example from our constructed dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

ScaleQuest Example 2

QUESTION:
Suppose a, b are positive real numbers such that a+ b = 1.
(a) minimize 1

a
+ 1

b
;

(b) minimize a2 + b2.

SOLUTION:
To solve these problems, we will use the method of Lagrange multipliers and the AM-HM inequality.
Part (a): Minimize 1

a
+ 1

b
given a+ b = 1

First, we use the method of Lagrange multipliers. Define the function f(a, b) = 1
a
+ 1

b
and the constraint

g(a, b) = a+ b− 1 = 0.
The Lagrangian is:

L(a, b, λ) = 1

a
+

1

b
+ λ(a+ b− 1)

Taking the partial derivatives and setting them to zero, we get:

∂L
∂a

= − 1

a2
+ λ = 0 =⇒ λ =

1

a2

∂L
∂b

= − 1

b2
+ λ = 0 =⇒ λ =

1

b2

∂L
∂λ

= a+ b− 1 = 0

Since λ = 1
a2 and λ = 1

b2
, we have:

1

a2
=

1

b2
=⇒ a2 = b2 =⇒ a = b (since a, b > 0)

Substituting a = b into the constraint a+ b = 1, we get:

a+ a = 1 =⇒ 2a = 1 =⇒ a =
1

2
=⇒ b =

1

2

Now, we calculate 1
a
+ 1

b
:

1

a
+

1

b
=

1
1
2

+
1
1
2

= 2 + 2 = 4

Thus, the minimum value of 1
a
+ 1

b
is 4 .

Part (b): Minimize a2 + b2 given a+ b = 1
We use the identity for the square of a sum:

(a+ b)2 = a2 + b2 + 2ab

Given a+ b = 1, we have:

12 = a2 + b2 + 2ab =⇒ 1 = a2 + b2 + 2ab =⇒ a2 + b2 = 1− 2ab

To minimize a2 + b2, we need to maximize ab. Using the AM-GM inequality:

a+ b

2
≥

√
ab =⇒ 1

2
≥

√
ab =⇒

(
1

2

)2

≥ ab =⇒ 1

4
≥ ab

The maximum value of ab is 1
4

, which occurs when a = b = 1
2

.
Substituting ab = 1

4
into the expression for a2 + b2:

a2 + b2 = 1− 2ab = 1− 2

(
1

4

)
= 1− 1

2
=

1

2

Thus, the minimum value of a2 + b2 is
1

2
.

Figure 18: An example from our constructed dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

ScaleQuest Example 3

QUESTION:
Compute

∞∑
n=1

4n + 5n + 6n

12n
.

SOLUTION:
To compute the sum

∑∞
n=1

4n+5n+6n

12n
, we can split the sum into three separate sums:

∞∑
n=1

4n + 5n + 6n

12n
=

∞∑
n=1

4n

12n
+

∞∑
n=1

5n

12n
+

∞∑
n=1

6n

12n
.

Each of these sums is a geometric series. Let’s evaluate each one separately.
1. For the first sum

∑∞
n=1

4n

12n
:

∞∑
n=1

4n

12n
=

∞∑
n=1

(
4

12

)n

=

∞∑
n=1

(
1

3

)n

.

The sum of an infinite geometric series
∑∞

n=1 ar
n−1 is given by a

1−r
for |r| < 1. Here, a = 1

3
and r = 1

3
,

so:
∞∑

n=1

(
1

3

)n

=
1
3

1− 1
3

=
1
3
2
3

=
1

2
.

2. For the second sum
∑∞

n=1
5n

12n
:

∞∑
n=1

5n

12n
=

∞∑
n=1

(
5

12

)n

.

Here, a = 5
12

and r = 5
12

, so:

∞∑
n=1

(
5

12

)n

=
5
12

1− 5
12

=
5
12
7
12

=
5

7
.

3. For the third sum
∑∞

n=1
6n

12n
:

∞∑
n=1

6n

12n
=

∞∑
n=1

(
6

12

)n

=

∞∑
n=1

(
1

2

)n

.

Here, a = 1
2

and r = 1
2

, so:
∞∑

n=1

(
1

2

)n

=
1
2

1− 1
2

=
1
2
1
2

= 1.

Adding these three results together, we get:
∞∑

n=1

4n + 5n + 6n

12n
=

1

2
+

5

7
+ 1.

To add these fractions, we need a common denominator. The least common multiple of 2, 7, and 1 is 14.
So we convert each fraction:

1

2
=

7

14
,

5

7
=

10

14
, 1 =

14

14
.

Adding these fractions together, we get:

7

14
+

10

14
+

14

14
=

7 + 10 + 14

14
=

31

14
.

Thus, the sum is:
31

14
.

Figure 19: An example from our constructed dataset.

27

	Introduction
	ScaleQuest: Scaling Question Synthesis from Scratch
	Question Generation from Scratch
	Question Fine-Tuning (QFT)
	Question Preference Optimization (QPO)
	Question Filtering
	Response Generation with Reward Filtering

	Experiment
	Experimental Setup
	Main Results
	Ablation study
	Cost Analysis

	Related Work
	Mathematical Reasoning
	Data Synthesis for Math Instruction Tuning

	Conclusion
	Additional Data Statistics
	Data Synthesis for Code Reasoning Task
	More Comparison Results
	Prompts

