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Abstract

Biological sensorimotor systems process information through spatially organized,
functionally specialized modules. A canonical example is the rodent barrel cortex,
in which each vibrissa (whisker) projects to a dedicated cortical column, forming a
precise somatotopic map. This anatomical organization stands in stark contrast to
the architectures of most artificial neural networks, which are typically monolithic
or rely on expert-isolated mixture-of-experts (MoE) mechanisms. In this work, we
introduce a brain-inspired modular architecture that treats the barrel cortex as a bi-
ologically constrained instantiation of an expert system. Each module (or “expert”)
corresponds to a cortical column composed of multiple neuron subtypes spanning
vertical cortical layers. Sensory signals are routed exclusively to their correspond-
ing columns, with inter-column communication restricted to local neighbors via a
sparse gating mechanism. Despite these anatomical constraints, our model achieves
competitive, state-of-the-art performance on challenging 3D tactile object classifi-
cation benchmarks. Columnar parameter sharing provides inherent regularization,
enabling 97% parameter reduction with improved training stability. Notably, con-
strained localist routing suppresses inter-module activity correlations, mirroring the
barrel cortex’s lateral inhibition for sensory differentiation, while suggesting MoE’s
potential to reduce expert redundancy through collaborative constraints. These
results suggest how cortical principles of localist expert routing and topographic
organization could potentially be translated into machine learning architectures.
Code is available at https://github.com/fun0515/MultiBarrelModel,

1 Introduction

One of the hallmarks of biological intelligence is its use of modular, topographically structured
systems to process sensorimotor information [22} 146/ 21]]. In rodents, the barrel cortex [38} 43]]
epitomizes this principle: each whisker maps one-to-one onto a dedicated cortical column, enabling
localized, efficient processing of tactile input (Fig. [TJA). This precise sensor-to-column mapping sup-
ports robust spatial discrimination and energy-efficient computation. Extensive neuroscientific studies
have characterized both the vertical microcircuitry [12}137, 149, [15] within each column—organized
across layer 2 (L2) through L6—and the horizontal connections that support lateral integration
between neighboring columns [33} 113} 124]. However, the implications of this biologically modular
and anatomically constrained design for artificial intelligence remain underexplored.
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Figure 1: Outline of our barrel cortex-constrained localist expert model. (A) Neural pathway of
“whisker-to-barrel” processing in rodent. Top: whisker signals are transmitted via (1) brainstem
neurons and relayed through (2) thalamic neurons to the barrel cortex. Each processing stage
(brainstem, thalamus, and barrel cortex) contains somatotopically organized units corresponding
to individual whiskers, with the barrel cortex exhibiting hierarchical cortical columns (modified
from [38]]). Bottom: microscopic image of the barrel cortex, clearly showing horizontally arranged
columns and vertically stratified layers. (B) Computational architecture of our multi-barrel model.
Each barrel column incorporates 37 synaptic connections across eight neuronal subtypes, derived
from established neuroscience studies, strictly adhering to the one-to-one “whisker-barrel” mapping
by processing only its assigned tactile sensor’s data. Neuronal subtype labels, from layer 2 (L2) to L6,
correspond to their neuroscientifically defined nomenclature (e.g., "SSP" denotes L4 spiny stellate
pyramidal neurons [9, 44]]). Neuronal subtype details in supplementary materials. Adjacent barrels
integrate inter-barrel currents through a dynamic gating network. The model employs temporally
dilated 1D convolutions [[18]] to simulate brainstem and thalamic preprocessing without inter-sensor
leakage, utilizes 2D convolutions to integrate L5/6 neuronal states across barrels mimicking cortical-
subcortical projections, and applies a multilayer perceptron (MLP) for final predictions.

By contrast, contemporary artificial neural networks generally do not impose local specialization.
Architectures such as convolutional neural networks (CNNs) [27,47] and Transformers [S0, |8]] are
predominantly global in their computational flow, lacking explicit modular substructures tied to
specific sensory channels. The recent success of Mixture-of-Experts (MoE) models [[11} 357,30
has revived interest in modular computation in artificial intelligence. These models use a gating
mechanism to activate a sparse subset of sub-networks (“experts”) per input, improving both efficiency
and scalability. Nevertheless, the routing strategy in artificial MoEs fundamentally differs from that
of the brain. Artificial MoEs focus on task allocation—not enforced inter-expert collaboration and
communication. In contrast, the brain utilizes topographic and localist routing, where each expert
(e.g., cortical column) processes only its corresponding sensory signal and communicates primarily
with spatially adjacent modules. This contrast raises a key question: can we construct a MoEs-like
model based on the biologically grounded routing constraints observed in the brain?

In this work, we propose a barrel cortex-inspired modular expert network for sensorimotor learning.
The architecture consists of 39 interacting modules, each corresponding to a tactile sensor (whisker),
faithfully replicating the somatotopic organization of the rodent barrel cortex. Each module processes
its designated sensory stream using an internal structure composed of multiple biologically inspired
neuron subtypes, mirroring cortical L2 through L6 (Fig.[IB). All modules share a common architecture
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Figure 2: Horizontal spread of neural activity in the multi-barrel model. (A) Schematic of vertical
connectivity generalized from published neuroscience studies. Red lines indicate synaptic connections

between distinct neuronal subtypes. (B) Temporal evolution of barrel states (

spikes
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) in the initial

model without inter-barrel currents, where only the central barrel receives sustained current input
from its corresponding sensor. Barrel layout reflects the spatial arrangement of the sensor array. (C)
Same as in (B), but with inter-barrel currents enabled in the model. (D) Experimentally observed
activation spread across barrels in real optogenetic recordings (adapted from [24])).

and parameter set, reflecting the repeated structure observed across cortical columns, and enabling
substantial reductions in parameter count. To enable local integration while preserving spatial
structure, we introduce a topographic gating mechanism: each module exchanges information only
with its immediate neighbors, reproducing the localized lateral connectivity found in the barrel cortex.
This results in sparse, spatially constrained expert activation, in sharp contrast to the global routing
strategies used in classical MoE frameworks. Our key contributions are summarized as follows:

* Biologically constrained modular architecture: We introduce a modular neural network
whose submodules (barrels) replicate the canonical microcircuitry and sensor-mapping of the
rodent barrel cortex. Each module integrates multiple neuron subtypes and strictly processes
signals from its designated sensor, enabling biologically faithful modular computation.

* Localist expert routing: We implement a spatially grounded gating mechanism that enables
communication between adjacent modules only, contrasting with current MoEs that neglect
inter-expert routing. Experimental results demonstrate that localist connection suppress
activity correlations between modules while reducing functional connection distances.

* Empirical validation on tactile tasks: Our biologically inspired model achieves state-
of-the-art performance on challenging 3D tactile classification datasets [17]. The model
reduces parameter usage by 97% through shared columnar weights, while improving training
stability. These results demonstrate the viability of embedding strong biological priors into

scalable machine learning systems.

Our work positions the barrel cortex as a neurobiologically constrained realization of an expert system,
providing a conceptual and empirical bridge between cortical computation and modular artificial
intelligence. By integrating neuroscience-inspired modularity with sparse local interactions, we offer
a new perspective on the design of efficient, interpretable, and high-performing artificial systems. We
argue that principles such as topographic routing, localist specialization, and structural sparsity—Ilong
favored by evolution—can inform the development of next-generation machine learning architectures

with more brain-like sensorimotor intelligence.



2 Related work

Barrel cortex model: Due to its highly specialized structure and unique tactile functions, the
rodent barrel cortex has become a preferred model system for neuroscientists studying sensory
perception. Through techniques such as immunohistochemistry, microscopic imaging, and neuronal
reconstruction, considerable knowledge has been accumulated on its cellular distribution patterns [37}
49, 43| and vertical [45) (12} 132]]/horizontal [38} 124} 114} 3] circuit organization. Based on these
anatomical data, computational neuroscientists have developed local circuit models [2, 23 [26] and
detailed dendritic models [29] to investigate network dynamics. However, these brain simulation
models lack learning capabilities, and few incorporate multi-barrel column architectures. Recently, a
trainable superficial layer model that maintains biological plausibility while demonstrating tactile
processing functions was proposed [60], though it remains limited to single-barrel representation
without incorporating “whisker-barrel” topographic mapping.

Columnar machine learning models: The uniform yet distinctly layered structure of the neocortex,
widely reported in neuroscience, has also drawn attention in machine learning. Several studies [20,
19, 141] have mimicked the columnar organization of the neocortex by designing analogous basic
units that exhibit hierarchical feature abstraction and local-to-global integration. However, their
information pathways are governed by simplistic rules, resulting in limited performance. Recent
columnar models [56, 25] have prioritized hardware-friendly physical implementations to improve
computational efficiency. However, these models overlook the fact that cortical column functionality
is based on complex and diverse neural circuits [22]], and still fall short of matching the performance
of contemporary machine learning systems. Meanwhile, loosely modular architectures like MoE [[11}
71,135, 130] in large-scale models are gaining prominence. A promising future direction lies in the
simulation of the collaborative paradigm of neocortical regions to construct versatile expert systems
capable of multifunctional integration.

3 Methodology

3.1 Biologically constrained columnar modules

To enable scalable yet biologically plausible modular replication, we model barrel columns at the
neural pathway-level. While prior single column models [4, |6, [34] achieved one-to-one biological
fidelity through massive neuron counts (requiring cluster computing), our architecture strategically
incorporates 8 excitatory neuron subtypes and 37 documented projection pathways from barrel cortex
studies [38.,145] 12} [15 132} 140, 28} 159]], including projections from Layer 4 (L4) to L2/3 neurons and
feedback connections from L5/6 to L4 neurons, among others (Fig. [T]B). To enhance scalability, we:
(1) represent inhibitory effects through negative weights rather than explicit interneurons, and (2)
implement each subtype with 32 cells (256 neurons/barrel), a configuration that maintains biological
plausibility while enabling efficient scaling to multiple barrels. Detailed information on the eight
summarized neuronal subtypes is provided in the supplementary materials.

Neuronal dynamics follow an adaptive Leaky Integrate-and-Fire (aLIF) model [55] with background
currents. The membrane potential V' update equation is defined as follows:

VO — 7m0 4 (1— e_%) "Ry, - I — gt=1) . g(t=1)
t t t t t t
IO =10+ 1O + 10 + O, ¢~ A(0,1)

1 2>0
S — g (V(t) - 90”) , O(z) = {0 otherwise
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, where R,, and 7,,, represent the membrane resistance and time constant, respectively. The input cur-
rents I are categorized into four distinct components: I, denotes external input currents, I, represents
intra-barrel synaptic currents, I, 4, corresponds to aggregated inter-barrel currents from neighboring
columns, and e denotes the background noise sampled from a standard normal distribution. When the
membrane potential V' exceeds the firing threshold 6, the neuron emits a spike S. The neuronal firing
threshold undergoes an adaptive elevation through spike-triggered accumulation, governed by the
following dynamics:

o) = Oinit + 5 - 77(t)
__1 __1 (2)
n(t) = ¢ Tadp . n(til) + (1 —e Tudp) . S(til)



Table 1: Comparison across methods on two tactile datasets [[17]. Independent and Shared denote our
model’s 39-barrel configurations with independent and shared parameters, respectively. Single refers
to a single barrel model with equivalent neuron size (39x256).

Method EvTouch-Objects (%) EvTouch-Containers (%)
TactileSGNet [17] 89.44 64.17
Grid-based CNN [17] 88.40 60.17
GCN [17] 85.14 58.83
Method in [52]] 90.28 -
SnnTdlc [57] 91.04 67.33
AM-SGCN [53] 91.32 -
GGT-SNN [54] 92.36 75.00
Single barrel model 88.89 70.00
Independent multi-barrel model 92.36 85.00
Shared multi-barrel model 94.44 86.67

, where 0;,,;; and 7,4, denote the resting firing threshold and adaptation time constant, respectively,
with 3 being a constant parameter set to 1.8. The recurrent current I,. received by a postsynaptic
neuronal population from other upstream populations within the home column can be computed as:

I =3 "W;.S;, W;eR> 3)
JES;
, where S; denote the presynaptic subtype ensemble and the corresponding trainable connection

weights, respectively. The computation processes for I,44 and I, in Eq. [I| are elaborated in the
following two sections.

3.2 Localist inter-barrel routing

Beyond vertical intra-barrel pathways, the barrel cortex employs horizontal inter-barrel connections
for sensory integration. Neuroanatomical evidence indicates that lateral connections follow an
adjacency-priority principle [33) [13], with inter-barrel signaling predominantly originating from
spatially adjacent columns and minimal contributions from distant ones. We implemented this
biologically observed connectivity through K-nearest neighbor (KNN) spatial mapping coupled with
sparse gating mechanisms.

For a 32-neuron subtype in our model, input signals from neighboring barrels follow these governing
equations. First, the most relevant neighboring subtypes indices 7~ are dynamically selected based on
gating weights:

T = TopK(GW . T),T = |K -8 7]

G = MLP,(IM) € RE*8
, where K denotes the number of spatially adjacent barrels (nearest neighbors). 7y represents the

“

fraction of total (K - 8) neuronal subtypes to be routed, giving I' selected subtypes. Iét) and ¢
correspond to external input currents and trainable parameters, respectively. T'opK (-) returns a binary
mask € {0, 1}5® with exactly I" nonzeros. The spatial distance between barrels is computed based
on the sensor coordinates provided in the tactile dataset [17]. K and v were assigned values of 4 and
0.2, respectively.

Then, the final aggregated neighborhood current L(lz)g is computed by applying the selected subtypes

indices from 7 () (mask) to the spiking states S (t), flattening the results to a vector in R'32, and
performing a trainable linear transformation:
I = Wagg - Flatten(T™ @ S{) )

agg

, where W4, € R32X (I"32) denotes the trainable weight matrix mapping the flattened neighborhood

activity vector to the 32 neurons of the target barrel, and S = [s{", s\, ..., sg?xs] € RK8)x32

represents the tensor composed of spiking states from all neuronal subtypes in K neighboring barrels
at timestep .
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Figure 3: Performance comparison of three model variants. (A) Scores from 10 repeated random
training runs for each variant. (B) Loss landscapes of independent-parameter and shared-parameter

models. Perturbations were applied along two orthogonal directions to trained parameters: 9 =

0+ any + B2, where 6 and 6" denote the original and perturbed parameters. o and (3 are perturbation
magnitudes. Top to bottom: results on the EvTouch-Objects and EvTouch-Containers datasets.

Fig. PB-C illustrates the temporal state evolution in our multi-barrel model under optogenetic-like
stimulation [} [T6], achieved through constant current activation of the central sensorimotor barrel.
The results reveal that incorporating inter-barrel current coupling induces propagated activation
from the stimulated barrel to neighboring regions, progressively diffusing across the entire array.
This spatiotemporal propagation pattern aligns with cortical barrel dynamics reported in empirical
optogenetic studies of the “whisker-barrel” somatosensory system [24} 14, 3] .

3.3 Empirical validation on tactile datasets

We aim to both develop a barrel cortex-inspired architecture and validate the “whisker-barrel” system
as a localist expert processor. Below, we describe the public datasets used and our differentiable readin-
readout implementation, which bridges biological computation with machine learning optimization
through effective gradient propagation.

Two tactile datasets similar to whisker systems, EvTouch-Objects and EvTouch-Containers [17], were
employed to benchmark our model against artificial neural networks. These datasets feature temporal
signals recorded from independent NeuTouch sensor arrays [48]] during interactions with diverse 3D
objects, requiring the model to predict object categories based on dynamic tactile inputs. Each data
sample has a shape of [39, 2, T, representing two channel signals recorded from 39 sensors over T
timesteps. Appendix [A.T|provides complete tactile dataset specifications.

We treat each sensor as a rodent whisker (Fig. [TB), where brainstem-thalamic signal preprocessing [42]
[5]] is simulated via 2 one-dimensional dilated convolutional layers [[18]. A linear layer then serves as
the thalamic signal relay. The external current I, received by a neuronal subtype in barrel cortex is
computed as:

IO =Wr. (W ®o(Wa ®XD)), Wy, e RO*32 (6)

, where X and ® denote the input data and dilated convolution operation, respectively. W,.; and W,
represent the first- and second-layer convolution kernels. o is the activation function. The convolution
operates exclusively along the temporal dimension, preventing inter-sensor information leakage. The
output tensor dimension becomes [39, 64, T"], where T" = LWJ + 1 with d, k and s being
the dilation rate, kernel size and stride, respectively.

Given the dominant role of L5/6 neurons in driving subcortical projections within barrel cortex
143]], we read-out the state of our model’s L.5/6 neuronal populations through: (1) spatiotemporal
integration via a two-dimensional convolution layer, followed by (2) final classification prediction
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Figure 4: Ablation analysis of synaptic connectivity on EvTouch-Containers. (A) Model performance
after isolated removal of vertical connections and horizontal inter-barrel currents, ranked by descend-
ing accuracy. (B) Quantitative importance of 37 intra-barrel connections, measured by performance
degradation magnitude. (C) Four highest-impact signaling pathways identified from (B).

through a multilayer perceptron (MLP). The formula is expressed as follows:

§ = Softmax(Wyy - Flatten(Wes © Sps/6)),  Spsje € RT *39%(324) 7

, where O denotes the two-dimensional convolution operation. W3 and W,,;,, represent the convo-
lution kernel and MLP parameters, respectively. Sy 5,6 denotes the spiking states of four neuronal

ensembles (32 neurons each) in L5/6 across 39 barrels over 7" timesteps. The model employs
standard cross-entropy loss, with spiking neuron gradients computed via the Gaussian surrogate
function: N (V®]0(®) | 52), where o is set to 0.5.

Given that our multi-barrel model is extended from a single barrel as introduced in Sec. 3.1} a natural
question arises: whether these barrels share training parameters or maintain their own independent
parameters. Excluding the shared readin and readout pathways, in our 39-barrel configuration, the
parameter count of the column modules with shared parameters is reduced by approximately 97%
compared to those with independent parameters. In practice, their parameter counts are 59,104
and 2,305,056, respectively, a reduction of two orders of magnitude. This significant decrease in
parameters is crucial not only for computational efficiency, but also serves as a form of regularization.
In the experimental section, we investigate the tactile task performance of both model variants.

4 Experimental results

4.1 Implementation details

Our multi-barrel model was trained for 200 epochs on both EvTouch-Objects and EvTouch-Containers
datasets using an AdamW optimizer with 0.1 weight decay. The initial learning rate of
0.0008 decayed by a factor of 0.8 every 10 epochs. The loss function employed solely the standard
cross-entropy criterion. All experiments were conducted on an 80GB NVIDIA A100 GPU.

4.2 Performance comparison with baseline methods

First, we evaluated our multi-barrel model against reported baselines on both EvTouch-Objects and
EvTouch-Containers datasets, achieving state-of-the-art (SOTA) classification accuracy (Tab. |I|)
Our model outperforms the previous best-performing method GGT-SNN [54], achieving accuracy
improvements of 2.1% on EvTouch-Objects and 11.7% on EvTouch-Containers. While prior work
employed graph neural networks to process sensor topology, our biologically constrained
architecture attains comparable performance through simple “whisker-to-barrel” mapping. Notably,
collapsing the columnar organization into a single barrel reduces accuracy by 5.6% (EvTouch-Objects)
and 16.7% (EvTouch-Containers), demonstrating the functional importance of modular architecture.
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Figure 5: Statistic of inter-barrel correlations. (A) Barrel-wise localist routing. Arrows indicate the
most frequently selected source neighbor barrels, as determined by cumulative counts across samples
and timesteps. (B) Neural activity of 39 barrels during a single trial. A sliding window (length = 10,
stride = 2) was applied to compute pairwise activity correlations. The three most strongly correlated
barrel pairs per window were selected as high-correlation pairs. (C) Top-5 most frequent strongly
correlated barrel pairs on EvTouch-Objects dataset. From left to right are models with blocked and
intact horizontal inter-barrel currents. (D) Same as (C), but for EvTouch-Containers dataset. (E)
Statistical metrics between blocked and intact models. From left to right are whole-time mean barrel
correlations, windowed mean correlations, mean distances of strongly correlated barrel pairs, and
mean distances of Top-5 pairs.

Furthermore, we compared two model variants from Sec. [3.3} parameter-shared (39 barrels) versus
independent-parameter configurations. The shared-parameter variant showed superior performance
(2.1% higher on EvTouch-Objects, 1.7% on Containers) with greater training stability, whereas
independent-parameter model occasionally failed to train (Fig.[B]A). Loss landscape analysis reveals
this dichotomy: shared parameters create smooth basins enabling robust convergence, whereas inde-
pendent parameters yield rugged terrain with local fluctuations (Fig. [3B). This likely occurs because
independent parameters per barrel generate conflicting gradient updates during training, thereby com-
plicating optimization. In contrast, shared parameters naturally enforce cross-barrel regularization,
effectively mitigating stochastic gradient variations. These results validate the functional advantages
of biologically uniform organization and modular replication in artificial expert systems.



4.3 Ablation analysis of synaptic connectivity

Then, we systematically assess synaptic importance in our multi-barrel model through ablation
experiments, isolating and blocking each connection while quantifying performance degradation.
Taking the EvTouch-Containers dataset as an example, inter-barrel aggregated currents show the
greatest impact, reducing classification accuracy by approximately 11.7% (Fig. fjA), while some
vertical connections exhibit minimal impact.

Fig.[B demonstrates laminar-specific effects through directional analysis of 37 intra-barrel vertical
projections. The four L4 to L2/3 connections collectively contributed 13.3% to performance, whereas
two reciprocal L2/3 to L4 connections showed weaker impacts but stronger LS modulation. We
identified four dominant pathways: L4-1.2/3, L4-L6, L.2/3-L5, and L6-L4 (Fig. Ep). These pathways
align with established neuroanatomical principles: the L4-L.2/3-L5 microcircuit represents a canonical
barrel cortex circuit [38}32], and L6 cortico-thalamic pyramidal (CTP) cells receive dendritic inputs
from L4 pyramidal neurons [40, 45| and project reciprocally to L4 boundaries [28) 59]. This
alignment may suggest that cortical microcircuits represent an evolutionarily optimized architecture.

Besides, deactivating specific synaptic connections (e.g., STP to L2P) does not compromise model
performance, suggesting the existence of redundant pathways. This functional resilience likely results
from substitution by connections with similar directional properties. Consequently, more precise
characterization is required to delineate the distinct contributions of specific neuronal subtypes.

4.4 Analysis of localist routing patterns

Next, we examined the localist routing behavior of our multi-barrel model. In contrast to the
decentralized, globally routed structure of conventional MoE systems, each expert (i.e., barrel
column) in our system communicates only with its immediate neighbors. As illustrated in Fig. A,
the KNN gating constraints introduced in Sec. [3.2] yields predominantly short-range horizontal
connections in both the initial and the trained models; long-range projections spanning multiple
barrels are entirely absent.

To quantify the functional impact of these horizontal connections, we analyzed the correlations of
barrel-column activity on the testsets, considering both full-trial and sliding-window time scales
(Fig.[5B). Introducing inter-barrel currents decreased global mean correlations by 0.07 on EvTouch-
Objects and 0.01 on EvTouch-Containers; windowed (local) correlations fell by 0.03 and 0.01,
respectively (Fig.[5E). Reduced synchrony suggests that horizontal currents promote richer, more
specialized activity patterns across columns, thereby improving the discriminability of complex inputs.
This effect echoes the lateral-inhibition mechanism reported in the biological barrel cortex, where
activated columns transiently suppress their neighbours to sharpen sensory contrast [39} 136, [10].

The spatial signature of these effects is equally striking. Inter-barrel currents shortened the average
distance between strongly correlated column pairs by 0.06 grid units on EvTouch-Objects and 0.17
on EvTouch-Containers; for the top-5 most-correlated pairs, the reductions were even larger—1.8 and
3.48 units, respectively (Fig.[5E). As depicted in Fig.[5IC-D, the top-correlation pairs overwhelmingly
involved neighbouring barrels once horizontal gating was enabled. Together, these findings show
that localist inter-barrel currents simultaneously strengthen short-range functional connectivity and
amplify activity differentiation across columns. The results are consistent with long-standing neuro-
physiological principles [33,[13] and may inform the design of future MoE systems with enforced
inter-expert communication to reduce information redundancy [51}158]].

5 Conclusion

In this work, we focus on the rodent barrel cortex as a localist expert system in the brain, developing a
multi-barrel model that strictly adheres to the one-to-one “whisker-barrel” somatotopic mapping. Our
architecture faithfully replicates the laminar and columnar organization of barrel cortex, achieving
state-of-the-art performance on two tactile datasets while successfully balancing biological plausibility
and behavioral performance. Experimental results demonstrate that the cortex’s uniform modular
architecture facilitates parameter sharing to enhance training stability, while localist routing reduces
functional connection distances and suppresses inter-barrel activity correlations. Inter-barrel currents
may sharpen perception and reduce redundancy. This work reveals the potential of brain’s native
expert systems to inspire next-generation machine learning architectures.



Limitations and future work: On one hand, the redundant synaptic connections observed in Fig.
necessitate more refined neuronal subtype differentiation in modeling, which requires deeper anatom-
ical knowledge integration. On the other hand, our multi-barrel model remains distinct from standard
MOoE architectures and has not yet been validated on mainstream machine learning benchmarks. De-
veloping brain-inspired MoE architectures that emulate cortical coordination mechanisms presents an
exciting research direction. Another promising future direction involves embedding our biologically
constrained barrel cortex model into realistic real-time interactive environments. This framework
would leverage biologically constrained models to explore performance in complex sensory tasks
(e.g., navigation), thereby significantly advancing both our understanding of brain operating principles
and potential applications.

Acknowledgments

This work was financially supported by the STI 2030-Major Projects (2021Z2D0201002), and National
Natural Science Foundation of China grants (T2122015, 32471149).

References

[1] Nicoldo Accanto, Frangois GC Blot, Antonio Lorca-Camara, Valeria Zampini, Florence Bui,
Christophe Tourain, Noam Badt, Ori Katz, and Valentina Emiliani. A flexible two-photon
fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in
freely moving mice. Neuron, 111(2):176-189, 2023.

[2] Tommer Argaman and David Golomb. Does layer 4 in the barrel cortex function as a balanced
circuit when responding to whisker movements? Neuroscience, 368:29-45, 2018.

[3] Rachel Aronoff, Ferenc Matyas, Celine Mateo, Carine Ciron, Bernard Schneider, and Carl CH
Petersen. Long-range connectivity of mouse primary somatosensory barrel cortex. European
Journal of Neuroscience, 31(12):2221-2233, 2010.

[4] Yazan N Billeh, Binghuang Cai, Sergey L Gratiy, Kael Dai, Ramakrishnan Iyer, Nathan W
Gouwens, Reza Abbasi-Asl, Xiaoxuan Jia, Joshua H Siegle, Shawn R Olsen, et al. Systematic
integration of structural and functional data into multi-scale models of mouse primary visual
cortex. Neuron, 106(3):388—403, 2020.

[5] Manuel A Castro-Alamancos and Morgana Favero. Whisker-related afferents in superior
colliculus. Journal of Neurophysiology, 115(5):2265-2279, 2016.

[6] Guozhang Chen, Franz Scherr, and Wolfgang Maass. A data-based large-scale model for
primary visual cortex enables brain-like robust and versatile visual processing. science advances,
8(44):eabq7592, 2022.

[7] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models, 2024.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[9] Veronica Egger, Thomas Nevian, and Randy M Bruno. Subcolumnar dendritic and axonal
organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory
cortex. Cerebral cortex, 18(4):876-889, 2008.

[10] Linlin Z Fan, Simon Kheifets, Urs L Bohm, Hao Wu, Kiryl D Piatkevich, Michael E Xie, Vicente
Parot, Yooree Ha, Kathryn E Evans, Edward S Boyden, et al. All-optical electrophysiology
reveals the role of lateral inhibition in sensory processing in cortical layer 1. Cell, 180(3):521—
535, 2020.

10



[11] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1-39, 2022.

[12] Dirk Feldmeyer. Excitatory neuronal connectivity in the barrel cortex. Frontiers in neu-
roanatomy, 6:24, 2012.

[13] Dirk Feldmeyer. Excitatory neuronal connectivity in the barrel cortex. Frontiers in neu-
roanatomy, 6:24, 2012.

[14] Isabelle Ferezou, Florent Haiss, Luc J Gentet, Rachel Aronoff, Bruno Weber, and Carl CH
Petersen. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice.
Neuron, 56(5):907-923, 2007.

[15] Pierre-Marie Garderes, Sébastien Le Gal, Charly Rousseau, Alexandre Mamane, Dan Alin
Ganea, and Florent Haiss. Coexistence of state, choice, and sensory integration coding in barrel

[16] Oliver M Gauld, Adam M Packer, Lloyd E Russell, Henry WP Dalgleish, Maya Iuga, Francisco
Sacadura, Arnd Roth, Beverley A Clark, and Michael Héusser. A latent pool of neurons silenced
by sensory-evoked inhibition can be recruited to enhance perception. Neuron, 112(14):2386—
2403, 2024.

[17] Fugiang Gu, Weicong Sng, Tasbolat Taunyazov, and Harold Soh. Tactilesgnet: A spiking graph
neural network for event-based tactile object recognition. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 9876-9882. IEEE, 2020.

[18] Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning delays
in spiking neural networks using dilated convolutions with learnable spacings. In The Telfth
International Conference on Learning Representations, 2024.

[19] Atif Hashmi and Mikko Lipasti. A cortically inspired learning model. In International Joint
Conference on Computational Intelligence, pages 373-388. Springer, 2010.

[20] Atif G Hashmi and Mikko H Lipasti. Cortical columns: Building blocks for intelligent systems.
In 2009 IEEE Symposium on Computational Intelligence for Multimedia Signal and Vision
Processing, pages 21-28. IEEE, 2009.

[21] Jeff Hawkins. A thousand brains: a new theory of intelligence. Basic Books, 2021.

[22] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A theory of how columns in the neocortex
enable learning the structure of the world. Frontiers in neural circuits, 11:295079, 2017.

[23] Chao Huang, Fleur Zeldenrust, and Tansu Celikel. Cortical representation of touch in silico.
Neuroinformatics, 20(4):1013-1039, 2022.

[24] BA Johnson and RD Frostig. Long, intrinsic horizontal axons radiating through and beyond
rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by
whisker stimulation. Brain Structure and Function, 221:3617-3639, 2016.

[25] Mikhail Kiselev. Colanet—a spiking neural network with columnar layered architecture for
classification. arXiv preprint arXiv:2409.01230, 2024.

[26] Yves Kremer, Jean-Frangois Léger, Dan Goodman, Romain Brette, and Laurent Bourdieu. Late
emergence of the vibrissa direction selectivity map in the rat barrel cortex. The Journal of
neuroscience : the official journal of the Society for Neuroscience, 31(29):10689—10700, July
2011.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84-90, 2017.

[28] Pratap Kumar and Ora Ohana. Inter-and intralaminar subcircuits of excitatory and inhibitory
neurons in layer 6a of the rat barrel cortex. Journal of Neurophysiology, 100(4):1909-1922,
2008.

11



[29] Maria Lavzin, Sophia Rapoport, Alon Polsky, Liora Garion, and Jackie Schiller. Nonlinear
dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature,
490(7420):397-401, 2012.

[30] Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang,
Yatian Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models.
arXiv preprint arXiv:2401.15947, 2024.

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[32] Joachim Liibke and Dirk Feldmeyer. Excitatory signal flow and connectivity in a cortical
column: focus on barrel cortex. Brain Structure and Function, 212(1):3—-17, 2007.

[33] Joachim Liibke, Arnd Roth, Dirk Feldmeyer, and Bert Sakmann. Morphometric analysis of the
columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel
cortex. Cerebral Cortex, 13(10):1051-1063, 2003.

[34] Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W Reimann, Marwan Abdellah,
Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas Antille, Selim
Arsever, et al. Reconstruction and simulation of neocortical microcircuitry. Cell, 163(2):456—
492, 2015.

[35] Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min,
Weijia Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita
Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers,
Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh
Hajishirzi. OLMoe: Open mixture-of-experts language models. In The Thirteenth International
Conference on Learning Representations, 2025.

[36] William Mufioz, Robin Tremblay, Daniel Levenstein, and Bernardo Rudy. Layer-specific modu-
lation of neocortical dendritic inhibition during active wakefulness. Science, 355(6328):954-959,
2017.

[37] Simon P Peron, Jeremy Freeman, Vijay Iyer, Caiying Guo, and Karel Svoboda. A cellular
resolution map of barrel cortex activity during tactile behavior. Neuron, 86(3):783-799, 2015.

[38] Carl CH Petersen. Sensorimotor processing in the rodent barrel cortex. Nature Reviews
Neuroscience, 20(9):533-546, 2019.

[39] Carl CH Petersen and Sylvain Crochet. Synaptic computation and sensory processing in
neocortical layer 2/3. Neuron, 78(1):28-48, 2013.

[40] Guanxiao Qi and Dirk Feldmeyer. Dendritic target region-specific formation of synapses
between excitatory layer 4 neurons and layer 6 pyramidal cells. Cerebral cortex, 26(4):1569—
1579, 2016.

[41] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.
Advances in neural information processing systems, 30, 2017.

[42] Keisuke Sehara and Hiroshi Kawasaki. Neuronal circuits with whisker-related patterns. Molec-
ular neurobiology, 43:155-162, 2011.

[43] B Semihcan Sermet, Pavel Truschow, Michael Feyerabend, Johannes M Mayrhofer, Tess B
Oram, Ofer Yizhar, Jochen F Staiger, and Carl CH Petersen. Pathway-, layer-and cell-type-
specific thalamic input to mouse barrel cortex. elife, 8:€52665, 2019.

[44] Jochen F Staiger, Iris Flagmeyer, Dirk Schubert, Karl Zilles, Rolf Kétter, and Heiko J Luhmann.
Functional diversity of layer iv spiny neurons in rat somatosensory cortex: quantitative mor-
phology of electrophysiologically characterized and biocytin labeled cells. Cerebral Cortex,
14(6):690-701, 2004.

[45] Jochen F Staiger and Carl CH Petersen. Neuronal circuits in barrel cortex for whisker sensory
perception. Physiological reviews, 101(1):353-415, 2021.

12



[46] Mototaka Suzuki, Cyriel MA Pennartz, and Jaan Aru. How deep is the brain? the shallow brain
hypothesis. Nature Reviews Neuroscience, 24(12):778-791, 2023.

[47] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105-6114. PMLR, 2019.

[48] Tasbolat Taunyazov, Weicong Sng, Hian Hian See, Brian Lim, Jethro Kuan, Abdul Fatir Ansari,
Benjamin CK Tee, and Harold Soh. Event-driven visual-tactile sensing and learning for robots.
arXiv preprint arXiv:2009.07083, 2020.

[49] Vassiliy Tsytsarev, Sung E Kwon, Celine Plachez, Shuxin Zhao, Daniel H O’Connor, and
Reha S Erzurumlu. Layers 3 and 4 neurons of the bilateral whisker-barrel cortex. Neuroscience,
494:140-151, 2022.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[51] Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han,
Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When
LLMs meet complex operations research problems. In The Tivelfth International Conference on
Learning Representations, 2024.

[52] Jing Yang, Xiaoyang Ji, Shaobo Li, Hao Dong, Tingqing Liu, Xu Zhou, and Shuaizhen Yu.
Robot tactile data classification method using spiking neural network. In 2021 China Automation
Congress (CAC), pages 5274-5279. IEEE, 2021.

[53] Jing Yang, Tingqing Liu, Yaping Ren, Qing Hou, Shaobo Li, and Jianjun Hu. Am-sgcn: Tactile
object recognition for adaptive multichannel spiking graph convolutional neural networks. /EEE
Sensors Journal, 23(24):30805-30820, 2023.

[54] Jing Yang, Zukun Yu, Shaobo Li, Yang Cao, JianJun Hu, and Ji Xu. Ggt-snn: Graph learning
and gaussian prior integrated spiking graph neural network for event-driven tactile object
recognition. Information Sciences, 677:120998, 2024.

[55] Bojian Yin, Federico Corradi, and Sander M. Bohté. Effective and efficient computation with
multiple-timescale spiking recurrent neural networks. CoRR, abs/2005.11633, 2020.

[56] Sangmin Yoo, Yongmo Park, Ziyu Wang, Yuting Wu, Saaketh Medepalli, Wesley Thio, and
Wei D Lu. Columnar learning networks for multisensory spatiotemporal learning. Advanced
Intelligent Systems, 4(11):2200179, 2022.

[57] Gexiang Zhang, Xihai Zhang, Haina Rong, Prithwineel Paul, Ming Zhu, Ferrante Neri, and
Yew-Soon Ong. A layered spiking neural system for classification problems. International
Jjournal of neural systems, 32(08):2250023, 2022.

[58] Mohan Zhang, Pingzhi Li, Jie Peng, Mufan Qiu, and Tianlong Chen. Advancing moe efficiency:
A collaboration-constrained routing (c2r) strategy for better expert parallelism design. arXiv
preprint arXiv:2504.01337, 2025.

[59] Zhong-Wei Zhang and Martin Deschenes. Intracortical axonal projections of lamina vi
cells of the primary somatosensory cortex in the rat: a single-cell labeling study. Journal of
Neuroscience, 17(16):6365-6379, 1997.

[60] Tianfang Zhu, Dongli Hu, Jiandong Zhou, Kai Du, and Anan LI. Biologically constrained
barrel cortex model integrates whisker inputs and replicates key brain network dynamics. In
The Thirteenth International Conference on Learning Representations, 2025.

13



NeuTouch sensors

Temporal
1D dilated

convolution

S N AN
[39,2, T] [39, 64, T']

Figure 6: Tactile perception task overview. (A) Object categorization via several-second tactile
scanning using NeuTouch sensor array (datasets: EvTouch-Objects/Containers) [[17]. (B) NeuTouch’s
39-sensor spatial configuration (adapted from [48]]). (C) Each sensor modeled as a whisker, with 1D
dilated convolutions simulating brainstem-thalamic delay/integration [18}, 42 |5].

A Technical Appendices and Supplementary Material

A.1 Tactile task introduction

This section details our tactile perception task. Both employed datasets, EvTouch-Objects and
EvTouch-Containers [17], were acquired through an identical protocol: the NeuTouch [48] sensor
array engaged in several-second tactile interactions with 3D objects, followed by object category
prediction based on the recorded sensor signals (Fig. [6]A). The NeuTouch system integrates 39
uniformly configured sensor units, each generating two-channel spiking signals, with their spatial
arrangement depicted in Fig.[6B. The datasets were categorized into EvTouch-Objects (720 samples,
36 categories) and EvTouch-Containers (300 samples, 20 categories) based on object taxonomy, with
both datasets split into training and test sets at an 8:2 ratio for standardized evaluation.

As described in Sec. [3.3] we modeled each of the 39 tactile sensors as a rodent whisker, with separate
barrel modules processing each sensor’s signals independently. Each raw sample in the tactile dataset
has a shape of [39, 2, T], representing two-channel signals from 39 sensors over T timesteps, where T
equals 250 for EvTouch-Objects and 325 for EvTouch-Containers. We first applied two 1D dilated
convolutions along the temporal dimension to simulate brainstem and thalamic preprocessing of
whisker signals [42] 15]], including delay and integration effects [[18]]. Dilated convolutions were
exclusively applied along the time axis to prevent cross-whisker signal leakage (Fig. [6[C). The

processed timesteps computed as T = L%J + 1, where d, k and s represent the dilation
rate, kernel size, and stride respectively. Then, the preprocessed whisker signals were independently
propagated to their corresponding barrel columns. Finally, a standard 2D convolution operation
integrated the barrel-wise L5/6 neuronal states across the entire array, followed by an MLP to generate

the final prediction output.

14



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction effectively summarize the paper’s contributions,
distilled into three key points.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion explicitly discusses the study’s limitations, highlighted in bold
text.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work does not involve theoretical derivation or proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper details the methodology and datasets, with comprehensive task
specifications provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code is provided in supplementary materials and will be open-
sourced upon acceptance. All datasets used are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training specifications are comprehensively documented in the implementation
details section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This study presents multi-run training results, with all quantitative metrics
evaluated on the complete test dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a single 80GB A100 GPU, as detailed in
the implementation details section.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that this research fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As a basic science research, this work has no measurable societal implications
or ethical concerns

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This study involves no data misuse or ethical violations regarding data handling.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly and explicitly cited all relevant prior work with accurate
authorship attribution.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Code is accompanied by clear documentation following community standards.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This study does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were utilized solely for language editing in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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