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Abstract

Facial detection and analysis systems have been deployed by large companies and1

critiqued by scholars and activists for the past decade. Critiques that focus on2

system performance analyze disparity of the system’s output, i.e., how frequently is3

a face detected for different Fitzpatrick skin types or perceived genders. However,4

we focus on the robustness of these system outputs under noisy natural perturba-5

tions. We present the first of its kind detailed benchmark of the robustness of two6

such systems: Amazon Rekognition and Microsoft Azure. We use both standard7

and recently released academic facial datasets to quantitatively analyze trends in8

robustness for each. Qualitatively across all the datasets and systems, we find that9

photos of individuals who are older, masculine presenting, of darker skin type, or10

have dim lighting are more susceptible to errors than their counterparts in other11

identities.12

1 Introduction13

Face detection systems identify the presence and location of faces in images and video. Automated14

face detection is a core component of myriad systems—including face recognition technologies15

(FRT), wherein a detected face is matched against a database of faces, typically for identification16

or verification purposes. FRT-based systems are widely deployed [Hartzog, 2020, Derringer, 2019,17

Weise and Singer, 2020]. Automated face recognition enables capabilities ranging from the relatively18

morally neutral (e.g., searching for photos on a personal phone [Google, 2021]) to morally laden (e.g.,19

widespread citizen surveillance [Hartzog, 2020], or target identification in warzones [Marson and20

Forrest, 2021]). Legal and social norms regarding the usage of FRT are evolving [e.g., Grother et al.,21

2019]. For example, in June 2021, the first county-wide ban on its use for policing [see, e.g., Garvie,22

2016] went into effect in the US [Gutman, 2021]. Some use cases for FRT will be deemed socially23

repugnant and thus be either legally or de facto banned from use; yet, it is likely that pervasive use of24

facial analysis will remain—albeit with more guardrails than are found today [Singer, 2018].25

One such guardrail that has spurred positive, though insufficient, improvements and widespread26

attention is the use of benchmarks. For example, in late 2019, the US National Institute of Standards27

and Technology (NIST) adapted its venerable Face Recognition Vendor Test (FRVT) to explicitly28

include concerns for demographic effects [Grother et al., 2019], ensuring such concerns propagate29

into industry systems. Yet, differential treatment by FRT of groups has been known for at least a30

decade [e.g., Klare et al., 2012, El Khiyari and Wechsler, 2016], and more recent work spearheaded31

by Buolamwini and Gebru [2018] uncovers unequal performance at the phenotypic subgroup level.32

That latter work brought widespread public, and thus burgeoning regulatory, attention to bias in33

FRT [e.g., Lohr, 2018, Kantayya, 2020].34

One yet unexplored benchmark examines the bias present in a system’s robustness (e.g., to noise, or35

to different lighting conditions), both in aggregate and with respect to different dimensions of the36

population on which it will be used. Many detection and recognition systems are not built in house,37

instead making use of commercial cloud-based “ML as a Service” (MLaaS) platforms offered by38

tech giants such as Amazon amd Microsoft. The implementation details of those systems are not39
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exposed to the end user—and even if they were, quantifying their failure modes would be difficult.40

With this in mind, our main contribution is a wide robustness benchmark of two commercial-grade41

face detection systems (accessed via Amazon’s Rekognition and Microsoft’s Azure face detection42

APIs). For fifteen types of realistic noise, and five levels of severity per type of noise [Hendrycks and43

Dietterich, 2019], we test both APIs against images in each of four well-known datasets. Across these44

more than 5,000,000 noisy images, we analyze the impact of noise on face detection performance.45

Perhaps unsurprisingly, we find that noise decreases overall performance, and that different types of46

noise impact, in an “unfair” way, cross sections of the population of images (e.g., based on Fitzgerald47

skin type, age, self-identified gender, and intersections of those dimensions). Our method is extensible48

and can be used to quantify the robustness of other detection and FRT systems, and adds to the49

burgeoning literature supporting the necessity of explicitly considering fairness in ML systems with50

morally-laden downstream uses.51

2 Related Work52

We briefly overview additional related work in the two core areas addressed by our benchmark:53

robustness to noise and demographic disparity in facial detection and recognition. That latter point54

overlaps heavily with the fairness in machine learning literature; for additional coverage of that55

broader ecosystem and discussion around fairness in machine learning writ large, we direct the reader56

to survey works due to Chouldechova and Roth [2018] and Barocas et al. [2019].57

Demographic effects in facial detection and recognition. The existence of differential perfor-58

mance of facial detection and recognition on groups and subgroups of populations has been explored59

in a variety of settings. Earlier work [e.g., Klare et al., 2012, O’Toole et al., 2012] focuses on60

single-demographic effects (specifically, race and gender) in pre-deep-learning face detection and61

recognition. Buolamwini and Gebru [2018] uncovers unequal performance at the phenotypic sub-62

group level in, specifically, a gender classification task powered by commercial systems. That work,63

typically referred to as “Gender Shades,” has been and continues to be hugely impactful both within64

academia and at the industry level. Indeed, Raji and Buolamwini [2019] provide a follow-on analysis,65

exploring the impact of the Buolamwini and Gebru [2018] paper publicly disclosing performance66

results, for specific systems, with respect to demographic effects; they find that their named companies67

(IBM, Microsoft, and Megvii) updated their APIs within a year to address some concerns that were68

surfaced. Subsequently, the late 2019 update to the NIST FRVT provides evidence that commercial69

platforms are continuing to focus on performance at the group and subgroup level [Grother et al.,70

2019]. Further recent work explores these demographic questions with a focus on Indian election71

candidates [Jain and Parsheera, 2021]. We see our benchmark as adding to this literature by, for the72

first time, addressing both noise and demographic effects on commercial platforms’ face detection73

offerings.74

In this work, we focus on measuring the impact of noise on a classification task, like that of Wilber75

et al. [2016]; indeed, a core focus of our benchmark is to quantify relative drops in performance76

conditioned on an input datapoint’s membership in a particular group. We view our work as a77

benchmark, that is, it focuses on quantifying and measuring, decidedly not providing a new method78

to “fix” or otherwise mitigate issues of demographic inequity in a system. Toward that latter point,79

existing work on “fixing” unfair systems can be split into three (or, arguably, four [Savani et al.,80

2020]) focus areas: pre-, in-, and post-processing. Pre-processing work largely focuses on dataset81

curation and preprocessing [e.g., Feldman et al., 2015, Ryu et al., 2018, Quadrianto et al., 2019, Wang82

and Deng, 2020]. In-processing often constrains the ML training method or optimization algorithm83

itself [e.g., Zafar et al., 2017b,a, 2019, Donini et al., 2018, Goel et al., 2018, Padala and Gujar, 2020,84

Agarwal et al., 2018, Wang and Deng, 2020, Martinez et al., 2020, Diana et al., 2020, Lahoti et al.,85

2020], or focuses explicitly on so-called fair representation learning [e.g., Adeli et al., 2021, Dwork86

et al., 2012, Zemel et al., 2013, Edwards and Storkey, 2016, Madras et al., 2018, Beutel et al., 2017,87

Wang et al., 2019]. Post-processing techniques adjust decisioning at inference time to align with88

quantitative fairness definitions [e.g., Hardt et al., 2016, Wang et al., 2020].89

Robustness to noise. Quantifying, and improving, the robustness to noise of face detection and90

recognition systems is a decades-old research challenge. Indeed, mature challenges like NIST’s91

Facial Recognition Vendor Test (FRVT) have tested for robustness since the early 2000s [Phillips92

et al., 2007]. We direct the reader to a comprehensive introduction to an earlier robustness challenge93

due to NIST [Phillips et al., 2011]; that work describes many of the specific challenges faced by94
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Figure 1: Our benchmark consists of 5,066,312 images of the 15 types of algorithmically generated corruptions
produced by ImageNet-C. We use data from four datasets (Adience, CCD, MIAP, and UTKFace) and present
examples of corruptions from each dataset here.

face detection and recognition systems, often grouped into Pose, Illumination, and Expression95

(PIE). It is known that commercial systems still suffer from degradation due to noise [e.g., Hosseini96

et al., 2017]; none of this work also addresses the intersection of noise with fairness, as we do.97

Recently, adversarial attacks have been proposed that successfully break commercial face recognition98

systems [Shan et al., 2020, Cherepanova et al., 2021]; we note that our focus is on natural noise,99

as motivated by Hendrycks and Dietterich [2019] by their ImageNet-C benchmark. Literature at100

the intersection of adversarial robustness and fairness is nascent and does not address commercial101

platforms [e.g., Singh et al., 2020, Nanda et al., 2021]. To our knowledge, our work is the first102

systematic benchmark for commercial face detection systems that addresses, comprehensively, noise103

and its differential impact on (sub)groups of the population.104

3 Experimental Description105

Datasets and Protocol. This benchmark uses four datasets to evaluate the robustness of Amazon106

AWS and Microsoft Azure’s face detection systems. They are described below.107

The Open Images Dataset V6 – Extended; More Inclusive Annotations for People (MIAP) dataset108

[Schumann et al., 2021] was released by Google in May 2021 as a extension of the popular, permissive-109

licensed Open Images Dataset specifically designed to improve annotations of humans. For each110

image, every human is exhaustively annotated with bounding boxes for the entirety of their person111

visible in the image. Each annotation also has perceived gender (Feminine/Masculine/Unknown)112

presentation and perceived age (Young, Middle, Old, Unknown) presentation.113

The Casual Conversations Dataset (CCD) [Hazirbas et al., 2021] was released by Facebook in April114

2021 under limited license and includes videos of actors. Each actor consented to participate in an115

ML dataset and provided their self-identification of age and gender (coded as Female, Male, and116

Other), each actor’s skin type was rated on the Fitzpatrick scale [Fitzpatrick, 1988], and each video117

was rated for its ambient light quality. For our benchmark, we extracted one frame from each video.118

The Adience dataset [Eidinger et al., 2014] under a CC license, includes cropped images of faces119

from images “in the wild”. Each cropped image contains only one primary, centered face, and each120

face is annotated by an external evaluator for age and gender (Female/Male). The ages are reported121

as member of 8 age range buckets: 0-2; 3-7; 8-14; 15-24; 25-35; 36-45; 46-59; 60+.122

Finally, the UTKFace dataset [Zhang et al., 2017] under a non-commercial license, contains images123

with one primary subject and were annotated for age (continuous), gender (Female/Male), and124

ethnicity (White/Black/Asian/Indian/Others) by an algorithm, then checked by human annotators.125
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For each of the datasets, we randomly selected a subset of images for our evaluation in order to cap126

the number of images from each intersectional identity at 1,500 as an attempt to reduce the effect of127

highly imbalanced datasets. We include a total of 66,662 images with 14,919 images from Adience;128

21,444 images from CCD; 8,194 images from MIAP; and 22,105 images form UTKFace. The full129

breakdown of totals of images from each group can be found in Section A.1.130

Each image was corrupted a total of 75 times, per the ImageNet-C protocol with the main 15131

corruptions each with 5 severity levels. Examples of these corruptions can be seen in Figure 1. This132

resulted in a total of 5,066,312 images (including the original clean ones) which were each passed133

through the AWS and Azure face analysis systems. A detailed description of which API settings were134

selected can be found in Appendix C. The API calls were conducted between 19 May and 29 May135

2021. Images were processed and stored within AWS’s cloud using S3 and EC2. The total cost of the136

experiments was $9,887.17 and a breakdown of costs can be found in Appendix D.137

Evaluation Metrics. Given that we aim is to study how corruptions to an image alter the commer-138

cial interpretation of that image, we valuate the error of the face systems. Additionally, none of the139

chosen datasets have ground truth face bounding boxes. Therefore, we can use the response from the140

clean image as a ground truth of sorts. Specifically, we take as ground truth the number of faces in an141

clean image and compare that to the number of faces detected in a corrupted image.142

Our main metric is the relative error in the number of faces a system detects after corruption; this143

metric has been used in other facial processing benchmarks [Jain and Parsheera, 2021]. Measuring144

error in this way is in some sense incongruous with the object detection nature of the APIs. However,145

none of the data in our datasets have bounding boxes for each face. This means that we cannot146

calculate precision metrics as one would usually do with other detection tasks. To overcome this,147

we hand annotated bounding boxes for each face in 772 random images from the dataset. We then148

calculated per-image precision scores (with an IoU of 0.5) and per-image relative error in face counts149

and we find a Pearson’s correlation of 0.91 (with p < 0.001). This high correlation indicates that the150

proxy is sufficient to be used in this benchmark in the absence of fully annotated bounding boxes.151

This error is calculated for each image. The way in which this works is that we first pass every clean,152

uncorrupted image through the commercial system’s API. Then, we measure the number of detected153

faces, i.e., length of the system’s response, and treat this number as the ground truth. Subsequently,154

we compare the number of detected faces for a corrupted version of that image. If the two face counts155

are not the same, then we call that an error. We refer to this as the relative corruption error. For each156

clean image, i, from dataset d, and each corruption c which produces a corrupted image îc,s with157

severity s, we compute the relative corruption error for system r as158

rCEd,r
c,s (̂ic,s) :=

{
1, if lr(i) 6= lr (̂ic,s)

0, if lr(i) = lr (̂ic,s)

where lr computes the number of detected faces, i.e., length of the response, from face detection159

system r when given an image. Often the super- and subscripts are omitted when they are obvious160

from context.161

Our main metric, relative error, aligns with that of the ImageNet-C benchmark. We report mean162

relative corruption error (mrCE) defined as taking the average of rCE across some relative set163

of categories. In our experiments, depending on the context, we might have any of the following164

categories: face systems, datasets, corruptions, severities, age presentation, gender presentation,165

Fitzpatrick rating, and ambient lighting. For example, we might report the relative mean corruption166

error when averaging across demographic groups; the mean corruption error for Azure on the UTK167

dataset for each age group a is mrCEa = 1
15

1
5

∑
c,s rCE

UTK,Azure
c,s,a . The subscripts on mrCE168

will be omitted when it is obvious what their value is in whatever context they are presented.169

Finally, we will also investigate the significance of whether the mrCE for two groups are equal. For170

example, our first question is whether the two commercial systems (AWS and Azure) have comparable171

mrCE overall. To do this, we will report the raw mrCE; these frequency or empiric probability172

statistics offer much insight into the likelihood of error. But we also indicate the statistical significance173

at α = 0.05 determined by logistic regressions for the appropriate variables and interactions. For174

each claim of significance, regression tables can be found in the appendix. Accordingly, we discuss175

the odds or odds ratio of relevant features. See Appendix B for a detailed example. Finally, each176
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Data Representative of Benchmark's Overall Findings on Demographic Disparities
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Figure 2: There are disparities in all of the demographics included in this study; we show representative
evidence for each demographic on different datasets. On the left, we see (using Adience as an exemplar) that
the oldest two age groups are roughly 25% more error prone than the youngest two groups. Using MIAP as an
exemplar, masculine presenting subjects are 20% more error prone than feminine. On the CCD dataset, we find
that individuals with Fitzpatrick scales IV-VI have a roughly 25% higher chance of error than lighter skinned
individuals. Finally, dimly lit individuals are 60% more likely to have errors.

claim we make for an individual dataset or service is backed up with statistical rigor through the177

logistic regressions. Each claim we make across datasets is done by looking at the trends in each178

dataset and are inherently qualitative.179

What is not included in this study. There are three main things that this benchmark does not180

address. First, we do not examine cause and effect. We report inferential statistics without discussion181

of what generates them. Second, we only examine the types of algorithmicaly generated natural182

noise present in the 15 corruptions. We speak narrowly about robustness to these corruptions or183

perturbations. We explicitly do not study or measure robustness to other types of changes to images,184

for instance adversarial noise, camera dimensions, etc. Finally, we do not investigate algorithmic185

training. We do not assume any knowledge of how the commercial system was developed or what186

training procedure or data were used.187

Social Context. The central analysis of this benchmark relies on socially constructed concepts188

of gender presentation and the related concepts of race and age. While this benchmark analyzes189

phenotypal versions of these from metadata on ML datasets, it would be wrong to interpret our190

findings absent a social lens of what these demographic groups mean inside a society. We guide the191

reader to Benthall and Haynes [2019] and Hanna et al. [2020] for a look at these concepts for race in192

machine learning, and Hamidi et al. [2018] and Keyes [2018] for similar looks at gender.193

4 Benchmark Results194

We now report the main results of our benchmark, a synopsis of which is in Figure 2. Overall, we195

find that photos of individuals who are older, masculine presenting, darker skinned, or are dimly lit196

are more susceptible to errors than their counterparts. We come to these qualitative conclusions by197

quantitatively examining the trends of each dataset for each demographic. All four datsaets have198

age and gender labels. We see the bias against older individuals across all datasets. The bias against199

masculine presenting individuals is present in all datasets except UTKFace (which shows no bias).200

Skin type and lighting labels are only present in one dataset, CCD.201

Below is a more detailed analysis with additional supporting tables and figures in the Appendix.202

4.1 System Performance203

Overall, AWS has fewer errors than Azure on corrupted data though the magnitude of the difference204

is small. The mrCE for AWS is 12.298% whereas Azure is 12.338%, or 3% higher, but this is a205

Simpson’s Paradox because when we look at each dataset, we see further nuance.206

We plot the CTRs for each dataset and service in Figure 3; the difference between services is207

statistically significant for each dataset. For the Adience and MIAP datasets, Azure performs better208
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Figure 3: Observe that AWS is
more robust on CCD and UTK and
Azure is more robust on Adience
and MIAP.
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Figure 4: A comparison of mrCE for each commercial system and
dataset where each line represents one of the 15 types of corruptions.
(Left) depicts the robustness across all datasets whereas (right) depicts
this for each dataset separately.

than AWS. On Adience, Azure’smrCE is 16.1% whereas AWS hasmrCE of 22.6%. The magnitude209

is less on MIAP; Azure has 15.6% and AWS has 17.9%.210

Conversely, on the CCD and UTK dataset, Azure outperforms AWS. For the CCD dataset, Azure211

performs 60% worse than AWS (AWS mrCE of 7.1% compared to Azure’s 11.3%). The magnitude212

is less on UTKFace; AWS has 8.4% whereas Azure has 9.6%.213

4.2 Noise corruptions are the most difficult214

Recall that the ImageNet-C corruptions are broken into four different types: noise, blur, weather,215

and digital corruptions. We observe that the noise corruptions prove to be some of the most difficult216

corruptions for the commercial systems to handle. From Figure 4, we observe that in the AWS system,217

the three noise corruptions have the the second, third, and fourth most difficult corruptions (behind218

zoom blur). However, they are markedly the most difficult corruptions for Azure to handle. On the219

otherhand, Azure outperforms AWS on every other corruption. The difficulty of the noise corruptions220

echos that documented in the ImageNet-C experiments, though the comparative magnitude of the221

difficulty for these systems is significantly higher than what is previously documented.222

When we examine the differences in the performance for each corruption across the different datasets,223

we see a continuation of the theme that the noise corruptions have relatively high mrCE. In every224

instance except one, Azure performs worse on the noise corruptions than AWS. For both commercial225

systems on Adience, the mrCE values for the noise corruptions are above 40%. However, Azure226

preforms better than AWS on all other corruptions on the Adience Dataset.227

The zoom blur corruption proves particularly difficult on the CCD and MIAP datasets, though Azure228

is significantly better than AWS (CCD: 52.7% for AWS and 43.5% for Azure; MIAP: 41.0% for229

AWS and 35.5% for Azure). We also note that all corruptions for all datasets and commercial systems230

are significantly differently from zero.231

4.2.1 Comparison to ImageNet-C results232

Even though Hendrycks and Dietterich [2019] worked with the ImageNet dataset, we compare the233

findings from their paper to our experiments. We recreate Figure 3 from their paper with more current234

results for recent models since their paper was published, as well as the addition of our findings for235

AWS and Azure’s face detection on our data; see Figure 8. This figure reproduces their metric, mean236

corruption error and relative mean corruption error. These differ from our metrics as they are defined237

as the raw error for each corruption, but normalized against the performance of AlexNet from the238

original paper. This is done so as to compare different models more fairly. The figure also shows the239

relative mean corruption error which is the difference between the raw error for each corruption and240

the raw error for the clean data. From this figure, we can conclude that our results are very highly241

in-line with the predictions from the previous data. This indicates that, even with highly accurate242

models, accuracy is a strong predictor of robustness.243

We also examined the corruption-specific differences between our findings (with face data) and that244

of the original paper (with ImageNet data). We find that while facial datasets are most susceptible to245
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noise corruptions, zoom blur, weather, etc, the ImageNet datasets are generally uniformly susceptible246

to corruptions with blurs and digital corruptions being the most difficult for them. This indicates247

that the face data have qualitative differences in their robustness susceptibility, indicating a need for248

further study.249

4.3 Errors increase on older subjects250

We observe a significant impact of age on mrCE. See Figure 5. In every dataset and every251

commercial system, we see that older subjects have significantly higher error rates. Recall that all252

four datasets have age metadata. Adience and MIAP have such data in groups. CCD and UTKFace253

have age data as a continuous variable.254

On the Adience dataset, there is an interesting behavior where the second and third youngest age255

groups have the best performance with increases for younger and older age groups. There is then256

a spike in errors in the 25-35 age group which falls off slightly for the 36-59 groups and finally257

increases again for the oldest 60+ group. These two maximal groups have nearly 1:4 odds of error.258

This is compared to the youngest group which has 30% better odds (3:15).259

For the MIAP dataset, the age disparity is very pronounced. Like the Adience dataset, we see a260

decrease in the likelihood of error moving from the youngest to the middle ages. However, we see a261

very large increase for the Oldest individuals. In AWS for instance, we see a 145% increase in error.262

The CCD and UTKFace datasets have numeric age. Analyzing the regressions indicates that for every263

increase of 10 years, there is a 2.3% increase in the likelihood of error on the CCD data and 2.7%264

increase for UTKFace data. In Appendix E.4, we explore the interaction of Age and the corruptions.265

4.4 Masculine presenting individuals have more errors than feminine presenting266

Across all datasets except UTKFace, we find that feminine presenting individuals have lower errors267

than masculine presenting individuals. See Figure 6. On Adience, feminine individuals have 18.8%268

mrCE whereas masculine have 19.8%. On CCD, the mrCEs are 8.9% and 9.6% respectively. On269
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(Right) the same is plotted by the intersection of age, gender, and lighting. Observe that for both skin types,
all genders, and all ages, the dimly lit environment increases the error rates. Motion blur is the least robust
corruption with frost, the three noises, and snow being the next worst across most intersectional identities.

the MIAP dataset, the mrCE values are 13.7% and 15.4% respectively. On the UTKFace, both270

gender presentations have around 9.0% mrCE (non statistically significant difference).271

Stepping outside the gender binary, we have two insights into this from these data. In the CCD272

dataset, the subjects were asked to self-identify their gender. Two individuals selected Other and 62273

others did not provide a response. Those two who chose outside the gender binary have a mrCE274

of 4.9%. When we include those individuals without gender labels, their mrCE is 8.8% and not275

significantly different from the feminine presenting individuals.276

The other insight comes from the MIAP dataset where subjects were rated on their perceived277

gender presentation by crowdworkers; options were “Predominantly Feminine", “Predominantly278

Masculine", and "Unknown". For those “Unknown", the overall mrCE is 19.3%. The creators of the279

dataset automatically set the gender presenation of those with an age presentation of “Young" to be280

“Unknown". The mrCE of those annotations which aren’t “Young" and have an “Unknown" gender281

presentation raises to 19.9%. One factor that might contribute to this phenomenon is that individuals282

with an “Unknown” gender presentation might have faces that are occluded or are small in the image.283

Further work should be done to explore the causes of his discrepancy. In Appendix E.3, we explore284

the interaction of Gender and the corruptions.285

4.5 Dark skinned subjects have more errors across age and gender identities286

We analyze data from the CCD dataset which has ratings for each subject on the Fitzpatrick scale.287

As is customary in analyzing these ratings, we split the six Fitzpatrick values into two: Lighter (for288

ratings I-III) and Darker for ratings (IV-VI). The main intersectional results are reported in Figure 7.289

The overall mrCE for lighter and darker skin types are 8.5% and 9.7% respectively, a 15% increase290

for the darker skin type. We also see a similar trend in the intersectional identities available in the291

CCD metadata (age, gender, and skin type). We see that in every identity (except for 45-64 year old292

and Feminine) the darker skin type has statistically significant higher error rates. This difference293

is particularly stark in 19-45 year old, masculine subjects. We see a 35% increase in errors for the294

darker skin type subjects in this identity compared to those with lighter skin types. For every 20295

errors on a light skinned, masculine presenting individual between 18 and 45, there are 27 errors for296

dark skinned individuals of the same category.297

4.6 Dim lighting conditions has the most severe impact on errors298

Using lighting condition information from the CCD dataset, we observe the mrCE is substantially299

higher in dimly lit environments: 12.5% compared to 7.8% in bright environments. See Figure 9.300

Across the board, we generally see that the disparity in demographic groups decreases between bright301

and dimly lit environments. For example, the odds ratio between dark and light skinned subjects is302

1.09 for bright environments, but decreases to 1.03 for dim environments. This is true for age groups303
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Figure 10: For each dataset, the mrCE is plotted across age groups. Each gender is represented and indicates
how gender disparities change across the age groups.

(e.g., odds ratios 1.183 (bright) vs 1.127 (dim) for 45-64 compared to 19-45; 1.138 (bright) vs 1.060304

(dim) for Males compared to Females). This is not true for individuals with gender identities as Other305

or omitted – the disparity increases (1.104 (bright) vs 1.173 (dim) with Females as the reference).306

In Figure 9 we observe the lighting differences for different intersectional identities across corruptions.307

We continue to see zoom blur as the most challenging corruption. Interestingly, the noise and some308

weather corruptions have a large increase in their errors in dimly lit environments across intersectional309

identities whereas many of the other corruptions do not.310

4.7 Older subjects have higher gender error disparities311

We plot in Figure 10 the mrCE for each dataset across age with each gender group plotted separately.312

From this, we can note that on the CCD and MIAP dataset, the masculine presenting group is always313

less robust than the feminine. On the CCD dataset, the disparity between the two groups increases314

as the age increases (odds ratio of 1.048 for 19-45 raises to 1.135 for 65+). On the MIAP dataset,315

the odds ratio is greatest between masculine and feminine for the middle age group (1.395). The316

disparities between the ages also increases from feminine to masculine to unknown gender identities.317

On the Adience and UTKFace datasets, we see that the feminine presenting individuals sometime318

have higher error rates than masculine presenting subjects. Notably, the most disparate errors in319

genders on these datasets occurs at the oldest categories, following the trend from the other datasets.320

5 Gender and Age Estimation Analysis321

We briefly overview results from evaluating AWS’s age and gender estimation commercial systems.322

The detection model we evaluated for Azure does not provide age and gender estimates. Further323

analysis can be found in Appendices F and G.324

5.1 Gender estimation is at least twice as susceptible to corruptions as face detection325

The use of automated gender estimates in ML is a controversial topic. Trans and gender queer326

individuals are often ignored in ML research, though there is a growing body of research that aims327

to use these technologies in an assistive way as well [e.g., Ahmed, 2019, Chong et al., 2021]. To328

evaluate gender estimation, we only use CCD as the subjects of these photos voluntarily identified329

their gender. We omit from the analysis any individual who either did not choose to give their gender330

or fall outside the gender binary because AWS only estimates Male and Female.331

AWS misgenders 9.1% of the clean images but 21.6% of the corrupted images. Every corruption332

performs worse on gender estimation than mrCE. Two corruptions (elastic transform and glass333

blur) do not have statistically different errors from the clean images. All the others do, with the most334

significant being zoom blur, Gaussian noise, impulse noise, snow, frost, shot noise, and contrast.335

Zoom blur’s probability of error is 61% and Gaussian noise is 32%. This compares to mrCE values336

of 43% and 29% respectively. See Appendix F for further analysis.337
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5.2 Corrupted images error in their age predictions by 40% more than clean images338

To estimate Age, AWS returns an upper and lower age estimation. Following their own guidelines on339

face detection,1 we use the mid-point of these numbers as a approximate estimate. On average, the340

estimation is 8.3 years away from the actual age of the subject for corrupted data, this compares to341

5.9 years away for clean data. See Appendix G for further analysis.342

6 Conclusion343

This benchmark has evaluated two leading commercial facial detection and analysis systems for their344

robustness against common natural noise corruptions. Using the 15 ImageNet-C corruptions, we345

measured the relative mean corruption error as measured by comparing the number of faces detected346

in a clean and corrupted image. We used four academic datasets which included demographic detail.347

Adience, MIAP, and UTKFace have perceived age and gender metadata. CCD has subject provided348

age and gender responses as well as external ratings of skin type and ambient lighting conditions.349

We observed through our analysis that there are significant demographic disparities in the likelihood350

of error on corrupted data. We found that older individuals, masculine presenting individuals, those351

with darker skin types, or in photos with dim ambient light all have higher errors ranging from352

20-60%. We also investigated questions of intersectional identities finding that darker males have353

the highest corruption errors. As for age and gender estimation, corruptions have a significant354

and sizeable impact on the system’s performance; gender estimation is more than twice as bad on355

corrupted images as it is on clean images; age estimation is 40% worse on corrupted images.356

Future work could explore other metrics for evaluating face detection systems when ground truth357

bounding boxes are not present. While we considered the length of response on clean images to be358

ground truth, it could be viable to treat the clean image’s bounding boxes as ground truth and measure359

deviations therefrom when considering questions of robustness. Of course, this would require a360

transition to detection-based metrics like precision, recall, and F -measure.361

We do not explore questions of causation in this benchmark. We do not have enough different362

datasets or commercial systems to probe this question through regressions or mixed effects modeling.363

We do note that there is work that examines causation questions with such methods like that of364

[Best-Rowden and Jain, 2017] and [Cook et al., 2019]. With additional data and under similar365

benchmarking protocols, one could start to examine this question. However, the black-box nature of366

commercial systems presents unique challenges to this endeavor.367

1https://docs.aws.amazon.com/rekognition/latest/dg/guidance-face-attributes.html
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