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ABSTRACT

Graph Neural Networks (GNN) is a classical method that has been applied to
document classification as a compelling message-passing framework inside and
between documents. Consider the graph-based models are transductive when
representing the documents as nodes in one graph(inter-documents), and require
high memory and time efficiency to employ the GNN to each document after
aligning the documents to the longest one(intra-documents). This paper proposes
a novel method named Deep Attention Pooling Graph Neural Networks (DAPG)
to use the structure of each document for inductive document classification. The
attention pooling layer (APL) in DAPG adaptively selects nodes to form smaller
graphs based on their scalar attention values to alleviate resource consumption.
Additionally, regarding the structural variation, a fresh dual adjacency matrix for
individual graphs based on the word co-occurrence and the word distance has
been built to conquer the sparsity and keep stability after pooling. Experiments
conducted on five standard text classification datasets show that our method is
competitive with the state-of-the-art. Ablation studies reveal further insights into
the impact of the different components on performance.

1 INTRODUCTION

GNN has demonstrated great capability for various challenging NLP tasks. As in the text classification
field, where words in the document have locality and order information but with ambiguities and the
unstructured relationship between documents which hinders the traditional CNN Technicolor et al.
(2017), Haykin & Kosko (2001) and RNN Mikolov et al. (2010) but corresponds to the instincts of
graph convolutional operations. Defferrard et al. (2016) first employed Graph Convolutional Neural
Networks (GCN) in the text classification task. Further, Yao et al. (2018) improved the work by
employing Graph Convolutional Networks Kipf & Welling (2016) on article nodes and word nodes
in one graph, which turns the text classification problem into article nodes classification. Moreover,
Huang et al. (2019) introduced a message-passing mechanism to improve the TextGCN and gain
impressive results. Zhang et al. (2020) inherits the Gate Graph Neural Networks in Nikolentzos et al.
(2020) as an information aggregator which utilizes the context inside each document.

The core idea of the message-passing framework is recursive information aggregation of neighbor-
hoods. The concept of message passing over graphs has been around for many years. And most of the
spectral GNN are based on it. Notable examples include Kipf & Welling (2016), Gilmer et al. (2017),
and Xu et al. (2018) which are applied to text classification, bio-information, and social network
data with great success. Meanwhile, the spatial GNN methods (Hamilton et al. (2017) ,Chen et al.
(2018),Velikovi et al. (2017)) based on message aggregation applied to text classification are also
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Figure 1: An illustration of the DAPG network configuration.

competitive. However, most of the work focused on message passing between the documents and
neglected the context-aware word relations within each document. They are inherently transductive
and have difficulty with inductive learning. Nikolentzos et al. (2020), Zhang et al. (2020) develop
an expressive intra-document message-passing GNN, which is tailored to document understanding
with the word co-occurrence networks of each document and obtain the compressive result in text
classification.

However, there are two drawbacks of the intra-document GNN models. First, it needs to align
the documents according to the longest one to build the adjacency matrices which causes high
memory consumption and inefficiency. Second, after the padding, the only co-occurrence adjacent
matrix is often very sparse, which causes the information propagation difficult and slow convergence.
Therefore, We propose a novel text classification method based on GNN with attention pooling to
release the memory consumption and dual adjacency matrix which merges two individual adjacency
matrices to conquer the sparsity. To sum up, the main contributions of this paper are as follows:

• A novel deep GNN framework with Attention Pooling is proposed to alleviate memory consumption
and boost efficiency and accuracy.

•We propose a new graph constructor which combines the word co-occurrence and the word distance
to build a dual adjacency matrix. The new adjacency matrix conquers the sparsity and keeps the
model performance stable, even though the graph structure varied after pooling.

• The experimental results on text classification demonstrate the effectiveness of our proposed method
as compared to previous methods. Three databases conquer the state-of-the-art and two equal of
them.

2 METHOD

An overview of the DAPG architecture is presented in Fig. 1. The model comprises graph construction,
multiple consecutive combos, and a readout layer. The graph construction builds the graphs for each
document, then feeds them to the combos. Several cascade combos are applied to these graphs and
the outputs are concatenated for the latter layer. Finally, the readout layer generates the embeddings
of the documents for classification. In this section, we describe the details of the main components of
the model.

2.1 GRAPH CONSTRUCTION

To represent the document as graph-structured data, we build a graph with two types of edges which
denoted as G = (V,E), V represents the nodes and each node represents an unique word in the
document. E = f(E1, E2) represents the edges between the nodes, and E1, E2 represent two edge
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Figure 2: The structure of the combo

types. E1 is the words co-occurrence in the statistical word co-occurrence network ( Mihalcea &
Tarau (2004)) with a sliding window overspanning sentences. The bigger size of the sliding window
made E1 dense, but vague the structure of the document. On the contrary, the small size made it
sparse which impedes information propagation. Here we set it as 3 as default. E2 is calculated from
the Generalized Mahalanobis distance between words as:

D(xi, xj) =
√

(xi − xj)TM(xi − xj), (1)

D(xi, xj) represents the generalized Mahalanobis distance between xi and xj where xi and xj are
two neighboring words. Where M is trainable weights and set to be I in this paper to improve the
efficiency which degenerating D into Euclid distance. Then the distance is applied to calculate the
Gaussian kernel:

G(xi, xj) = exp(−D(xi, xj)/(2σ
2)), (2)

where the normalized G is the adjacency matrix of E2 edges. We add it to adjacent matrix A1 of E1

edges to generate A as the final graph adjacency matrix. The formula is as follows:

A = norm(add(A1 + α ∗G)). (3)

Where α is a trainable coefficient. We set α as 1 and define A as a dual adjacency matrix for
computing efficiency. And define A as an incremental-dual adjacency matrix when 0 ≤ α ≤ 1 where
G is as an incremental of A1.

2.2 DAPG COMBO

Several cascade combos with the same structure are stacked in DAPG. As illustrated in Fig. 1, the
combo contains an attention pooling layer (APL), followed by a GNN layer, with a BN and Relu
non-linearity in between. The input is a graph processed by the prior graph constructor or combo.
The attention pooling layer is applied to the input graph to select nodes to retain. Then the GNN layer
is employed to update the nodes from their neighbors as an aggregator.

2.2.1 ATTENTION POOLING LAYER

The APL plays an important part in the DAPG of down-sampling the nodes. It adaptively selects a
subset of nodes according to the scalar attention score Gao & Ji (2022). The layer employs a trainable
projection method to project all node features to one dimension. Then perform max pooling for node
selection, and α (α 5 1) percent of the largest scalar projection values are selected to retain for the
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new graph. Also, the adjacency matrix will be rebuilt based on the retained nodes. The formulas of
the node selection are as follows:

y = norm(Proj(X`)),

idx = topk(y, α),

ỹ = sigmoid(y(idx)),

X̃` = X`(idx, :),

A`+1 = A`(idx, idx),

X`+1 = X̃` � (ỹ1T
C).

(4)

After aligning all the graphs, suppose there are N nodes in one graph and each node contains C
features. Where A` ∈ RN×N and X` ∈ RN×C are the adjacency matrix and feature matrix of the
current layer. y is the normalized projection of X`. The topk() select k largest nodes and return the
index idx according to the α rate. X̃` and A` are the new nodes and new adjacent matrix which are
downsampled from X` and A` based on the idx. The nonlinearity sigmoid function is applied to
generate attention scores ỹ. Finally, the element-wise multiplication is applied on the X̃` with ỹ,
then output the new embedding Xl+1.

2.2.2 GNN LAYER

After the graphs were compressed and updated by APL, the GNN layer is employed as a message-
passing framework between the nodes in the graphs. In this paper, We compare the Classic GNN
( Kipf & Welling (2016)) with the Gated Graph Neural Networks ( Li et al. (2015)) as a GNN layer,
getting similar accuracy but more efficiency. The concrete details will be elaborated on in the ablation
part. The formula of the GNN aggregation is as follows:

Xl+1 = f(Ã`,W`,X`), (5)

where Ã` ∈ RN×N is the normalized adjacency matrix. We pre-process the Ã` as D̃`− 1
2A`D̃`− 1

2

with A` = I +A`. A` ∈ RN×N is the adjacency matrix, D̃` is the degree matrix of Ã` as D̃`
ii =∑

j Ã
`
ij and X` ∈ RN×D is the nodes feature matrix of the graph from former layer. W` ∈ RD×D

is a transformation matrix to be trained. f is a non-linear function, in this paper, it set as Relu as
default.

2.3 READOUT LAYER

The readout layer merges the averaging and the max-pooling of the nodes in graphs to generate the
graph-level representation of the documents. The formulas are defined as follows:

X = concat(X1,X2 . . .Xl),

Xatt = σ(softmax(XWa)� tanh(XWb)),

Yg =
1

|n|

∞∑
n=1

Xatt + maxpooling(Xatt),

(6)
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where X is the concatenation of {X1,X2 . . .Xl} which are the nodes feature matrices output from
cascade combos. The Xatt is the output of a sub-layer that works as a global self-attention mechanism
( Lin et al. (2017)). Wa ∈ RN×D and Wb ∈ RN×D are the trainable weight matrices. softmax
performs as soft attention to generate an alignment vector to dot product with the latter part that has
been non-linear transformed via tanh. σ is the no-linear activation function. Then the max-pooling
and the average of Xatt are concatenated to generate the final representation of the graph.

Regarding the text classification task in this paper, we add a fully connected layer with softmax to
generate the class probability of the documents and choose Cross-entropy loss to train the model:

Yl = softmax(WYg + b),

L = −
∑
i

Yli log(Yli) .
(7)

Where W and b are trainable weights and bias, L is the model loss.

3 EXPERIMENT

In this section, to evaluate the overall performance of DGAP, we compare our model with the
previous state-of-the-art models on the document classification task. Experimental results show
that our method achieved competitive results. Some ablation studies are performed to examine the
contributions of APL and the dual adjacency matrix on performance improvements. We conduct
studies on the relationship between network depth and node classification performance and illustrate
the dynamics of the adjacency matrix after pooling.

3.1 DATASETS

In this paper, five datasets Yao et al. (2018) have been adopted to evaluate our model in document
classification for consistency. MR: binary classification of the movie sentiment as positive and
negative. Ohsumed: Multi-class classification for 23 cardiovascular disease categories of medical
abstracts. R8 and R52: Multi-class classification for Reuters Newswire articles. R8 is 8 categories
and R52 is 52 categories. 20NG: no overlap news assembling which contains 18,846 documents
evenly categorized into 20 categories.

3.2 BASELINES

To evaluate our model, we choose six models as baselines:

TextCNN Kim (2014) is a classic graph-based text classification model that aggregates the information
of nodes through GCN. TextGCN Yao et al. (2018) is the traditional deep learning method that
employs GCN on hybrid nodes graph in text classification. FastText Joulin et al. (2017) selects
the word layer by layer to build graphs via Mentocalo downsampling. SWEM Shen et al. (2018)
is a Simple Word-Embedding-based Model which consists of parameter-free pooling operations.
TextING Zhang et al. (2020) uses the structure of each document and passes messages between words
via gate GCN.

5



Under review as a conference paper at ICLR 2023

Model MR R8 R52 Ohsumed 20NG
TextCNN(non-static) 77.75 ± 0.72 95.71 ± 0.52 87.59 ± 0.48 58.44 ± 1.06 82.15 ± 0.52

FastText 75.14 ± 0.20 96.13 ± 0.21 92.81 ± 0.09 57.70± 0.49 79.67 ± 0.29
TextRNN 77.68 ± 0.86 96.31 ± 0.33 90.54 ± 0.91 49.27 ± 1.07 75.43 ± 1.72
SWEM 76.65 ± 0.63 95.32 ± 0.26 92.94 ± 0.24 63.12 ± 0.55 85.16 ± 0.29

TextGCN 76.74 ± 0.20 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56 86.34 ± 0.06
TextING 79.82 ± 0.20 98.04 ± 0.25 95.48 ± 0.19 70.42 ± 0.39 85.47 ± 0.56

DAPG 80.22 ± 0.31 98.21 ± 0.27 95.97 ± 0.35 71.47 ± 0.51 87.16 ± 0.19

Table 1: Document Classification accuracies(%).The mean and standard deviation in the five datasets.
Best performance per column in bold. Note that some baseline results are from ( Yao et al. (2018)).

Model MR 20NG
Co-occurrence 79.75 86.38
Word distance 78.61 86.02

Dual 80.22 87.16
Incremental-Dual 80.32 87.23

Table 2: Document Classification accuracies(%) of Co-occurrence adjacency matrix, word distance
adjacency matrix, Dual adjacency matrix and Incremental-Dual adjacency matrix.

3.3 EXPERIMENTAL SET-UP

For fairness and consistency, we randomly split the training set of the datasets into a ratio of 9:1
for training and validation, set the rates of all the pooling layers as 0.6, and stack two combos as
default for efficiency. Other parameters are tuned according to the performance of the validation set.
We use the Adam optimizer with a learning rate of 0.005 and the dropout rate of 0.5, choose the
pre-trained GloVe( Pennington et al. (2014)) with 300 dimensions as the word embedding, and the
out-of-vocabulary (OOV) words are randomly initialized from a uniform distribution [-0.01, 0.01].

3.4 PERFORMANCE STUDY

We compare our DAPG to other models in terms of text classification accuracy. Table 1 summarizes
the results on datasets MR, Ohsumed, R8, R52, and 20NG. For baseline values listed, they are state-
of-the-art on these datasets. We observe that the DAPG achieves consistently better performance than
other models. When compared to TextING directly, the DAPG significantly improves performance on
three datasets by margins of 0.5 (R52), 1.7 (20NG), and 1.05 (Ohsumed), respectively, and performs
slight enhancement on the other two datasets. Due to the short documents of the MR dataset (average
length is 18 and 44 after the padding to align), APL selects almost all the words to retain and leave
the only dual adjacency matrix enhanced the graph density, DAPG gets a tiny improvement. Since R8
and R52 are simple, all the GNNs baselines perform satisfactorily. Ohsumed is a dataset of long text
with a small training set that restricts the generalization ability of the models except for the GNNs.
Meanwhile, most models perform reasonably on the long document dataset 20NG with a big training
set except TextRNN is in line with that DAPG is superior to TextING which is based on GGNN(RNN
architecture GNN). These results demonstrate the effectiveness of our model.
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Figure 3: (a) Test accuracy by varying the pooling rates of the MR dataset. (b) Time of one epoch on
MR dataset by varying the combos pooling rates

3.5 ABLATION STUDIES

Dual Adjacency matrix. Table 2 illustrates that the dual adjacency matrix improves the performance
of DAPG. In the MR dataset, the padding adjacency matrics of word co-occurrence of the too-short
documents are sparse. After pooling, the trivial variation of the structure causes the approximate
performance between word co-occurrence and dual adjacency matrix. The only word distance
adjacency matrix vague the structure of the documents and even perform worse than the co-occurrence
adjacency matrix. For the long text dataset 20NG, the equal performance of the two single adjacency
matrices and the evident improvements of the dual adjacency matrix indicates it captured the non-
overlapping information of the other two adjacency matrices. The last row shows the trainable
coefficient of the Incremental-Dual adjacency matrix increases the performance slightly but causes
more memory consumption and convergence slowness.

Attention Pooling rate. The pooling rate decides the proportion of nodes in a graph to retain. To
quantify the relationship between the pooling rate and accuracy, we set two combos as default in
DAPG and the two rates(r1 and r2) of the APL in the combos as the same. The cascade combos
output the retained nodes as N(r1× r2) indicates the squeeze of the focus. As shown in Fig. 3(a),
the tendency of the accuracy curve grows fast until 0.6× 0.6 and becomes flat in the rear. It indicates
the mild relation of discard nodes filtrated by APL with document comprehension. When the rates
are 1× 1, the combo degrades to an attention layer. Fig. 3(b) demonstrates the variation of one epoch
time as an approximate square curve due to the matrix multiplication in the combos. The variation
is flat in the beginning but steep in the rear. 0.6 × 0.6 are appropriate rates for both accuracy and
efficiency.

Combo depth. As described in ( Kipf & Welling (2016)), two layers are appropriate for GCN. We
varied the combo depth from 1 to 4 and set the pooling rate as 0.6 as the default for all APL. Fig. 4
shows that two and three combos get approximate accuracy but the time increased pari passu the
combo depth indicates two combos outperform all combo variants. It explained that the excessive
GCN layer induced over-smoothing and overemphasizing of the pooling caused the contextual
missing.

Effictive of GNNs. To verify the effectiveness of the GNNs, we compare the classical GNN(Kipf
& Welling (2016)), Chebyshev(2 layers) (A et al. (2011)), GGNN(Li et al. (2015)), and the Dense
layer(fully connected neural network) as a message-passing layer in DAPG. As shown in Table 3, the
GNNs outperform the Dense layer(even increase the trainable weights) on both MR and Ohsumed
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Figure 4: (a) Accuracy with the combo depth variation of MR dataset. (b) One epoch time of the
combo depth variation of MR dataset.

Dataset MR Ohsumed
Accuracy Time Accuracy Time

GNN 80.12 ± 0.20 27.5 + 5 71.04 ± 0.36 42.6 + 3
Chebyshev 80.22 ± 0.21 28.7 + 5 71.47 ± 0.51 45.7 + 4

GGNN 80.35 ± 0.42 47.2 + 7 70.88 ± 0.33 80.2 + 11
Dense 76.05 ± 0.30 26.2 + 4 67.08 ± 0.71 35.7 + 7

Table 3: Document Classification accuracies(%) and the one epoch time(s)(+ means the disturbance
of the shortest epoch) of GNN ,Chebyshev, GGNN, Dense.

datasets in accuracy, suggesting the validity of the graph methods. Additionally, the performance
of the classical GCN is similar to GGNN (the margin is about 0.1 on MR and 0.4 on Ohsumed) but
more efficient (depending on the length of the documents, about 20 seconds faster in one epoch on
MR and 35 seconds on Ohsumed)

Case study. Fig. 5 illustrates the visual attention pooling layer. The count of red highlighted words
in Fig. 5(a) is proportional to the pooling rate of the first APL. The blue highlighted words in Fig.
5(b) of the second APL are words retained from the first APL concerning the cascade connection.
Intuitively, The blue words are more positively correlated to the document label than the red words.
Concatenating the filtrated words advanced the performance significantly in sentiment analysis which
demonstrates the effectiveness of the APLs.
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(b)

Figure 5: The length of the padding documents of MR dataset is 44 for alignment, and the pooling
rate is 0.6 × 0.6 as default. 26 words are reserved for the first APL, and 16 words are retained for the
second APL. (a) Filtrated words of the first APL; (b) Filtrated words of the second APL.

8



Under review as a conference paper at ICLR 2023

4 CONCLUSION

This paper presents DAPG, a deep GNN model with APL(attention pooling layers) that leverages
the structure of each document for inductive test classification. DAPG achieves state-of-the-art
performance on five datasets which significantly surpasses previous best methods. As a primary
element of DAPG, the document structure has shown to be effective and efficient in text classification.
Therefore we look forward to investigating its use in other natural language processing tasks.
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