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Abstract

Adversarial examples have raised several open questions, such as why they can
deceive classifiers and transfer between different models. A prevailing hypothesis to
explain these phenomena suggests that adversarial perturbations appear as random
noise but contain class-specific features. This hypothesis is supported by the success
of perturbation learning, where classifiers trained solely on adversarial examples
and the corresponding incorrect labels generalize well to correctly labeled test
data. Although this hypothesis and perturbation learning are effective in explaining
intriguing properties of adversarial examples, their solid theoretical foundation
is limited. In this study, we theoretically explain the counterintuitive success
of perturbation learning. We assume wide two-layer networks and the results
hold for any data distribution. We prove that adversarial perturbations contain
sufficient class-specific features for networks to generalize from them. Moreover,
the predictions of classifiers trained on mislabeled adversarial examples coincide
with those of classifiers trained on correctly labeled clean samples. The code is
available at https://github.com/s-kumano/perturbation-learning.

1 Introduction

Adversarial examples [41], which are imperceptibly perturbed inputs designed to deceive machine
learning models, have raised significant concerns about the robustness and reliability of these models.
Despite their importance, the underlying mechanisms of adversarial examples are not yet fully
understood. A prevailing hypothesis to explain the intriguing properties of adversarial examples is
the “feature hypothesis” [22]. This hypothesis posits that adversarial perturbations, while appearing
as imperceptible noise to humans, contain class-specific features. The feature hypothesis provides a
unified explanation for several puzzling phenomena associated with adversarial examples, such as
their ability to deceive classifiers, transferability across models, and so on (cf. Section 2.1).

Perturbation learning [22] provides empirical evidence supporting the feature hypothesis. In this learn-
ing, classifiers are trained solely on adversarial examples that are mislabeled in human perception,1
yet they demonstrate remarkable generalization to clean test data (Fig. 1). For example, classifiers
achieved 77% accuracy on the correctly labeled clean test dataset of CIFAR-10 [27], even though they

1This is the critical difference between perturbation learning and adversarial training or training with noisy
labels. Perturbation learning shows the learnability solely from adversarial examples (e.g., a cat adversarial
image) that always have incorrect labels (e.g., the bird label) to classify clean test images with the correct
labels (i.e., bird clean images to the bird class). Perturbation learning does not aim to learn robustly against
adversarial examples or noisy labels. Refer to Appendix A in [28] for further clarifications.
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Figure 1: Counterintuitive generalization of perturbation learning.1 A classifier g is trained solely on
mislabeled adversarial examples Dadv := {(xadv

n , yadvn )}Nn=1. These examples xadv
n are generated

to mislead a classifier f , which is trained on correctly labeled clean samples D := {(xn, yn)}Nn=1,
into predicting yadvn (̸= yn). Surprisingly, despite being trained only on mislabeled data, the classifier
g generalizes well to clean test samples. This counterintuitive result suggests that adversarial
perturbations contain label-aligned class features, enabling the classifier g to generalize from them.

were trained on entirely mislabeled adversarial examples (e.g., a cat adversarial image labeled as a
bird) [28]. This surprising result suggests that adversarial perturbations encode class-relevant features
that enable classifiers to learn meaningful representations. However, despite the empirical support,
the theoretical foundations of the feature hypothesis and perturbation learning remain limited. While
a recent study [28] provided theoretical justifications, their results rely on stringent assumptions about
data distribution, perturbation design, training procedure, and model architectures.

In this study, we theoretically address the understanding and justification of the feature hypothesis and
perturbation learning. First, to support the feature hypothesis, we show that adversarial perturbations,
while appearing as random noise, are parallel to the weighted sum of all training samples. This
result suggests that a single perturbation derived from a classifier and input can potentially contain
information about the entire training dataset. In particular, for some specific cases (e.g., when
training samples are mutually orthogonal), perturbations include all training data and labels without
loss of information. We then reveal that class features within perturbations enable classifiers to
generalize from them. Specifically, under three mild conditions, the predictions of a classifier trained
on adversarial perturbations are consistent with those of a classifier trained on correctly labeled clean
samples. These three conditions can be interpreted from geometric and quantitative perspectives.
Finally, we demonstrate that under similar conditions, the prediction agreement is observed between
a classifier trained on mislabeled adversarial examples and one trained on correctly labeled clean
samples, justifying the empirical success of perturbation learning.

Our analysis assumes two-layer neural networks with sufficient width but does not impose any
assumptions on data distribution, which is a substantial progress from prior work [28] that considered
mutually orthogonal training samples. In addition, our perturbation design, training procedure,
activation functions, and bias availability are milder. In short, as shown in Tab. 1, except for the wide
width assumption, our analysis requires milder conditions than prior work. Our contributions can be
summarized as follows:

• We provide a theoretical justification for the feature hypothesis and perturbation learning
using wide two-layer neural networks, considering any data distribution and realistic problem
settings. Except for the wide width, our assumptions are substantially milder than [28].

• We demonstrate that adversarial perturbations are parallel to the weighted sum of training
samples, suggesting that a single perturbation can potentially contain information about the
entire training dataset. This result supports the feature hypothesis.

• We prove that under three mild conditions, the predictions of a classifier trained on pertur-
bations are consistent with those of a classifier trained on correctly labeled clean samples.
Moreover, under similar conditions, the prediction agreement between a classifier trained on
mislabeled adversarial samples and one trained on clean samples is observed, providing a
theoretical justification for the empirical success of perturbation learning.
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2 Background and Related Work

2.1 Feature Hypothesis and Perturbation Learning

It has been hypothesized that adversarial perturbations contain class-specific features, although
appearing as random noise [22]. This hypothesis, or feature hypothesis, offers a unified expla-
nation for several open questions related to adversarial examples. For example, misclassification
by classifiers and transferability across models [21, 41] can be attributed to the response to fea-
tures within perturbations. Furthermore, according to this hypothesis, adversarially robust models
achieve robustness by discarding brittle yet predictive features and focusing on more stable and
semantically meaningful features. This interpretation explains the phenomena observed with robust
models, such as the trade-off between accuracy and robustness [13, 32, 34, 35, 40, 42, 46, 47],
perceptually-aligned gradients [1, 4, 7, 17, 18, 26, 38, 39, 42, 48], and enhanced transfer learning
capabilities [1, 12, 37, 43].

Perturbation learning1 [22] provides empirical support for the feature hypothesis. In perturbation
learning, the dataset appears entirely mislabeled to human perception. However, the hypothesis
suggests that adversarial perturbations in the dataset include label-aligned class features. Indeed, it has
been observed that classifiers trained through perturbation learning can extract generalizable features
from these perturbations and achieve high test accuracy (e.g., 92% for MNIST [11], 54% for Fashion-
MNIST [45], and 77% for CIFAR-10 [27]), empirically justifying the feature hypothesis [22, 28].

While the feature hypothesis and perturbation learning are empirically effective in understanding
adversarial examples, their theoretical foundations are very limited. Only one recent study [28]
theoretically demonstrated that perturbations contain class features and that classifiers can generalize
from them. However, their results relied on stringent conditions (e.g., mutually orthogonal training
samples), which might not fully explain the success of perturbation learning in diverse settings.

In this study, for wide two-layer networks, we obtain results equivalent to those in [28] under more
relaxed conditions (cf. Section 3.4). We provide the first theoretical justification for the feature
hypothesis and perturbation learning under any data distribution and in a mild training setting.

2.2 Theoretical Framework: Lazy Training

Theoretical analysis of neural networks is generally challenging due to the non-convex nature of
the loss surface. To address this, recent studies have focused on the lazy training regime, where the
parameters of neural networks hardly change during training [5, 6, 9, 20, 25, 30, 33, 44, 49]. In this
regime, neural networks behave almost linearly around their initialization, simplifying the learning
dynamics. One of the key observation in lazy training is that, in wide two-layer neural networks, most
derivatives of hidden outputs through (Leaky-) ReLU activation remain constant during training [30],
which forms the basis of our theoretical framework (cf. Section 3.3). This observation has been
extended to show that the neural tangent kernel remains invariant during training [2, 3, 14, 15, 23, 29].

In contrast, the feature learning regime, where parameters move significantly away from their
initialization, has been explored in various studies [9, 20, 44]. Prior work on justifying perturbation
learning [28] employs the feature learning regime, building on related findings in this area [19, 24, 31].
In our study, we adopt the lazy training regime and relax several conditions assumed in previous
work [28] by introducing a wide width assumption (cf. Tab. 1). This adjustment is enabled by
differences in the theoretical tools used.

3 Theoretical Results

Notation. For n ∈ N, let [n] := {1, . . . , n}. For z1, z2 ∈ Rd, we denote the Euclidean norm by ∥z1∥
and the inner product by ⟨z1, z2⟩. Vectors z1 and z2 are called parallel and are denoted by z1//z2 if
there exists C ∈ R such that z1 = Cz2. Let N (µ, σ2) be the Gaussian distribution with mean µ ∈ R
and variance σ2 ≥ 0 and U(S) be the uniform distribution on a set S ⊂ R. We use Ω( · ), Θ( · ), and
O( · ) only to hide constant factors, and Ω̃( · ), Θ̃( · ), and Õ( · ) to hide polylogarithmic factors.
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Table 1: Comparison with existing work [28]. With a wide network assumption, we improve the
existing results from the perspective of data distribution, perturbation design, training time, loss
function, and network architecture. Note that the non-bias and leaky-ReLU assumptions of [28] are
critical for deriving their results. A detailed comparison can be found in Section 3.4.

[28] Ours

Training samples Mutually orthogonal Any
Perturbation type Oracle-based Standard gradient-based
Perturbation budget Unrealistically tight Any
Training time Infinite Any
Loss function Exponential or logistic Differentiable, non-decreasing
Network bias Not available Available
Activation Leaky-ReLU ReLU and Leaky-ReLU
Network width Any Sufficiently wide (but finite)
Theoretical framework Feature learning Lazy training

Common Binary classification, two-layer network, gradient flow

3.1 Problem Setup

In this study, we consider the dynamics of perturbation learning in binary classification problem
with a two-layer neural network trained by gradient flow. First, we formally define the perturbation
learning framework. The outline of perturbation learning is as follows: (i) train a classifier on
correctly labeled clean samples, (ii) create adversarial samples based on the trained classifier, and
(iii) train another classifier on the mislabeled adversarial samples.

Network trained on correctly labeled clean samples. We consider a two-layer neural network f :
Rd → R. Let V := (v1, . . . ,vm)⊤ ∈ Rm×d and a := (a1, . . . , am)⊤ ∈ Rm be the hidden weight
and bias, respectively. We also describe V := (Vij)1≤i≤m,1≤j≤d. Let α := (α1, . . . , αm)⊤ ∈ Rm

be the readout weight. While V and a are trainable, α is fixed during training. Denote the trainable
parameters by θV ,a := {V ,a}. We initialize Vij ∼ N (0, 1/d), ai ∼ N (0, 1), and αi ∼ N (0, 1/m)
for each i ∈ [m] and j ∈ [d]. The activation function is either ReLU or Leaky-ReLU ϕ(x) :=
max(γx, x) for γ ∈ [0, 1). Finally, the network is given by f(x;θV ,a) :=

∑m
i=1 αiϕ(⟨vi,x⟩+ ai).

Network trained on mislabeled adversarial samples. Similarly to f , we define a network trained
on mislabeled adversarial samples as g(x;θW ,b) :=

∑m
i=1 βiϕ(⟨wi,x⟩+ bi). Note that the initial-

izations of f and g are independent.

Loss function. We consider a differentiable, non-decreasing loss function ℓ : R → R, satisfying
ℓ′(z) ≥ 0 for any z ∈ R. Examples of such loss functions include the identity loss ℓ(z) := z,
exponential loss ℓ(z) := exp(z), and logistic loss ℓ(z) := ln(1 + exp(z)).

Training. We here describe the training process of the network f on correctly labeled clean samples.
The training of g is similarly defined. Let D := {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a correctly labeled
training dataset. The loss over D is defined as L(θV ,a;D) := (1/N)

∑N
n=1 ℓ(−ynf(xn;θV ,a)).

The network parameters are updated by gradient flow dθV ,a(t)/dt := − ∂L(θV ,a(t);D)/∂θV ,a ,
where t ≥ 0 is the training time. We consider Tf > 0 training steps, producing f( · ;θV ,a(Tf )). For
notational simplicity, we write f( · ; t) := f( · ;θV ,a(t)).

Note that we do not consider whether f( · ;Tf ) perfectly classify D. We discuss whether the classifier
g, trained on adversarial examples crafted via f( · ;Tf ), can mimic the predictions of f( · ;Tf ).
Adversarial perturbations. We consider a single-step gradient-based perturbation, which is a
common perturbation design [21]. An adversarial example xadv

n ∈ Rd and its corresponding
adversarial perturbation rn ∈ Rd are defined as follows:

xadv
n := xn + rn, rn := −ϵ ∇xnℓ(−yadvn f(xn;Tf ))

∥∇xn
ℓ(−yadvn f(xn;Tf ))∥

, (1)

where ϵ > 0 is the perturbation constraint and yadvn ∈ {±1} is the target label. The adversarial
perturbation rn on xn is designed to increase yadvn f(xadv

n ;Tf ) under the constraint ∥rn∥ ≤ ϵ.
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Mislabeled dataset. We consider two configurations of a dataset Dadv for training g. First, we follow
the original perturbation learning approach, where classifiers are trained on adversarial perturbations
superposed on natural images, i.e., Dadv := {(xadv

n , yadvn )}Nn=1. This setting helps to understand
the prior perturbation learning process. Second, we directly consider learning from perturbations
rather than adversarial examples, i.e., Dadv := {(rn, yadvn )}Nn=1. This setting directly addresses the
question of whether classifiers can generalize from class features in perturbations.

Summary. The problem setting is summarized as follows:

Setting 3.1 (Perturbation learning). Independently initialize Vij ∼ N (0, 1/d), Wij ∼ N (0, 1/d),
ai ∼ N (0, 1), bi ∼ N (0, 1), αi ∼ N (0, 1/m), and βi ∼ N (0, 1/m) for each i ∈ [m] and j ∈ [d].
Train a two-layer neural network f parameterized by θV ,a with (γ-scaled Leaky-) ReLU on a dataset
D := {(xn, yn)}Nn=1 using gradient flow with a loss L(θV ,a;D) for training time Tf > 0. Create a
dataset Dadv by one of the following procedures with {yadvn }Nn=1 ∈ {±1}N :

Scenario (a) Dadv := {(rn, yadvn )}Nn=1, (2)

Scenario (b) Dadv := {(xadv
n , yadvn )}Nn=1. (3)

Train a two-layer neural network g parameterized by θW ,b on the dataset Dadv using gradient flow
with a loss L(θW ,b;Dadv) for training time Tg > 0.

Our interests are (i) the relationship between perceptually-noise-like adversarial perturbations
{rn}Nn=1 and clean training samples {(xn, yn)}Nn=1 (cf. Theorem 3.3), and (ii) whether the classifier
g( · ;Tg) trained on the adversarial perturbations or samples Dadv can mimic the predictions of the
classifier f( · ;Tf ) trained on the clean samples D (cf. Theorems 3.4 and 3.5).

3.2 Main Results

For z1, z2 ∈ Rd, we use Φ(z1, z2) ∈ (γ(1 + γ)/2, (1 + γ)/2] defined as (cf. Lemma C.4):

Φ(z1, z2) := Ev∼N (0,I/d),a∼N (0,1)[ϕ
′(⟨v, z1⟩+ a)ϕ′(⟨v, z2⟩+ a)], (4)

where ϕ′(x) := dϕ(x)/dx . First, we introduce an assumption on network width.

Assumption 3.2 (Wide network). Network width m satisfies

m > Õ

d2{ 1

N

N∑
n=1

(∫ Tf

0

ℓ′(−ynf(xn; t)) dt+

∫ Tg

0

ℓ′(−yadvn f(x′
n; t)) dt

)}2
, (5)

where x′
n := rn for Scenario (a) and x′

n := xadv
n for Scenario (b) in Setting 3.1. In particular,

m > Õ(d2(Tf + Tg)
2) for ℓ(s) = s.

This assumption requires sufficiently large width m that regularizes the variations in parameters
and forms the basis of lazy training (cf. Section 3.3). The width is always required to grow with
the speed of the squared input dimension d2. The relationship between the width and two training
times, Tf and Tg , depends on the training set {(xn, yn)}Nn=1 and loss function ℓ. For example, if the
training set is easily separable and the loss has an exponential tail, the derivative of the loss function
might decrease rapidly with training time t and small m is enough to satisfy the assumption. For the
identity loss, m is consistently required to satisfy Ω̃(d2(Tf + Tg)

2). Note that the required values
of Tf and Tg (and the corresponding m) for a desirable loss value remain an open question in the
community. Our experimental results show that m ≈ 100 is sufficient to verify our theorems for
high-dimensional Gaussian distributions. Under this assumption, we consider the direction of the
adversarial perturbation.

Theorem 3.3 (Direction of adversarial perturbation). Let δ = Θ(1) be a small positive number.
Under Assumption 3.2, for any n ∈ [N ], with probability at least 1− δ, the adversarial perturbation
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(a) Func. margin cond. 1 (b) Func. margin cond. 2 (c) Agreement cond. (d) Intersection

Figure 2: The regions where Ineqs. (9) and (10) and Eq. (11) hold (colored areas) and their intersection.

rn is parallel to the weighted sum of training samples as follows:

rn//
1

N

N∑
k=1

ykΦ(xn,xk)xk

∫ Tf

0

ℓ′(−ykf(xk; t)) dt+ ξn, (6)

where ξn satisfies ∥ξn∥ = Õ(1). In particular, for ℓ(s) = s,

rn//
Tf
N

N∑
k

ykΦ(xn,xk)xk + ξn. (7)

Note that the confidence level δ only logarithmically affects the norm of the remainder term ξn. This
theorem indicates that the direction of a single perturbation can be represented as the weighted sum
of ykxk and remainder term ξn. Interestingly, this result suggests that a single perturbation derived
from a classifier and sample can potentially contain information about the entire training dataset
{(xn, yn)}Nn=1. Particularly, in some cases (e.g., training samples are mutually orthogonal), ykxk

are not cancelled out by each other, and thus the single perturbation rn contains all training data
and labels without loss of information.2 These results theoretically support the feature hypothesis.
Consider the case with the identity loss. While the norm of the first term is O(Tf

√
d), the norm of

the remainder is constrained to Õ(1), suggesting that larger training time Tf and input dimension d
strengthen the alignment between the perturbation and weighted sum.

Then, we consider the learning solely from these perturbations. The following theorem is a special
case of Theorem D.17, which addresses a broader loss class and any sampling of yadvn ∈ {±1}.

Theorem 3.4 (Perturbation learning, Scenario (a), special case of Theorem D.17). Consider Sce-
nario (a) in Setting 3.1. Assume ℓ(s) = s and yadvn ∼ U({±1}) for every n ∈ [N ]. Let δ = Θ(1)
be a small positive number and

f̂(z) :=
1

N

N∑
n=1

ynΦ(xn, z)⟨xn, z⟩, ĝa(z) :=
1

N2

N∑
n=1

Φ(rn, z)

N∑
k=1

ykΦ(xn,xk)⟨xk, z⟩. (8)

Under Assumption 3.2, for any z ∈ Rd, if

(Functional margin condition 1) |f̂(z)| > Õ
(
1 +

1

Tf

)
, (9)

(Functional margin condition 2) |ĝa(z)| > Õ
(

1

Tf
+

√
d

ϵ

(
1

Tg
+

1√
N

))
, (10)

(Agreement condition) sgn(f̂(z)) = sgn(ĝa(z)), (11)

then, with probability at least 1− δ, sgn(f(z;Tf )) = sgn(g(z;Tg)) holds.

Note that the confidence level δ only logarithmically affects the right terms of Ineqs. (9) and (10),
which is why these terms appear independent of δ. This theorem states that the predictions of a
classifier g trained solely on adversarial perturbations {(rn, yadvn )}Nn=1 coincide with those of a
classifier f trained on standard training samples {(xn, yn)}Nn=1 if the three conditions hold. The two

2Recall Φ(xn,xk) > 0.
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functions, f̂ and ĝ, which govern these conditions, can be viewed as key components that significantly
influence the predictions of f and g (cf. Section 3.3). The conditions can be interpreted as follows.

Geometrical perspective. The functional margin conditions, Ineqs. (9) and (10), require the func-
tional margins of f̂ and ĝ to exceed certain thresholds. In the input space z ∈ Rd, these conditions
correspond to regions far from the decision boundaries f̂(z) = 0 and ĝ(z) = 0 (Fig. 2(a) and (b)).
In a d-dimensional space, L2-distance scales with

√
d, making the right terms of Ineqs. (9) and (10)

relatively small when the perturbation size ϵ = Θ(
√
d); hence, a larger d facilitates the satisfaction of

these conditions. Furthermore, Eq. (11) necessitates the agreement of the signs of these two decision
boundaries (Fig. 2(c)). Consequently, the region where all conditions hold, i.e., where the prediction
match occurs, can be characterized by the two piecewise linear functions (Fig. 2(d)).

Quantitative perspective (functional margin conditions). A large perturbation size ϵ facilitates
the satisfaction of Ineq. (10). In high-dimensional spaces, achieving the required margin conditions
demands perturbations of at least Ω(

√
d) in magnitude, aligning with empirical scaling laws for L2

perturbations. However, increasing ϵ alone is insufficient for the satisfaction because the right term
of Ineq. (10) has an ϵ-irrelevant term Õ(1/Tf ). Assume ϵ = Θ(

√
d). The absolute values of f̂ and

ĝ grow with Θ(d) due to ⟨x, z⟩, while the right terms of Ineqs. (9) and (10) are independent of d.
Thus, a larger d consistently facilitates the satisfaction. The training times Tf and Tg can reduce the
right terms, but these terms contain time-independent terms Õ(1) and Õ(1/

√
N), indicating that

longer training times do not necessarily guarantee the satisfaction. A large sample size N also helps
to satisfy Ineq. (10), but similarly, it is not sufficient. In summary, while a larger input dimension d
consistently support the success of perturbation learning, a larger perturbation size ϵ, sample size N ,
and training times Tf , Tg provide partial, but not definitive, benefits.

Quantitative perspective (agreement condition).3 It is difficult to interpret the agreement condition,
Eq. (11), in its current form. We consider the following sufficient condition (cf. Lemma D.19):

|∑N
n=1 yn⟨xn, z⟩|

maxx∈{x1,...,xN ,z}
∑N

n=1 λ(xn,x)|⟨xn, z⟩|
>

1− γ

1 + γ
⇒ Eq. (11), (12)

λ(z1, z2) := 1−
√

e

2π

∥z1∥2∥z2∥2 − ⟨z1, z2⟩2 + d∥z1 − z2∥2
∥z1∥2∥z2∥2 + ⟨z1, z2⟩2 + d∥z1 + z2∥2 + 2d2

= Θ(1). (13)

Note that the left term can exceed one as λ(z1, z2) lies in (0.34, 1]. It is clear that a large negative
slope of Leaky-ReLU γ facilitates the satisfaction. The magnitude of the left term depends on the
consistency of the correlation (inner product) between z and ynxn for every n. For example, when z
consistently exhibits a positive or negative correlation with ynxn, the left term exceeds one, and the
condition is satisfied. In contrast, if z positively correlates with half of the samples and negatively
with the other half, the left term may output a small value, and the condition is not satisfied. In
summary, the agreement condition depends on the consistency of the correlation between z and
ynxn.

Finally, we justify the success of perturbation learning in Scenario (b).

Theorem 3.5 (Perturbation learning, Scenario (b), special case of Theorem D.18). Consider Sce-
nario (b) in Setting 3.1. Assume ℓ(s) = s and yadvn ∼ U({±1}) for every n ∈ [N ]. Let δ = Θ(1)
be a small positive number and

ĝb(z) :=
1

N2

N∑
n=1

Φ(xadv
n , z)

N∑
k=1

ykΦ(xn,xk)⟨xk, z⟩. (14)

Under Assumption 3.2, for any z ∈ Rd, if the functional margin condition 1 (Ineq. (9)),

(Func. margin cond. 2) |ĝb(z)| > Õ

 1

Tf
+

√
d

ϵ

 1

Tg
+

√∑N
n (⟨xn, z⟩+ 1)2

N

, (15)

(Agreement condition) sgn(f̂(z)) = sgn(ĝb(z)), (16)

3One can analyze the agreement condition by using the relationship between Φ and the arc-cosine kernel [10].

7



then, with probability at least 1− δ, sgn(f(z;Tf )) = sgn(g(z;Tg)) holds.

This is a special case of Theorem D.18, which addresses differentiable, non-decreasing losses and
any sampling of yadvn ∈ {±1}. Similarly to Theorem 3.4, this theorem states that the predictions
of a classifier g trained on randomly labeled adversarial examples {(xadv

n , yadvn )}Nn=1 coincide with
those of a classifier f trained on standard training samples {(xn, yn)}Nn=1 if the three conditions hold.
Functional margin condition 1 is consistent with that in Theorem 3.4, i.e., Ineq. (9). The definition of
ĝb(z) is slightly different from ĝa(z) in Theorem 3.4, with rn replaced by xadv

n . Due to this change
in the definition of ĝb(z), functional margin condition 2, Ineq. (15), and the agreement condition,
Eq. (16), slightly differ from those in Theorem 3.4.

Assume ϵ = Θ(
√
d). Similarly to Ineq. (10), the left term of Ineq. (15) grows with O(d) due to the

inner product. In contrast to Ineq. (10), the right term of Ineq. (15) includes a term that grows with√∑N
n (⟨xn, z⟩+ 1)2/N = O(d/

√
N). This suggests that Scenario (b) necessitates a larger sample

size N than Scenario (a) to mitigate the effect of d.

Furthermore, Eqs. (11) and (16) hold simultaneously (i.e., sgn(f̂(z)) = sgn(ĝa(z)) = sgn(ĝb(z)))
if
∑N

k=1 ykΦ(xn,xk)⟨xk, z⟩ outputs the same sign for any n. This indicates that there might exist
regions where the prediction match is observed regardless of the scenarios, and these regions are
partially determined by the n linear boundaries. Note that Ineq. (12) also serves as a sufficient
condition for Eq. (16), and the quantitative analysis for Eq. (11) can be applied to Eq. (16) as well.

3.3 Sketch of Proof

In this section, for simplicity, we provide a sketch of the proof for Theorems 3.3 and 3.4 with infinite
network width m→ ∞, networks without biases, and identity loss. A proof for the general case can
be found in Appendix D.

Lazy training. First, we introduce the concept of lazy training, where network parameters and
outputs of hidden neurons change negligibly during training when the network width is sufficiently
large [9, 30]. Since a readout weight αi is sampled from N (0, 1/m), from gradient flow, for any
z ∈ Rd,∣∣∣∣∣

〈∫ Tf

0

dvi(t)

dt
dt ,z

〉∣∣∣∣∣ =
∣∣∣∣∣ 1N

N∑
n=1

ynαi⟨xn, z⟩
∫ Tf

0

ϕ′(⟨vi(t),xn⟩) dt
∣∣∣∣∣ = Õ

(
dTf√
m

)
. (17)

Therefore, as m → ∞, the inner product between the time variation of a hidden parameter and an
input approaches zero. This suggests that the sign of the output of a hidden neuron do not change:

sgn(⟨vi(Tf ), z⟩) = sgn

(
⟨vi(0), z⟩+

〈∫ Tf

0

dvi(t)

dt
dt ,z

〉)
m→∞−−−−→ sgn(⟨vi(0), z⟩). (18)

Therefore, ϕ′(⟨vi(Tf ), z⟩) = ϕ′(⟨vi(0), z⟩). Recall ϕ(z) := max(γz, z).

Theorem 3.3. From the perturbation definition Eq. (1), the perturbation rn is parallel to
∇xn

f(xn;V (Tf )). Using ϕ′(⟨vi(Tf ), z⟩) = ϕ′(⟨vi(0), z⟩),

rn//∇xn
f(xn;V (Tf )) =

m∑
i=1

αiϕ
′(⟨vi(0),xn⟩)

(
vi(0) +

∫ Tf

0

dvi(t)

dt
dt

)
. (19)

The first term is constrained to Õ(1). Let Φ(xn,xk) := Ev∼N (0,1/d)[ϕ
′(⟨v,xn⟩)ϕ′(⟨v,xk⟩)].

Using
∑m

i=1 α
2
iϕ

′(⟨vi(0),xn⟩)ϕ′(⟨vi(0),xk⟩) → Φ(xn,xk) as m→ ∞, the second term becomes
m∑
i=1

αiϕ
′(⟨vi(0),xn⟩)

∫ Tf

0

dvi(t)

dt
dt =

Tf
N

N∑
k=1

ykΦ(xn,xk)xk. (20)

Theorem 3.4. Similarly to the above, we can represent the adversarial perturbation rn as follows:

rn := ϵyadvn

∇xn
f(xn;V (Tf ))

∥∇xn
f(xn;V (Tf ))∥

≈ Ω

(
ϵ

N
√
d

)
yadvn

N∑
k=1

ykΦ(xn,xk)⟨xk, z⟩. (21)
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Assuming
∑m

i=1 αiϕ
′(⟨vi(0), z⟩)⟨vi(0), z⟩ = Õ(1) ≈ 0 for simplicity, the network prediction

f(z;V (Tf )) trained on {(xn, yn)}Nn=1 can be represented as follows:

f(z;V (Tf )) =

m∑
i=1

αiϕ
′(⟨vi(0), z⟩)⟨vi(Tf ), z⟩ ≈

Tf
N

N∑
n=1

ynΦ(xn, z)⟨xn, z⟩, (22)

and sgn(f(z;V (Tf ))) = sgn(
∑N

n=1 ynΦ(xn, z)⟨xn, z⟩). In addition, g(z;W (Tf )) trained on
{(rn, yadvn )}Nn=1 can be represented as follows:

g(z;W (Tg)) ≈ Ω

(
ϵTg

N2
√
d

) N∑
n=1

Φ(rn, z)

N∑
k=1

ykΦ(xn,xk)⟨xk, z⟩, (23)

and sgn(g(z;W (Tg))) = sgn(
∑N

n=1 Φ(rn, z)
∑N

k=1 ykΦ(xn,xk)⟨xk, z⟩). Thus, if the agreement
condition Eq. (11) holds, then sgn(f(z;V (Tf ))) = sgn(g(z;W (Tg))).

Formal proof. In the above sketch of proof, we have introduced several approximations. Rigorous
evaluations are provided in Appendix D. For example, in the sketch, we assumed m→ ∞, ensuring
that the signs of all hidden layer outputs remain unchanged. In contrast, the formal proof derives a
bound on the width m that ensures that the number of hidden neurons with flipped signs is at most
O(

√
m), which makes the discussion (e.g., about Eqs. (18) and (19)) more complicated. Moreover,

in Eq. (21), we neglected the first term of Eq. (19), but the formal proof carefully considers the
impact on the subsequent steps. The functional margin conditions arise from the evaluation of these
remainder terms.

3.4 Comparison with Prior Work and Limitations

In this section, we compare our results with [28] and discuss the limitations of our work. In
summary, our results justify the feature hypothesis and perturbation learning under substantially
milder conditions than [28], except for network width (cf. Tab. 1). The assumption of wide two-layer
networks is our main limitation.

Goals, results, and tools. The goals of our work and [28] are the same: justifying the feature
hypothesis and perturbation learning. The conclusions drawn are also equivalent. However, our
assumptions are much milder than theirs. This is due to the differences in the analytical approaches.
While they leverage research on feature learning [19, 24, 31], we utilize the concept of lazy training [9,
30], which enables us to substantially relax the conditions.

Data distribution. Prior work imposes a strong assumption that training samples with/without
adversarial perturbations are mutually orthogonal, i.e., ⟨xn,xk⟩ ≈ 0 and ⟨xadv

n ,xadv
k ⟩ ≈ 0 for any

n ̸= k. This condition is stringent and is hard to hold for real-world datasets. Moreover, it may not
even hold for data sampled from a zero-mean Gaussian distribution in some common situations (e.g.,
the sample size is sufficiently larger than the dimension). We do not impose any assumptions on
the data distribution. This is the first result that theoretically supports the feature hypothesis and the
success of perturbation learning on realistic data distribution.

Perturbation design. Prior work defined the perturbation form using the decision boundary of a
classifier. However, this is not only uncommon but also theoretically computable only in limited
problem settings. Additionally, they constrained perturbation size to ϵ = Θ(

√
d/N), which becomes

unrealistically small for a large sample size and is far from the practical constraint ϵ = Θ(
√
d).

We employ a single-step gradient-based method [21], which is commonly used in practice, and the
perturbation constraint can be set arbitrarily.

Training time, loss function, network bias, and activation. First, it should be noted that these
constraints are critical for deriving the results in [28]. This is because their theoretical framework [19,
24, 31] substantially requires the above conditions. We consider arbitrary training time, a wide class
of loss functions, and (Leaky-) ReLU networks with bias availability. In contrast, they considered
infinite training time, loss functions with exponential tails, homogeneous neural networks (thus
requiring no bias), and Leaky-ReLU networks (the theorem becomes harder to hold as the negative
slope of Leaky-ReLU approaches zero), which are essential for deriving their results (cf. the proofs
of Theorem 4.4 in [31] and the proof of Theorem 3.2 in [19]).
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Figure 3: Accuracy on the mean-shifted Gaussian dataset in Scenario (a). The blue lines represent
accuracy of the classifier f on D, i.e., training accuracy. The orange lines represent accuracy of the
classifier g on D.

Limitations. Compared to [28], our main limitation is the requirement for sufficient, though finite,
network width. Moreover, our analysis is confined to two-layer networks, a common constraint
in previous work. In practice, perturbation learning often employs deeper, and not necessarily
wider, networks, which limits the direct applicability of our theoretical insights to more complex
architectures. This assumption of a shallow network introduces another limitation. While deep neural
networks typically capture high-level features from images and adversarial attacks are considered
to exploit them, our framework focuses solely the low-level features (i.e., xn itself) in adversarial
perturbations and their extraction through perturbation learning, as shown in Theorems 3.3 to 3.5.
Relaxing the shallow network constraint may allow us to capture a broader set of features present in
adversarial perturbations. Despite these limitations, our work is the first to rigorously support the
feature hypothesis and validate perturbation learning under realistic data distributions, perturbation
designs, and training settings, marking a substantial advancement in the theoretical understanding of
adversarial examples.

4 Experiments

A comprehensive set of experiments conducted to validate our theorems can be found in Appendix B.
In this section, we briefly present two results that confirm Theorem 3.4. As a training dataset
D := {(xn, yn)}Nn=1, we employed a synthetic training dataset to easily change the input dimension,
which effectively helps perturbation learning in both scenarios, as predicted by our theorems. Note
that the perturbation learning on real-world datasets can be found in the literature [22, 28]. We
generated synthetic data and labels from the mean-shifted Gaussian distribution as follows: {xn}Nn=1
are independently sampled from N (0.3× yn × 1, I), and yn is set to one if n ∈ [N/2] and minus
one otherwise. The experimental settings are as follows: d = 100, N = 1, 000, m = 100, γ = 0,
ℓ(s) := s, ϵ = 0.01, and the number of training steps is set to 1,000 for both f and g. The
experimental results for perturbation learning under Scenario (a) are shown in Fig. 3. A high input
dimension facilitates the alignment between f and g. Our theoretical results assume a wide network
width, and Fig. 3 indicates that a sufficiently large width consistently stabilize the alignment.

5 Conclusion

We provided a theoretical justification for perturbation learning and the feature hypothesis. We
demonstrated that adversarial perturbations contain class-specific features sufficient for networks
to generalize from. Moreover, we revealed that the predictions of a classifier trained solely on
these perturbations or mislabeled adversarial examples coincide with those of a classifier trained on
correctly labeled training samples under three mild conditions. Except for wide two-layer networks,
our assumption is substantially milder than prior work [28].
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A Comparison with Prior Work

In this section, we compare our findings with those of prior work [28] and highlight new insights
beyond technical contributions.

A.1 Feature Hypothesis (Theorem 3.3)

Our result offers a new insight into the alignment between perturbations and training samples through
the residual term ξn. The direction of a perturbation vector comprises two components: a weighted
sum of the training samples (the main term) and a residual term. Our result suggests that as the input
dimension increases, the residual term becomes smaller than the main term, thereby enhancing the
alignment. In other words, perturbations more robustly encode class-specific features. This insight is
unattainable in prior research due to the absence of a residual term in their limited problem setting.

Additionally, our finding suggests that extended training time reinforces the directional alignment
between perturbations and training samples. This concept is supported by practical intuition and
experience but not addressed in prior work.

Our result further introduces a coefficient, Φ(xn,xk), for each adversarial perturbation. The coeffi-
cient Φ(xn,xk) depends on the slope of the activation function and the similarity between xn and
xk (cf. Eq. (4)). This suggests that training samples with higher similarity to each other exhibit
a stronger influence within a perturbation. Although prior work includes similar coefficients, they
cannot be explicitly computed.

A.2 Perturbation Learning (Theorems 3.4 and 3.5)

Our result establishes an explicit connection between the success of perturbation learning and training
factors, such as training time T , perturbation size ϵ, input dimension d, sample sizeN , and confidence
level δ. This result enhances our understanding of how these factors influence perturbation learning.
For example, perturbation learning is more likely to succeed with a larger input dimension d and
sample size N . Notably, our findings indicate that while a larger d consistently facilitates successful
perturbation learning, a larger N alone is insufficient. In contrast, existing research does not elucidate
the roles of these variables, merely showing that success is achievable when both d and N approach
infinity.

B Experimental Settings and Other Results

B.1 Datasets

We utilized two synthetic datasets and two widely used datasets, MNIST [11] and Fashion-
MNIST [45]. The first synthetic dataset is derived from a zero-mean Gaussian distribution: {xn}Nn=1
are independently sampled from N (0, I) and {yn}Nn=1 are independently sampled from U({±1}).
The second synthetic dataset is based on a mean-shifted Gaussian distribution: {xn}Nn=1 are indepen-
dently sampled from N (0.3× yn×1, I) and yn is set to one for n ∈ [N/2] and minus one otherwise.
We used data only from classes 1 and 2 in MNIST (i.e., digits 1 and 2) and those from classes 0 and 9
in Fashion-MNIST (i.e., T-shirt and ankle boot). To measure the agreement ratio between network
predictions from standard training and perturbation learning, for the real-world dataset cases, we used
standard test datasets, and for the synthetic dataset cases, we used 1,000 samples independently and
identically sampled according to the training data distribution.

B.2 Settings

In this section, for notational simplicity, we denote the number of training epochs in standard training
by Tf and in perturbation learning by Tg. Note that the original definitions of Tf and Tg are
continuous training steps in gradient flow, i.e., gradient descent with an infinitely small learning
rate (cf. Section 3.1), which is conceptually distinct from the discrete steps in gradient descent with
finitely small learning rates in practice. In addition, we denote the learning rates in standard training
and perturbation learning as ηf and ηg , respectively.
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We used non-stochastic gradient descent (i.e., each gradient calculation uses the entire dataset) with
0.9 momentum and the learning rate scheduler that multiplies a learning rate by 0.1 when a training
loss has stopped improving during 10 epochs. For Figs. 3 to A12, we selected the best accuracy,
agreement ratio, and cosine similarity from training with multiple initial learning rates.

In Figs. A4 to A11, the blue lines represent the accuracy of the classifier from standard training
on the training dataset {(xn, yn)}Nn=1. Namely, these mean the training accuracy of f( · ;Tf ). The
orange lines represent the accuracy of the classifier from perturbation learning on the standard (clean)
training dataset {(xn, yn)}Nn=1 rather than the perturbed dataset {(xadv

n , yadvn )}Nn=1. Namely, these
mean the ratio that counterintuitive generalization occurs. Note that the orange lines stay around fifty
percent (chance accuracy) if adversarial perturbations are not included in {xadv

n }Nn=1 (cf. ϵ = 0 in
Figs. A4 to A11). The green lines represent the agreement ratio between predictions f( · ;Tf ) and
g( · ;Tg) on a test dataset.

The cosine similarity in Fig. A12 is the average one between the experimentally calculated adversarial
perturbation and the theoretically predicted one (cf. Eq. (1)) across all n. The blue lines are the same
as those in Figs. A4 to A11.

The two axes in Fig. A13 are the normalized average vectors of samples from the positive and
negative classes, respectively. The blue circles and orange crosses correspond to the projections of
positive and negative samples onto these axes. The gray and green areas indicate regions where two
predictions are consistent and inconsistent, respectively. The red solid lines represent f̂(z) = 0. The
black dashed lines represent ĝa(z) = 0 in Scenario (a) and ĝb(z) = 0 in Scenario (b).

Mean-Shifted Gaussian and Scenario (a). A common experimental setting for the mean-shifted
Gaussian dataset and Scenario (a) in Figs. A4 and A12 is as follows: input dimension d = 100,
hidden dimensionm = 100, activation function slope γ = 0, number of training samplesN = 1, 000,
loss function ℓ(s) = s, training epochs in standard training Tf = 1, 000 and in perturbation learning
Tg = 1, 000, perturbation size ϵ =

√
d× 0.0012 = 0.01, and learning rates in standard training

ηf = 1 or 0.1 and in perturbation learning ηg = 1 or 0.1. However, for the comparison of Tf (i.e.,
the graph in the fourth row and the first column in Fig. A4), we set ηf only to 0.1. For the comparison
of d (i.e., the graph in the first row in Fig. A4), we employed ϵ =

√
d× 0.0012. In Fig. A13, we used

d = 100, m = 100, γ = 0, N = 1, 000, ℓ(s) = s, Tf = 100, Tg = 100, ϵ =
√
d× 0.0012 = 0.01,

ηf = 1, and ηg = 1.

Mean-Shifted Gaussian and Scenario (b). A common experimental setting for the mean-shifted
Gaussian dataset and Scenario (b) in Figs. A5 and A12 is as follows: d = 5, 000, m = 100, γ = 0,
N = 10, 000, ℓ(s) = s, Tf = 1, 000, Tg = 1, 000, ϵ =

√
d× 0.012 = 0.7, ηf = 1 or 0.1, and

ηg = 1 or 0.1. However, for the comparison of Tf (i.e., the graph in the fourth row and the first
column in Fig. A5), we set ηf only to 0.01. In addition, for the comparison of Tg (i.e., the graph
in the fourth row and the second column in Fig. A5), we set ηg only to 0.01. Furthermore, we set
ηf = 10, 5, 1, 0.1, 0.01 and ηg = 10, 5, 1, 0.1, 0.01 for the evaluation with the logistic loss (i.e., the
graph in the first row and the second column in Fig. A5). For the comparison of d (i.e., the graph in
the first row in Fig. A5), we employed ϵ =

√
d× 0.012. In Fig. A13, we used d = 100, m = 100,

γ = 0, N = 5, 000, ℓ(s) = s, Tf = 100, Tg = 100, ϵ =
√
d× 0.012 = 0.1, ηf = 1, and ηg = 1.

Zero-Mean Gaussian and Scenario (a). A common experimental setting for the zero-mean Gaussian
dataset and Scenario (a) in Figs. A6 and A12 is as follows: d = 10, 000, m = 100, γ = 0,
N = 10, 000, ℓ(s) = s, Tf = 1, 000, Tg = 1, 000, ϵ =

√
d× 0.0012 = 0.1, ηf = 1 or 0.1, and

ηg = 1 or 0.1. However, for the comparison of Tf (i.e., the graph in the fourth row and the first
column in Fig. A6), we set ηf only to 0.1. For the comparison of d (i.e., the graph in the first row
in Fig. A6), we employed ϵ =

√
d× 0.0012. In Fig. A13, we used d = 1, 000, m = 1, 000, γ = 0,

N = 2, 000, ℓ(s) = s, Tf = 1, 000, Tg = 1, 000, ϵ =
√
d× 0.0012 = 0.031, ηf = 1, and ηg = 1.

Zero-Mean Gaussian and Scenario (b). A common experimental setting for the zero-mean Gaussian
dataset and Scenario (b) in Figs. A7 and A12 is as follows: d = 10, 000, m = 100, γ = 0,
N = 10, 000, ℓ(s) = s, Tf = 1, 000, Tg = 1, 000, ϵ =

√
d× 0.12 = 10, ηf = 1 or 0.1, and ηg = 1

or 0.1. However, for the comparison of Tf (i.e., the graph in the fourth row and the first column in
Fig. A7), we set ηf only to 0.1. In addition, for the comparison of Tg (i.e., the graph in the fourth row
and the second column in Fig. A7), we set ηg only to 0.1. For the comparison of d (i.e., the graph in
the first row in Fig. A7), we employed ϵ =

√
d× 0.12. In Fig. A13, we used d = 1, 000, m = 1, 000,
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γ = 0, N = 10, 000, ℓ(s) = s, Tf = 1, 000, Tg = 1, 000, ϵ =
√
d× 0.012 = 0.31, ηf = 0.1, and

ηg = 0.1.

MNIST and Scenario (a). A common experimental setting for MNIST and Scenario (a) in Figs. A8
and A12 is as follows: m = 100, γ = 0, ℓ(s) = s, Tf = 100, Tg = 100, ϵ =

√
784× 0.012/2 =

0.14, ηf = 0.01 or 0.001, and ηg = 0.01 or 0.001. In Fig. A13, we used m = 1, 000, γ = 0,
ℓ(s) = s, Tf = 100, Tg = 100, ϵ =

√
784× 0.012/2 = 0.14, ηf = 0.01, and ηg = 0.01.

MNIST and Scenario (b). A common experimental setting for MNIST and Scenario (b) in Figs. A9
and A12 is as follows: m = 100, γ = 0, ℓ(s) = s, Tf = 100, Tg = 100, ϵ =

√
784× 0.012/2 =

0.14, ηf = 0.01 or 0.001, and ηg = 0.01 or 0.001. In Fig. A13, we used m = 1, 000, γ = 0,
ℓ(s) = s, Tf = 1, 000, Tg = 1, 000, ϵ =

√
784× 0.012/2 = 0.14, ηf = 0.01, and ηg = 0.01.

Fashion-MNIST and Scenario (a). A common experimental setting for Fashion-MNIST and
Scenario (a) in Figs. A10 and A12 is as follows: m = 100, γ = 0, ℓ(s) = s, Tf = 100, Tg = 100,
ϵ =

√
784× 0.012/2 = 0.14, ηf = 0.01 or 0.001, and ηg = 0.01 or 0.001. In Fig. A13, we used

m = 1, 000, γ = 0, ℓ(s) = s, Tf = 100, Tg = 100, ϵ =
√
784× 0.012/2 = 0.14, ηf = 0.01, and

ηg = 0.01.

Fashion-MNIST and Scenario (b). A common experimental setting for Fashion-MNIST and
Scenario (b) in Figs. A11 and A12 is as follows: m = 100, γ = 0, ℓ(s) = s, Tf = 100, Tg = 100,
ϵ =

√
784× 0.012/2 = 0.14, ηf = 0.01 or 0.001, and ηg = 0.01 or 0.001. In Fig. A13, we used

m = 1, 000, γ = 0, ℓ(s) = s, Tf = 100, Tg = 100, ϵ =
√
784× 0.12/2 = 1.4, ηf = 0.001, and

ηg = 0.001.

C Lemmas

In this section, we derive fundamental properties of random variables.

Lemma C.1 (Properties of Gaussian random variables). Let σ2 > 0 be a positive constant. Let
X1, . . . , Xm ∈ R be m ∈ N i.i.d. Gaussian random variables that follow N (0, σ2).

(a) For 0 < δ < 1, with probability at least 1− δ,

max
i

|Xi| <
√
2σ2 ln(2m/δ). (A24)

(b) Let Y1, . . . , Ym ∈ [γ2, 1] be m independent random variables with 0 ≤ γ2 < 1. Suppose
that Y1, . . . , Ym are independent of X1, . . . , Xm. For 0 < δ < 1, with probability at least
1− δ,∣∣∣∣∣

m∑
i

X2
i Yi − σ2

m∑
i

E[Yi]

∣∣∣∣∣ < max

(
16σ2 ln

(
2

δ

)
,

√
128mσ4 ln

(
2

δ

))
. (A25)

(c) For exp
(
−2(η

√
m+ 1)2/m

)
< δ < 1, with probability at least 1− δ, there are at most

η
√
m ∈ [m− 1] instances such that

|Xi| <

√√√√√−πσ
2

2
ln

1−
(
η
√
m+ 1

m
−
√
− ln δ

2m

)2
. (A26)

Proof. Let C > 0 be a positive constant.

(a) From [36],

P[max
i

|Xi| ≥ C] ≤ 2m exp

(
− C2

2σ2

)
. (A27)

Thus,

P
[
max

i
|Xi| ≥

√
2σ2 ln(2m/δ)

]
≤ δ. (A28)
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Figure A4: Accuracy and agreement ratio on the mean-shifted Gaussian in Scenario (a). The blue
lines represent the accuracy of the classifier f on D := {(xn, yn)}Nn=1, i.e., training accuracy. The
orange lines represent the accuracy of the classifier g on D. The green lines represent the prediction
agreement between f and g on the test dataset.

(b) For any i ∈ [m],

E
[
exp
(
t(X2

i Yi − E[X2
i ]E[Yi])

)]
=E

[ ∞∑
n=0

tn(X2
i Yi − E[X2

i ]E[Yi])n

n!

]
(A29)

=1 +

∞∑
n=2

tnE[(X2
i Yi − E[X2

i ]E[Yi])n]
n!

(A30)

≤1 +

∞∑
n=2

tnE[(X2
i Yi + E[X2

i ]E[Yi])n]
n!

. (A31)

By Jensen’s inequality,

∞∑
n=2

tnE[(X2
i Yi + E[X2

i ]E[Yi])n]
n!

≤
∞∑

n=2

2n−1tn(E[X2n
i ]E[Y n

i ] + E[X2
i ]

nE[Yi]n)
n!

(A32)
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Figure A5: Accuracy and agreement ratio on the mean-shifted Gaussian in Scenario (b). The
description is the same as Fig. A4.

≤
∞∑

n=2

2ntnE[X2n
i ]E[Y n

i ]

n!
. (A33)

Since E[X2n
i ] = σ2n(2n− 1)!! ≤ 2nσ2nn! and E[Y n

i ] ≤ 1,

1 +

∞∑
n=2

2ntnE[X2n
i ]E[Y n

i ]

n!
≤ 1 +

∞∑
n=2

4ntnσ2n = 1 +
16t2σ4

1− 4tσ2
. (A34)

For |t| ≤ 1/(8σ2),

1 +
16t2σ4

1− 4tσ2
≤ 1 + 32t2σ4 ≤ exp

(
32t2σ4

)
. (A35)

Thus, X2
i Yi follows SE(64σ4, 8σ2), where SE(a, b) is a sub-exponential random variable with

parameters a, b > 0. Note that a random variable Z is called sub-exponential with parameters
a, b > 0, SE(a, b), if its moment generating function satisfies

∀|t| ≤ 1

b
, E[exp(t(Z − E[Z]))] ≤ exp

(
t2a

2

)
. (A36)
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Figure A6: Accuracy and agreement ratio on the zero-mean Gaussian in Scenario (a). The description
is the same as Fig. A4.

By [16],
∑m

i X2
i Yi follows SE(64mσ4, 8σ2). In addition, by [16], Z ∼ SE(a, b) satisfies

P[|Z − E[Z]| ≥ C] ≤ 2 exp

(
−1

2
min

(
C2

a
,
C

b

))
. (A37)

Therefore, with probability at least 1− δ,

|Z − E[Z]| < max

(
2b ln

(
2

δ

)
,

√
2a ln

(
2

δ

))
. (A38)

(c) Let k ∈ [m− 1] be a positive integer. Let Bi(m, p) be the Binomial distribution and Be(p) be the
Bernoulli distribution with p ∈ (0, (k + 1)/m). By Hoeffding’s inequality,

m∑
i=k+1

(
m

i

)
pi(1− p)m−i =PY∼Bi(m,p)[Y ≥ k + 1] (A39)

=PZ1,...,Zm∼Be(p)

[
m∑
i=1

Zi ≥ k + 1

]
(A40)
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Figure A7: Accuracy and agreement ratio on the zero-mean Gaussian in Scenario (b). The description
is the same as Fig. A4.

≤ exp

(
−2(k + 1−mp)2

m

)
(A41)

=exp

(
−2m

(
k + 1

m
− p

)2
)
. (A42)

Now,

P[ there are at least k + 1 instances such that |Xi| < C ]

=

m∑
i=k+1

(
m

i

)
P[|Xi| < C]iP[|Xi| ≥ C]m−i (A43)

≤ exp

(
−2m

(
k + 1

m
− P[|Xi| < C]

)2
)
. (A44)

For δ > exp
(
− 2(k+1)2

m

)
and P[|Xi| < C] ≤ k+1

m −
√

− ln δ
2m ,

P[ there are at least k + 1 instances such that |Xi| < C ] ≤ δ. (A45)
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Figure A8: Accuracy and agreement ratio on MNIST in Scenario (a). The description is the same as
Fig. A4.

Since the areas of a square with sides of length x and a quarter-circle with a radius of 2x/
√
π are

the same, and because s2 + t2 is always larger in the square than in the quarter-circle outside the
common area, an upper bound of erf(x) can be computed as

erf(x)2 =
4

π

∫ x

0

∫ x

0

exp
(
−(s2 + t2)

)
dsdt (A46)

≤ 4

π

∫ 2x/
√
π

0

∫ π
2

0

r exp
(
−r2

)
dθ dr (A47)

=1− exp

(
− 4

π
x2
)
. (A48)

Thus,

P[|Xi| < C] = erf

(
C√
2σ2

)
≤
√
1− exp

(
−2C2

πσ2

)
. (A49)

Therefore,

C ≤

√√√√√−πσ
2

2
ln

1−
(
k + 1

m
−
√
− ln δ

2m

)2
 =⇒ P[|Xi| < C] ≤ k + 1

m
−
√

− ln δ

2m
. (A50)

Lemma C.2 (Hoeffding’s inequality). Let s1, . . . , sN ∈ R be real numbers and X1, . . . , XN ∈
{±1} be i.i.d. random variables. Suppose that E[Xn] = 0 for every n ∈ [N ]. Then, for 0 < δ < 1,
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Figure A9: Accuracy and agreement ratio on MNIST in Scenario (b). The description is the same as
Fig. A4.

with probability at least 1− δ, ∣∣∣∣∣
N∑
n

snXn

∣∣∣∣∣ <
√√√√2 ln

(
2

δ

) N∑
n

s2n. (A51)

Proof. By Hoeffding’s inequality, the claim is established.

Lemma C.3 (Expectation of product of derivatives of activation functions, part 1). Denote a
symmetric positive definite matrix by

Σ :=

[
a b
b c

]
, (A52)

where a, c > 0 and ac− b2 > 0. Then,∣∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞

ϕ′(x1)ϕ
′(x2)

2π
√
|Σ|

exp

(
−1

2
x⊤Σ−1x

)
dx− (1 + γ)2

4

∣∣∣∣∣
≤ (1 + γ)(1− γ)

4

(
1−

√
e

2π

ac− b2

ac+ b2

)
. (A53)

Proof. The inverse of Σ is

Σ−1 =
1

ac− b2

[
c −b
−b a

]
=:

Σ̃−1

ac− b2
. (A54)

22



0.000 0.028 0.056 0.084 0.112 0.140

Perturbation size ε

0.50

0.75

1.00

0.000 0.028 0.056 0.084 0.112 0.140

Perturbation size ε (logistic)

0.50

0.75

1.00

Standard

Perturbation

Agreement

101 102 103

Hidden dimension m

0.50

0.75

1.00

0.00 0.25 0.50 0.75 0.99

Slope γ

0.50

0.75

1.00

100 101 102

Standard training time Tf

0.50

0.75

1.00

10 20 30 40 50 60 70 80 90 100

Perturbation training time Tg

0.50

0.75

1.00

A
cc

u
ra

cy
(b

lu
e

a
n

d
o
ra

n
g
e)

/
A

g
re

em
en

t
(g

re
en

)

Figure A10: Accuracy and agreement ratio on Fashion-MNIST in Scenario (a). The description is the
same as Fig. A4.

Using y := x/
√
ac− b2, the quadratic form can be represented as

x⊤Σ−1x =
x⊤Σ̃−1x

ac− b2
= y⊤Σ̃−1y. (A55)

Because |∂x/∂y| = ac− b2,∫ ∞

−∞

∫ ∞

−∞

ϕ′(x1)ϕ
′(x2)

2π
√
|Σ|

exp

(
−1

2
x⊤Σ−1x

)
dx

=

√
ac− b2

2π

∫ ∞

−∞

∫ ∞

−∞
ϕ′(y1)ϕ

′(y2) exp

(
−1

2
y⊤Σ̃−1y

)
dy . (A56)

With z := y1 − by2/c,

y⊤Σ̃−1y = c

(
y1 −

by2
c

)2

+

(
a− b2

c

)
y22 = cz2 +

(
a− b2

c

)
y22 . (A57)

Now, ∫ ∞

−∞

∫ ∞

−∞
ϕ′(y1)ϕ

′(y2) exp

(
−1

2
y⊤Σ̃−1y

)
dy

=

∫ ∞

−∞
ϕ′(y2)

(∫ ∞

−∞
ϕ′(z + by2/c) exp

(
− c
2
z2
)
dz

)
exp

(
−ac− b2

2c
y22

)
dy2 . (A58)

The integral along z can be computed as∫ ∞

−∞
ϕ′(z + by2/c) exp

(
− c
2
z2
)
dz
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Figure A11: Accuracy and agreement ratio on Fashion-MNIST in Scenario (b). The description is
the same as Fig. A4.

=

∫ ∞

−by2/c

exp
(
− c
2
z2
)
dz + γ

∫ −by2/c

−∞
exp
(
− c
2
z2
)
dz (A59)

=

∫ ∞

0

exp
(
− c
2
z2
)
dz −

∫ −by2/c

0

exp
(
− c
2
z2
)
dz

+ γ

∫ 0

−∞
exp
(
− c
2
z2
)
dz − γ

∫ 0

−by2/c

exp
(
− c
2
z2
)
dz (A60)

=(1 + γ)

∫ ∞

0

exp
(
− c
2
z2
)
dz − (1− γ)

∫ −by2/c

0

exp
(
− c
2
z2
)
dz (A61)

=(1 + γ)

√
π

2c
+ (1− γ)

∫ by2/c

0

exp
(
− c
2
z2
)
dz . (A62)

Using the above equation,∫ ∞

−∞

∫ ∞

−∞
ϕ′(y1)ϕ

′(y2) exp

(
−1

2
y⊤Σ̃−1y

)
dy

=(1 + γ)

√
π

2c

∫ ∞

−∞
ϕ′(y2) exp

(
−ac− b2

2c
y22

)
dy2

+ (1− γ)

∫ ∞

−∞
ϕ′(y2)

∫ by2/c

0

exp
(
− c
2
z2
)
dz exp

(
−ac− b2

2c
y22

)
dy2 (A63)

=
π(1 + γ)2

2
√
ac− b2

+ (1 + γ)(1− γ)

∫ ∞

0

∫ by2/c

0

exp
(
− c
2
z2
)
dz exp

(
−ac− b2

2c
y22

)
dy2 . (A64)
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Figure A12: Standard training accuracy and cosine similarity. The blue lines represent the accuracy
of the classifier f on D := {(xn, yn)}Nn=1, i.e., training accuracy. The orange lines represent the
average cosine similarity between the experimentally calculated adversarial perturbations and the
theoretically predicted ones.

Thus, ∫ ∞

−∞

∫ ∞

−∞

ϕ′(x1)ϕ
′(x2)

2π
√

|Σ|
exp

(
−1

2
x⊤Σ−1x

)
dx

=
(1 + γ)2

4

+
(1 + γ)(1− γ)

√
ac− b2

2π

∫ ∞

0

∫ by2/c

0

exp
(
− c
2
z2
)
dz exp

(
−ac− b2

2c
y22

)
dy2 . (A65)

Using t := sgn(b)z
√
c/2,∫ by2/c

0

exp
(
− c
2
z2
)
dz =sgn(b)

√
2

c

∫ √
b2

2c y2

0

exp
(
−t2

)
dt (A66)

=sgn(b)

√
π

2c

(
1− erfc

(√
b2

2c
y2

))
. (A67)

From [8], with α =
√
e/(2π),

α exp

(
−b

2

c
y22

)
≤ erfc

(√
b2

2c
y2

)
, (A68)∣∣∣∣∣

∫ by2/c

0

exp
(
− c
2
z2
)
dz

∣∣∣∣∣ ≤
√
π

2c

(
1− α exp

(
−b

2

c
y22

))
. (A69)
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Figure A13: Prediction matching between the classifiers from standard training and perturbation
learning, f and g. The two axes are the normalized average vectors of samples from the positive and
negative classes, respectively. The blue circles and orange crosses correspond to the projections of
positive and negative samples onto these axes. The gray and green areas indicate regions where two
predictions are consistent and inconsistent, respectively. The red solid lines represent f̂(z) = 0. The
black dashed lines represent ĝa(z) = 0 in Scenario (a) and ĝb(z) = 0 in Scenario (b).
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(
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2
z2
)
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(
−ac− b2

2c
y22

)
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=

√
π
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(
1

2

√
2πc
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2

√
2πc
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)
(A71)

=
π

2

(
1√

ac− b2
− α√

ac+ b2

)
. (A72)

Finally, ∣∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞

ϕ′(x1)ϕ
′(x2)

2π
√
|Σ|

exp

(
−1

2
x⊤Σ−1x

)
dx− (1 + γ)2
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=
(1 + γ)(1− γ)

4

(
1− α

√
ac− b2

ac+ b2

)
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Lemma C.4 (Expectation of product of derivatives of activation functions, part 2). For any z1 ̸=
z2 ∈ Rd, ∣∣∣∣Φ(z1, z2)− (1 + γ)2

4

∣∣∣∣ ≤ (1 + γ)(1− γ)

4
λ(z1, z2). (A75)

Proof. By the reproductive property of Gaussian distributions, ⟨v, z1⟩+a follows N (0, ∥z1∥2/d+1).
Since any linear combination of ⟨v, z1⟩+ a and ⟨v, z2⟩+ a has a univariate Gaussian distribution,
⟨v, z1⟩+ a and ⟨v, z2⟩+ a follow a multivariate Gaussian distribution. The covariance matrix Σ can
be computed as

Σ =

[
∥z1∥2/d+ 1 ⟨z1, z2⟩/d+ 1
⟨z1, z2⟩/d+ 1 ∥z2∥2/d+ 1

]
. (A76)

Thus, by Lemma C.3, the claim is established.

D Main Proof

For notational simplicity, we use the following abbreviation for i ∈ [m] and n ∈ [N ]:

hf,i,t(z) :=⟨vi(t), z⟩+ ai(t), hg,i,t(z) :=⟨wi(t), z⟩+ bi(t), (A77)
ψf,i,t(z) :=ϕ(hf,i,t(z)), ψg,i,t(z) :=ϕ(hg,i,t(z)), (A78)

ψ′
f,i,t(z) :=ϕ

′(hf,i,t(z)), ψ′
g,i,t(z) :=ϕ

′(hg,i,t(z)), (A79)

ℓf,n,t :=ℓ(−ynf(xn;θV ,a(t))), ℓg,n,t :=ℓ(−yadvn g(xadv
n ;θW ,b(t))), (A80)

ℓ′f,n,t :=ℓ
′(−ynf(xn;θV ,a(t))), ℓ′g,n,t :=ℓ

′(−yadvn g(xadv
n ;θW ,b(t))), (A81)

ℓ̄′f (t) :=
1

N

N∑
n

ℓ′f,n,t, ℓ̄′g(t) :=
1

N

N∑
n

ℓ′g,n,t. (A82)

Moreover, denote the subset of [m] consisting of the smallest η
√
m ∈ [m− 1] elements in terms of

|hf,i,0(z)| by Sf (z). Similarly, we define Sg(z) based on |hg,i,0(z)|. The function κf,i(z) returns
one if i ∈ Sf (z) and zero otherwise. Similarly, we define κg,i(z). For exp

(
−2(η

√
m+ 1)2/m

)
<

δ < 1, let

Cthr(z, δ) :=

√√√√√−π
(∥z∥2

d
+ 1

)
ln

1−
(
η
√
m+ 1

m
−
√
− ln δ

2m

)2
 = Θ̃(1). (A83)

D.1 Assumptions on Properties of Neural Networks and Their Justifications

For reference, we state the following assumption on the network f :

Assumption D.1 (Properties of neural network f ). Let z ∈ Rd be a real-valued vector and
exp
(
−2(η

√
m+ 1)2/m

)
< δ < 1 be a positive value.

(a) For any i ∈ [m] and j ∈ [d], |vi,j(0)| <
√
(2/d) ln(2dm/δ).

(b) For any i ∈ [m], |αi| <
√
(2/m) ln(2m/δ).

(c) For any i ∈ [m], |⟨vi(0), z⟩| <
√
(2/d) ln(2m/δ)∥z∥.

(d) For any i ∈ [m], |hf,i,0(z)| <
√

2(∥z∥2/d+ 1) ln(2m/δ).

(e) |f(z; 0)| <
√
2(∥z∥2/d+ 1) ln(2/δ).

(f) For any j ∈ [d],∣∣∣∣∣
m∑
i

αiψ
′
f,i,0(xn)vi,j(0)

∣∣∣∣∣ <
√√√√ 2

m
ln

(
2

δ

) m∑
i

ψ′
f,i,0(xn)2vi,j(0)2. (A84)

27



(g) ∣∣∣∣∣
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

∣∣∣∣∣ <
√√√√ 2

m
ln

(
2

δ

) m∑
i

ψ′
f,i,0(xn)2⟨vi(0), z⟩2. (A85)

(h) ∣∣∣∣∣
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)− Φ(xn, z)

∣∣∣∣∣ < 16√
m

ln

(
2

δ

)
. (A86)

(i) There are at most η
√
m instances such that |hf,i,0(z)| < Cthr(z, δ)/

√
2.

Assumption D.1 is justified as follows:

Lemma D.2 (Justification of Assumption D.1).
(a) With probability at least 1− δ, Assumption D.1(a) holds.
(b) With probability at least 1− δ, Assumption D.1(b) holds.
(c) With probability at least 1− δ, Assumption D.1(c) holds.
(d) With probability at least 1− δ, Assumption D.1(d) holds.
(e) With probability at least 1− δ, Assumption D.1(e) holds.
(f) With probability at least 1− δ, Assumption D.1(f) holds.
(g) With probability at least 1− δ, Assumption D.1(g) holds.
(h) With probability at least 1− δ, Assumption D.1(h) holds.
(i) With probability at least 1− δ, Assumption D.1(i) holds.
(j) With probability at least 1− 9δ, Assumption D.1 holds.

Proof.

(a), (b) and (h) See Lemma C.1.

(c) to (g) and (i) By the reproductive property of Gaussian random variables, ⟨vi(0), z⟩,
hf,i,0(z), f(z; 0),

∑m
i αiψ

′
f,i,0(xn)vi,j(0), and

∑m
i αiψ

′
f,i,0(xn)⟨vi(0), z⟩ follow the Gaussian

N (0, ∥z∥2/d), N (0, ∥z∥2/d + 1), N (0, ∥z∥2/d + 1), N (0, (1/m)
∑m

i ψ′
f,i,0(xn)

2vi,j(0)
2), and

N (0, (1/m)
∑m

i ψ′
f,i,0(xn)

2⟨vi(0), z⟩2), respectively. By Lemma C.1, the claim is established.

(j) By Bonferroni’s inequality, the claim is established.

Similarly, we consider the following assumption on the network g and its justification:

Assumption D.3 (Properties of neural network g). Let z ∈ Rd be a real-valued vector and
exp
(
−2(η

√
m+ 1)2/m

)
< δ < 1 be a positive value.

(a) For any i ∈ [m] and j ∈ [d], |wi,j(0)| <
√

(2/d) ln(2dm/δ).

(b) For any i ∈ [m], |βi| <
√
(2/m) ln(2m/δ).

(c) For any i ∈ [m], |⟨wi(0), z⟩| <
√

(2/d) ln(2m/δ)∥z∥.

(d) For any i ∈ [m], |hg,i,0(z)| <
√
2(∥z∥2/d+ 1) ln(2m/δ).

(e) |g(z; 0)| <
√

2(∥z∥2/d+ 1) ln(2/δ).
(f) For any j ∈ [d],∣∣∣∣∣

m∑
i

βiψ
′
g,i,0(x

adv
n )wi,j(0)

∣∣∣∣∣ <
√√√√ 2
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ln
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) m∑
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ψ′
g,i,0(x
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n )2wi,j(0)2. (A87)
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(g) ∣∣∣∣∣
m∑
i

βiψ
′
g,i,0(x

adv
n )⟨wi(0), z⟩
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ln
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) m∑
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ψ′
g,i,0(x
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n )2⟨wi(0), z⟩2. (A88)

(h) ∣∣∣∣∣
m∑
i

β2
i ψ

′
g,i,0(x

adv
n )ψ′

g,i,0(z)− Φ(xadv
n , z)

∣∣∣∣∣ < 16√
m

ln

(
2

δ

)
. (A89)

(i) There are at most η
√
m instances such that |hg,i,0(z)| < Cthr(z, δ)/

√
2.

Lemma D.4 (Justification of Assumption D.3). With probability at least 1− 9δ, Assumption D.3
holds.

D.2 Wide Width Assumptions

Then, we consider the condition of network width for lazy training.

Assumption D.5 (Wide width for neural network f ). Let z ∈ Rd be a real-valued vector and
exp
(
−2(η

√
m+ 1)2/m

)
< δ < 1 be a positive value. Network width m satisfies the following

inequalities:

m >
4 ln(2m/δ)(

∑N
n (|⟨xn, z⟩|+ 1)

∫ Tf

0
ℓ′f,n,t dt)

2

N2Cthr(z, δ)2
= Õ

d2(∫ Tf

0

ℓ̄′f,n,t dt

)2
, (A90)

m >
4
∑N

n,k |⟨xn,xk⟩|
∫ Tf

0
ℓ′f,n,t dt

∫ Tf

0
ℓ′f,k,t dt

N2
= Õ

d2(∫ Tf

0

ℓ̄′f,n,t dt

)2
. (A91)

Note that only Ineq. (A90) is required to satisfy lazy training. We impose Ineq. (A91) to simplify
some rearrangements of equations. This assumption restricts the transitions of the derivatives of
hidden outputs during training.

Lemma D.6 (Lazy training in network f ). If Assumptions D.1 and D.5 hold, then ψ′
f,i,t(z) =

ψ′
f,i,0(z) for any i ∈ [m] \ Sf (z) and 0 ≤ t ≤ Tf .

Proof. By Assumption D.1, the time evolution of hf,i,t(z) from t = 0 to t = Tf can be computed as

|∆hf,i,Tf
(z)| :=

∣∣∣∣∣
〈
−
∫ Tf

0

∇vi
L(θV ,a(t);D) dt ,z

〉
−
∫ Tf

0

∇ai
L(θV ,a(t);D) dt

∣∣∣∣∣ (A92)

=

∣∣∣∣∣
∫ Tf

0

αi

N

N∑
n

ynℓ
′
f,n,tψ

′
f,i,t(xn)(⟨xn, z⟩+ 1) dt

∣∣∣∣∣ (A93)

≤|αi|
N

N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt (A94)

<
1

N

√
2

m
ln

(
2m

δ

) N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt . (A95)

By Assumption D.1, if the right term of Ineq. (A95) is smaller than Cthr(z, δ)/
√
2, then the largest

m− η
√
m instances in terms of |hf,i,0(z)| satisfy sgn(hf,i,t(z)) = sgn(hf,i,0(z)) for 0 ≤ t ≤ Tf .

This condition can be represented as Ineq. (A90).
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The same discussion can be applied to the network g.

Assumption D.7 (Wide width for neural network g). Let z ∈ Rd be a real-valued vector and
exp
(
−2(η

√
m+ 1)2/m

)
< δ < 1 be a positive value. Network width m satisfies the following

inequalities:

m >
4 ln(2m/δ)(

∑N
n (|⟨xadv

n , z⟩|+ 1)
∫ Tg

0
ℓ′g,n,t dt)

2

N2Cthr(z, δ)2
= Õ

d2(∫ Tg

0

ℓ̄′g,n,t dt

)2
, (A96)

m >
4
∑N

n,k |⟨xadv
n ,xadv

k ⟩|
∫ Tg

0
ℓ′g,n,t dt

∫ Tg

0
ℓ′g,k,t dt

N2
= Õ

d2(∫ Tg

0

ℓ̄′g,n,t dt

)2
. (A97)

Lemma D.8 (Lazy training in network g). If Assumptions D.3 and D.7 hold, then ψ′
g,i,t(z) =

ψ′
g,i,0(z) for any i ∈ [m] \ Sg(z) and 0 ≤ t ≤ Tg .

We can integrate Assumptions D.1 and D.3 into Assumption 3.2.

D.3 Main Part

Lemma D.9 (Representation of network f ). If Assumptions D.1 and D.5 hold, then the network
output at the training time Tf can be represented as

f(z;Tf ) =f(z; 0) +

m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))hf,i,0(z)

+
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)− Φ(xn, z)

)

+
1

N

N∑
n

ynΦ(xn, z)(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

+
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

m∑
i

α2
iκf,i(xn)

×
∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)ψ

′
f,i,Tf

(z)− ψ′
f,i,0(xn)ψ

′
f,i,0(z)) dt . (A98)

Proof. First, see Lemma D.6. The time evolution of vi(t) from t = 0 to t = Tf can be computed as

∆vi(Tf ) :=−
∫ Tf

0

∇vi
L(θV ,a(t);D) dt (A99)

=

∫ Tf

0

αi

N

N∑
n

ynℓ
′
f,n,tψ

′
f,i,t(xn)xn dt (A100)

=
αi

N

N∑
n

ynxn

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt (A101)

=
αi

N

N∑
n

(1− κf,i(xn))ynxnψ
′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

+
αi

N

N∑
n

κf,i(xn)ynxn

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt (A102)
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=
αi

N

N∑
n

ynxnψ
′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

− αi

N

N∑
n

κf,i(xn)ynxnψ
′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

+
αi

N

N∑
n

κf,i(xn)ynxn

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt (A103)

=
αi

N

N∑
n

ynxnψ
′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

+
αi

N

N∑
n

κf,i(xn)ynxn

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)− ψ′

f,i,0(xn)) dt . (A104)

Similarly, the time evolution of ai(t) from t = 0 to t = Tf can be computed as

∆ai(Tf ) =
αi

N

N∑
n

yn

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt (A105)

=
αi

N

N∑
n

ynψ
′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

+
αi

N

N∑
n

κf,i(xn)yn

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)− ψ′

f,i,0(xn)) dt . (A106)

Thus,

∆hf,i,Tf
(z)

=
αi

N

N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt (A107)

=
αi

N

N∑
n

yn(⟨xn, z⟩+ 1)ψ′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

+
αi

N

N∑
n

κf,i(xn)yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)− ψ′

f,i,0(xn)) dt . (A108)

The original network at the training time Tf can be computed as

f(z;Tf ) :=

m∑
i

αiψf,i,Tf
(z) (A109)

=

m∑
i

αiψ
′
f,i,Tf

(z)hf,i,0(z) +

m∑
i

αiψ
′
f,i,Tf

(z)∆hf,i,Tf
(z)). (A110)

The first term of Eq. (A110) can be rearranged as
m∑
i

αiψ
′
f,i,Tf

(z)hf,i,0(z)

=

m∑
i

αi(1− κf,i(z))ψ
′
f,i,0(z)hf,i,0(z) +

m∑
i

αiκf,i(z)ψ
′
f,i,Tf

(z)hf,i,0(z) (A111)

=f(z; 0) +

m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))hf,i,0(z). (A112)
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The second term of Eq. (A110) can be rearranged as
m∑
i

αiψ
′
f,i,Tf

(z)∆hf,i,Tf
(z))

=

m∑
i

αi(1− κf,i(z))ψ
′
f,i,0(z)∆hf,i,Tf

(z) +

m∑
i

αiκf,i(z)ψ
′
f,i,Tf

(z)∆hf,i,Tf
(z) (A113)

=

m∑
i

αiψ
′
f,i,0(z)∆hf,i,Tf

(z) +

m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))∆hf,i,Tf

(z). (A114)

The first term of Eq. (A114) can be rearranged as
m∑
i

αiψ
′
f,i,0(z)∆hf,i,Tf

(z)

=

m∑
i

αiψ
′
f,i,0(z)

[
αi

N

N∑
n

yn(⟨xn, z⟩+ 1)ψ′
f,i,0(xn)

∫ Tf

0

ℓ′f,n,t dt

+
αi

N

N∑
n

κf,i(xn)yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)− ψ′

f,i,0(xn)) dt

]
(A115)

=
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)

+
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

×
m∑
i

α2
iκf,i(xn)ψ

′
f,i,0(z)

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)− ψ′

f,i,0(xn)) dt . (A116)

The first term of Eq. (A116) can be rearranged as

1

N

N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z) (A117)

=
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)− Φ(xn, z)

)
(A118)

+
1

N

N∑
n

ynΦ(xn, z)(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt . (A119)

The second term of Eq. (A114) can be rearranged as
m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))∆hf,i,Tf

(z)

=

m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))

× αi

N

N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt (A120)

=
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

×
m∑
i

α2
iκf,i(z)(ψ

′
f,i,Tf

(z)− ψ′
f,i,0(z))

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt . (A121)
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The sum of the second term of Eq. (A116) and Eq. (A121) can be rearranged as

1

N

N∑
n

yn(⟨xn, z⟩+ 1)

m∑
i

α2
iκf,i(xn)ψ

′
f,i,0(z)

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)− ψ′

f,i,0(xn)) dt

+
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

m∑
i

α2
iκf,i(z)(ψ

′
f,i,Tf

(z)− ψ′
f,i,0(z))

∫ Tf

0

ℓ′f,n,tψ
′
f,i,t(xn) dt

=
1

N

N∑
n

yn(⟨xn, z⟩+ 1)

m∑
i

α2
iκf,i(xn)

×
∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)ψ

′
f,i,Tf

(z)− ψ′
f,i,0(xn)ψ

′
f,i,0(z)) dt . (A122)

Lemma D.10 (Upper bounds of terms in Lemma D.9). Assume Assumptions D.1 and D.5.

(a) ∣∣∣∣∣
m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))hf,i,0(z)

∣∣∣∣∣
<2η(1− γ) ln(2m/δ)

√
∥z∥2/d+ 1 = Õ(1). (A123)

(b) ∣∣∣∣∣ 1N
N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)− Φ(xn, z)

)∣∣∣∣∣
<
8Cthr(z, δ) ln(2/δ)√

ln(2m/δ)
= Õ(1). (A124)

(c) ∣∣∣∣∣ 1N
N∑
n

yn(⟨xn, z⟩+ 1)

m∑
i

α2
iκf,i(xn)

×
∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)ψ

′
f,i,Tf

(z)− ψ′
f,i,0(xn)ψ

′
f,i,0(z)) dt

∣∣∣∣∣
<η(1− γ2)Cthr(z, δ)

√
ln(2m/δ) = Õ(1). (A125)

Proof.

(a) By Assumption D.1,∣∣∣∣∣
m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))hf,i,0(z)

∣∣∣∣∣ ≤(1− γ)

m∑
i

|αiκf,i(z)hf,i,0(z)| (A126)

<2η(1− γ) ln(2m/δ)
√

∥z∥2/d+ 1. (A127)

(b) By Assumption D.1,∣∣∣∣∣ 1N
N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)− Φ(xn, z)

)∣∣∣∣∣
<

16

N
√
m

ln

(
2

δ

) N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt . (A128)
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By Assumption D.5,

16

N
√
m

ln

(
2

δ

) N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt

<
NCthr(z, δ)

2
√
ln(2m/δ)

∑N
n (|⟨xn, z⟩|+ 1)

∫ Tf

0
ℓ′f,n,t dt

× 16

N
ln

(
2

δ

) N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt (A129)

≤8Cthr(z, δ) ln(2/δ)√
ln(2m/δ)

. (A130)

(c) By Assumption D.1,∣∣∣∣∣
m∑
i

α2
iκf,i(xn)

∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)ψ

′
f,i,Tf

(z)− ψ′
f,i,0(xn)ψ

′
f,i,0(z)) dt

∣∣∣∣∣
≤(1− γ2)

∫ Tf

0

ℓ′f,n,t dt

m∑
i

α2
iκf,i(xn) (A131)

<
2η(1− γ2)√

m
ln

(
2m

δ

)∫ Tf

0

ℓ′f,n,t dt . (A132)

By Assumption D.5,

2η(1− γ2)

N
√
m

ln

(
2m

δ

) N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt

<
NCthr(z, δ)

2
√
ln(2m/δ)

∑N
n (|⟨xn, z⟩|+ 1)

∫ Tf

0
ℓ′f,n,t dt

× 2η(1− γ2)

N
ln

(
2m

δ

) N∑
n

|⟨xn, z⟩+ 1|
∫ Tf

0

ℓ′f,n,t dt (A133)

≤η(1− γ2)Cthr(z, δ)
√
ln(2m/δ). (A134)

Lemma D.11 (Network prediction of f ). Assume Assumptions D.1 and D.5. If∣∣∣∣∣ 1N
N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

∣∣∣∣∣ ≥ Õ
(
1 +

∫ Tf

0

ℓ̄′f,n,t dt

)
, (A135)

then

sgn(f(z;Tf )) = sgn

(
1

N

N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

)
. (A136)

Proof. By Assumption D.1 and Lemmas D.9 and D.10, if∣∣∣∣∣ 1N
N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

∣∣∣∣∣
≥|f(z; 0)|+

∣∣∣∣∣
m∑
i

αiκf,i(z)(ψ
′
f,i,Tf

(z)− ψ′
f,i,0(z))hf,i,0(z)

∣∣∣∣∣
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+

∣∣∣∣∣ 1N
N∑
n

yn(⟨xn, z⟩+ 1)

∫ Tf

0

ℓ′f,n,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(z)− Φ(xn, z)

)∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
n

yn(⟨xn, z⟩+ 1)

m∑
i

α2
iκf,i(xn)

×
∫ Tf

0

ℓ′f,n,t(ψ
′
f,i,t(xn)ψ

′
f,i,Tf

(z)− ψ′
f,i,0(xn)ψ

′
f,i,0(z)) dt

∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
n

ynΦ(xn, z)

∫ Tf

0

ℓ′f,n,t dt

∣∣∣∣∣ (A137)

=Õ
(
1 +

∫ Tf

0

ℓ̄′f,n,t dt

)
, (A138)

then

sgn(f(z;Tf )) = sgn

(
1

N

N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

)
. (A139)

Lemma D.12 (Adversarial perturbation). If Assumptions D.1 and D.5 hold, then the adversarial
perturbation defined as Eq. (1) can be represented as

rn = ϵyadvn

∑m
i αiψ

′
f,i,Tf

(xn)vi(Tf )

∥∑m
i αiψ′

f,i,Tf
(xn)vi(Tf )∥

, and (A140)

m∑
i

αiψ
′
f,i,Tf

(xn)vi(Tf )

=

m∑
i

αiψ
′
f,i,0(xn)vi(0) +

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))vi(0)

+
1

N

N∑
k

ykxk

∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)

+
1

N

N∑
k

ykΦ(xn,xk)xk

∫ Tf

0

ℓ′f,k,t dt

+
1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt . (A141)

Proof. The main term of the adversarial perturbation can be computed as

∇xn
ℓf,n,Tf

∥∇xnℓf,n,Tf
∥ =

−yadvn ℓ′f,n,Tf
∇xn

f(xn;θV ,a(Tf ))

∥ℓ′f,n,Tf
∇xnf(xn;θV ,a(Tf ))∥

(A142)

=− yadvn

∑m
i αiψ

′
f,i,Tf

(xn)vi(Tf )

∥∑m
i αiψ′

f,i,Tf
(xn)vi(Tf )∥

. (A143)

The leading term can be rearranged as
m∑
i

αiψ
′
f,i,Tf

(xn)vi(Tf ) =

m∑
i

αiψ
′
f,i,Tf

(xn)vi(0) +

m∑
i

αiψ
′
f,i,Tf

(xn)∆vi(Tf ). (A144)
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The first term of Eq. (A144) can be rearranged as
m∑
i

αiψ
′
f,i,Tf

(xn)vi(0)

=

m∑
i

αiψ
′
f,i,0(xn)vi(0) +

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))vi(0). (A145)

The second term of Eq. (A144) can be rearranged as
m∑
i

αiψ
′
f,i,Tf

(xn)∆vi(Tf )

=

m∑
i

αiψ
′
f,i,0(xn)∆vi(Tf ) +

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn)∆vi(Tf ). (A146)

The first term of Eq. (A146) can be rearranged as
m∑
i

αiψ
′
f,i,0(xn)∆vi(Tf )

=

m∑
i

αiψ
′
f,i,0(xn)

[
αi

N

N∑
k

ykxkψ
′
f,i,0(xk)

∫ Tf

0

ℓ′f,k,t dt

+
αi

N

N∑
k

κf,i(xk)ykxk

∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,t(xk)− ψ′

f,i,0(xk)) dt

]
(A147)

=
1

N

N∑
k

ykxk

∫ Tf

0

ℓ′f,k,t dt

m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)

+
1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)ψ

′
f,i,0(xn)

∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,t(xk)− ψ′

f,i,0(xk)) dt . (A148)

The second term of Eq. (A146) can be rearranged as
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))∆vi(Tf )

=

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))

αi

N

N∑
k

ykxk

∫ Tf

0

ℓ′f,k,tψ
′
f,i,t(xk) dt (A149)

=
1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xn)(ψ

′
f,i,Tf

(xn)− ψ′
f,i,0(xn))

∫ Tf

0

ℓ′f,k,tψ
′
f,i,t(xk) dt . (A150)

The sum of the second term of Eq. (A148) and Eq. (A150) can be rearranged as

1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)ψ

′
f,i,0(xn)

∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,t(xk)− ψ′

f,i,0(xk)) dt

+
1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xn)(ψ

′
f,i,Tf

(xn)− ψ′
f,i,0(xn))

∫ Tf

0

ℓ′f,k,tψ
′
f,i,t(xk) dt

=
1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt . (A151)
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Lemma D.13 (Upper bound of norm of adversarial perturbation). Assume Assumptions D.1 and D.5.

(a) ∥∥∥∥∥
m∑
i

αiψ
′
f,i,0(xn)vi(0)

∥∥∥∥∥
2

< 4 ln(2dm/δ) ln(2/δ) = Õ(1). (A152)

(b) ∥∥∥∥∥
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))vi(0)

∥∥∥∥∥
2

<4η2(1− γ)2 ln(2m/δ) ln(2dm/δ) = Õ(1). (A153)

(c) ∥∥∥∥∥ 1

N

N∑
k

ykxk

∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)∥∥∥∥∥
2

<64 ln2 (2/δ) = Õ(1). (A154)

(d) ∥∥∥∥∥ 1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

∥∥∥∥∥
2

<η2(1− γ2)2 ln2(2m/δ) = Õ(1). (A155)

(e) ∥∥∥∥∥
m∑
i

αiψ
′
f,i,Tf

(xn)vi(Tf )

∥∥∥∥∥ < Õ
(
√
d

∫ Tf

0

ℓ̄′f,k,t dt

)
. (A156)

(f) Let

r′n :=

m∑
i

αiψ
′
f,i,0(xn)vi(0) +

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))vi(0)

+
1

N

N∑
k

ykxk

∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)

+
1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt . (A157)

Then, ∥r′n∥ < Õ(1).

Proof.

(a) The given left term can be rearranged as∥∥∥∥∥
m∑
i

αiψ
′
f,i,0(xn)vi(0)

∥∥∥∥∥
2

=

d∑
j

(
m∑
i

αiψ
′
f,i,0(xn)vi,j(0)

)2

. (A158)
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By Assumption D.1,(
m∑
i

αiψ
′
f,i,0(xn)vi,j(0)

)2

<(2/m) ln(2/δ)

m∑
i

ψ′
f,i,0(xn)

2vi,j(0)
2 (A159)

<(4/d) ln(2dm/δ) ln(2/δ). (A160)

(b) The given left term can be rearranged as∥∥∥∥∥
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))vi(0)

∥∥∥∥∥
2

=

d∑
j

(
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))vi,j(0)

)2

(A161)

≤(1− γ)2
d∑
j

(
m∑
i

|αiκf,i(xn)vi,j(0)|
)2

. (A162)

By Assumption D.1,(
m∑
i

|αiκf,i(xn)vi,j(0)|
)2

< (4η2/d) ln(2m/δ) ln(2dm/δ). (A163)

(c) By Assumption D.1,∥∥∥∥∥ 1

N

N∑
k

ykxk

∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)∥∥∥∥∥
2

<
256

mN2
ln2
(
2

δ

) N∑
n,k

|⟨xn,xk⟩|
∫ Tf

0

ℓ′f,n,t dt

∫ Tf

0

ℓ′f,k,t dt . (A164)

By Assumption D.5,

256

N2
ln2
(
2

δ

) N∑
n,k

|⟨xn,xk⟩|
∫ Tf

0

ℓ′f,n,t dt

∫ Tf

0

ℓ′f,k,t dt

× N2

4
∑N

n,k |⟨xn,xk⟩|
∫ Tf

0
ℓ′f,n,t dt

∫ Tf

0
ℓ′f,k,t dt

<64 ln2(2/δ). (A165)

(d) The given left term can be rearranged as∣∣∣∣∣
m∑
i

α2
iκf,i(xk)

∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

∣∣∣∣∣
≤(1− γ2)

m∑
i

α2
iκf,i(xk)

∫ Tf

0

ℓ′f,k,t dt . (A166)

By Assumption D.1,
m∑
i

α2
iκf,i(xk) <

2η√
m

ln

(
2m

δ

)
. (A167)

Thus,∥∥∥∥∥ 1

N

N∑
k

ykxk

m∑
i

α2
iκf,i(xk)

∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

∥∥∥∥∥
2
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<
4η2(1− γ2)2

mN2
ln2
(
2m

δ

) N∑
n,k

|⟨xn,xk⟩|
∫ Tf

0

ℓ′f,n,t dt

∫ Tf

0

ℓ′f,k,t dt . (A168)

By Assumption D.5,

4η2(1− γ2)2

mN2
ln2
(
2m

δ

) N∑
n,k

|⟨xn,xk⟩|
∫ Tf

0

ℓ′f,n,t dt

∫ Tf

0

ℓ′f,k,t dt

<
4η2(1− γ2)2

N2
ln2
(
2m

δ

) N∑
n,k

|⟨xn,xk⟩|
∫ Tf

0

ℓ′f,n,t dt

∫ Tf

0

ℓ′f,k,t dt

× N2

4
∑N

n,k |⟨xn,xk⟩|
∫ Tf

0
ℓ′f,n,t dt

∫ Tf

0
ℓ′f,k,t dt

(A169)

=η2(1− γ2)2 ln2(2m/δ). (A170)

(e) As ∥s1 + s2 + s3 + s4 + s5∥2 ≤ 25max(∥s1∥2, ∥s2∥2, ∥s3∥2, ∥s4∥2, ∥s5∥2) for any
s1, s2, s3, s4, s5 ∈ Rd,

∥∥∥∥∥
m∑
i

αiψ
′
f,i,Tf

(xn)vi(Tf )

∥∥∥∥∥
2

<25max



4 ln(2dm/δ) ln(2/δ),

4η2(1− γ)2 ln(2m/δ) ln(2dm/δ),

64 ln2 (2/δ),

η2(1− γ2)2 ln2(2m/δ),∥∥∥∥∥ 1

N

N∑
k

ykΦ(xn,xk)xk

∫ Tf

0

ℓ′f,k,t dt

∥∥∥∥∥
2


. (A171)

(f) Similarly to (e),

∥r′n∥2 < 16max


4 ln(2dm/δ) ln(2/δ),

4η2(1− γ)2 ln(2m/δ) ln(2dm/δ),

64 ln2 (2/δ),

η2(1− γ2)2 ln2(2m/δ)

. (A172)

Lemma D.14 (Upper bounds of inner products with adversarial perturbation). Assume Assump-
tions D.1 and D.5.

(a) ∣∣∣∣∣
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

∣∣∣∣∣ < 2
√

(1/d) ln(2/δ) ln(2m/δ)∥z∥ = Õ(1). (A173)

(b) ∣∣∣∣∣
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))⟨vi(0), z⟩

∣∣∣∣∣
<2η(1− γ) ln(2m/δ)∥z∥/

√
d = Õ(1). (A174)

(c) ∣∣∣∣∣ 1N
N∑
k

yk⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)∣∣∣∣∣
<
8Cthr(z, δ) ln(2/δ)√

ln(2m/δ)
= Õ(1). (A175)
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(d) ∣∣∣∣∣ 1N
N∑
k

yk⟨xk, z⟩
m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

∣∣∣∣∣
<η(1− γ2)Cthr(z, δ)

√
ln(2m/δ) = Õ(1). (A176)

Proof.

(a) By Assumption D.1,∣∣∣∣∣
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

∣∣∣∣∣ <
√√√√ 2

m
ln

(
2

δ

) m∑
i

ψ′
f,i,0(xn)2⟨vi(0), z⟩2 (A177)

≤

√√√√ 2

m
ln

(
2

δ

) m∑
i

⟨vi(0), z⟩2 (A178)

<2
√
(1/d) ln(2/δ) ln(2m/δ)∥z∥. (A179)

(b) By Assumption D.1,∣∣∣∣∣
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))⟨vi(0), z⟩

∣∣∣∣∣
≤(1− γ)

m∑
i

|αiκf,i(xn)⟨vi(0), z⟩| (A180)

<2η(1− γ) ln(2m/δ)∥z∥/
√
d. (A181)

(c) and (d) Similarly to Lemma D.10.

Lemma D.15 (Representation of network g). Suppose that Assumptions D.1, D.3, D.5 and D.7.
(a) In Scenario (a), i.e., xadv

n := rn,
g(z;Tg)

=g(z; 0) +

m∑
i

βiκi,g(z)(ψ
′
g,i,Tg

(z)− ψ′
g,i,0(z))hg,i,0(z)

+
1

N

N∑
n

yadvn (⟨rn, z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

×
(

m∑
i

β2
i ψ

′
g,i,0(rn)ψ

′
g,i,0(z)− Φ(rn, z)

)

+
1

N

N∑
n

yadvn Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

+
1

N

N∑
n

yadvn (⟨rn, z⟩+ 1)

m∑
i

β2
i κi,g(rn)

×
∫ Tg

0

ℓ′g,n,t(ψ
′
g,i,t(rn)ψ

′
g,i,Tg

(z)− ψ′
g,i,0(rn)ψ

′
g,i,0(z)) dt
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+
ϵ

N∥∑m
i αiψ′

f,i,Tf
(xn)vi(Tf )∥

[
N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

{
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

+

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))⟨vi(0), z⟩

+
1

N

N∑
k

yk⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)

+
1

N

N∑
k

yk⟨xk, z⟩
m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

}

+
1

N

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

]
. (A182)

(b) In Scenario (b), i.e., xadv
n := xn + rn,

g(z;Tg)

=g(z; 0) +

m∑
i

βiκi,g(z)(ψ
′
g,i,Tg

(z)− ψ′
g,i,0(z))hg,i,0(z)

+
1

N

N∑
n

yadvn (⟨xadv
n , z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

×
(

m∑
i

β2
i ψ

′
g,i,0(x

adv
n )ψ′

g,i,0(z)− Φ(xadv
n , z)

)

+
1

N

N∑
n

yadvn Φ(xadv
n , z)(⟨xn, z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

+
1

N

N∑
n

yadvn (⟨xadv
n , z⟩+ 1)

m∑
i

β2
i κi,g(x

adv
n )

×
∫ Tg

0

ℓ′g,n,t(ψ
′
g,i,t(x

adv
n )ψ′

g,i,Tg
(z)− ψ′

g,i,0(x
adv
n )ψ′

g,i,0(z)) dt

+
ϵ

N∥∑m
i αiψ′

f,i,Tf
(xn)vi(Tf )∥

[
N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

{
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

+

m∑
i

αiκi,g(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))⟨vi(0), z⟩

+
1

N

N∑
k

yk⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)

+
1

N

N∑
k

yk⟨xk, z⟩
m∑
i

α2
iκi,g(xk)
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×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

}

+
1

N

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

×
N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

]
. (A183)

Proof. Similarly to Lemma D.9,

g(z;Tg) =g(z; 0) +

m∑
i

βiκi,g(z)(ψ
′
g,i,Tg

(z)− ψ′
g,i,0(z))hg,i,0(z)

+
1

N

N∑
n

yadvn (⟨xadv
n , z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

×
(

m∑
i

β2
i ψ

′
g,i,0(x

adv
n )ψ′

g,i,0(z)− Φ(xadv
n , z)

)

+
1

N

N∑
n

yadvn Φ(xadv
n , z)⟨xadv

n , z⟩
∫ Tg

0

ℓ′g,n,t dt

+
1

N

N∑
n

yadvn Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

+
1

N

N∑
n

yadvn (⟨xadv
n , z⟩+ 1)

m∑
i

β2
i κi,g(x

adv
n )

×
∫ Tg

0

ℓ′g,n,t(ψ
′
g,i,t(x

adv
n )ψ′

g,i,Tg
(z)− ψ′

g,i,0(x
adv
n )ψ′

g,i,0(z)) dt . (A184)

By Lemma D.12,

1

N

N∑
n

yadvn Φ(xadv
n , z)⟨rn, z⟩

∫ Tg

0

ℓ′g,n,t dt

=
ϵ
∑N

n Φ(xadv
n , z)

∫ Tg

0
ℓ′g,n,t dt

∑m
i αiψ

′
f,i,Tf

(xn)⟨vi(Tf ), z⟩
N∥∑m

i αiψ′
f,i,Tf

(xn)vi(Tf )∥
. (A185)

The numerator can be also rearranged as

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

m∑
i

αiψ
′
f,i,Tf

(xn)⟨vi(Tf ), z⟩

=

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

(
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

+

m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))⟨vi(0), z⟩

+
1

N

N∑
k

yk⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)

+
1

N

N∑
k

yk⟨xk, z⟩
m∑
i

α2
iκf,i(xk)
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×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

)

+
1

N

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt . (A186)

Lemma D.16 (Network prediction of g). Suppose that Assumptions D.1, D.3, D.5 and D.7.

(a) In Scenario (a), if∣∣∣∣∣ 1

N2

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

∣∣∣∣∣
>Õ

(√
d
∫ Tf

0
ℓ̄′f,k,t dt

ϵ

(
1 +

∣∣∣∣∣ 1N
N∑
n

yadvn Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

∣∣∣∣∣
)

+

∫ Tg

0

ℓ̄′g,n,t dt

)
, (A187)

then

sgn(g(z;Tg)) = sgn

(
1

N2

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

×
N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

)
. (A188)

(b) In Scenario (b), if∣∣∣∣∣ 1

N2

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

∣∣∣∣∣
>Õ

(√
d
∫ Tf

0
ℓ̄′f,k,t dt

ϵ

(
1 +

∣∣∣∣∣ 1N
N∑
n

yadvn Φ(xadv
n , z)(⟨xn, z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

∣∣∣∣∣
)

+

∫ Tg

0

ℓ̄′g,n,t dt

)
, (A189)

then

sgn(g(z;Tg)) = sgn

(
1

N2

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt

×
N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

)
. (A190)

Proof. We prove (a). Similarly, (b) can be established. By Lemmas D.10 and D.13 to D.15, if∣∣∣∣∣ 1

N2

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

∣∣∣∣∣
>
∥∑m

i αiψ
′
f,i,Tf

(xn)vi(Tf )∥
ϵ

{
|g(z; 0)|+

∣∣∣∣∣
m∑
i

βiκi,g(z)(ψ
′
g,i,Tg

(z)− ψ′
g,i,0(z))hg,i,0(z)

∣∣∣∣∣
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+

∣∣∣∣∣ 1N
N∑
n

yadvn (⟨rn, z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

(
m∑
i

β2
i ψ

′
g,i,0(rn)ψ

′
g,i,0(z)− Φ(rn, z)

)∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
n

yadvn Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
n

yadvn (⟨rn, z⟩+ 1)

m∑
i

β2
i κi,g(rn)

×
∫ Tg

0

ℓ′g,n,t(ψ
′
g,i,t(rn)ψ

′
g,i,Tg

(z)− ψ′
g,i,0(rn)ψ

′
g,i,0(z)) dt

∣∣∣∣∣
}

+
1

N

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

{∣∣∣∣∣
m∑
i

αiψ
′
f,i,0(xn)⟨vi(0), z⟩

∣∣∣∣∣
+

∣∣∣∣∣
m∑
i

αiκf,i(xn)(ψ
′
f,i,Tf

(xn)− ψ′
f,i,0(xn))⟨vi(0), z⟩

∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
k

yk⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

(
m∑
i

α2
iψ

′
f,i,0(xn)ψ

′
f,i,0(xk)− Φ(xn,xk)

)∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
k

yk⟨xk, z⟩
m∑
i

α2
iκf,i(xk)

×
∫ Tf

0

ℓ′f,k,t(ψ
′
f,i,Tf

(xn)ψ
′
f,i,t(xk)− ψ′

f,i,0(xn)ψ
′
f,i,0(xk)) dt

∣∣∣∣∣
}

(A191)

=
Õ
(√

d
∫ Tf

0
ℓ̄′f,k,t dt

)
ϵ

(
Õ(1) +

∣∣∣∣∣ 1N
N∑
n

yadvn Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

∣∣∣∣∣
)

+ Õ
(∫ Tg

0

ℓ̄′g,n,t dt

)
, (A192)

then

sgn(g(z;Tg))

= sgn

(
1

N2

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt

)
. (A193)

Theorem D.17 (Perturbation learning, Scenario (a), general case). Consider Scenario (a) in Set-
ting 3.1. Let δ = Θ(1) be a small positive number and

f̂gen(z) :=
1

N

N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt , (A194)

ĝgena (z) :=
1

N2

N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt . (A195)

Under Assumption 3.2, for any z ∈ Rd, if

|f̂gen(z)| > Õ
(
1 +

∫ Tf

0

ℓ̄f,n,t dt

)
, (A196)

|ĝgena (z)|
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>Õ
(√

d
∫ Tf

0
ℓ̄′f,k,t dt

ϵ

(
1 +

∣∣∣∣∣ 1N
N∑
n

yadvn Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

∣∣∣∣∣
)

+

∫ Tg

0

ℓ̄′g,n,t dt

)
, (A197)

sgn(f̂gen(z)) = sgn(ĝgena (z)), (A198)

then, with probability at least 1− δ, sgn(f(z;Tf )) = sgn(g(z;Tg)) holds.

Proof. By Bonferroni’s inequality and Assumptions D.5 and D.7 and Lemmas D.2, D.4, D.11
and D.16, the claim is established.

Theorem D.18 (Perturbation learning, Scenario (b), general case). Consider Scenario (b) in Set-
ting 3.1. Let δ = Θ(1) be a small positive number and

f̂gen(z) :=
1

N

N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt , (A199)

ĝgenb (z) :=
1

N2

N∑
n

Φ(xadv
n , z)

∫ Tg

0

ℓ′g,n,t dt
N∑
k

ykΦ(xn,xk)⟨xk, z⟩
∫ Tf

0

ℓ′f,k,t dt . (A200)

Under Assumption 3.2, for any z ∈ Rd, if

|f̂gen(z)| > Õ
(
1 +

∫ Tf

0

ℓ̄f,n,t dt

)
, (A201)

|ĝgenb (z)|

>Õ
(√

d
∫ Tf

0
ℓ̄′f,k,t dt

ϵ

(
1 +

∣∣∣∣∣ 1N
N∑
n

yadvn Φ(xadv
n , z)(⟨xn, z⟩+ 1)

∫ Tg

0

ℓ′g,n,t dt

∣∣∣∣∣
)

+

∫ Tg

0

ℓ̄′g,n,t dt

)
, (A202)

sgn(f̂gen(z)) = sgn(ĝgenb (z)), (A203)

then, with probability at least 1− δ, sgn(f(z;Tf )) = sgn(g(z;Tg)) holds.

Proof. By Bonferroni’s inequality and Assumptions D.5 and D.7 and Lemmas D.2, D.4, D.11
and D.16, the claim is established.

Theorem 3.3 (Direction of adversarial perturbation). Let δ = Θ(1) be a small positive number.
Under Assumption 3.2, for any n ∈ [N ], with probability at least 1− δ, the adversarial perturbation
rn is parallel to the weighted sum of training samples as follows:

rn//
1

N

N∑
k=1

ykΦ(xn,xk)xk

∫ Tf

0

ℓ′(−ykf(xk; t)) dt+ ξn, (6)

where ξn satisfies ∥ξn∥ = Õ(1). In particular, for ℓ(s) = s,

rn//
Tf
N

N∑
k

ykΦ(xn,xk)xk + ξn. (7)

Proof. By Bonferroni’s inequality and Assumptions D.5 and D.7 and Lemmas D.2, D.4, D.12
and D.13, the claim is established.
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Theorem 3.4 (Perturbation learning, Scenario (a), special case of Theorem D.17). Consider Sce-
nario (a) in Setting 3.1. Assume ℓ(s) = s and yadvn ∼ U({±1}) for every n ∈ [N ]. Let δ = Θ(1)
be a small positive number and

f̂(z) :=
1

N

N∑
n=1

ynΦ(xn, z)⟨xn, z⟩, ĝa(z) :=
1

N2

N∑
n=1

Φ(rn, z)

N∑
k=1

ykΦ(xn,xk)⟨xk, z⟩. (8)

Under Assumption 3.2, for any z ∈ Rd, if

(Functional margin condition 1) |f̂(z)| > Õ
(
1 +

1

Tf

)
, (9)

(Functional margin condition 2) |ĝa(z)| > Õ
(

1

Tf
+

√
d

ϵ

(
1

Tg
+

1√
N

))
, (10)

(Agreement condition) sgn(f̂(z)) = sgn(ĝa(z)), (11)

then, with probability at least 1− δ, sgn(f(z;Tf )) = sgn(g(z;Tg)) holds.

Proof. By Bonferroni’s inequality and Lemma C.2 and Theorem D.17, the claim is established.

Theorem 3.5 (Perturbation learning, Scenario (b), special case of Theorem D.18). Consider Sce-
nario (b) in Setting 3.1. Assume ℓ(s) = s and yadvn ∼ U({±1}) for every n ∈ [N ]. Let δ = Θ(1)
be a small positive number and

ĝb(z) :=
1

N2

N∑
n=1

Φ(xadv
n , z)

N∑
k=1

ykΦ(xn,xk)⟨xk, z⟩. (14)

Under Assumption 3.2, for any z ∈ Rd, if the functional margin condition 1 (Ineq. (9)),

(Func. margin cond. 2) |ĝb(z)| > Õ

 1

Tf
+

√
d

ϵ

 1

Tg
+

√∑N
n (⟨xn, z⟩+ 1)2

N

, (15)

(Agreement condition) sgn(f̂(z)) = sgn(ĝb(z)), (16)

then, with probability at least 1− δ, sgn(f(z;Tf )) = sgn(g(z;Tg)) holds.

Proof. By Bonferroni’s inequality and Lemma C.2 and Theorem D.18, the claim is established.

Lemma D.19 (Sufficient condition of agreement condition). If

|∑N
n yn⟨xn, z⟩

∫ Tf

0
ℓ′f,n,t dt |

maxx∈{x1,...,xN ,z}
∑N

n λ(xn,x)|⟨xn, z⟩|
∫ Tf

0
ℓ′f,n,t dt

>
1− γ

1 + γ
, (A204)

then sgn(f̂gen(z)) = sgn(ĝgena (z)) = sgn(ĝgenb (z)) holds.

Proof. By Lemma C.4,∣∣∣∣∣
N∑
n

yn⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

(
Φ(xn, z)−

(1 + γ)2

4

)∣∣∣∣∣
≤ (1 + γ)(1− γ)

4

N∑
n

λ(xn, z)|⟨xn, z⟩|
∫ Tf

0

ℓ′f,n,t dt . (A205)
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In addition,

(1 + γ)2

4

∣∣∣∣∣
N∑
n

yn⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

∣∣∣∣∣
>

(1 + γ)(1− γ)

4

N∑
n

λ(xn, z)|⟨xn, z⟩|
∫ Tf

0

ℓ′f,n,t dt (A206)

⇐=

∣∣∣∑N
n yn⟨xn, z⟩

∫ Tf

0
ℓ′f,n,t dt

∣∣∣∑N
n λ(xn, z)|⟨xn, z⟩|

∫ Tf

0
ℓ′f,n,t dt

>
1− γ

1 + γ
. (A207)

Thus, if Ineq. (A207) holds, then

sgn

(
N∑
n

ynΦ(xn, z)⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

)
= sgn

(
N∑
n

yn⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

)
. (A208)

Similarly, for any k ∈ [N ], if ∣∣∣∑N
n yn⟨xn, z⟩

∫ Tf

0
ℓ′f,n,t dt

∣∣∣∑N
n λ(xn,xk)|⟨xn, z⟩|

∫ Tf

0
ℓ′f,n,t dt
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1 + γ
, (A209)

then
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N∑
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ynΦ(xn,xk)⟨xn, z⟩
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0

ℓ′f,n,t dt

)
= sgn
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N∑
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∫ Tf

0

ℓ′f,n,t dt

)
. (A210)

When Ineq. (A209) holds for every k ∈ [N ],

sgn

(
N∑
n

Φ(rn, z)

∫ Tg

0

ℓ′g,n,t dt

N∑
l

ylΦ(xn,xl)⟨xl, z⟩
∫ Tf

0

ℓ′f,l,t dt

)

=sgn

(
N∑
l

ylΦ(xn,xl)⟨xl, z⟩
∫ Tf

0

ℓ′f,l,t dt

)
(A211)

=sgn

(
N∑
n

yn⟨xn, z⟩
∫ Tf

0

ℓ′f,n,t dt

)
. (A212)

By integrating Ineqs. (A207) and (A209), the claim is established.
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Guidelines:
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in Section 3.3. The complete proof can be found in Appendix D.
Guidelines:
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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