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ABSTRACT

Handling long-context inputs is crucial for large language models (LLMs) in
tasks such as extended conversations, document summarization, and many-shot
in-context learning. While recent approaches have extended the context windows
of LLMs and employed perplexity (PPL) as a standard evaluation metric, PPL has
proven unreliable for assessing long-context capabilities. The underlying cause of
this limitation has remained unclear. In this work, we provide a comprehensive
explanation for this issue. We find that PPL overlooks key tokens, which are es-
sential for long-context understanding, by averaging across all tokens and thereby
obscuring the true performance of models in long-context scenarios. To address
this, we propose LongPPL, a novel metric that focuses on key tokens by employ-
ing a long-short context contrastive method to identify them. Our experiments
demonstrate that LongPPL strongly correlates with performance on various long-
context benchmarks (e.g., Pearson correlation of -0.96), significantly outperform-
ing traditional PPL in predictive accuracy. Additionally, we introduce LongCE
(Long-context Cross-Entropy) loss, a re-weighting strategy for fine-tuning that
prioritizes key tokens, leading to consistent improvements across diverse bench-
marks. In summary, these contributions offer deeper insights into the limitations
of PPL and present effective solutions for accurately evaluating and enhancing the
long-context capabilities of LLMs.

1 INTRODUCTION

The ability to process long-context inputs is critical for large language models (LLMs) in many real-
world tasks, such as long conversations (Maharana et al., 2024), document summarization (Chang
et al., 2024), and many-shot in-context learning (Agarwal et al., 2024; Li et al., 2024). Despite
many techniques for extending the context length (Han et al., 2023; Chen et al., 2023; Zhu et al.,
2024; Xiong et al., 2024; Chen et al., 2024a), the evaluation of long-context capabilities still widely
uses on perplexity (PPL) as the de facto metric. Many have claimed to extend context windows to
32k, 128k, or even millions of tokens, based on attaining a low perplexity score under long context.
However, recent studies have challenged this common practice by revealing a huge discrepancy
between perplexity and actual performance on long-context tasks (Hu et al., 2024a; Hsieh et al.,
2024). As shown in Figure 1 (left), the perplexity of LLMs shows almost no correlation to their long-
context performance measured by Longbench scores (Bai et al., 2023b). This raises the question:

Why does perplexity fail to reflect the long-context abilities of LLMs?

To understand this phenomenon, we conduct a fine-grained analysis of the roles of different tokens
at long-context tasks. Notably, we find perplexity computed only on the answer tokens to the long-
context tasks strongly correlates with LongEval accuracy, whereas perplexity on non-answer tokens
shows little to no correlation. Since most tokens are non-answer tokens, standard perplexity averag-
ing over all token equally fails to represent the long-context abilities. This motivates us to average
over the key tokens that reflect a model’s long-context abilities. A key obstacle is that natural texts
have no ground-truth reference of key tokens, making it hardly applicable to general cases.

To tackle this challenge, we propose a principled method to measure the influence of long context
on each token by performing a causal intervention on its context length. We find that tokens with
significantly better predictions under long context are strongly tied to long-context information, even
though they make up only a small portion of general text. Empirically, our proposed method can
accurately identify the answer tokens in LongEval with up to 98.2% accuracy.
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Figure 1: Long-context performance (LongBench (Bai et al., 2023b)) vs. perplexity measures (PPL
and our LongPPL) computed on GovReport (Huang et al., 2021), a natural corpus. While PPL shows
no correlation w.r.t. Longbench score, LongPPL achieves −0.96 Pearson correlation coefficient.

Built upon the accurate selection of key tokens, we propose LongPPL (Long-context Perplexity),
where we compute perplexity by only averaging solely on the selected key tokens. Extensive exper-
iments across a diverse suite of LLMs and long-context benchmarks show that LongPPL computed
on natural language corpus exhibits a consistently strong correlation with their benchmark scores
computed over various long-context tasks, e.g., -0.96 correlation in Figure 1 (right). Thus, LongPPL
offers a natural way to evaluate LLMs’ long-context capabilities in an unsupervised fashion.

Following the design of LongPPL, we further develop an efficient long-context training strategy by
emphasizing key tokens. Specifically, we propose the LongCE (Long-context Cross-Entropy) loss
that upweights the key tokens, which can be estimated by the model itself. In this way, LongCE can
bootstrap its long-context abilities by alternating between estimating key tokens and optimizing key
tokens. Experimental results across multiple LLMs show that LongCE consistently improves over
the conventional CE loss, with a maximum accuracy gain of 22% on LongEval.

Our contributions are summarized as follows:

• We conduct a fine-grained analysis on the failure of perplexity at measuring long-context
abilities. Specifically, we reveal the critical roles of key tokens in long-context tasks and
propose principled metrics to identify key tokens with high accuracy.

• We propose LongPPL (Long-context Perplexity) that is solely based on the selected key
tokens. Extensive evaluation shows that in contrast to standard PPL, LongPPL exhibits a
strong correlation with long-context abilities across multiple LLMs and benchmarks.

• We introduce LongCE (Long-context Cross Entropy) loss that assigns larger weights to
key tokens that gain more from the long context. LongCE attains consistent improvements
in a plug-and-play solution, demonstrating its generality for learning long-context models.

2 A FINE-GRAINED ANALYSIS OF PERPLEXITY

Recent studies have shown that perplexity does not adequately reflect long-context performance of
language models (Agarwal et al., 2024; Li et al., 2024), as we have also observed in Figure 1. In this
section, we demystify this phenomenon with a fine-grained analysis of the roles of different tokens
at long-context performance.

Preliminaries Perplexity is a commonly used metric for evaluating a LM’s ability to predict the
next word in a sequence (Jelinek et al., 1977). For a sequence of tokens x = (x1, x2, ..., xn), a
language model parameterized by θ is learned to predict the conditional probability of each token
given the previous context Pθ(xi|x<i), i ∈ [n]. The perplexity (PPL) on this sequence is defined as
the inverse of the geometric mean of all token probabilities:

PPLθ(x) = exp

(
− 1

n

n∑
i=1

logPθ(xi|x<i)

)
= Pθ(x)

− 1
n . (1)

It quantifies the model’s uncertainty when encountering new tokens. A larger likelihood of x indi-
cates better prediction and lower perplexity.
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line mindless-patrol: REGISTER_
CONTENT is <28352>
......
line tender-clause: REGISTER_
CONTENT is <45129>
Q: Tell me what is the <REGISTER_
CONTENT> in line tender-clause?

A: The <REGISTER_CONTENT> in 
line tender-clause is <45129>.

Answer tokens

Prompt

Standard
Response

Non-answer tokens

(a) Example of answer tokens.
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Figure 2: (a) An example of the answer tokens in the LongEval task. (b) The correlation between
accuracy and perplexity on answer tokens / non-answer tokens on LongEval. Each point represents
the results obtained from testing at a specific prompt length ranging from 2k to 28k. The experiments
is conducted using Yi-6B-200K (Young et al., 2024) and CLEX-7B-64K (Chen et al., 2024a).

2.1 NOT ALL TOKENS MATTER FOR LONG-CONTEXT PERFORMANCE

Despite the close connection between perplexity and token prediction accuracy, there is growing
evidence that LMs’ perplexity does not indicate their performance on long-context benchmarks (Hu
et al., 2024a; Hsieh et al., 2024). There are two possible sources of this mismatch: either the log-
likelihood-based metric is flawed, or the averaged tokens are not representative enough. In this
work, we champion the latter explanation by showing that when selecting the proper “key tokens”
for long-context understanding, perplexity can correlate very well with long-context performance.

To have an intuitive understanding, let us consider a real example from LongEval benchmark shown
in Figure 2(a). Most tokens in the answer, “the <REGISTER CONTENT> in line tender-clause
is”, are straightforward answer formats stemmed immediately from the question, without relying
on any long-context information. Even short-context LMs can predict well on these tokens. Since
most tokens are long-context-agnostic tokens, perplexity computed equally over all tokens do not
represent long-context performance.

To quantitatively examine this hypothesis, we conduct experiments on LongEval (Li et al., 2023a), a
benchmark for long-context retrieval abilities, where we can separate the answer tokens that match
the desired answers (e.g., <45129> in Figure 2(a)) from non-answer tokens. We compare the
perplexity computed with these two groups of tokens using a powerful long-context LLM, Mixtral-
8x7B (Jiang et al., 2024). As shown in Figures 2(b) & 2(c), the perplexity on answer tokens cor-
relates strongly with the LongEval accuracy that represents the long-context performance; instead,
the perplexity on the non-answer tokens shows almost no correlation with LongEval accuracy, jus-
tifying our intuition that these tokens do not matter for evaluating long-context performance. In
other words, we should evaluate the perplexity of the key tokens that really matter for long-context
performance, which is the focus of our next section.

2.2 EXTRACTING KEY TOKENS FROM NATURAL TEXTS

In natural texts used for training LLMs, we do not have knowledge of the answer tokens as in
LongEval experiments (Figure 2). This motivates us to find a surrogate metric that can accurately
identify the key tokens that matter for long-context performance.

Context Intervention. To measure the influence of long context for each token xi, we perform
an intervention of context length. Specifically, given a sequence x and a language model Pθ (with
strong long-context abilities), for each token xi that has a long context, we compute the difference
between its log probability under the full long context li = (x1, . . . , xi−1) and the log probability
under the truncated short context si = (xi−K , . . . , xi−1) (where K is a short length, e.g., 64):

LSDθ(xi) = logPθ(xi|li)− logPθ(xi|si). (2)

We call it Long-Short Difference (LSD), which measures the improvement in prediction accuracy
endowed solely by the long context. From a causal perspective, si serves as the counterfactual
context created by the intervention (dropping long context), and the LSD estimates the individual
treatment effect (ITE) (Hernán & Robins, 2010) of long context using the language model Pθ. Thus,
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Figure 3: (a) Token distribution categorized by long-short difference (LSD). (b) Distribution of
tokens with LSD greater than 0.5 categorized by long-context likelihood (LCL). The tokens are
from the standard response of LongEval illustrated in Figure 2(a).

a high LSD value indicates that long context plays an important part in the prediction of xi, making
them the key tokens to be considered for evaluating long-context performance. In other words,
LLMs good at long-context understanding should be able to predict high-LSD tokens accurately.

We evaluate the LSD score on LongEval, where we have knowledge of the key answer tokens.
As shown in Figure 3(a), we find that answer tokens are clearly separated from the non-answer
tokens: most answer tokens have LSD values higher than 2, while most of the non-answer tokens
concentrate around low LSD values (lower than 0.5). When using LSD values alone to classify
answer and non-answer tokens, we attain 85.6% accuracy (Figure 4(b)), indicating that LSD values
are strongly indicative of the key tokens in long-context understandings.

From Figure 3(a), we find that a small proportion of non-answer tokens also have large LSDs (larger
than 0.5) and are thus confused together with key tokens. After analyzing, we find that these to-
kens can be further separated out by inspecting their Long-Context Likelihood (LCL) under long
context:

LCLθ(xi) = logPθ(xi|li) = logPθ(xi|x<i). (3)

A lower LCL indicates that the language model hardly predicts accurately at xi even with the long
context information. Figure 3(b) shows that these high-LSD non-answer tokens actually have lower
LCLs than the corresponding answer tokens, indicating that these tokens are (strongly) mispredicted
tokens even under a long context. In other words, these tokens are fundamentally hard to predict
regardless of the context. Therefore, we can exclude them from the selection of key tokens.

Summary: Why does Perplexity Fail? To summarize, we revisit our initial question why per-
plexity fails to represent long-context performance. As shown in Figure 4(a), most tokens in a natu-
ral corpus, GovReport (Huang et al., 2021), are long-context-irrelevant tokens with low LSD (lower
than 0.5), while only less than 10% tokens are highly influenced by long context (with LSD> 2)
and represent long-context abilities. Therefore, perplexity that averages over all tokens (Equation 1)
does not represent the real long-context performance. Instead, combining the LSD (Equation 2)
and the LCL (Equation 3) scores, we are able to accurately identify the answer tokens in LongEval
with an accuracy of 98.2% (Figure 4(b)). Based on this result, in the next section, we design a new
perplexity measure, LongPPL, that is tailored to reflect the long-context performance of LMs, by
focusing on the key tokens.

3 MEASURING AND ENHANCING LONG-CONTEXT CAPABILITIES WITH
KEY TOKENS

In Section 2, we find that only key tokens correlate well with long-context performance (Section 2.1),
and we identify two effective measures to select the key tokens from a natural corpus (Section 2.2).
Based on these observations, we design a new perplexity measure, LongPPL, to measure the long-
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Figure 4: (a) Distribution of tokens in GovReport categorized by long-short difference. (b) The
classification accuracy of discriminating answer to non-answer tokens on LongEval with a classifier
using different metrics (Random refers to a 50-50 random guess on two classes).

context abilities, and, following in the same vein, we propose a new training objective, LongCE, for
finetuning LLMs with an emphasis on key tokens.

3.1 LONG-CONTEXT PERPLEXITY (LONGPPL)

Given a sequence x = (x1, . . . , xn) and a language model Pθ to be evaluated, we consider a gener-
alized notion of perplexity, Focal Perplexity (FocalPPL), where we can assign different importance
to each token xi as indicated by an influence function I(·) : X → R+:

FocalPPLθ(x) = exp

(
n∑

i=1

−Î(xi) logPθ(xi|x<i)

)
, (4)

where I(xi) ≥ 0 indicates the influence of each token xi for a specific task of concern, and Î(xi) =
I(xi)/

∑
j I(xj) is the relative influence after normalization. We can impose the task priors through

designing influence functions, making perplexity task-aware. In particular, when adopting a uniform
influence I(xi) ≡ 1 (assuming that all tokens are equal), FocalPPL reduces to the standard PPL.

LongPPL. Specifically, we define the Long-context Perplexity (LongPPL) with the following bi-
nary long-context influence function Ilong that selects key tokens to have a large long-short difference
under long context (LSD , Equation 2) and a large long-context likelihood (LCL, Equation 3):

Ilong(xi; θ0) =

{
1, if LSDθ0(xi) > α and LCLθ0(x) > β;

0, otherwise.
(5)

Here α, β are two threshold parameters. The first criterion ensures that the generation of the token
is enhanced by the additional information in the long-context. The second criterion excludes the
fundamentally hard (misclassified) tokens that long context information does not help. Based on
these criteria, all tokens are divided into two categories. Tokens that meet the criteria are selected as
key tokens and are included in the perplexity calculation with equal weight, while those that do not
meet the criteria are excluded from the calculation. Later in Section 4.1, we show that in contrast
to standard PPL, LongPPL computed on a natural language corpus for multiple LLMs correlates
well with their performance on long-context benchmarks, including LongEval (Li et al., 2023a),
LongBench (Bai et al., 2023b), and RULER (Hsieh et al., 2024). We also consider other similar
variants of the influence function (e.g., with soft reweighting) and find them to be generally effective
(though often less accurate).

Remark on the Evaluator Model θ0. Notably, the evaluator Pθ0 used for computing the long-
context influence can be different from the evaluated model Pθ. In fact, for the evaluator, we
need a powerful model to ensure that they give a relatively accurate estimate of the token’s long-
context influence. This requires the evaluator itself to have a strong long-context understanding
ability. In practice, we adopt the medium-sized Qwen2-72B-Instruct (Yang et al., 2024) to select
key tokens for all evaluated models for a fair comparison.
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3.2 IMPROVING LONG-CONTEXT CAPABILITIES WITH LONGCE

Due to the massive computational cost of pre-training an LLM from scratch on long texts, current
long-text LLMs are pretrained on short contexts and then fine-tuned on longer contexts. By default,
the long-context fine-tuning process adopts the Cross Entropy (CE) loss as in pre-training, which
adopts a uniform average of all tokens, akin to standard perplexity (Equation 1):

CE(x; θ) = − 1

n

n∑
i=1

logPθ(xi|x<i). (6)

Nevertheless, this de facto paradigm has the same issues that we discussed for perplexity in Sec-
tion 2. We show that most tokens in a sequence are not influenced by the long context, while only a
few key tokens require long-context information; and in turn, the model’s long-context performance
depends crucially on its prediction on these key tokens (as measured in LongPPL, Section 3.1).

Following the methodology of LongPPL (Equations 4 & 5), we propose the LongCE (Long-context
Cross Entropy) loss that reweights every token xi w.r.t. its gain Isoft(xi; θ) from long context:

LongCE(x; θ) = − 1

n

n∑
i=1

Isoft(xi; θ) logPθ(xi|x<i). (7)

For the ease of differentiable optimization using all tokens, we adopt a soft long-context influence
function Isoft : X → [0, γ] based on the likelihood ratio between the long-context probability
Pθ(xi|li) and short-context probability Pθ(xi|si) (defined in Section 2.2):

Isoft(xi; θ) = min (exp (LSDθ(xi)) , γ) = min

(
Pθ(xi|li)
Pθ(xi|si)

, γ

)
. (8)

Here, γ > 0 is a hyper-parameter that sets a threshold on the maximal influence to avoid numerical
instability. As a consequence of this reweighting term, too easy tokens (both short and long con-
text give accurate prediction) and too hard tokens (neither short or long context predicts correctly)
will have a weight around 1, while those long-context-dependent tokens (high Pθ(xi|li) and low
Pθ(xi|si)) will be upweighted above 1, proportionally to the context informativeness.

Remark. Note that different from the influence function of LongPPL (Equation 5) that adopts a
strong LM as the influence evaluator to better select tokens, in LongCE, we use the same model
to evaluate the influence for training efficiency. Therefore, LongCE training does not require a
separate evaluator model, but uses the model itself for long-context evaluation. By this, LongCE
bootstraps the model’s long-context capabilities in an EM (expectation-maximization) way: the
language model Pθ first uses itself to estimate long-context influence of each token Isoft (Equa-
tion 8); and we then use this estimate to update the model parameters by optimizing the LongCE
loss LongCE (Equation 7). This way, the model can better focus on the key tokens that matter the
most for long-context capabilities to improve training efficiency. Additionally, we observe that com-
puting key tokens introduces extra computational overhead. However, later experiments demonstrate
that this overhead is acceptable given the clear performance improvements.

4 EXPERIMENTS

In this section, we conduct real-world experiments to analyze the applicability of the proposed
LongPPL and LongCE. For all the experiments, we use LongBench (Bai et al., 2023b), LongEval
(Li et al., 2023a) and RULER (Hsieh et al., 2024) as the long-context benchmarks. We report the
average score on LongBench, the accuracy on the subtask “lines” of LongEval, and the score on
RULER. For LongBench and RULER, we restrict the prompt length to 32k tokens. For LongEval,
we use 1350 lines as the prompt, which is approximately 32k tokens.

Practical Implementation. In the implementation of LongPPL and LongCE, we need to compute
the log probabilities for each token under both the long and the truncated short context. For the
truncated short context of length K, one can use the sliding window technique in Transformers
for computing token predictions in parallel to improve computational efficiency. For computing
LongPPL when the evaluator model and the evaluated model have different tokenizers, we only
keep key tokens that form the longest common substrings of the evaluated tokens. More details can
be found in Appendix A.1.
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Figure 5: Correlation between the PPL-based metrics (LongPPL and PPL) on GovReport (Huang
et al., 2021) and long-context benchmarks. LongPPL is calculated using Qwen2-72B-Instruct
model.

corr=-0.79, p=0.01

(a) Mistral Large 2

corr=-0.96, p=4×10!"

(b) Llama-3.1-8B

Figure 6: Correlation between LongBench score and LongPPL on GovReport calculated using Mis-
tral Large 2 and Llama-3.1-8B.

4.1 LONGPPL METRIC

Experimental Setup. We calculate LongPPL on the GovReport dataset (Huang et al., 2021), which
consists of long sequences from government reports. We sample 50 documents with the context
length up to 32k tokens. We set the hyperparameters as α = 2, β = −2,K = 4096. We use Qwen2-
72B-Instruct (Yang et al., 2024), an open-source LLM with the context length of 128k tokens, as the
discriminator model θ0 to select the key tokens.

LongPPL Correlates Well with Long-context Performance. In Figure 1 and 5, we demonstrate
the correlation between LongPPL and long-context benchmarks on various long-context LLMs. We
observe that LongPPL exhibits a very strong negative correlation with performance on long-context
tasks across different models, with pearson correlation coefficients exceeding -0.8 for all three tasks.
In contrast, perplexity hardly shows a correlation with the long-context tasks. This indicates that
LongPPL is sufficiently capable of measuring a model’s long-context capabilities.

LongPPL is compatible with various evaluator models. To demonstrate that LongPPL is not re-
stricted to a specific evaluator model, we additionally tested it with two other powerful long-context
LLMs, Mistral Large 2, Llama-3.1-8B. As shown in Figure 6, 8 and 9, the LongPPL calculated
using different models as the evaluator model also exhibits high correlation. We observe that even
though the Llama-3.1 model we use is only 8B in size, it still obtains LongPPL with a strong corre-
lation. This suggests that LongPPL is highly compatible with powerful long-context models, even
with smaller parameter sizes.
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Table 1: The Pearson correlation between different perplexity measures and benchmark scores,
which is lower the better (because we expect a lower perplexity indicates higher benchmark scores).

Metrics Influence I LongBench LongEval RULER

PPL I(x) ≡ 1 -0.11 0.31 0.33
LongPPL-soft Isoft (Equation 8) -0.43 -0.21 -0.17
LongPPL-hard (default) Ilong (Equation 5) -0.96 -0.86 -0.84

Table 2: Long-context performance of the fine-tuned models using the standard CE loss and our
proposed LongCE loss. We fine-tune Llama-2-7b on long texts using various fine-tuning strategies
(EABF and PI) and different training data (PG-19 and Pile-arxiv). The models are then assessed on
benchmarks with prompts of up to 32k tokens.

LongBench LongEval RULER
Training steps 50 100 200 50 100 200 50 100 200

Setting A (PG-19 dataset with EABF)
CE 24.5 26.6 26.9 16.0 24.0 24.0 34.5 38.6 42.7
LongCE (Ours) 26.0 27.2 28.2 24.0 46.0 46.0 43.1 48.3 49.7
Gain (+1.5) (+0.6) (+1.3) (+8.0) (+22.0) (+22.0) (+8.6) (+9.7) (+7.0)

Setting B (PG-19 dataset with PI)
CE 24.3 25.3 25.4 20.0 28.0 26.0 22.1 31.8 35.7
LongCE (Ours) 24.4 25.0 25.8 38.0 44.0 42.0 27.3 34.4 36.4
Gain (+0.1) (-0.3) (+0.4) (+18.0) (+16.0) (+16.0) (+5.2) (+2.6) (+0.7)

Setting C (Pile-arxiv dataset with EABF)
CE 15.0 23.1 23.8 8.0 18.0 14.0 40.9 53.3 51.9
LongCE (Ours) 17.6 24.0 25.0 10.0 18.0 16.0 49.7 54.8 58.6
Gain (+2.6) (+0.9) (+1.2) (+2.0) (+0.0) (+2.0) (+8.8) (+1.5) (+6.7)

Hard standard for key tokens is better than soft re-weighting standard. In Equation 5, we use
an indicator function Ilong as the influence function. Instead, we have also tried to use the soft
reweighting function Isoft used in LongCE (Equation 8) to calculate LongPPL. Its token matching
strategy is detailed in Appendix A.1. In Table 1, we show that LongPPL with soft criteria has a
weaker correlation with the long-context benchmarks compared to LongPPL, indicating that the soft
reweighting influence function is suboptimal for LongPPL.

4.2 FINE-TUNE WITH LONGCE LOSS

Experimental Setup. We primarily use Llama-2-7B (Touvron et al., 2023) as the base model to
perform long-context finetuning. We also conduct experiments on Mistral-7B-v0.1 (Jiang et al.,
2023) and Llama-2-13B. We use PG-19 (Rae et al., 2019), a book dataset sourced from a library,
and Pile-arxiv (Gao et al., 2020), a dataset consisting of Arxiv papers, as the training dataset. The
training sequences are organized to be the context length with 32k tokens. For the calculation of
LongCE, we set γ = 5 in Equation 8 and use the same sliding window approach as described in
Section 4.1 to improve training efficiency. The context length of si is set to be K = 4096. We fine-
tune the base models with Entropy-aware Adjusted Base Frequency (EABF) (Zhang et al., 2024c)
and Position Interpolation (PI) (Chen et al., 2023). Specifically, EABF applies a scaling mechanism
to the attention and uses a higher base frequency for RoPE, while PI linearly downscales the position
indices of the input tokens. These methods can significantly accelerate the convergence speed of
long-context fine-tuning and have been widely adopted in many LLMs (Yang et al., 2024; Dubey
et al., 2024; Chen et al., 2024a). Detailed training setups are available in Appendix A.2.

LongCE Outperforms CE in Various Settings. As shown in Table 2, we present the long-context
capabilities of models fine-tuned with LongCE loss and CE loss under different fine-tuning strategies
and training datasets. We also test the effectiveness of LongCE using different base models in
Table 3. We find that models fine-tuned with LongCE loss consistently outperform those fine-tuned
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Figure 7: Long-context fine-tuning performance (PG-19 dataset with EABF) vs. wall clock training
time. LongCE demonstrates a stronger potential for enhancing long-context capabilities.

with CE loss across nearly all settings. This suggests that the LongCE loss, with its re-weighting
strategy based on long-context token importance, can be applied as a plug-and-play module which
can effectively improve the model’s long-context performance.

Training Efficiency. In addition to the performance improvement brought by the LongCE loss, we
also pay attention to the changes in training efficiency. In LongCE, we need an extra forward pass
to calculate the probability under short context Pθ(xi|si), which introduces additional computation
costs. By using a sliding window technique (detailed in Appendix A.1), the computational overhead
of training the model with LongCE is controlled to about 80% that of training with CE loss. In most
settings shown in Table 2, the model trained with LongCE outperforms the model trained with CE,
even when the latter is trained for twice as many steps. Additionally, we visualize in Figure 7 how
the long-context performance of models fine-tuned with LongCE and CE changes over the course
of training time. Most of the time, fine-tuning with LongCE loss is also a more efficient method.

Table 3: Long-context performance of different fine-tuned models. We fine-tune Mistral-7B-v0.1
and Llama-2-13B with EABF adjustment strategy on Pile-arxiv dataset.

LongBench LongEval RULER
Training steps 50 100 200 50 100 200 50 100 200

Mistral-7B-v0.1
CE 29.6 28.9 28.4 26.0 14.0 12.0 45.0 44.5 42.9
LongCE (Ours) 30.8 30.9 31.1 36.0 30.0 26.0 45.1 44.0 43.5
Gain (+0.8) (+2.0) (+2.7) (+10.0) (+16.0) (+14.0) (+0.1) (-0.5) (+0.6)

Llama-2-13B
CE 26.3 26.9 28.2 14.0 14.0 14.0 45.4 50.4 52.3
LongCE (Ours) 26.4 28.5 28.9 20.0 18.0 18.0 55.1 61.9 62.5
Gain (+0.1) (+1.6) (+0.7) (+6.0) (+4.0) (+4.0) (+9.7) (+11.5) (+10.2)

5 CONCLUSION

In this paper, we offer a comprehensive explanation for why perplexity fails to reflect the long-
context capabilities of LLMs. We find that as perplexity treats all tokens equally, it lacks suffi-
cient attention on the key tokens that are crucial for long-context understanding. To address this,
we propose a novel metric, LongPPL, which focuses on the key tokens in natural texts through a
long-short context constrastive method. We empirically demonstrate the strong correlation with the
long-context capabilities of LLMs as indicated by LongPPL and the performance on long-context
benchmarks. In addition, we utilize the concept of LongPPL to propose the LongCE loss, which
reweights the CE loss used in the long-context fine-tuning. By up-weighting the key tokens, LongCE
leads to consistent improvements across multiple long-context benchmarks with up to 22% gains in
LongEval accuracy. We hope our analysis and approaches can provide insights for a better under-
standing into the essence of long-context generation.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we elaborate on the details of our experiments in the
main paper and the appendix. We introduce the implementation details of LongPPL and LongCE in
Section 4 and Appendix A. We will definitely release the codes as soon as the paper is accepted. We
also consider implementing LongPPL as an open-source toolkit and publishing it as a leaderboard
to evaluate the long-context performance of LLMs.
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A DETAILED SETTINGS IN EXPERIMENTS

A.1 IMPLEMENTATION DETAILS OF LONGPPL

Sliding window algorithm to improve efficiency. Since the calculation of LongPPL requires com-
puting the LSD for each token xi, i ∈ [n], it necessitates calculating the probability under short
context Pθ(xi|si) for n − K times, where K is the length of si. Theoretically, the computational
complexity of this process is O((n − K)K2). Since K2 is typically larger than n (e.g., when
K = 4096, K2 = 16M, which is much greater than n = 32k), this complexity far exceeds the
normal O(n2) complexity of a standard long-context forward pass. As a result, the time cost of this
process is quite significant.

To make this process more efficient, we use a sliding window algorithm to improve efficiency.
Specifically, we introduce a step size d, which is smaller than the truncation length l (we set it
to d = 1024). When calculating the short-context probabilities of xi to xi+d−1, we set the starting
token of the context uniformly as xi−l. Formally speaking, we have

skd+i′ = (x(k−1)d, ...xi′−1), (9)
where k ∈ N, 0 ≤ i′ < d. This approach allows for the calculation of the short-context probabilities
of d tokens in a single forward pass, resulting in a complexity of O((N − K)K2/d). To access a
better understanding on the selection of K and d, please refer to B.2.

Token matching method. Since the used tokenizers between evaluator model Pθ0 and evaluated
models Pθ could be different, we attempt to align the key tokens between different models. For-
mally, we define the encoding and decoding functions of tokenizers used in language models as
encodeP and decodeP . Let t = (t1, ..., tN ) be the original text contains of N characters, and
x = (x1, ..., xn) = encodePθ0

(t), x′ = (x′
1, ..., x

′
n′) = encodePθ

(t) be the token sequence en-
coded by Pθ0 and Pθ, respectively. Let X = {xki}

nk
i=1 be the set of key tokens calculated by the

evaluator model Pθ0 . We map these tokens to the text space as T = decodePθ0
(X ). Then, the key

token set X ′ of the evaluated model is the maximal subset of x′ which satisfies

decodePθ
(X ′) ⊆ T . (10)

Besides, in Table 1, we also implement the LongPPL with the soft influence function Isoft (Eq. (8)).
In this approach, we implement an reweighting algorithm to transfer the weight between different
tokenizers. Specifically, denote w = (w1, ..., wn) as the LSD weight on x calculated by Pθ0 . The
weight of x′

i is defined as

w′
i =

∑
tj∈decodePθ

(x′
i)

w(tj)/|decodePθ
(x′

i)|, (11)

where w(tj) is the weight of the token that tj belongs to. This assigns the weight of x′ with the
string-level average of the weight in x.

A.2 IMPLEMENTATION DETAILS OF LONGPE

Fine-tuning strategies. For EABF (Zhang et al., 2024c), we adopt the identical settings in the
original paper, with a RoPE base of 500k. For PI (Chen et al., 2023), we set the scaling factor to 8
since we want to extend the context window from 4k to 32k.

Training details. We use a learning rate of 2 × 10−5 for Llama and 1 × 10−6 for Mistral, with no
weight decay and a linear warmup of 20 steps along with AdamW (Loshchilov, 2017) with β1 = 0.9
and β2 = 0.95. We apply a global batch of 64 on PG-19 and 8 on Pile-arxiv. We disable the sliding
window mechanism when fine-tuning Mistral-7B-v0.1. We perform the experiments with 8 Nvidia
A100 80GB GPUs using Pytorch (Paszke et al., 2019).

B SUPPLEMENTARY EXPERIMENT RESULTS

B.1 DETAILED RESULTS OF LONGPPL

We present the LongPPL calculated by different models in Table 4, and provide further visualization
results for Mistral Large 2 and Llama-3.1-8B in Figure 8 and 9.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: The perplexity-based metrics of various LLMs.

Metric LongPPL PPL
Evaluator model Qwen2-72B-Instruct Mistral Large 2 Llama-3.1-8B -

Mixtral-8x7B-32k 2.08 2.50 1.74 3.67
FILM-7B-32k 2.49 3.17 2.03 4.47
Mistral-7B-32k 2.68 3.49 2.19 4.25
Qwen1.5-14B-128k 2.97 2.93 2.33 5.23
Qwen2-7B-128k 2.99 2.73 2.29 4.97
Phi-3-small-128k 2.98 2.86 2.41 5.42
CLEX-7B-64k 3.70 4.60 2.92 4.13
Yi-6B-200k 3.62 3.92 2.86 5.11
Yarn-7B-128k 3.67 4.88 3.10 4.17

corr=-0.91, p=0.001

(a) LongEval.

corr=-0.96, p=4×10!"

(b) RULER

Figure 8: LongPPL with Mistral Large 2.

B.2 ABLATION STUDY

LCL. In the calculation of LongPPL, we employ LCL as an assistant for our core criterion, LSD,
in selecting key tokens. In Figure 10, we demonstrate the LongPPL calculated without the LCL
criterion. This version of LongPPL hardly has correlation with the long-context benchmark, showing
that LCL is an indispensable part for LongPPL.

Evaluator model. In the main text, we use a evaluator model θ0 to identify the key tokens. To vali-
date the necessity of this approach, we calculate LongPPL using the model itself as the evaluator, as
shown in Table 5. The results indicate that most models achieve similar LongPPL scores, suggesting
that this self-evaluated version of LongPPL does not reflect the models’ long-context capabilities.

Table 5: LongPPL using the evaluated model itself to calculate the key tokens.

Mixtral FILM Mistral Qwen1.5 Qwen2 Phi-3 CLEX Yi Yarn

LongPPL 1.67 1.64 1.68 1.67 1.65 1.65 1.68 1.75 1.92

Hyperparameters. In the computation of LongPPL and LongCE, several hyperparameters are uti-
lized, including the thresholds α and β for identifying key tokens, as well as the short context
window length K and sliding window length d used in calculating LSD. Here, we design ablation
experiments to analyze the selection of these hyperparameters.

First, we conduct an ablation study on the two thresholds, α and β, in LongPPL. We use Qwen2-
72B-Instruct as the evaluator model, and the results are shown in table 6. We find that when β=1,
α=1 or 2, the correlation between LongPPL and benchmarks even improves. In fact, we simply
reused the hyperparameters summarized from the motivation experiments without any overtuning.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

corr=-0.89, p=0.001

(a) LongEval

corr=-0.90corr=-0.90, p=0.001

(b) RULER

Figure 9: LongPPL with Llama-3.1-8B.

corr=-0.34 corr=-0.03 corr=0.11

Figure 10: LongPPL without LCL.

The results show that LongPPL’s performance is not sensitive to the choice of hyperparameters, with
the correlation coefficient being greater than 0.8 in most cases.

Second, we conduct ablation experiments on K and d, as shown in table 7. The results reveal that, on
one hand, increasing K or decreasing d significantly improves the efficiency of LongCE (from +79%
to +36%/+43%). On the other hand, under these settings, although the model’s performance on
real-world tasks (LongBench) slightly decreases, it achieves substantial improvements on synthetic
tasks (LongEval, RULER). This suggests that LongCE still holds potential for further efficiency
enhancements.

Table 6: The correlation coefficients between LongPPL, calculated with different hyperparameters
(α, β), and the benchmark.

LongPPL LongBench LongEval RULER

α = 2, β = 2 (default) -0.96 -0.86 -0.84
α = 2, β = 1 -0.96 -0.92 -0.92
α = 1, β = 2 -0.91 -0.73 -0.69
α = 1, β = 1 -0.97 -0.88 -0.87

B.3 FINE-GRAINED RESULTS OF LONGCE

In this section, we provide more detailed LongBench scores of the models from the experiments in
section 4.2, as shown in Table 8. We observe that the models finetuned by LongCE outperforms
the model finetuned with CE primarily in single/multi-document QA, summarization and synthetic
tasks (including retrieval and counting tasks). This also explains why LongCE can significantly
outperform CE on LongEval and RULER, as their synthetic tasks primarily assess models’ retrieval,
summarization, and QA capabilities in long-context scenarios.
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Table 7: The performance and time cost of LongCE on long-context benchmarks under different
hyperparameter settings of K and d.

Total training time / h LongBench LongEval RULER
Training steps 200 50 100 200 50 100 200 50 100 200

Setting A (PG-19 dataset with EABF)
CE 7.0 24.5 26.6 26.9 16.0 24.0 24.0 34.5 38.6 42.7
LongCE (K=4k, d=1k, default) 12.5 (+79%) 26.0 27.2 28.2 24.0 46.0 46.0 43.1 48.3 49.7
LongCE (K=1k, d=1k) 10.0 (+43%) 25.3 25.8 26.9 20.0 48.0 48.0 45.6 51.1 55.9
LongCE (K=4k, d=4k) 9.5 (+36%) 25.4 25.8 25.8 28.0 56.0 56.0 42.5 48.0 51.2
LongCE (K=4k, d=512) 17.5 (+150%) 25.4 25.8 27.3 26.0 48.0 60.0 42.4 50.1 54.4

Table 8: Detailed scores of LongBench in Table 2.

Task Domains Single-Document
QA

Multi-Document
QA Summarization Few-shot

Learning
Code

Completion
Synthetic

Tasks Avg.

Setting A (PG-19 dataset with EABF)
CE (50 steps) 4.4 1.1 15.5 66.7 59.7 0.0 24.5
CE (100 steps) 5.9 2.0 21.9 67.5 61.8 0.4 26.6
CE (200 steps) 6.9 2.3 22.8 66.8 61.9 0.4 26.9
LongCE (50 steps) 7.6 2.1 22.0 66.1 57.9 0.5 26.0
LongCE (100 steps) 7.7 3.3 22.5 65.7 61.6 2.3 27.2
LongCE (200 steps) 9.3 4.8 23.9 66.0 61.9 3.2 28.2

Setting B (PG-19 dataset with PI)
CE (50 steps) 3.1 3.2 12.9 65.3 59.8 1.6 24.3
CE (100 steps) 4.1 3.5 17.5 65.2 59.9 1.8 25.3
CE (200 steps) 5.6 4.0 15.4 66.0 60.3 1.0 25.4
LongCE (50 steps) 4.5 2.2 15.6 63.1 58.4 2.7 24.4
LongCE (100 steps) 4.6 1.7 17.7 64.1 59.0 2.8 25.0
LongCE (200 steps) 6.0 4.3 19.0 63.6 59.2 2.7 25.8

Setting C (Pile-arxiv dataset with EABF)
CE (50 steps) 1.7 0.0 0.0 50.2 38.2 0.0 15.0
CE (100 steps) 4.2 5.4 4.9 65.0 58.9 0.0 23.1
CE (200 steps) 5.1 7.1 7.6 64.3 58.7 0.0 23.8
LongCE (50 steps) 3.5 0.0 2.6 52.9 46.7 0.0 17.6
LongCE (100 steps) 4.2 5.3 10.0 64.3 59.1 1.0 24.0
LongCE (200 steps) 3.7 6.1 14.3 64.7 59.8 1.3 25.0

B.4 DETAILED RESULTS OF THE EXPERIMENTS IN SECTION 2.1

In Table 9, we present the detailed results from the experiments in Figure 2(b) and 2(c).

B.5 NEEDLE-IN-A-HAYSTACK RESULTS

In this section, we conduct the standard Needle-in-a-Haystack (NIAH) evaluation to evaluate mod-
els’ long-context capability when context lengths is greater than 32K.

We first test the models obtained in the main text, which are fine-tuned on 32K-length texts. As
shown in figure 1 and 2, LongCE achieves a score of 10 on 5 out of 6 questions at the 40K length
and 2 out of 6 questions at the 48K length, outperforming CE, which achieves a score of 10 on 2
out of 6 and 0 out of 6 questions, respectively. Therefore, LongCE demonstrates a longer effective
context length.

Additionally, to demonstrate the generalization ability of LongCE on longer context lengths, we
extend the context window of both models by increasing their RoPE base from 500K to 2M. The
corresponding NIAH results are shown in Figure 3 and 4. The results show that model finetuned
with LongCE answers all questions correctly at the 64K length and achieves a score of 10 on 32
sequences with lengths of ≥32K, while CE only achieves this on 26 sequences. This indicates that
LongCE can generalize well at longer lengths.
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Table 9: Detailed results of experiments in Figure 2.

Prompt Length 2k 3k 4k 5k 7k 9k 11k 13k 15k 17k 19k 21k 23k 25k 28k

Yi-6B-200K
LongEval accuracy / % 100.0 94.0 84.0 76.0 76.0 64.0 68.0 54.0 60.0 58.0 46.0 44.0 50.0 52.0 48.0
PPL (answer tokens) 1.49 1.47 1.59 1.64 1.91 2.00 1.98 2.29 2.28 2.15 2.39 2.11 2.23 2.32 2.08
PPL (non-answer tokens) 2.15 2.17 2.12 2.18 2.18 2.20 2.27 2.25 2.25 2.23 2.23 2.21 2.22 2.25 2.24

CLEX-7B-64K
LongEval accuracy / % 82.0 34.0 84.0 82.0 58.0 62.0 58.0 56.0 50.0 44.0 46.0 24.0 22.0 28.0 24.0
PPL (answer tokens) 1.31 2.33 1.23 1.33 1.47 1.43 1.51 1.54 1.63 1.78 1.89 2.23 2.50 2.61 2.59
PPL (non-answer tokens) 2.22 2.31 2.17 2.18 2.10 2.16 2.17 2.14 2.14 2.15 2.15 2.18 2.20 2.24 2.24
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(a) Model finetuned with CE.
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(b) Model finetuned with LongCE.

Figure 11: Needle-in-a-haystack results of models trained with PG-19 datasets & EABF for
200steps.

B.6 SUBSTITUTING KEY TOKENS WITH RE-OCCURRED N-GRAM

In this section, we examine whether LongPPL works by retrieving the frequent N-gram in the con-
text, as concerned in recent works (Sun et al., 2021; Arora et al., 2024). We calculate perplexity
solely on the re-occurred N-gram (word-level, N > 2) in the inputs, and present the correlation
coefficients with the benchmarks in table 10.

The results show that PPL on re-occurred N-grams has much weaker correlation with model’s long-
context capabilities. This indicates that LongPPL’s powerful ability to capture long-context-related
information cannot be simply explained by N-grams.
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(a) Model finetuned with CE.

1K 8K 16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

Token Limit

0.0

20.0

40.0

60.0

80.0

100.0

De
pt

h 
Pe

rc
en

t

Fact Retrieval Across Context Lengths ("Needle In A HayStack")

1

2

3

4

5

6

7

8

9

10

Sc
or

e
(b) Model finetuned with LongCE.

Figure 12: Needle-in-a-haystack results of models trained with PG-19 datasets & EABF for
200steps. We increase the RoPE base from 500k to 2M after finetuning.

Table 10: The correlation coefficients between PPL calculated on re-occurred N-gram, and the
benchmarks.

LongBench LongEval RULER

PPL -0.11 0.24 0.27
PPL (N-gram) -0.41 -0.10 -0.05
LongPPL -0.96 -0.86 -0.84

C RELATED WORK

Long-context Modeling. Due to practical demands, numerous recent works have emerged that aim
to enable large models to handle long contexts through improvements in architecture or algorithms.
One mainstream direction is the study of positional encodings with length extrapolation capabilities,
including Alibi (Press et al., 2021), xPOS (Sun et al., 2023), Kerple (Chi et al., 2022), and various
RoPE (Su et al., 2024) variants (Chen et al., 2023; Zhang et al., 2024c; Chen et al., 2024a; Xiong
et al., 2024; Peng et al., 2024). Others pay more attention to architecture improvements, using
sparse attention mechanisms to prevent models from attending to overly long sequences (Han et al.,
2023; Xiao et al., 2024; Chen et al., 2024b; Ding et al., 2023), or exploring the use of recurrent
mechanisms to compress and store key information from long texts, thereby effectively increasing
the context window (Zhang et al., 2024a; Bulatov et al., 2023; Martins et al., 2022).
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Long-context Evaluation. Recent studies have introduced several benchmarks to evaluate the long-
context performance in downstream tasks. A widely used type of benchmark is retrieval-based
synthetic task, including needle-in-a-haystack (Kamradt, 2023), passkey-retrieval (Mohtashami &
Jaggi, 2023) and LongEval (Li et al., 2023a). Some evaluation suites have also been gradually
introduced, such as LongBench (Bai et al., 2023b), RULER (Hsieh et al., 2024), ZeroSCROLLS
(Shaham et al., 2023), including document question answering, summarization, few-shot learning,
code completion, and other synthetic tasks, thereby offering a more thorough evaluation of a model’s
long-context abilities. To further enhance the context length of the evaluation data, InfiniteBench
(Zhang et al., 2024b) has introduced evaluation data exceeding 100K tokens. In this paper, we
analyze the correlation between the Perplexity metric and specific evaluation tasks and propose
an alternative LongPPL metric, which can better align the model’s long-context performance on
downstream tasks.

Re-weighting methods in language model training. Re-weighting methods for language model
training have been extensively studied, with a focus on enhancing model performance (Lin et al.,
2024), improving training efficiency (Clark et al., 2022), and addressing token imbalance (Luo et al.,
2023; Hu et al., 2023; Gu et al., 2020; Wang et al., 2020). Many works have also explored re-
weighting through data selection techniques, addressing a wide range of challenges such as data
quality (Li et al., 2023b), data diversity (Liu et al., 2023), and distribution matching (Li et al.,
2023c; Ni et al., 2024). However, few of these works focus on re-weighting tokens to enhance a
model’s long-context performance. The most recent and closely related work to ours is LongRecipe
(Hu et al., 2024b), which re-weights tokens based on distribution shifts in model predictions during
training. This approach does not capture the essential characteristics of key tokens. In contrast,
our method directly re-weights tokens according to their dependence on long-context information,
providing a more fundamental and targeted solution.
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D MODELS

The models used in this paper are shown in Table 11.

Table 11: Information of the models used in this paper.

Model Size Context Length Huggingface

Llama-2-7B (Touvron et al., 2023) 7B 4K meta-llama/Llama-2-7b-hf
Llama-2-13B (Touvron et al., 2023) 13B 4K meta-llama/Llama-2-13b-hf
Llama-3.1-8B (Dubey et al., 2024) 8B 128K meta-llama/Llama-3.1-8B
Mixtral (Jiang et al., 2024) 8x7B 32K mistralai/Mixtral-8x7B-Instruct-v0.1
Mistral-v0.1 (Jiang et al., 2023) 7B 8K mistralai/Mistral-7B-v0.1
Mistral (Jiang et al., 2023) 7B 32K mistralai/Mistral-7B-Instruct-v0.2
Mistral Large 2 (Jiang et al., 2023) 123B 128K mistralai/Mistral-Large-Instruct-2407
Qwen1.5 (Bai et al., 2023a) 14B 128K Qwen/Qwen1.5-14B
Qwen2-7B (Yang et al., 2024) 7B 128K Qwen/Qwen2-7B
Qwen2-72B (Yang et al., 2024) 72B 128K Qwen/Qwen2-72B-Instruct
FILM (An et al., 2024) 7B 32K In2Training/FILM-7B
Phi-3 (Abdin et al., 2024) 7B 128K microsoft/Phi-3-small-128k-instruct
CLEX (Chen et al., 2024a) 7B 64k DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K
Yi (Young et al., 2024) 6B 200K 01-ai/Yi-6B-200K
Yarn (Peng et al., 2024) 7B 128K NousResearch/Yarn-Mistral-7b-128k
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E DEMONSTRATION FOR THE SELECTED KEY TOKENS

Demonstration for the selected key tokens in GovReport

............

Even though it has reimposed all U.S. sanctions on Iran, the Trump Administration has
issued some exceptions that are provided for under the various U.S. sanctions laws,
including the following: As noted above, on November 5, 2018, eight countries were
given the SRE to enable them to continue transactions with Iran’s Central Bank and to
purchase Iranian oil. At an April 10 hearing of the Senate Foreign Relations Committee,
Secretary Pompeo appeared to indicate that the SREs would be renewed. However, on
April 22 the Administration announced termination of the SREs as of their expiration on
May 2, 2019. On May 3, the Administration ended some waivers under IFCA and various
antiproliferation laws (discussed above) that allow international technical assistance to
Iran’s three nuclear sites permitted to operate under the JCPOA—the Fordow facility, the
Bushehr nuclear power reactor, and the Arak heavy water plant. The Administration ended
the waiver that enabled Rosatom (Russia) to remove Iran’s LEU that exceeds the 300kg
allowed stockpile, and that allowed Iran to export heavy water that exceeded the limits
on that product to Oman. The waiver limitations also will prohibit the expansion of the
Bushehr reactor by any supplier. In response, President Rouhani announced that Iran would
no longer abide by the JCPOA stockpile limits. The Administration waived Section 1247(e)
of IFCA to enable Iraq to continue paying for purchases of natural gas from Iran. The
waiver term for that section is up to 180 days, but the Administration has been providing the
waiver for 90-day increments. The Administration has issued the permitted IFCA exception
for Afghan reconstruction to enable India to continue work at Iran’s Chahbahar Port. A U.S.
State Department official told Afghan leaders in mid-May 2019 that the exception would
continue. The Administration has renewed the licenses of certain firms to enable them to
continue developing the Rhum gas field in the North Sea that Iran partly owns.

............

The JCPOA did not commit the United States to suspend U.S. sanctions on Iran for terrorism
or human rights abuses, on foreign arms sales to Iran or sales of proliferation-sensitive
technology such as ballistic missile technology, or on U.S.-Iran direct trade (with the
selected exceptions of the latter discussed above). The sanctions below remained in place
during JCPOA implementation and remain in effect now: E.O. 12959, the ban on U.S.
trade with and investment in Iran; E.O. 13224 sanctioning terrorism entities, any sanctions
related to Iran’s designation as a state sponsor or terrorism, and any other terrorism-related
sanctions. The JCPOA does not commit the United States to revoke Iran’s placement on
the terrorism list; E.O. 13382 sanctioning entities for proliferation; the Iran-Iraq Arms
Non-Proliferation Act; the Iran-North Korea-Syria Non-Proliferation Act (INKSNA); the
section of ISA that sanctions WMD- and arms-related transactions with Iran; E.O. 13438
on Iran’s interference in Iraq and E.O. 13572 on repression in Syria; Executive Orders
(E.O. 13606 and E.O. 13628) and the provisions of CISADA, ITRSHRA, and IFCA that
pertain to human rights or democratic change in Iran; all sanctions on the IRGC, military,
proliferation-related, and human rights- and terrorism-related entities, which were not
”delisted” from sanctions; Treasury Department regulations barring Iran from access to the
U.S. financial system. Foreign banks can pay Iran in dollars out of their existing dollar
supply, and the Treasury Department revised its guidance in October 2016 to stress that
such transactions are permitted.

............
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